Purdue University

Purdue e-Pubs

Open Access Theses Theses and Dissertations

Spring 2015

Studying the eftect of multi-query functionality on
a correlation-aware SQL-to-mapreduce translator
in Hadoop version 2

Thivviyan Amirthalingam
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access theses

Recommended Citation

Amirthalingam, Thivviyan, "Studying the effect of multi-query functionality on a correlation-aware SQL-to-mapreduce translator in
Hadoop version 2" (2015). Open Access Theses. 562.
https://docs.lib.purdue.edu/open_access_theses/562

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F562&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F562&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F562&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F562&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/562?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F562&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form 30
Updated 1/15/2015

PURDUE UNIVERSITY

GRADUATE SCHOOL
Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By Thivviyan Amirthalingam

Entitled

STUDYING THE EFFECT OF MULTI-QUERY FUNCTIONALITY ON A CORRELATION-AWARE
SQL-TO-MAPREDUCE TRANSLATOR IN HADOOP VERSION 2

For the degree of Master of Science

Is approved by the final examining committee:

John Springer

Chair

Victor Barlow

Eric Matson

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s): J°hn Springer

Approved by: Jeffrey Whitten 4/28/2015

Head of the Departmental Graduate Program Date

STUDYING THE EFFECT OF MULTI-QUERY FUNCTIONALITY ON A
CORRELATION-AWARE SQL-TO-MAPREDUCE TRANSLATOR IN HADOOP

VERSION 2

A Thesis
Submitted to the Faculty
of
Purdue University
by

Thivviyan Amirthalingam

In Partial Fulfillment of the
Requirements for the Degree
of

Master of Science

May 2015
Purdue University

West Lafayette, Indiana

F&Ip ClumpB et ClLfgeusGLd 6ILoS% e esid
FrerGm et 616575 CaHL L Smul.

(@mair 69)
&G SHSH FTOMILD 2 5o @)ITSbenS

e11GBTH e G&med0levaiLh GlFmeD.

(@mair 70)

For, Amma and Appa, my parents.

ACKNOWLEDGEMENTS

My sincere gratitude to my major professor, Dr. John Springer, for his support
and guidance has made this thesis project possible and, instilled a lifelong learning
experience.

I also thank my committee members, Dr. Eric Matson, Professor Julie Mariga and
Professor Victor Barlow for their involvement and feedback throughout this project’s
duration.

A special note of thank you is also due to the Information Technology at Purdue
(ITaP) and its Research Computing (RCAC) division for their technical support and
recommendations.

Last but not the least, I would like to also express my appreciation to my family,

significant other and friends for their love, support and, the occasional, sanity checks.

TABLE OF CONTENTS

Page

LIST OF TABLES ...ttt n s vii
LIST OF FIGURES ...ttt sttt viii
GLOSSARY ettt ettt ettt r ettt et reareeneenes iX
LIST OF ABBREVIATIONSoi ittt snaaeanne e X
ABSTRACT ...ttt ettt st e st e st et e bt et e e e s e e be st et reebe st enenre e Xi
CHAPTER 1. INTRODUCTION ..ooiiiiiiiiieieesie et 1
1.1 ReSEArCh QUESTION......cciiiiieiie ittt te et e et e st e e be e e e nbeeaneas 2
T olo oL T TSP OPTUUPTUPRTO 2
IR T YT T T o Uy Lo - USSR 3
1.5 ASSUMPLIONSeiiieieiteesie et e e et s e e ste et e st e e e st e teaseesreesteeneessaetaeneesneenneeneesnaenanns 4
1.6 LEMITALIONS ..ottt sttt ettt et e e sreenbesneesbeeae s 5
1.7 DelIMITALIONScoviiieiiiieiiee ettt sttt esreente e sreeae s 5
1.8 Chapter SUMMAIY......ccceiiieiieiieieeiesee st e e s e ste et esteasae e e saeeseessaesseeseessaesseeneesneennens 6
CHAPTER 2. LITERATURE REVIEWccooiiiiiiciiee e 7
2.1 MAPREAUCE OVEIVIBW......eiuiiiiiiiieiie sttt sttt sttt sttt re e sbe et seesbeebesneenns 8
2.2 High-level Declarative LanQUAGEScoueieeruieieiiesieeie e sie et 9
2.2.1 HIVB ettt 10

2.2.2 Pigand Pig Latin........ccccoeiioiiiiecieie s 11

2.3 SQL-MapReduce Translators and OptimIzZers.........c.ccceeiireiinnenieneene e 12
2.4 MaPREAUCE OPUIMIZEIS....iiiiieiiieeiieiieee sttt sbe e see e e 17
2.3 Chapter SUMIMAIYccveieiieiieeiesiesteeteseeste s e sreesteeseesteestesneesraesesseesseeseesseesreeneenns 18

CHAPTER 3. METHODOLOGYcciiiiiiiiiiini s 19

Page

3.1 Software and Hardware SPecCifiCations...........cccoovevvivieiiieiecc e 20
1L HANI s 21

3.2 QUEKIES ANU DAASELSeeiuiieiiicie ettt 22
3.3 Independent Variables..........cccveiiiieiiiieiiece e 22
331 DA SIZE oot 23

3.3.2 NUMDEr OF QUEIIES......eiiieiie ettt 23

3.3.3 CHUSEEE SHZE ...ttt nneas 24

3.3 SPHIE SIZE e 24

3.4 Dependent Variablescooiiiiieiecc e 25
3.5 HYPOUNESIS ...ttt 25
3.6 ProCedure Of TESTINGccueiieiieie ettt 25
3.7 Population and SamPIe.........cccveiiieiiie e 26
3.8 MEASUIEMENT OF SUCCESScuviuviiiiieiti sttt et 27
3.9 Threats and WEAKNESSEScc.ceiiiiiiiiiiesiieiie ettt e 27
3.10 Chapter SUMIMAIYccueiiesiieiiieiestie e estesiee st eseesteeste st e sbeesbesseesbeeeesseesbeeneesseeneeenee e 28
CHAPTER 4. DATA COLLECTION AND ANALYSIS ..ot 29
4.1 Compatibility with HAd0OP VEISION 2........ccoveiiiieiice e 30
4.1.1 General INTEIENCESc.ooviiii e 31

4.1.2 HyPOthesiS TeSTING.....cceeiuiiiriieieiie et 33

4.1.3 RegresSion ANAIYSIS.......coviiiiieeieiieseeie e se e s e se e sre e se e 34

4.2 Complex Query Translation on Large Data Setsccccevvevierieeiieiesieeie e 36
4.2.1 General INTEIENCESc.ooviiiiiiee e 36

4.2.2 HYPOtheSiS TESTING.....ccueiiiiiiiieie e 38

4.1.3 RegresSion ANAIYSIS.......coviuiieeieiieieeie e se e see e see e sre e se e aennes 39

4.3 Multi-query FUNCEIONATIEYocveeieiieece e 40
4.3.1 General INTEIENCESc.ooviiiiiiee e 41

4.3.2 HyPOthesiS TESTING.....cceeiiiiiiiieie e 43

4.3.3 RegresSion ANAIYSIS.......coviieiieeieiieiierie e se e see e sre e e e 44

4.4 Chapter SUMMAIYcciveireiieieeiesee e etesee e aeesaestessaesraesseassessaesseaseessaesseeseesseessens 45

Vi

Page
CHAPTER 5. CONCLUSIONS, DISCUSSIONS AND FUTURE DIRECTIONS...... 46
T8 A ©70] o Tod 11 1S o] S S TSTPR PR 46
5.2 DISCUSSIONS.....vetititeetiesie et st sttt sttt e et e bbb bt b e bt e bt et et et e b e sb e st be st e abeenes 48
5.3 FULUIE DISCUSSIONSvvviiieiieiete sttt sttt st sb ettt bbb eneas 49
5.4 Chapter SUMIMAIYcceiiiiieiiieiestiesieeste st e e eeesteestesseesbeestesseesbeebesseesbeeneesseeseeenee e 50
LIST OF REFERENCES.........oii ottt ol

APPENDICES ... 53

Vil

LIST OF TABLES
Table Page
3.1 Hardware Specifications of the Hathi CIUSEErcccovieiiiii i 22
4.1 Average Time Taken for Experiment 1 JOb EXECULIONccocoveiievveii i, 32
4.2 Major hypothesis testing statistics for EXperiment 1........c.ccccooceieviveiiniinieenesiennnn, 34
4.3 Average Time Taken for Experiment 2 JOb EXECULIONccoeveiiiiiiiiiiniicce, 38
4.4 Major hypothesis testing statistics for EXperiment 2...........cccooceieieniinnieenieneennnn, 39
4.5 Major hypothesis testing statistics for EXperiment 3...........cccoooevveviveieniieseesiesiennen, 44
5.1 Regression models and respective r-squared values for experiments 1, 2 and 3........ 48

Appendix Table
B.1 Partial Log of EXPErimeNnt 3........cccviiiiiiiieie ettt saa s 62

viii

LIST OF FIGURES

Figure Page
4.1 Execution time vs. table size for EXperiment 1cccccooviiiiieiinnenic e, 33
4.2 Table size vs. time taken fit plot for EXperiment 1...........cccocveveieviieieniiennese e, 35
4.3 Execution time vs. sample data size for EXperiment 2.........ccocceevvevvevesieesnerieseennnnn, 38
4.4 Table size vs. time taken fit plot for EXperiment 2...........ccoceeveieiieicnin s, 40
4.5 Execution time vs. number of queries for EXperiment 3.ccccovvveveniniennieneennnn, 43

4.6 Number of queries vs. time taken fit plot for Experiment 3...........cccooovvvviveieseennnn, 45

GLOSSARY

Correlation-aware translator - A model that identifies the correlation between operations
within a single complex query (Lee et al., 2011).

