1986

The Effect of Pressure-Inducing System of Transducers of Dynamic Pressure Measurement

X. Sheng

Follow this and additional works at: https://docs.lib.purdue.edu/icec

https://docs.lib.purdue.edu/icec/564

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/Herrick/Events/orderlit.html
THE EFFECT OF PRESSURE-INDUCTING SYSTEM OF TRANSDUCERS ON DYNAMIC PRESSURE MEASUREMENT

Sheng Xiangxing

Department of Automation Wuhan Chemical Engineering Institute, the People's Republic of China

ABSTRACT

In this paper, we will first introduce the methods and instrument of the indicated diagram of micro-computer testing compressor, and then we will emphasize the building of mathematical models of pressure-inducting system of the pressure transducer. Based on the analysis of frequency response, we will discuss how to reduce the disturbance. We hope our exploration may be helpful to those who are researching or applying the system of dynamic pressure measurement.

INTRODUCTION

Indicated diagrams are a particularly important testing-item in test on performance of reciprocating compressor. They can directly reflect the thermodynamic process of the machine, working behaviour of the valves, and operating mode for such parts as the stuffing, piston rings, etc., to a certain extent.

In a long time, because of the imperfect measuring methods and improper operating, the indicated diagrams measured are often distorted. We always use a pressure duct to induce the medium pressure in the measured cylinder into a transducer. In this way, the pressure cavity and the pressure duct constitute a pressure-inducting system whose natural frequency actually is lower than that of the pressure transducer. As a consequence, characteristics of frequency response of the pressure-inducting system would affect the dynamic measuring results.
In recent years, sampling and processing of dynamic data of indicated diagrams have developed towards microcomputer testing system which not only samples, stores and displays continuous pressure signals in compressor cylinder, but also calculates the data and revises its errors. The effect of the pressure-inducting system of transducer, although by using electronic watt-indicator or microcomputer testing system, brings about errors at a different extent, even make it beyond recognition. Therefore, it is obviously significant to analyze and discuss characteristics of frequency response of the pressure-inducting system of the pressure transducer; in order to suggest how to minimize the effect of the pressure-inducting system on dynamic measuring, and to make that microcomputer testing system automatically revise the errors.

THE MATHEMATICAL MODEL OF THE PRESSURE-INDUCTING SYSTEM

As shown in Fig. 1, the pressure measured is inducted through the pressure duct into the pressure cavity, which constitutes the pressure-inducting system that we are to discuss. Let the measured pressure be \(P_i(t) \) and the transducer pressure be \(P(t) \).

To discuss the effect of the pressure-inducting system on dynamic measuring, we have to analyze its dynamic characteristics, so as to establish its mathematical mode.

By the principle of the aeromechanics, such as electarice, similarly we may use air-resistance, air-inductance as the pressure duct's parameters, and air-capacity as that of the pressure cavity of transducer, thus

\[
R = \frac{\Delta P_1}{G_1} \quad \text{(1a)}
\]

\[
L = \frac{\Delta P_2}{\dot{G}_1} \quad \text{(1b)}
\]

\[
C = \frac{1}{P} \int G_2 \, dt \quad \text{(1c)}
\]

so, the pressure difference \(\Delta P \) between two end of \(R \) is \(\Delta P_1 = R \dot{G}_1 \); and that between \(L \) is \(\Delta P_2 = L \dot{G}_1 \).

In this way, the pressure difference between two ends of the pressure duct is
\[P_i - P = \Delta P_1 + \Delta P_2 = R G_1 + L \dot{G}_1, \]

So the medium flow through the pressure duct is

\[G_1 = \frac{(P_i - P - L \dot{G}_1)}{R} \]

From expression (1c), the flow through air-capacity is given by

\[G_2 = C \dot{P}, \]

Supposing that the pressure-inducting system is without leakage, it is obvious that,

\[G_1 = G_2 \]

So,

\[(P_i - P - L \dot{G}_1) R = C \dot{P}. \]

Because of \(\dot{G}_1 = G_2 = C \dot{P} \), replace it into the above expression and rearrange, we have

\[L C \dot{P} + R G + \frac{1}{C} \int G \ dt + P_i \]

