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ABSTRACT

Wang, Qifan Ph.D., Purdue University, May 2015. Learning Compact Hashing Codes
with Complex Objectives from Multiple Sources for Large Scale Similarity Search .
Major Professor: Luo Si.

Similarity search is a key problem in many real world applications including image

and text retrieval, content reuse detection and collaborative filtering. The purpose of

similarity search is to identify similar data examples given a query example. Due to

the explosive growth of the Internet, a huge amount of data such as texts, images and

videos has been generated, which indicates that efficient large scale similarity search

becomes more important.

Hashing methods have become popular for large scale similarity search due to

their computational and memory efficiency. These hashing methods design compact

binary codes to represent data examples so that similar examples are mapped into

similar codes. This dissertation addresses five major problems for utilizing supervised

information from multiple sources in hashing with respect to different objectives.

Firstly, we address the problem of incorporating semantic tags by modeling the latent

correlations between tags and data examples. More precisely, the hashing codes

are learned in a unified semi-supervised framework by simultaneously preserving the

similarities between data examples and ensuring the tag consistency via a latent factor

model. Secondly, we solve the missing data problem by latent subspace learning from

multiple sources. The hashing codes are learned by enforcing the data consistency

among different sources. Thirdly, we address the problem of hashing on structured

data by graph learning. A weighted graph is constructed based on the structured

knowledge from the data. The hashing codes are then learned by preserving the graph

similarities. Fourthly, we address the problem of learning high ranking quality hashing



xii

codes by utilizing the relevance judgments from users. The hashing code/function is

learned via optimizing a commonly used non-smooth non-convex ranking measure,

NDCG. Finally, we deal with the problem of insufficient supervision by active learning.

We propose to actively select the most informative data examples and tags in a joint

manner based on the selection criteria that both the data examples and tags should

be most uncertain and dissimilar with each other.

Extensive experiments on several large scale datasets demonstrate the superior

performance of the proposed approaches over several state-of-the-art hashing methods

from different perspectives.
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1 INTRODUCTION

Similarity search identifies similar data examples given a query example, which has

many different applications in various research areas including information retrieval,

machine learning, data mining and computer vision. Due to the explosive growth

of the Internet, a huge amount of data such as texts, images and videos has been

generated, which indicates that efficient large scale similarity search becomes more

important. When there is only a low-dimensional feature space, similarity search can

be carried out by some space partitioning index structures, such as TF-IDF methods

[1,2], KD-tree, or data partitioning index structures, like R-tree [3]. Several types of

structures and operations of inverted indexing are also proposed [4–6] for traditional

ad-hoc text search with relatively short user queries. However, traditional similarity

search may fail to work efficiently within a high-dimensional vector space [7], which

is often the case for many real world information retrieval applications. Therefore, it

is important to design effective and efficient methods for similarity search with large

scale data. Two major challenges have to be addressed for using similarity search in

large scale datasets such as storing the data efficiently and retrieving the large scale

data in an effective and efficient manner.

Traditional similarity search methods are difficult to be directly used for large

scale datasets since the computational cost of similarity calculation using the original

data features (i.e. often in high dimensional space) is impractical for large scale

applications. Recently, hashing [8–24] has become a popular approach in large

scale problems such as similar document detection [25–27], content-based image

retrieval [28–31] and collaborative filtering [32, 33], etc. Hashing methods design

compact binary codes to represent data examples so that similar data examples are

mapped into similar codes. In the retrieving process, these hashing methods first

transform query examples into the corresponding hashing codes and then similarity
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search can be simply conducted by calculating the Hamming distances between the

query code and the codes in the database, and selecting data examples within small

Hamming distances. Therefore, hashing method addresses the two major challenges

of large scale similarity search in the following ways: (1) The encoded data is highly

compressed within a low-dimensional binary space, and thus can often be dealt with

in main memory and stored efficiently; (2) The retrieval process is very efficient, since

the distance between two codes is simply the number of bits that they differ, which

can be computed using bit XOR operations.