Execution performance - The execution time it takes for a particular system to complete a
single or a set of specific function(s) and/or instructions (Gu et al., 2014).

Hadoop - According to Apache’s official online definition of Hadoop, it is a framework
for a distributed processing of large amount of data balanced across nodes
utilizing simple programming models.

MapReduce - “MapReduce is a programming model and an associated implementation
for processing and generating large data sets” (Dean & Ghemawat, 2004, pg.1).

SQL - According to IBM’s online SQL Guide, Structured Query Language (SQL) is a
set-oriented mean for the users to allow query, update and delete tables of in a
relational database environment.

LIST OF ABBREVIATIONS

CPU: Central Processing Unit

DDL.: Data Definition Language

DML.: Data Manipulation Language

ITAP: Information Technology at Purdue

NOSQL: Not-only Structured Query Language
SQL.: Structured Query Language

TPC: Transactional Performance Processing Council
UDF: User Defined Functions

XML.: Extensible Mark-up Language

YSMART: Yet another SQL-to-MapReduce Translator

Xi

ABSTRACT

Amirthalingam, Thivviyan. M.S., Purdue University, May 2015. Studying the Effect of
Multi-query Functionality on a Correlation-aware SQL-to-MapReduce Translator in
Hadoop version 2. Major Professor: Dr. John Springer.

The advent of big data has prompted both the industry and research for numerous
solutions in catering to the need for data with high volume, veracity, velocity and variety
properties. The notion of ever increasing data was initially publicized in 1944 by Fremont
Rider, who argued that the libraries in American Universities are doubling in size every
sixteen years (Press, 2013). Then, when the digital storage era came to be, it became
easier than ever to store and manage large volumes of data. The need for efficient big
data systems is now further fueled by the “Internet of Things” as it opens floodgates for,
never before seen, new information flow.

These phenomena have called for a simpler and more scalable environment with
high fault tolerance and control over availability. With that motivation in mind, and as an
alternative to relational databases, numerous Not-Only Structured Query Language
(NoSQL) databases were conceived. Nonetheless, relational databases and their de facto

language, Structured Query Language (SQL) are still prominent among wider user groups.

Xii

This thesis project ventures into bridging the gap between Hadoop and relational
databases through allowing multi-query functionality to a SQL-to-MapReduce translator.
In addition to that, this research also includes the upgrade of the translator to a newer
Hadoop version to utilize newer tools and features added since its original deployment.

This study also includes the analysis of the modified translator’s behavior under
different sets of conditions. A regression model was devised for each of the experiments
made and presented as significant means of understanding the data collected and any

future estimates.

CHAPTER 1. INTRODUCTION

MapReduce and Hadoop have become a game-changing paradigm in big data
analytics mainly due to their fault tolerance and scalability. However, relational databases
and SQL-like queries still play a prominent role within the user communities. Such
phenomena, i.e., the popularity of relational databases, have triggered multiple
investigations on effective translation model between the relational and NoSQL data
models.

This research is an extension of a paper, YSMART: Yet another SQL-to-
MapReduce Translator (2011). The aforementioned paper, written by multiple
researchers at the Ohio State University with the collaboration of Facebook, discusses a
new optimized method of translating SQL queries to MapReduce code by considering the
correlation between the operations within a single complex query (Lee et al., 2011).

Lee et al. propose that by applying a set of rules to minimize the number of
MapReduce jobs, YSMART can significantly “reduce redundant computation, 1/0
operations and network transfers compared to existing translators” such as Hive and Pig
(Lee etal., 2011, p. 1). Although YSMART optimizes a complex SQL query plan
tremendously, there are still many ways of improving it and its underlying Hadoop

framework especially in the case of multiple queries.

This research dived into the possibility of introducing multi-job functionality to
the translator design to allow multiple SQL queries to be translated collectively. In

addition to that, it also included an upgrade for Hadoop version 2 compatibility.

1.1 Research Question

What is the behavior observed when the current implementation of a correlation-
aware SQL-to-MapReduce translator is integrated with multi-query functionality on
Hadoop version 2?

1.2 Scope

The popularity of Hadoop and the MapReduce framework has led to many
investigations on making it better and, ultimately, faster. Current business need demands
nothing less than the best solution for big data analytics. Resultantly, every single aspect
of the framework is studied for optimization.

Rong Gu et al. (2011) categorized the efforts of improving the Hadoop
MapReduce framework into four different classes: (a) optimization through scheduling
algorithms; (b) optimization through specialized hardware and software; (c) optimization
for specific MapReduce application; and (d) optimization through the configuration
settings and parameters. On the other hand, the prevalent acceptance of relational
databases and SQL queries has also led to multiple studies on how to incorporate a query-
like language with MapReduce.

This research was aimed at introducing multi-job functionality to the current
implementation of the correlation-aware SQL-to-MapReduce translator (Lee et al., 2011)

and verifying its compatibility with Hadoop version 2. It will not discuss optimization

methods discussed later in Chapter 2. Furthermore, to provide consistency, all the tests
performed were in the same environment. This ensures that external factors (e.g.,
difference in CPU, memory, network capacity and disk performance) do not interfere
with the results collected.

Additionally, this research focused on a set of specific benchmarked complex
queries such as TPC-H for the translation process. In most cases, simple queries do not
allow a correlation to be formed due to their naive nature. Complex queries, in contrast,

provide more robust testing scenarios for the experiment.

1.3 Significance

As mentioned earlier, SQL queries have been the predominant form of interface
between users and relational data systems. Although the NoSQL environment offers a
totally new approach to data storage, retrieval and management, users still expect similar
query-like languages. This has led to the advancements of Hive and Pig, the major high-
level SQL-like querying languages on the market (Wang & Chan, 2014).

Despite their popularity, Hive and Pig pose a serious performance issue for
certain complex queries. This is due to the one-operation-to-one-job nature of these
translators (Lee et al., 2011). In response, the correlation-aware SQL-to-MapReduce
translator was introduced. This method identifies the correlation within a single complex
query and reduces the execution time tremendously compared to Hive and Pig.

This research has added to that framework and introduced the multi-job
functionality to the underlying MapReduce framework. Such investigation would not

only allow multiple queries to be processed by the correlation-aware translator but also

optimize the overall process. This offers an efficient batch-query processing approach

especially with a set of complex queries.

Furthermore, the multi-query functionality would also take advantage of any

similar processing (e.g., scanning similar input files and/or tabulating similar key-value

outputs) and allow for more opportunities for reduced computation and I/O processing

(Wang & Chan, 2014).

1.5 Assumptions

This study includes the following assumptions:

The inter-node network traffic overhead is assumed to be miniscule and
ignorable.

The network speed is assumed to be constant.

The selected SQL queries contain the necessary complexity for the
optimization application.

The results collected from the test environment will be proportionate or
almost proportionate when scaled to a high-processing environment.
The application of the multi-query optimization is independent of the
underlying hardware and software configurations

All selected queries allow multi-query optimization through Hadoop’s
underlying architecture.

The results are collected in a controlled environment and are not affected by

external factors.

e The regression model formulated from the results would be the best

descriptor for future estimates.

1.6 Limitations

This study includes the following limitations:

This research studies the effect of incorporating the multi-query functionality
methods into correlation aware SQL-to-MapReduce translator design by Lee
et al. (2010).

This research only considers selected SQL queries from the TPC-H

benchmark series.

This research studies the behavior of the new implementation through general
inferences, hypotheses testing and linear regression models.

All tests are executed in a single test environment for consistency.

1.7 Delimitations

This study includes the following delimitations:

This research only studies the time complexity of a given set of query
translations. It does not include any other complexity measurements.
Optimization is identified in the multi-query read level. Any other
optimization such as, including but not limited to, software/hardware
optimization, execution optimization, algorithm optimization, etc. will not be

included as a part of this study.

e This study does not include comparisons between the proposed model and
translators such as Tenzing, MRPacker, YSMART, etc.

e This research does not include SQL queries that (a) are simplistic in nature, (b)
do not allow correlation to be formed and (c) do not allow multi-query

generalization method to be applied.

1.5 Chapter Summary

This chapter introduces the general idea of the proposed research. It outlines key
aspects such as the research question, scope, definitions, assumptions, limitations and

delimitations.

CHAPTER 2. LITERATURE REVIEW

The advent of big data has shifted the paradigm of data and its processing
methods. An abundance of data collected through new and precise devices like motion
detectors, heat sensors, web traffic data collectors, etc. In addition to traditional data
collecting methods, the amount of data streaming in from these new devices has made it
impossible to capture, store, analyze and maintain data via a relational database model.

However, relational database systems are still key players in the data management
approach. The 20 year-plus old technology has placed its imprint on a majority of the
user groups and it has shown to be commonly implemented for various purposes. In
addition to that, Online Transaction Processing, or more commonly known as OLTP, has
fueled the motivation for the relational databases in the fast-paced online world. The
prevalence of relational databases eventually led to the popularity of Structured Query
Language (SQL), the de facto platform for the user-data-system communication.

These phenomena have inspired the author to look into the means of effective
translation models between a relational database and a NoSQL environment. The
following chapter will explore previous works that were made in this area. The
subsequent pages are organized as follow: (a) Hadoop/MapReduce Overview, (b) High
Level Declarative Languages, (c) SQL-MapReduce Translators and (d) MapReduce

Optimizers.