This is the mathematical expression of the pressure-inducting system, which is a second-order linear differential equation with constant coefficients. Expression (2) can also be rewritten as

\[L \ddot{G} + R \dot{G} + \frac{1}{C} \int G \ dt + P_i \]

According to the related formula, when \(1/r > 8 \), then

\[R = \frac{8 \eta l}{\pi r^4} \quad (4a) \]
\[L = \frac{4l \rho}{3 \pi r^2} \quad (4b) \]
\[C = \frac{V}{\rho v^2} \quad (4c) \]

Where \(V \) is volume of the pressure cavity \((cm^3) \), \(l \) is length of the pressure duct \((cm) \), \(r \) is inner radius of the pressure duct \((cm) \), \(\eta \) is dynamic viscosity of the pressure medium measured \((g/cm/sec) \), \(\rho \) is density of the medium \((g/cm^3) \) and \(V \) is velocity of sound of the medium \((cm/sec) \).

FREQUENCY RESPONSE CHARACTERISTICS OF PRESSURE-INDUCTING SYSTEM

Change expression (2) by using Laplace transform-
The transfer function of the pressure-inducing system is

$$H(s) = \frac{P(s)}{P_i(s)} = \frac{1}{\text{LCS}^2 + \text{RCS} + 1}$$ \hspace{1cm} \text{(5)}$$

Let pressure in the cylinder of the measured compressor be $P_i(t) = P_i \sin \omega t$, replacing S with $j\omega$, the frequency response function of the pressure-inducing system is

$$H(j\omega) = \frac{1}{1 - \omega^2 \text{LCS} + j\omega \text{RCS}}$$ \hspace{1cm} \text{(6)}$$

Stable response of the system, i.e. the pressure sensed by the transducer, is

$$P(t) = P \sin (\omega t + \varphi) = P_i |H(j\omega)| \sin (\omega t + \varphi)$$

so, the amplitude ratio is

$$\frac{P}{P_i} = \frac{|H(j\omega)|}{\sqrt{(1 - \omega^2 \text{LCS})^2 + (\omega \text{RCS})^2}}$$ \hspace{1cm} \text{or} \hspace{1cm} \frac{P}{P_i} = \frac{1}{\sqrt{1 - \omega^2 \text{LCS}^2}}$$ \hspace{1cm} \text{(7)}$$

and the phase difference is

$$\varphi = -\tan^{-1} \frac{\omega \text{RCS}}{1 - \omega^2 \text{LCS}}$$ \hspace{1cm} \text{or} \hspace{1cm} \varphi = -\tan^{-1} \frac{2\xi (\omega / \omega_n)}{1 - (\omega / \omega_n)^2}$$ \hspace{1cm} \text{(8)}$$

Expressions (7) & (8) can be written as

$$\frac{P}{P_i} = \frac{1}{\sqrt{1 - (\omega / \omega_n)^2}}$$ \hspace{1cm} \text{or} \hspace{1cm} \frac{P}{P_i} = \frac{1}{\sqrt{1 - (\omega / \omega_n)^2}}$$ \hspace{1cm} \text{(9)}$$

Where ω_n is natural frequency of the pressure-inducing system, ξ is the damping coefficient.

$$\omega_n = \frac{1}{\sqrt{\text{LC}}}, \quad \xi = \frac{\omega RCS}{2}$$ \hspace{1cm} \text{(11)}$$

$$\frac{\eta}{\sqrt{\text{LV}}} = \frac{\omega RCS}{2}$$ \hspace{1cm} \text{or} \hspace{1cm} \frac{\eta}{\sqrt{\text{LV}}} = \frac{2 \sqrt{3} \pi}{\nu \rho \tau^3}$$ \hspace{1cm} \text{(12)}$$

717
According to expression (9) & (10). The frequency response curves of the pressure-inducing system are shown in Fig. 3 & 4.

HOW TO MINIMIZE DISTORTION OF THE INDICATED DIAGRAMS?