Recent hashing methods have shown that the code performance could be boosted

by incorporating supervised information from multiple sources into hashing codes

learning, such as semantic tags/labels [34–37], structure data [38] and relevance

values/judgments [31]. These supervised multi-source information provides useful

knowledge and guidance for achieving more effective hashing codes. Although existing

hashing methods generate promising results in large scale similarity search, the

supervised knowledge is not fully exploited in previous methods. Most of the existing

hashing methods only utilize a small portion of the knowledge extracted from different

sources such as pairwise similarity and listwise ranking information, which might not

be accurate or reliable. There are several main problems for leveraging the supervised

knowledge from multiple sources into learning effective hashing codes for different

objectives: 1. How to leverage these supervised knowledge from multiple sources to

achieve more effective hashing codes; 2. How to handle the missing data issue from

multiple sources; 3. How to incorporate the structure information into hashing code

learning; 4. How to utilize multiple sources to learn high quality code for ranking-

oriented measure; 5. How to obtain the most informative knowledge in an active

manner with low human labeling cost for generating supervised information, when

the supervision is insufficient. In this dissertation, we discuss these problems in the

following sections respectively.
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Figure 1.1. Several image examples with tags from MIRFLICKR-1M dataset.

1.1 Hashing Methods for Large Scale Similarity Search

1.1.1 Learning to Hash with Semantic Tags

Tags or labels have been popularly utilized in many applications with image and

text data for better managing, organizing and searching for useful information. For

example, Flickr has more than 2 billion images with millions of newly uploaded

photos per day and YouTube contains hundreds of millions of videos [23]. These

data examples are usually associated with multiple tags assigned by users. Figure 1.1

and 1.2 show some examples of images and webpages associated with multiple tags.

This tag information source provides useful supervised knowledge for users to better

categorize or search desired data. Therefore, it is an important and practical research

problem to design efficient and effective hashing methods that can incorporate these

supervised information for large scale similarity search.

Several supervised/semi-supervised hashing methods have been proposed to utilize

the tag information into their hashing function learning, such as semi-supervised

hashing (SSH) [28, 29], kernel supervised hashing (KSH) [30], Canonical Correlation

Analysis with Iterative Quantization (CCA-ITQ) [35, 36], etc. For example, in SSH
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Figure 1.2. Several document examples with tags.

and KSH, pairwise constrains between data examples besides their original features

are imposed for learning more effective hashing function. More precisely, these

pairwise similarity constraints are also called Must-Link and Cannot-Link, which

are generated from tags. A Must-Link is created when two data examples share a

common tag and a Cannot-Link is created when two examples share no tag. Their

basic motivation is that the hashing codes of data example pairs with Must-Link

should be as close as possible, while the hashing codes of example pairs with Cannot-

Link should be as different as possible. For the CCA-ITQ method, it treats the data

features and tags as two different views. The hashing function is then learned by

extracting a common space from these two views.

One major assumption of most existing supervised hashing methods is that

the tags associated with data examples are complete and clean. But in many

applications, tags tend to be incomplete and noisy. Moreover, tags may have different

representations for a similar semantic meaning (e.g.,‘car’ versus ‘automobile’). In this

situation, the pairwise constraints extracted from the semantic tags only represent a

small portion of tag information rather than the complete supervised knowledge and

thus are not reliable. Similarly, CCA-ITQ may generate low quality codes when only
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incomplete tags is available. We need to design a scheme that could fully leverage the

supervision knowledge in hashing function learning while at the same time preserves

the data similarity.