2.1. MapReduce Overview

Mass information gathered on the day-to-day basis is only as useful as the
knowledge that can be derived from it. However, current performance of relational
database solutions and their analytical tools degrade when substantial amount of data is
introduced. According to Deshpande (2011), there are a number of complications when
designing a large-scale data processing system. Some of them include:

1. Managing the environment’s processors to adapt to the large data sets.

2. Incorporating parallelization and distribution without introducing excessive

overhead costs.

3. Managing input file flows.

4. Providing fault tolerance and high availability.

To overcome these problems, Dean and Ghemawat (2008) proposed the
MapReduce programming model. Designed at Google, MapReduce simplifies large data
computation and storage by allowing users to specify “a map function that processes a
key/value pair to generate a set of intermediate key/value pairs, and a reduce function that
merges all intermediate values associated with the same intermediate key” (Dean &
Ghemawat, 2008, p.1).

The programming model allows large data parallelization and distribution over
multiple clusters of commodity machines (Dean & Ghamawat, 2008). In addition to that,
it also automates the load balancing and locality optimization of a system. This allows the
users to be able to focus on the business logic rather than the technical implementation

for a particular system.

2.2. High Level Declarative Languages

As mentioned before, though big data solutions, e.g., Hadoop, offer a better
means of storing and computing large quantities of data, they have yet to fully influence
the common user groups due to the dominant popularity of relational databases and SQL.
The relational approach, which has been popular for more than two decades now, has
caused the user community to avoid the possibility of working with non-structured data
models.

To overcome these adaptation problems, many investigations have been made in
introducing a SQL-like, high-level declarative language for the Hadoop environment. In
this section, two such implementation will be discussed.

2.2.1. Hive

Hive is an implementation of a SQL-like, high-level declarative language that
runs on top of a Hadoop environment. The query language used in Hive, HiveQL,
converts SQL-like commands to MapReduce codes that can be run across multiple
Hadoop clusters. In addition to that, Hive also allows users to create custom MapReduce
jobs that can be plugged into SQL codes (Thusoo et al., 2009).

Thusoo et al. (2009) also said that HiveQL provides a wide range of SQL-like
guery commands. This includes the select, project, join, aggregate and union-all
statements. In addition to that, the query language allows some SQL Data Definition
Language (DDL), i.e., create, update and delete table statements. It also allows some
SQL Data Manipulation Language (DML) that contains functionalities such as load

tables, update tables and insert into tables.

10

Although HiveQL provides a wide range of SQL-like command, it is merely a
subset of the actual SQL syntax. This is deemed to be a flaw in the implementation,
especially for queries that require unique, less-commonly-used set of SQL commands.
After all, Thusoo et al. (2009, 2010) have identified their research to be a work-in-
progress and acknowledged a number of improvements that can be made in their first
Hive implementation, some of which are listed below:

5. The limited syntax of HiveQL

6. Naive-based optimizer with minimal rules for optimization

7. Limited connectivity with other applications and Application Programming

Interface (API) that does not support Java Database Connectivity (JDBC) or
Open Database Connectivity (ODBC)
8. Better data placement methods in a columnar storage system
9. Better multi-query optimization
2.2.2. Pig and Pig Latin

Another prominent high-level declarative language for the MapReduce
environment would be Pig. Introduced in mid-2008 by the researchers at Yahoo!, Pig
offers a compromising solution between the rigid, procedural MapReduce programming
and the somewhat flexible, declarative SQL queries. Olston et al. (2008) argued that the
procedural MapReduce model allows scalability and reliability through the Hadoop
architecture whereas the SQL method is widely known and user-friendly. With that
motivation, Olston et al. (2008) ventured in creating a low-level programming language,

Pig Latin, for the Pig environment.

11

During the initial proposal of Pig, Olston et al. (2008) also pointed out some of
the flaws present in the MapReduce environment. This includes the rigidity of the
language, incompatibility of dataflow in joins or in n-stages and its unsuitability with
common functions like projection and filtering. Thus, Pig Latin was created to combine
the best of the high level, declarative queries and the low-level, procedural MapReduce
programming models. Olston et al. (2008) believe that their proposed language, Pig Latin,
is superior to the common MapReduce programming models due to the following reasons:

1. Dataflow-oriented language: Pig is a platform where a user provides a set of
instructions where each instruction resembles a high-level data transformation.
This allows more control for the programmers to manipulate large amounts of
data with the least amount of hassle possible.

2. Rapid start and interoperability: Pig also offers a fast ad hoc query
transformation service for its users. This is made possible by allowing users to
run queries straight on an input file — provided that the tuple function is
present in the query. Similarly, the output of a Pig query can be formatted into
multiple forms, allowing for more flexibility. In addition to that, Olston et al.
(2008) proved that the Pig environment is interoperable with other
environments by placing it in the Yahoo! ecosystem.

3. User Defined Functions (UDF): Possibly one of its main attractions, Pig’s ad
hoc query method provides means of transforming user defined function into
useful MapReduce codes. This even includes complex operations like process

groupings, filtering and joining.

12

The implementation of Pig was extended by Gates et al. (2009); in their study,
they evaluated the performance and identified the challenges of implementing a Pig
environment on a large-scale basis. In addition to that, they have also listed some areas of
improvement for the environment — some of which are listed below:

1. The limitation on optimization due to the ad hoc querying

2. UDF incompatibility with non-Java interface

3. Improvements on the SQL user interface

4. Allowing grouping and joining pre-partition

5. Better skew handling

2.3. SOL-MapReduce Translators and Optimizers

Through the high level declarative languages, the translation of SQL queries was
investigated for a more robust SQL-to-MapReduce translator. One of such efforts was by
Zhang, Wang and Han (2011) in their paper, Middleware Design for Integrating
Relational Database and NoSQL based on a Data Dictionary. This research, inspired by
the WEB 2.0 boom and the need for big data solutions for the web, focuses on a data
dictionary model that acts as a middleware layer between a relational database and a
NoSQL environment. Zhang, Wang and Han (2011) identified a mean of integrating the
structured nature of relational databases and the rather loosely structured NoSQL
environment through a common application that keeps track of relevant information on
both ends.

Zhang, Wang and Han (2011) also promoted the notion that, despite the name,

NoSQL environments have a structure in their system — it is just broad and less

13

conventional to what is seen on the traditional data models. The researchers utilized this
fact to form an effective data dictionary.

The proposed database integration has three main components in its architecture:
(a) Middleware client, (b) Middleware server and (c) SQL engine. As the name suggests
the middleware client resides in the application layer and serves the communication
between the middleware and the application itself. The middleware server, on the other
hand, is proposed to be a device with distributive data transmission capabilities. This
component receives the user input and then analyzes and transfers the request to the
appropriate data model with the help of the data dictionary. The last component of the
architecture, the SQL Engine, “converts standard SQL requests into various types of
access to the NoSQL database” (Zhang, Wang and Han, 2011, p. 1470).

The notion of assigning a structure to a NoSQL environment has triggered other
investigations, including the author’s proposed research.

Other than the data dictionary implementation, other means for proper
middleware solutions have been investigated. In view of that, the Extensible Markup
Language (XML) was looked into as a possible middleware layer between a relational
and NoSQL environment. XML, according to the W3C web domain definition (2014), is
a flexible text-file format that is “designed to meet the challenges of the large-scale
electronic publishing.” While it was created for the purpose of transferring data between
websites, it is still a good candidate to hold information and provide a communication
platform between database models.

Yu, Wang and Hua (2012) addressed the problems of integrating multiple

relational database “species” and the communication complexities arise in doing so. In

14

many cases, large organizations would maintain multiple databases with multiple
database management systems. The management systems, although provide similar
relation-based data model, are still different than each other. This may eventually lead to
excessive administrative, maintenance and support costs to an organization. On the other
hand, just having one relational database management system for an entire organization
might not be a good idea due to factors such cost feasibility and project requirements.

To overcome such problems, Yu, Wang and Hua (2012) utilized the XML’s
compatibility with the relational database management systems and designed a
middleware solution that imports and exports of SQL commands in XML formats.
Though this laid the foundation for much more research, the solution proposed by Yu,
Wang and Hua (2012) only focused on the inter-relational database translation.

While the inter-relational database communication was introduced and developed,
another stream of investigations were made for an effective middleware design for the
traditional databases and NoSQL environment. Su and Swart (2012) looked into ways of
translating Oracle SQL queries to MapReduce codes. Their effort establishes a translation
model within the Oracle relational database management system.

Su and Swart’s in-database framework was based on the parallel query processing
of the Oracle engine. This allows the solution to “partition the input data, instantiate
mapper and reducer tasks, and schedule the computation using the database’s computing
resources” (Su and Swart, 2012, pg. 782). The design incorporates MapReduce tasks in
an Oracle database therefore eliminating the need for a separate Hadoop HDFS system.

Su and Swart (2012) also identified some of the issues of successfully

incorporating the MapReduce framework inside an Oracle database instance. First and

15

foremost, the Java implementation of MapReduce is very different from the one present
in the relational database’s architecture. Functions such as JobTracker and TaskTracker
that run on a multiple node environment are not natively available in Oracle and its
architecture. Hence, a proper replication of the Hadoop environment, including the Java
Virtual Machine and Hadoop Distributed File Systems, is required.

Other than that, the data-type incompatibility between the Hadoop and Oracle
environment also poses a roadblock to Su and Swart’s proposed design. Many Oracle
data-types are immutable — non-overwritten values that are discarded once they are no
longer needed. Hadoop, on the other hand, allows mutable files where values are
overwritten to reduce the allocation and garbage collection overhead (Su & Swart, 2012).