It is well-known that the indicated diagram is a continuous periodic function and it can be expanded in Fourier's Series, therefor, we can obtain its corresponding fundamental harmonic and limited higher one. When the compressor's speed is 350 r.p.m., its fundamental frequency is 5.83 Hz, that of its higher harmonic are 5.83xn (n=2,3,4,......), the pass band of the testing system at least ranges from 5.83 to 117 Hz. Even if $\omega/\omega_o<<1$, P is not yet equal to P_i, φ is not zero, i.e. the errors of stable response always exist. Therefor, when compressor's speed is given, the influence of the pressure-inducting system on dynamic measuring can be reduced so long as we increase its natural frequency.

From expression (9),(10) & (11), we can come to the conclusions that, when the measured medium is given, P/P_i and φ are dependent on compressor's speed, and ω do on l, r and V. Fig. 5a is the indicated diagrams measured and recorded according to different length of the pressure duct. From this, we know that the longer the pressure duct, the lower the natural frequency of the pressure-inducting system is, and the lower the addional harmonic frequency is, the larger the amplitude is. Thus, the curves of the indicated diagrams without the pressure-inducting system are more smooth because there is no additional higher harmonic.

When higher harmonic is 87.5 Hz ($\omega = 15 \times 5.83$), the dynamic errors of the pressure duct with different length are shown in table 1.

<table>
<thead>
<tr>
<th>Duct (cm)</th>
<th>r (cm)</th>
<th>V (cm3)</th>
<th>ω (HZ)</th>
<th>ω_0 (HZ)</th>
<th>ξ</th>
<th>φ (angle)</th>
<th>P/P_i</th>
<th>errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>0.4</td>
<td>33.1</td>
<td>87.5</td>
<td>686</td>
<td>41.8x104</td>
<td>-0.063</td>
<td>1.017</td>
<td>1.7%</td>
</tr>
<tr>
<td>43</td>
<td>0.4</td>
<td>33.1</td>
<td>87.5</td>
<td>554</td>
<td>51.8x104</td>
<td>-0.096</td>
<td>1.026</td>
<td>2.6%</td>
</tr>
<tr>
<td>58</td>
<td>0.4</td>
<td>33.1</td>
<td>87.5</td>
<td>477</td>
<td>60.2x104</td>
<td>-0.131</td>
<td>1.035</td>
<td>3.5%</td>
</tr>
</tbody>
</table>
Obviously, by minimizing volume V of transducer's pressure cavity, increasing inner radius r of the pressure duct or shortening length l of the pressure duct, we can raise the natural frequency of the pressure-inducting system. This is why the pressure cavity is not designed on the transducer for dynamic pressure measuring and it is necessary to level the pressure capsul with the measured pressure side in measuring and installing.

On using microcomputer to test compressor's indicating diagrams, such kind of problem is encountered, e.g. at the instant when the discharge valve is open at the end of compression process of the compressor and when the suction valve is open in finishing the expansion, there is a pressure jump for the pressure-inducting system, and strong pressure disturbance is produced. When the limiting frequency of the measuring system is lower than the highest one of the measured signals, the output of the measuring system can not catch up with the measured input signals, thus producing greater dynamic errors.

However, we can make use of microcomputer as a advancing revision link in measuring system to broaden the frequency band of the measuring system, thereby meet the requirements with the limiting frequency in the measuring system is higher than that of the measured signal. Fig. 5b & 6b are waveforms of the indicated diagrams through FIR digital filter's processing. It basically eliminated the dynamic errors from the different pressure-inducting systems, the block diagrams when the digital tiliter applied onto the microcomputer system are shown in Fig.2. This measuring system is particularly efficient for the multi-point dynamic measuring system of compressor.

REFERENCES

Fig. 1: Diagram of the Pressure-inducting System

Fig. 2: Measuring System with Digital Filter
Fig. 3: Amplitude-frequency Characteristic of the Pressure-inducting System

Fig. 4: Phase-frequency Characteristic of the Pressure-inducting System
Fig. 5a: $p-a$ Curves for Different Lengths of the Pressure Duct

Fig. 5b: $p-a$ Curves through FIR Filter's Processing
Fig. 6a: P-α Curves for Type 3L-10/8 Compressor

Fig. 6b: P-α Curves through FIR Filter's Processing