1.1.2 Learning to Hash on Partial Multi-Modal Data

In many applications, data examples are usually represented by multiple

modalities captured from different sources. For example, in web page search, the

web page content and its linkage information can be regarded as two modalities. In

web image retrieval, the image visual feature, text description and textual tags can be

viewed as multiple modalities. Recently, several multi-modal hashing methods (also

known as multi-view or cross-view hashing) have been proposed to handle multi-modal

data. Roughly speaking, these multi-modal hashing approaches can be divided into

two categories: modality-specific hashing methods and modality-integrated ones. The

modality-specific methods learn independent hashing codes for each modality of an

example, and then concatenate multiple modality-specific binary codes into the final

hashing codes [39–42], whereas the modality-integrated ones directly learn unified

hashing codes for data examples [10, 43–45].

Although existing multi-modal hashing methods generate promising results in

dealing with multi-modal data, most of them assume that all data examples have full

information in all modalities, or there exists at least one modality which contains all

the examples. However, in real world tasks, it is often the case that every modality

suffers from some missing information, which results in many partial examples.

Consider again the aforementioned two examples, for web page search, many web

pages may not contain any linkage information. For web image retrieval, not all

images are associated with tags or text descriptions. Moreover, the image itself may

be inaccessible due to deletion or invalid url. Therefore, it is a practical and important

research problem to design effective hashing methods for partial multi-modal data.
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Figure 1.3. Data examples with structure information. (a) Webpages
link to each other. (b) Images share semantic labels.

1.1.3 Learning to Hash on Structured Data

Hashing methods generate promising results by successfully addressing the

storage and search efficiency challenges. However, most existing hashing methods

assume that data examples are independently and identically distributed. But in

many applications, the dependencies between data examples naturally exist and if

incorporated in models, they can potentially improve the hashing code performance

significantly.

For example, many webpages have hyperlinks pointing to other related webpages

(see Fig.1.3(a)). The contents of these linked webpages are usually relevant, which

present similar topics. The hyperlinks among webpages provide important structure

knowledge. Another example is that similar images often share semantic labels (see

Fig.1.3(b)). The more labels two images have in common, the more similar the images

are. The shared semantic labels among images offer valuable information in binary

codes learning. These structure information have been utilized in clustering [46] and

classification [38] problems, and proven to be helpful knowledge. Therefore, it is

important to design hashing method that preserve the structure information among

data examples in the learned Hamming space.
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1.1.4 Learning Ranking Preserving Hashing Codes

In many information retrieval applications, such as similarity search, learning to

rank, recommendation, etc., it is more realistic and desirable that the most relevant

examples to a query can be presented in front of less relevant ones. In other words,

users prefer the retrieval results with better ranking performance. Although existing

hashing methods have achieved promising results, very limited work explores the

search/ranking accuracy, which is important for evaluating the quality of hashing

codes in real world applications. Consider the following scenario: given a query

example xq and three relevant/similar data examples x1, x2, x3 but with different

relevance values as r1 > r2 > r3 to the query. Most existing hashing methods

only model the relevance of a data example to a query in a binary way, i.e., each

example is either relevant to the query or irrelevant. These methods treat x1, x2

and x3 as relevant examples to xq with no difference. But in practice it will be

more desirable if x1 could be presented before x2 and x3 since it is more relevant to

xq than the other two. Some ranking based hashing methods [31, 47–49] have been

recently proposed to improve the hashing performance by modeling the ranking order

with respect to relevance values. However, these methods do not fully preserve the

specific relevance values in learning hashing function, while the relevance values are

important in evaluating the search accuracy. In other words, they do not differentiate

the situations where (r1, r2, r3) = (3, 2, 1) and (10, 2, 1) due to their identical ranking

orders, i.e., r1 > r2 > r3. But ideally, the Hamming distance between the learned

hashing codes of x1 and xq should be smaller in the later situation than in the former

one since the relevance value of x1 to the query example is much larger in the later

situation (10 versus 3). Therefore, it is important to design effective hashing method

to incorporate relevance value/judgement information from users in learning more

effective hashing codes that could achieve high ranking performance.
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1.1.5 Active Learning with Insufficient Supervision

One of the basic assumptions in most existing supervised hashing methods is that

the labeled data are provided beforehand. These hashing methods are regarded as

passive methods. But in many real world applications, such supervised information

may not be sufficient or available and it is often expensive to acquire for a large

dataset. Therefore, it is important to design effective methods to actively identify

only a small set of the most informative data examples for users to label. The only

prior work we found using active learning in hashing is [50], which directly chooses

the most uncertain data examples based on the hashing function. A batch mode

algorithm is also proposed in this work to speed up their active selection.