Last but not the least, the incompatibility of input and output file formats was also
identified as a major problem by Su and Swart (2012). The MapReduce framework
requires inputs and outputs types to be in key-value pairs whereas the database
management system interacts with the data through file-typed data-types. This
discrepancy requires the translator model proposed by Su and Swart to be able to convert
data to/from object types and file types without much processing overhead.

In addition to Su and Swart’s work, the designs for database-independent SQL-to-
MapReduce translators were also explored. One of the pioneers in the topic, Lee et al.
(2011), introduced a correlation-aware SQL-to-MapReduce translator, YSMART, where
the correlation within a single complex query is optimized before parsing it into
MapReduce codes.

The research by Lee et al., inspired by the unacceptably high time complexity of

common translators when processing complex queries, proposes YSMART outperforms

16

existing translators like Hive and Pig tremendously. The slow performance is due to the
one-job per operation nature of high-level declarative languages (i.e., Hive and Pig) that
ultimately results in more computation, 1/O operations and network transfers for complex
query processing (Lee et al., 2011).

As part of their research, Lee et al. looked into three types of intra-query
association models: (a) input correlation, (b) transit correlations and (c) job flow
correlations. Each of these is formed through a standard set of rules. Then, an optimized
MapReduce job is formed and sent to the Common MapReduce Framework (CMF) for
further processing.

The work by Lee et al. (2011) was further elaborated by Lin, Ye and Ma in their
paper: MR Packer: A SQL to MapReduce Optimizer (2013). In this study, the researchers
proposed an optimized MapReduce execution plan generator by imposing a set of
standard transformational rules to reduce the total number of MapReduce jobs. Similar to
YSMART, MRPacker also finds means of using a set of guidelines for transforming the
query to reduce the number of MapReduce jobs. This ultimately lowers the
computational resources and storage 1/0O processing.

But, unlike YSMART, the creators of MRPacker believe that there can be
multiple means of deriving the best solution, that is, MapReduce jobs with the lowest
execution cost possible. For that reason, a SQL query is transformed into multiple

MapReduce query plans and the best is chosen through an enumeration process.

17

2.4. MapReduce Optimizers

The large scaled query and data analysis also led to many efforts on making the
big data solutions to effectively handle bigger volume of data in the shortest time possible.
So naturally, the MapReduce framework was also studied for optimization.

According to Gu et al. (2014), MapReduce framework can be improved through:
(a) special algorithms, (b) special hardware and software configurations, (c) configuring
the MapReduce tasks and (d) optimizing job configurations. On the other hand, the
proposed research is on the multi-query optimization of MapReduce jobs. This ultimately
allows reduced computation, 1/0 and network transfers by utilizing the benefits of batch
processing.

One of the prominent efforts in identifying the multi-query optimization was by
done by Nykiel et al. (2010) through their work: MRShare — Sharing across Multiple
Queries in MapReduce. Their work identified that, in most cases, multiple queries of a
small data model often perform similar work and there is an opportunity to utilize that for
reduced processing. Ultimately, Nykiel et al. (2010) proposed a sharing opportunity
model that optimizes batch queries by combining identical jobs together to form a single
MapReduce job.

Another important aspect of Nykiel et al. (2010) proposed in their work was the
introduction of a cost model for MapReduce. This model, which assumes the execution
time of a MapReduce job is heavily deterministic of its I/O operations, allows an
estimation of time complexity to be calculated — provided the parameters are given and

accurate.

18

MRShare also laid foundation for many other batch-querying optimizations.
Wang and Chan (2014) proposed two new solutions in addition to MRShare’s sharing
opportunities: generalized grouping method and materialization technique. The
generalized grouping technique relaxes the MRShare’s sharing opportunity framework to
enable more MapReduce jobs to be merged into a single job. On the other hand, the
materialization technique offers an optimizing algorithm that enables multiple jobs to
share a particular query’s map input and map output scan (Wang & Chan, 2014).

Additionally, Wang and Chan (2014) also utilized the cost model as proposed by
Nykiel et al. (2010) to estimate the time it takes to execute MapReduce jobs. This is
pertinent to the proposed research as it shows that the cost model, though it only
considers the disk and network 1/0O, is deemed to be a good instrument of calculating the

time complexity of a MapReduce implementation.

2.5. Chapter Summary

This chapter summarizes the literature on the subject of (a) Hadoop/MapReduce,
(b) High Level Declarative Languages, (c) SQL-MapReduce Translators and (d)
MapReduce Optimizers. The concepts and techniques specified in each literature will
definitely provide a strong foundation towards the research question of incorporating

multi-query optimization to the correlation-aware SQL-to-MapReduce translation model.

19

CHAPTER 3. METHODOLOGY

The incorporation of multi-job optimization with the correlation-aware SQL-to-
MapReduce translator requires precise, yet robust experimental design. This is due to the
constrictive nature of the translator that uses a set of rules to form correlation within a
single complex query. On the other hand, the multi-query functionality also requires a
certain set of rules to be met before allowing any implicit optimization process.

Though the current implementation of SQL-like query translators, such as Hive
and Pig, provide stable and reliable big data analytic solutions, they pose a great
inefficiency for multiple complex query processing. This is due to the translators’ one-
operation-to-one-job translation mode where the intra-query and inter-query correlations
are ignored. Consequently, this results in unacceptable time complexity especially when
dealing with large number of complex queries.

The proposed research looked into the compatibility of the correlation-aware
translator, as proposed by Lee et al. (2010) with the multi-query functionality on the
latest Hadoop version. Furthermore, regression models of such combination (i.e.,
correlation-aware translation and multi-query functionality) were also studied. The
optimization study, for the sake of this research, was mainly based on the time it takes to
process a set of predetermined queries under a set of conditions, and this chapter will dive

into the methodological details of this research.

20

While studying the time complexity optimization, it is also pertinent to understand
how the external factors, or parameters, affect the proposed solution. As described by
Wang and Chan (2014), the effectiveness of a MapReduce model can be tested by
controlling four main parameters: the (a) cluster size, (b) number of queries, (3) data size
and (4) split size. Because the time it takes for MapReduce jobs vary according to each of
the aforementioned factors, some of these parameters, while others being constant, were

studied in further detail in this research.

3.1. Software and Hardware Specifications

Both the translator and the multi-query functionality require a set of software
configurations to be in place. The preliminary study has led the author to determine the
following specification requirements:

e Linux (32 or 64 bit) operating system
e Java and GNU Compiler Collection (GCC) are set up
e Python configured

Additionally, Hortonwork’s Ambari sandbox was also investigated as an
alternative, test environment for this research project. While the using a Linux machine
provided more control to users through powerful commands, the sandbox option was also
advantageous as it was made available with preset configurations and preinstalled
Hive/Pig plugins necessary for the research. Other than that, the translator requires Java,
GCC and Python to be properly installed and configured.

In addition to the software specifications, the research framework also required a

cluster of nodes with master-worker architecture to replicate a true Hadoop environment.

21

As such requirement, the author has identified Purdue University’s Hathi to be a viable
option.
3.1.1. Hathi

Purdue University, through Information Technology at Purdue (ITaP) Research
Computing (RCAC), provides a shared Hadoop cluster that is made available to partners
in Purdue’s Community Cluster Program. This shared resource, named Hathi, went into
production on September 2014 and has been catering numerous research projects
involving Hadoop since then. Hathi consists of 6 Dell nodes with two 8-core Intel E5 —
2650v2 CPUs, 64 GB of memory per node and 48 TB of local storage per node.
Furthermore, according to the ITaP RCAC’s user guide, all nodes have 40 Gigabit
Ethernet connection and the hardware is in a 5-year warranty. The hardware
specifications of the cluster are shown in Table 3.1.

Table 3.1 Hardware Specifications of the Hathi cluster

Specification Value

Machine Type Dell r720xd Servers
Processor Model Intel E5 — 2650v2
Number of Nodes 6

Cores per Node 16

Memory per Node 64 GB

Memory in Total 384 GB

HDFS Storage per Node 48 TB

HDFS Storage in Total 288 TB

22

Additionally, Hathi runs on Red Hat Enterprise Linux Operating System, version
6 and use PivotalHD Hadoop Distribution for resource and job management. All updates
and patches occur as security needs dictate.

The latest Hadoop distribution installed on Hathi is version 2.2.0.

3.2. Queries and Datasets

As indicated in the previous sections, the translator requires a set of
predetermined queries. This is to ensure that the queries meet the complexity
requirements for correlations to be formed within them. Therefore, as proposed by Lee et
al. (2011), the author has elected to use the TPC-H benchmarked queries, in particular,
Q6.

As for the datasets, a set of synthetic data will be used to populate tables
according to the selected queries. The logical database model was made available in the
Transaction Processing Performance Council (TPC) documentation. There were multiple
synthetic data generators available in the market and the author has elected to use the
Transactional Performance Processing Council’s TPC Database Generator due to its

compatibility and cost feasibility.

3.3. Independent Variables

As proposed by Wang and Chan (2014), an effective test of the optimized model
involves varying four different types of parameters: the (a) data size, (b) cluster size, (c)
number of queries and (d) split size. This research has tested the modified translator

solution, i.e. with multi-query functionality in Hadoop version 2, and the current SQL-

23

like query translator against varying degree of data sizes and number of queries. This
ensures a robust testing environment to observe the changes in the time complexity when
the parameters are altered. The following sub-sections describe the four main factors in
further detail.

3.3.1. Data Size

The data volume in any big data environment is considered to be its signature and
defining aspect. The sheer amount of data captured, stored, analyzed, transferred and
presented in a NoSQL system makes it impossible to be managed by a traditional data
processing system. The definition of “size” itself is considered to be an evolving aspect
as devices with larger storage capacities are constantly introduced.

For that reason, the research explored the effect of large data sets against the
correlation-aware SQL-to-MapReduce translator with the multi-query optimization.
According to Afrati and Ullman (2010), a larger data set requires more reducer tasks as
the number of reducer tasks should be proportional to data size. For that reason, the
author has elected to use 60GB, 120GB and 180GB synthetic data sets.

3.3.2. Number of Queries

Another factor that was explored is the effect of the total number of queries
against the different types of translators. In a normal scenario, the time complexity for a
MapReduce job should increase almost proportionally with the number of queries. This is,
in reality, not always true due to factors like CPU availability and network traffic.
Nevertheless, this research has investigated the opportunities for reduced time complexity

compared to other translators.

24

3.3.3. Cluster Size

Cluster size also plays an integral role in determining the time it takes to complete
a set of MapReduce jobs. Naturally, the higher the number of clusters, the more
distributive processing capabilities can be achieved even with large number of queries.

It is imperative that the proposed solution would be equally efficient in a large
cluster environment. This ensures the scalability feature that is deemed to be essential in
the big data realm. To replicate that, the author has elected to run set of queries against 6
nodes.

3.3.4. Split Size

The Hadoop File System, the default file system available on any Hadoop
implementation, automatically splits any input file into smaller chunks. This is to enable
the file system to process these data chunks in parallel and, ultimately utilize the multi-
core architecture of high-performing computers. In addition to that, the split enables the
Mapper to process the data more efficiently.

Split size also plays an important role in optimizing MapReduce jobs. Smaller
split sizes, though provide better utilization of storage and disk blocks, also requires
intensive 1/0 write and reads. This may lead to bottleneck issues. On the other hand,
larger split sizes would result in higher, underutilized storage space. Considering this
dilemma, it is only wise to set a default split size based on the data that is being processed.
To show the proposed solution’s compatibility with Hadoop’s default split size, the

author has elected to configure the split size to be at 512 MB.

25

3.4. Dependent Variable

The main dependent variable of this research was the time complexity, i.e., the
time it takes for the system to fully translate multiple complex queries and execute

appropriate MapReduce jobs.

3.5. Hypothesis

For each of the tests, as can be seen from Chapter 4, a hypothesis test for slope
was conducted. In a linear regression test, a statistical method to identify relationship
between two variables, the population is described by the slope and the intercept constant.
Due its irrelevance, the intercepts are often not tested for significance. On the other hand,
the slope of the regression line, usually denoted as Bx, is deemed to be the best descriptor
for the relationship between the dependent and independent variables.

Accordingly, the following hypotheses can be formulated for each regression
model generated in this research:

Ho: Bx =0

Ha: Bx>0

3.6. Procedure of Testing

This research has emulated a multi-query functionality to the correlation-aware
SQL-to-MapReduce translator as proposed by Lee et. al (2010). To provide consistency,
similar master-worker architecture was set up. In addition to that, the following Hadoop

configuration was made constant throughout the research:

26

e 1/O buffer cache size

e Default replication factor

e Number of concurrent mappers

e Number of concurrent reducers

Once the system is in place, the correlation aware SQL-to-MapReduce translator
was installed and configured to allow multi-query optimization. A set of data sets were
mounted on the system volume and approximately 100 trials will be run for each of the
parameters discussed above. The number of trials will be reduced if the query results (a)
display a similar pattern and (b) does not contain much discrepancy.

In addition to that, the hypothesis for slope was also tested using a t-test to
determine whether the slope of the regression model is significantly different from zero.
The t-test serves as the inference tool to assess the evidence provided by the data in favor
or against the null hypothesis about the population. In the case of this research, the author
has elected to analyze a regression model for each of the tests conducted. Moreover, in
regards to the rejection of null-hypothesis, the author has considered a one-sided t-test

and compared the p-value with a default significance level, i.e., alpha value, of 0.05.

3.7. Population and Sample

The population consists of TPC-H benchmarked queries. The queries, designed
and administered by the Transactional Processing Performance Council (TPC), allow ad
hoc queries that act as a decision support benchmark. These queries and their logical
database model are elected due to its broad, industry-wide relevance. It also requires less

maintenance and configurations thus, easing the implementation process. According to

27

the TPC Benchmark H Standard Specification (2014), the TPC-H queries support
systems that (a) examine large volumes of data, (b) execute complex queries and (c)
answers critical business questions. The author has adopted these set of queries due to
these advantages.

As mentioned earlier, the sample queries were a flattened versions of query Q6 of

the TPC-H benchmark query set.

3.8. Measurement of Success

Since this research focused on the effect of multi-job processing on an existing
translator, the measurement of success was mainly based on the time complexity of query
translations and MapReduce job executions. For that, the author has formulated
regression models that best describe collected data and any future estimates. Many
researches in the same area have chosen a similar approach.

A measure of success, in the case of this research, involves generating a linear
regression model that (a) rejects the null hypothesis for slope and (b) describes 90% or

higher of the variations found in the results through its adjusted R-Squared value.

3.9. Threats and Weaknesses

The author acknowledges the following threats and weaknesses that may affect

the research:
e Incompatibility between the cluster environment and the proposed solution

e Incompatibility between the cluster environment and existing SQL-like query

translators

28

e Limitations on the current correlation-aware SQL-to-MapReduce translator
e General outliers in the collected data

e Unidentified external factors that may affect the time complexity

3.10. Chapter Summary

This chapter covers the key variables in the experiment along with the hypotheses
that was tested in this project. It also describes the hardware specifications, software
specifications, sample, population, test data and a general description on how the

experiments were conducted.

29

CHAPTER 4. DATA COLLECTION AND ANALYSIS

The analysis for multi query functionality in a correlation aware SQL-to-
MapReduce translator required a series of tests, designed to examine its compatibility,
scalability and usability. Per se, the author has conducted multiple experiments, with
varying degrees of manipulative variables to determine a regression model that best
describes the data collected and future estimates.

A regression analysis is a statistical method used to investigate any relationship
between two factors, if present. Though a simple fit plot between the dependent and
independent variables would illustrate the general relationship between them, further
analyses such as hypothesis testing, R-squared calculation and linear model generation,
as presented in this chapter, will provide additional support to any discoveries.

This chapter presents its findings in three main categories of experiment: the new
implementation’s compatibility with (a) Hadoop 2.x.x, (b) large volume of data and (c)
multiple query translations. In each experiment, a range of 60 to 100 data points were
collected. As mentioned in Chapter 3, the number of trials in each experiments were
highly dependent on the pattern observed during data collection. Data points with low
variance had less number of runs, compared to groups with high range observed in their

results.

30

Another major consideration for the number of runs was the total number of jobs
generated as part of the query translation. In perspective, a translation that generates 10
jobs had less number of runs compared to a translation with only a single job. This was
due to the time constraint on this project.

The results, once attained, were described through general inferences, hypothesis
testing and regression analyses. More details can be found in the subsequent pages of this

chapter.

4.1. Experiment 1: Compatibility with Hadoop version 2

Apache, the governing body of Hadoop, has been distributing and maintaining
different versions of Hadoop since 2007. At the time of this thesis write-up, the earliest
supported version is Hadoop 0.14.x, which was released on September 2007, and, the
latest version is Hadoop 2.6.0, which was made available to the public on November
2014. While each releases improves its previous predecessors, three main upgrades were
made to Hadoop at the time of this document’s inception, the latest being Hadoop
Version 2.

Any of the 2.x.x Hadoop versions provide an unparalleled advantage over 1.x and
0.x versions with better distributive resource management through YARN. While
YSMART was originally conceived for Hadoop 0.x and 1.x, since 2008, many
improvements were made to the Hadoop environment since then. This section will
illustrate the compatibility of the modified translator with Hadoop version 2 releases, in

particular with Hadoop 2.2.0.

31

4.1.1 General Inferences
For this test, a simple SELECT statement query was translated and ran against a
single table of varying sizes, (a) 2.5 GB, (b) 5 GB, (¢) 10 GB and (d) 15 GB. Each SQL
statement translation generated one MapReduce job and 30 runs for each file size were
conducted. Consequently outliers were identified through an IQR outlier test and

removed from the dataset. The initial findings can found in Table 4.1.

Table 4.1 Average Time Taken for Experiment 1 Job Execution

File Data Size (GB) Average Time Taken (mm:ss)
2.5 01:17
5 02:07
10 04:16
15 07:59

The box plot in Figure 4.1 describes the range and distribution of the dataset.

32

Box Plot: Table Size vs Time Taken for MapReduce Execution
600

500

<
400
—~
&«
c
(D)
< 300 8
|_
q)
E %
200
100]
==
0
25 15

5] 10
Table Size (GB)
Figure 4.1 Execution time vs. table size for Experiment 1

As can be seen from Table 4.1 and Figure 4.1, there was a steady increase in
MapReduce execution time as the table size was increased. This is apparent from the
sheer amount of reads and writes that need to be in place. Each sample file contained a
considerable amount of data, ranging from 40869957 lines in the 2.5 GB sized table to
120000000 lines in the 15 GB sized table, thus explaining the increase in execution times.

Another factor that needs to be noted is the range of data points in each group. As
perceived from the boxplot in Figure 4.1, the range of results recorded increased as the
file size was increased. This was as predicted, as large datasets provide more room for

variance for any query, especially in a SELECT * SQL query. These results indicate that

33

the new implementation of the correlation-aware SQL-to-MapReduce translator behaves
as expected in a Hadoop 2.x.x environment.
4.1.2 Hypothesis Testing
To provide a more sound analysis, the author has elected to describe the findings
in a linear regression model. Therefore, the following hypotheses, where B is the slope of
the model, were devised:
Ho: B2 =0

Ha: B1>0

The data points were added and computed through SAS and the results for a

regression analysis of variance is shown in Table 4.2:

Table 4.2 Major hypothesis testing statistics for Experiment 1

Number of Observations 110 (counts)
Model Mean Square 2378018 (seconds)
F Value 2126.41

P Value < 0.0001

The P Value fell below the alpha-value of 0.05, thus allowed the rejection of the
null hypothesis. It can be concluded that there was a linear relationship between file size
and time taken for the map reduce execution. Furthermore, a positive linear line can be
inferred from the boxplot in Figure 4.1. A more detailed analysis on the regression model

is described in Section 4.1.3

34

4.1.3 Regression Analysis
Upon running statistical analysis for a regression model the following fit plot, as

presented in Figure 4.2, was deduced.

Fit Plot: Table Size vs Time Taken for MapReduce Execution

600
O
%]
]
2]
B
400
D
[
(D)
V4
[+
|_
[¢B)
=
|_
200
8
0
2.5 5.0 7.5 10.0 125 15.0

Table Size (GB)
Figure 4.2 Table size vs. time taken fit plot for Experiment 1

The following are the major observations derived from Figure 4.2.

e The regression model has indicated that almost all data points fit comfortably
within the 95% confidence interval range, with the exception of few
observations on the 15 GB sample data group. A couple of readings can be

attributed to this irregularity:

35

0 Hathi, as mentioned before, is a shared environment and may prone to
some changes due to factors like peak usage, conflicting jobs and parallel
processes. Because the translations on the 15 GB sample data were made
across multiple times throughout the day by multiple persons, some
discrepancies are observed.

0 Some runs failed due to the high volume of job requests. In some cases,
jobs were killed by the Application Master due to the lack of space in the
assigned disk. Many of such observations were removed as outliers, but
the author has decided to keep some, due to the validity shown through the
IQR outlier test.

0 The distributive nature of Hadoop may have initiate an implicit
optimization, thus resulting on higher variance in the larger file sized table.

A positive relationship can be found between the data size and time taken to

execute the MapReduce job.

The data points for runs on 2.5 GB sample data seemed to be slightly higher

than expected, thus prompting the need for more investigation. During the

inception of the sample data, small variances in actual file sizes were
presumed. While the 5 GB, 10 GB and 15 GB sample data had differences of
about 0.005 GB, the 2.5 GB sample file had the highest variance among all
groups, which was 0.15GB higher than expected. This discrepancy can be

attributed to this observation.

36

After considering these observations, the author has elected to process the model,

as presented in Figure 4.2, as valid and derived the following linear equation:

M time taken = -16.16612 + 30.45342x + &j

In words, this formula translates to a line with a y-intercept of -16.16612 and
slope of 30.45342, where X is the table size. Furthermore, the statistical analysis indicated
that this line has an R-Squared value of 0.9512, that is, 95.12% of the total variation in
time taken is explained by this least squares regression model on file size. Additionally,
R-Square also translates this model into a strong positive linear relationship between file

size and execution time.

4.2 Experiment 2: Complex query translation on large data sets

Experiment 2 of this thesis involved the testing of the modified translator’s ability
to generate MapReduce codes for complex query translation on multiple degrees of
sample size. For this purpose, Q6 (Query 6) from the TPC-H series were selected and
multiple runs were made against 60 GB, 120 GB and 180 GB of data. All sample data
was generated from the TPC-H database generator tool provided by the Transaction
Performance Processing Council.

4.2.1 General Inferences

In each group, the translated MapReduce jobs for the standard Q6 were run 20
times respectively. After collecting the time taken for the jobs to completely execute, any
outliers were removed by the IQR outlier test. The average of the results, ex post facto of

the outlier removal is described in Table 4.3.

37

Table 4.3 Average Time Taken for Experiment 2 Job Execution

Sample Data Size (GB) Average Time Taken (mm:ss)
60 00:49
120 02:40
180 03:55

As can be inferred from Table 4.3 above, the mean of the results collected showed

a steady increase as the sample data size increases, almost proportionally. In order to

understand the ranges within each group, a box plot was constructed as in Figure 4.3.

Time Taken (s)

260

200

160

100

50

Box Plot: Sample Data Size vs Time Taken for MapReduce Execution

S ———

60 120 180

Sample Data Size (GB)

Figure 4.3 Execution time vs. sample data size for Experiment 2

38

The following observations can be made from the box plot above:

e There was a steady increase in the MapReduce execution time as the sample
source data size increases.

e There was a strong positive linear relationship between sample data size and
execution time.

e The ranges, both IQR and maximum/minimum range, were small across all
groups. This shows that there were little variation present in the result

collected, even with larger sample sizes.

4.2.2 Hypothesis Testing
Similar to the previous experiment, a hypothesis testing was set up to provide a
statistical significance to any slope present in the linear relationship. For that, the
following hypotheses, where B is the slope of the regression model, were formulated:
Ho: B1=0
Ha: B1>0

The results were analyzed through SAS and the significant values are presented in Table

4.4:
Table 4.4 Major hypothesis testing statistics for Experiment 2
Number of Observations 57 (count)
Model Mean Square 335969
F Value 3907.72

P Value < 0.0001

39

The P-Value was considerably less than the alpha value, thus allowing the
rejection of the null hypothesis. There was a significant slope between execution time and
sample data size. In addition to that, from observing the box plot in Figure 4.3 and trends
in Table 4.3, it was established that the linear relationship is positive.

4.2.3 Regression Analysis

In order to further evaluate the results, a regression analysis was made through

SAS and the following fit plot was constructed.

Fit Plot: Sample Data Size vs Time Taken for MapReduce Execution

250

200
—
&£
[
g g
< 180
|_
£
|_

100

o
50 -
75 100 125 150 175
Table Size (GB)

Figure 4.4 Table size vs. time taken fit plot for Experiment 2

40

The following observations were made based on Figure 4.4:

e All data points collected fits within the 95% interval range of the linear
regression model. This was due to the low variance between the maximum
and minimum points within each group.

e The means for 60 GB and 180 GB sample size groups are below the
regression line, whereas the mean for 120 GB sample size lied above the

model.

After considering the trends, fit plot and analysis of variance, the following

equation was deemed to be the best predictor for the regression model:

M time taken = -38.07786 + 1.54726X + €j

This equation translates to a line with a y-intercept of -38.07786 and, more
importantly, a slope of 1.54726 seconds increase per gigabyte increase in the sample data.
Furthermore, the analysis of variance concludes that this model has an adjusted R-
squared model of 0.9859, meaning 98.59% of the total variation of the execution time is

explained by the sample size used in the model.

4.3 Experiment 3: Multi-query Functionality

Another major aspect of this thesis project was to introduce multi-query
functionality to the correlation-aware SQL-to-MapReduce translator. As such, the author
has elected to translate variations of Q6 (Query 6), as presented in Appendix A, from the
TPC-H series by manipulating the WHERE clause of the query. This decision was made

for the following reasons:

41

e Query 6 contains necessary complexity yet can be accomplished through only
one job. Queries like Q17, Q18 and Q21 generates jobs ranging from 7 to 10,
thus increasing the execution time drastically.

e Multiple jobs, even ones that are generated as part of a single-query
translation, take different execution time and add unwanted complexity to the
result analysis.

e Using different queries may possibly create drastic variance in the time taken
for the job execution.

e The goal of this experiment was to test the multi-query translation
functionality rather than the diversity of the queries translated. It is assumed
that the new implementation of the translator would work in similar fashion to

other queries, provided that they meet the general requirement for YSMART.

4.3.1 General Inferences
Multiple versions of Q6 were devised, with consistency in mind, and translated
into MapReduce jobs using the modified translator. Twenty (20) runs were made for
single query translation, while 16 runs were made for 5, 10 and 15 queries translation
respectively. Any outliers were removed before analyzing the data. Figure 4.5 below

shows a box plot of the initial findings:

42

Box Plot: Number of Queries vs Time Taken for MapReduce Execution

1000

800
o~ -
L)
S
< 600 1
|_
[¢5]
£
|_

400

+
o
200
+
0
1 5 10 15

Number of Queries (count)
Figure 4.5 Execution time vs. number of queries for Experiment 3

As illustrated in Figure 4.5, the results for this test has returned a strong positive
linear relationship. The total time taken for job(s) execution increased as the number of
queries were increased, as expected.

One observation that needs to be noted was the high variance in the time taken for
the 10 queries translation group. Upon investigation, the author has found that the data
collection for that particular group was done by three researchers, almost at the same time.

As mentioned before, as Hathi is a shared environment, this can be attributed to multiple

43

concurrent job executions. A portion of the log illustrating this notion can be found in
Appendix B.
All other groups, that is, 1 query, 5 queries and 15 queries have shown very little
discrepancies within each respective group due to separate data collections.
4.3.2 Hypothesis Testing
The hypotheses for this test, where B1 is the slope of the regression model, was as
follow:
Ho: 1 =0
Ha: B1>0

The data points were plotted in a fit plot through SAS. Table 4.5 describes major

findings:
Table 4.5 Major hypothesis testing statistics for Experiment 3
Number of Observations 69 (count)
Model Mean Square 7476471 (seconds)
F Value 1358.20
P Value < 0.0001

Due to the high F Value, which was computed from the model’s mean square, a
low P Value can be derived. This allowed the rejection of the null hypothesis; there was a
significant slope in the linear regression model. In addition to that, a more detailed

regression analysis was made and summarized in the following section.

44

4.3.3 Regression Analysis
A regression analysis was done through SAS for all 69 data points. As per earlier
tests, any outliers were removed using the IQR outlier test. The following fit plot can be

construed from such analysis:

Fit Plot: Number of Queries vs Time Taken for MapReduce Execution

1000

750

CECSD O O O

500

Time Taken (s)

250 o

2.5 5.0 7.5 10.0 12.5 15.0
Number of Queries

Figure 4.6 Number of queries vs. time taken fit plot for Experiment 3

The following observation can be seen from the fit plot in Figure 4.6:
e Data points showed a strong positive linear relationship between number of

queries translated and time taken for the MapReduce code execution.

45

e Data points for 1 query, 5 queries and 15 queries fit comfortably in the 95%
confidence interval range.
e Only 4 data points in the 10 queries translation group were recorded to be

above the upper boundary of the interval.

After considering these observations, the following equation was formulated to be

the best predictor for this linear model:

IJ. time taken = -3.81811 + 63.31410x + Ej

This equation translates to a line with a slope of 63.31410 seconds per query
increase. The y-intercept, on the other hand, is calculated to be -3.81811 seconds and can
be, due to practicality, capped off at 0 second.

In addition to this, the statistical analysis also indicates that this regression model
yielded an adjusted R-squared value of 0.9523, that is, 95.23% of the model explained all

the variability of the recorded data around its mean of the model.

4.4 Chapter Summary

This chapter presents the textual, tabular and graphical representation of the
results collected from various tests. It also accounts for any trends observed of the data
points. In addition to that, this chapter terms the general inferences, hypothesis testing

and statistical regression analyses made for each test.

46

CHAPTER 5. CONCLUSIONS, DISCUSSIONS AND FUTURE DIRECTIONS

This chapter summarizes the findings of this thesis project. It further describes the
general discussions, and future recommendation on improving the modified correlation-

aware SQL-to-MapReduce translator.

5.1 Conclusions

The author has implemented a modified version of an existing SQL-to-
MapReduce model, as part of this research, to improve its multi-query functionality and
compatibility with newer Hadoop versions. This study mainly focused on the modified
translator’s ability to process multiple queries and its compatibility with the latest
Hadoop version since its conception, version 2.

In the first experiment, the author has tested the modified translator’s
compatibility with Hadoop version 2.2.0 through series of tests with varying degree of
table sizes. Data was collected and analyzed for tables sized 2.5 GB, 5 GB, 10 GB and 15
GB. The results of this experiment has shown that there was a steady increase in the
execution time as the table size was increased as well as a notable increase in the range of
the data points within each group. In addition to that, a hypothesis for regression slope

was tested and allowed the rejection of the null hypothesis.

47

Consequently, the modified implementation’s ability to translate a comparatively
complex query on larger data sets was tested. For that, Q6 of the TPC-H series was
translated and translated for 60GB, 120 GB and 180 GB of sample data. Similar to
Experiment 1, the results have indicated that there was a steady linear relationship
between execution time and sample data size. In addition to that, the null hypothesis for
the slope hypotheses test was rejected due to the small P Value returned.

Finally, the multi query functionality was tested with varying versions of Q6 of
the TPC-H benchmarked series. The total execution time was collected and outliers were
removed through the standard 1QR outlier test. Analyzing the results also indicated that
the total execution time followed a predictive linear relationship with the number of
queries. Any irregular observations were noted and explained.

An analysis of variance for regression model was accompanied for each of the

aforementioned experiments. Table 5.1 shows the summary of the findings.

Table 5.1 Regression models and respective r-squared values for experiments 1, 2 and 3.

Experiment Dependent Variable Regression Model R-
Squared
1 Table size M time taken = -16.16612 + 30.45342x + & 0.9512
2 Sample data size M time taken = -38.07786 + 1.54726x + &; 0.9859
3 Number of Queries | timetaken = -3.81811 + 63.31410x + & 0.9523

As presented in Table 4.3, all experiments yielded a strong positive linear

relationship between respective dependent variable and execution time, with high R-

48

squared value. This indicates that these models explain a large portions of variations in
each experiments. Furthermore, this also solidifies these formulae’s validity to predict the

execution time of the modified translation model for other scenarios.

5.2 Discussions

This research was conducted to be a small-scale sampling of introducing multi
query functionality to an existing correlation-aware SQL-to-MapReduce translator.
During the process, an upgrade was made to the translator to operate in a Hadoop version
2, particularly in Hadoop 2.2.0, environment.

In addition to that, all queries translated in this thesis project were from the TPC-
H benchmarked series. Selected queries were specific to the modified translator’s need as
well as to the experiment requirements. Although the author has conducted experiments
that best describe the modified translator’s behavior under different circumstances, any
changes to the internal and external environment, including the usage of other SQL
queries, may potentially yield different observations.

Furthermore, the author has avoided the usage of complex queries like Q18 and
Q21 of the TPC-H benchmarked series due to the total number of MapReduce jobs
generated as part of their translations. A good substitute, that is Q6, was elected for both
Experiment 1 and Experiment 2.

The initial plan of this thesis was to, additionally, study the behavior of the
modified translator on varying degree of nodes. This was meant to test the
implementation’s horizontal scalability but, due to the time and infrastructure limitations,

the study of this aforementioned factor could not be included in this research.

49

5.3 Future Directions

The modified translator does provide an advantage when it comes to translating
multiple queries at the same time. Compared to Hive and Pig, this modified
implementation of YSMART allows users to translate SQL queries and execute
MapReduce jobs that are generated as part of their translation. In this work, explicit
optimization of the multi-job processing was not a focus, and could potentially be an
improvement in future works.

In addition to that, the author has elected to translate only queries from the TPC-H
benchmarked series. While these queries allow for a comprehensive testing mechanism, it
does not cover the entirety of SQL syntaxes. Similar to Hive and, its query language,
HiveQL, the translation tool only supports a subset of the SQL syntax. Future works can
be made on expanding the syntax for more unique SQL functions and clauses, thus
forming a more complete tool.

This works has also limited the usage of queries from the TPC-H benchmarked
series. Complex queries such as Q17, Q18 and Q21 were not used due to time and
infrastructure limitations. The author acknowledges that YSMART, the underlying
correlation-aware SQL-to-MapReduce translator, was initially tested using these queries
and future efforts can be done on understanding the modified translator’s behavior in
processing these above-mentioned queries.

A reduced scope of this project was the testing of the translator’s horizontal
scalability by varying the number of nodes in the test environment. Due to the
infrastructure constraints, this could not be done thus, opening another opportunity for

future works. Furthermore, performance comparisons with similar, yet prominent

50

solutions such as Hive and Pig could potentially further promote the translator’s
advantages.

All sample data in this research was generated through the Transactional
Performance Processing Council’s database generator tool. The data generated in a
random fashion and has no meaning to it. Testing the tool with a more insightful data

might pave way for new discoveries in the future.

5.4 Chapter Summary

This chapter summarized the major findings of this thesis project as per the
research question presented in Chapter 1. Subsequently, a discussion on the major
observations and potential fallbacks were discussed in Section 5.2. Finally, the author has
identified a number of prospective future works that might bring improvements on to this

research.

LIST OF REFERENCES

o1

LIST OF REFERENCES

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large
clusters. Communications of the ACM, 51(1), 107-113.

Deshpande, N. N. (2011). Improving the performance of the spectral deconvolution stage
of the proteomic discovery process (Order No. 1501874). Available from
Dissertations & Theses @ CIC Institutions; ProQuest Dissertations & Theses A&I.
(905561906). Retrieved from
http://search.proquest.com/docview/905561906?accountid=13360

Gates, A. F., Natkovich, O., Chopra, S., Kamath, P., Narayanamurthy, S. M., Olston, C.,
& Srivastava, U. (2009). Building a high-level dataflow system on top of Map-
Reduce: The Pig experience. Proceedings of the VLDB Endowment,2(2), 1414-
1425.

Gu, R,, Yang, X,, Yan, J,, Sun, Y., Wang, B., Yuan, C., & Huang, Y. (2014). SHadoop:
Improving MapReduce performance by optimizing job execution mechanism in
Hadoop clusters. Journal of Parallel and Distributed Computing,74(3), 2166-
2179.

Jihong, Z. Q. L. J. C. (2004). Heterogeneous data exchange based on XML and its
implementation in Java. Computer Applications and Software, 11, 022.

Lee, R, Luo, T., Huai, Y., Wang, F., He, Y., & Zhang, X. (2011, June). YSMART: Yet
another SQL-to-MapReduce translator. In Distributed Computing Systems
(ICDCS), 2011 31st International Conference on (pp. 25-36). IEEE.

Lin, L., Lychagina, V., Liu, W., Kwon, Y., Mittal, S., & Wong, M. (2011). Tenzing a
SQL implementation on the MapReduce framework.

Lin, X., Ye, Y., & Ma, S. (2013, October). MRPacker: An SQL to MapReduce optimizer.
In Proceedings of the 22nd ACM international conference on Conference on
information & knowledge management (pp. 1157-1160). ACM.

Nykiel, T., Potamias, M., Mishra, C., Kollios, G., & Koudas, N. (2010). MRShare:
Sharing across multiple queries in MapReduce. Proceedings of the VLDB
Endowment, 3(1-2), 494-505.

52

Olston, C., Reed, B., Srivastava, U., Kumar, R., & Tomkins, A. (2008, June). Pig Latin:
A not-so-foreign language for data processing. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data (pp. 1099-1110).
ACM.

Press, G. (2013, December 21). A very short history of Big Data. Retrieved April 1, 2015,
from http://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-
big-data/

Su, X., & Swart, G. (2012, May). Oracle in-database Hadoop: When MapReduce meets
RDBMS. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data (pp. 779-790). ACM.

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Anthony, S., & Murthy, R.
(2009). Hive: A warehousing solution over a Map-Reduce framework.
Proceedings of the VLDB Endowment, 2(2), 1626-1629.

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Zhang, N., & Murthy, R. (2010,
March). Hive-a petabyte scale data warehouse using Hadoop. In Data
Engineering (ICDE), 2010 IEEE 26th International Conference on (pp. 996-
1005). IEEE.

Wang, G., & Chan, C. Y. (2013). Multi-query optimization in MapReduce
framework. Proceedings of the VLDB Endowment, 7(3).

Zhang, H., Wang, Y., & Han, J. (2011, December). Middleware design for integrating
relational database and NOSQL based on data dictionary. In Transportation,
Mechanical, and Electrical Engineering (TMEE), 2011 International Conference
on (pp. 1469-1472). IEEE.

APPENDICES

Appendix A Sample Queries

SELECT Query (Used for Experiment 1)

select
*
from
lineitem;

QUERY 1 (Used in Experiment 1 and 2)

select
1 _returnflag,
I_linestatus,
sum(l_quantity) as sum_qgty,
sum(l_extendedprice) as sum_base price,
sum(l_extendedprice * (1 - 1 _discount)) as
sum_disc_price,
sum(l_extendedprice * (1 - 1 _discount) * (1 + 1_tax))
as sum_charge,
avg(l_quantity) as avg _qty,
avg(l_extendedprice) as avg _price,
avg(l_discount) as avg_disc,
count(*) as count_order
from
lineitem
where
I_shipdate <= "1998-09-04"
group by
1 _returnflag,
I_linestatus
order by
1 _returnflag,
I_linestatus;

53

54

QUERY 6 (Used in Experiment 2 and 3)

select

sum(l_extendedprice * I _discount) as revenue
from

lineitem
where

I_shipdate >= "1995-01-01°
and 1 _shipdate < "1996-01-01"
and 1 _discount > 0.07
and 1_discount < 0.09
and 1_quantity < 24;

Variations of QUERY 6 (Used in Experiment 3)

Variation 1:
select
sum(l_extendedprice * 1| _discount) as revenue
from
lineitem
where
I _shipdate >= "1995-01-01°
and 1 _shipdate < "1996-01-01"
and 1 _discount > 0.07
and 1 _discount < 0.09
and 1_quantity < 24;
Variation 2:
select
sum(l_extendedprice * I _discount) as revenue
from
lineitem
where

I _shipdate >= "1996-01-01°
and 1 _shipdate < "1997-01-01"
and 1 _discount > 0.07
and 1 discount < 0.10
and 1_quantity < 50;

55

Variation 3:
select
sum(l_extendedprice * I _discount) as revenue
from
lineitem
where
lI_shipdate >= "1997-01-01°
and 1 _shipdate < "1998-01-01"
and 1 _discount > 0.07
and 1 _discount < 0.10
and 1_quantity < 50;
Variation 4:
select
sum(l_extendedprice * I _discount) as revenue
from
lineitem
where
I_shipdate >= "1996-01-01"
and 1_shipdate < "1997-01-01°
and 1 _discount > 0.05
and 1 _discount < 0.15
and 1 _quantity < 100;
Variation 5:
select
sum(l_extendedprice * I _discount) as revenue
from
lineitem
where

I_shipdate >= "1996-01-01"
and 1_shipdate < "1997-01-01°
and 1 _discount > 0.07
and 1 _discount < 0.10
and 1 _quantity < 50;

56

Variation 6:
select
sum(l_extendedprice * I _discount) as revenue
from
lineitem
where
lI_shipdate >= "1997-01-01°
and 1 _shipdate < "1998-01-01"
and 1 _discount > 0.07
and 1 _discount < 0.10
and 1_quantity < 50;
Variation 7:
select
sum(l_extendedprice * I _discount) as revenue
from
lineitem
where
I_shipdate >= "1992-01-01°
and 1_shipdate < "1994-01-01°
and 1 _discount > 0.07
and 1 _discount < 0.10
and 1 _quantity < 50;
Variation 8:
select
sum(l_extendedprice * I _discount) as revenue
from
lineitem
where

I_shipdate >= "1993-01-01°

and 1_shipdate < "1999-01-01°
and 1 _discount > 0.07
and 1 _discount < 0.10
and 1 _quantity < 120;

57

Variation 9:
select
sum(l_extendedprice * I _discount) as revenue
from
lineitem
where
I_shipdate >= "1996-01-01"
and 1 _shipdate < "1997-01-01"
and 1 _discount > 0.10
and 1 _discount < 0.15
and 1_quantity < 50;
Variation 10:
select
sum(l_extendedprice * I _discount) as revenue
from
lineitem
where
I_shipdate >= "1990-01-01"
and 1_shipdate < "1993-01-01°
and 1 discount > 0.10
and 1 _discount < 0.15
and 1 _quantity < 150;
Variation 11:
select
sum(l_extendedprice * I _discount) as revenue
from
lineitem
where

I_shipdate >= "1995-01-01"
and 1_shipdate < "1996-01-01"
and 1 _discount > 0.07
and 1_discount < 0.09
and 1 _quantity < 24;

58

Variation 12:
select
sum(l_extendedprice * I _discount) as revenue
from
lineitem
where
I_shipdate >= "1996-01-01"
and 1 _shipdate < "1997-01-01"
and 1 _discount > 0.07
and 1 _discount < 0.10
and 1_quantity < 50;
Variation 13:
select
sum(l_extendedprice * I _discount) as revenue
from
lineitem
where
I_shipdate >= "1997-01-01°
and 1_shipdate < "1998-01-01°
and 1 _discount > 0.07
and 1 _discount < 0.10
and 1 _quantity < 50;
Variation 14:
select
sum(l_extendedprice * I _discount) as revenue
from
lineitem
where

I_shipdate >= "1996-01-01"

and 1_shipdate < "1997-01-01°
and 1 _discount > 0.05
and 1 _discount < 0.15
and 1 _quantity < 100;

Variation 15:
select
sum(l_extendedprice * I _discount) as revenue
from
lineitem
where

I_shipdate >= "1996-01-01"
and 1 _shipdate < "1997-01-01"
and 1 _discount > 0.07
and 1 _discount < 0.10
and 1 _quantity < 5

59

Appendix B Partial Log for Experiment 3 (Translation of 10 Queries)

Table B.1 Partial Log for Experiment 3

60

Run Number

Start Job Number

Start Time

End Time

10

11

12

13

14

15

16

17

18

19

job_1422989359880_0918
job_1422989359880_0918
job_1422989359880_0936
job_1422989359880 0954
job_1422989359880_0976
job_1422989359880_0994
job_1422989359880_1019
job_1422989359880_1045
job_1422989359880_1066
job_1422989359880_0918
job_1422989359880_0928
job_1422989359880_0943
job_1422989359880_0968
job_1422989359880_0988
job_1422989359880_1008
job_1422989359880_1022
job_1422989359880_1038
job_1422989359880_1065

job_1422989359880 1085

15/03/15 23:50:11

15/03/15 23:50:11

15/03/16 00:13:32

15/03/16 00:34:53

15/03/16 01:02:27

15/03/16 01:37:15

15/03/16 02:09:45

15/03/16 02:42:24

15/03/16 03:07:28

15/03/15 23:49:52

15/03/16 00:04:40

15/03/16 00:20:40

15/03/16 00:50:53

15/03/16 01:31:18

15/03/16 01:50:55

15/03/16 02:12:43

15/03/16 02:32:22

15/03/16 03:07:17

15/03/16 03:39:54

15/03/16 00:01:40

15/03/16 00:01:40

15/03/16 00:27:19

15/03/16 00:48:18

15/03/16 01:15:35

15/03/16 01:51:31

15/03/16 02:23:26

15/03/16 02:56:16

15/03/16 03:24:11

15/03/16 00:00:12

15/03/16 00:41:57

15/03/16 00:45:47

15/03/16 01:06:44

15/03/16 01:50:12

15/03/16 02:04:04

15/03/16 02:28:19

15/03/16 02:47:53

15/03/16 03:27:38

15/03/16 04:07:28

	Purdue University
	Purdue e-Pubs
	Spring 2015

	Studying the effect of multi-query functionality on a correlation-aware SQL-to-mapreduce translator in Hadoop version 2
	Thivviyan Amirthalingam
	Recommended Citation

	CHAPTER 1. INTRODUCTION
	CHAPTER 2. LITERATURE REVIEW
	CHAPTER 3. METHODOLOGY
	CHAPTER 4. DATA COLLECTION AND ANALYSIS
	CHAPTER 5. CONCLUSIONS, DISCUSSIONS AND FUTURE DIRECTIONS
	Appendix A Sample Queries
	Appendix B Partial Log for Experiment 3 (Translation of 10 Queries)

	Blank Page