The labeling cost not only depends on the number of data examples that are

selected but also depends on the total number of tags that the users label to the

selected data examples. In many large scale applications, there are often hundreds

or thousands of tags for users to label. Moreover, similar tags usually carry similar

semantic meanings. For instance, ‘car’ and ‘automobile’ have similar meanings and

choosing both of them may not gain substantial new information over just selecting

one. However, the method in [50] only considers identifying the most informative

data examples and tries to label all possible tags to these selected examples, which

requires a great amount of labeling efforts for those datasets associated with a huge

number of tags. Therefore, it is important to design effective method that jointly

selects the most informative data examples and tags such that the hashing function

can be learned efficiently with only a small number of labeled data, which can greatly

reduces the labeling cost.

1.2 Main Contributions

Hashing methods generate promising results in large scale similarity search. As can

be seen from the above discussion, the problem of leveraging supervised information

from multiple sources has not been fully explored. The major contribution of this
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dissertation is that we propose a unified framework to incorporate different types of

supervised knowledge from multi-sources into learning effective hashing codes. We

summarize our contributions in more details as follows.

• As shown in Section 1.1.1, semantic tags or labels are usually associated with

data examples and have been popularly utilized in many applications. This

tag information source provides useful supervised knowledge for users to better

categorize or search desired data. In this dissertation, a research problem,

Learning to Hash with Semantic Tags, is proposed to incorporate the semantic

tags into hashing codes learning. To solve this problem, a novel semi-supervised

tag hashing (SSTH) approach is proposed to fully exploit tag information by

modeling the semantic correlation between tags and hashing bits. The hashing

function is learned in a unified learning framework by simultaneously ensuring

the tag consistency and preserving the similarities between data examples. An

iterative coordinate descent algorithm is designed as the optimization procedure.

We also improve the effectiveness of hashing function through orthogonal

transformation by minimizing the quantization error. Furthermore, we extend

this framework by preserving the topic level similarity between data examples

to obtain more effective codes when original feature distances do not reflect the

similarity between data examples.

• In many applications, data examples are usually represented by multiple

modalities captured from different sources. However, in real world tasks, it

is often the case that every modality suffers from some missing information,

which results in many partial examples. For example, not all images are

associated with tags or text descriptions. Moreover, the image itself may be

inaccessible due to deletion or invalid url. In this dissertation, we propose a

novel Partial Multi-Modal Hashing (PM2H) approach to deal with such partial

data. More specifically, a unified learning framework is developed to learn the

binary codes, which simultaneously ensures the data consistency among different
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modalities via latent subspace learning, and preserves data similarity within the

same modality through graph Laplacian. A block gradient descent algorithm is

applied as the optimization procedure.

• As discussed in Section 1.1.3, in many applications, the dependencies between

data examples naturally exist and if incorporated in models, they can potentially

improve the hashing code performance significantly. In this dissertation, a

novel approach of learning to Hash on Structured Data (HSD) is proposed,

which incorporates the structure information associated with data. The

hashing function is learned in a unified learning framework by simultaneously

ensuring the structural consistency and preserving the similarities between

data examples. In particular, the objective function of the proposed HSD

approach is composed of two parts: (1) Structure consistency term, which

ensures the hashing codes to be consistent with the structure information. (2)

Similarity preservation term, which aims at preserving the similarity between

data examples in the learned hashing codes.

• In many learning to rank and recommendation systems, it is more realistic and

desirable that the most relevant examples to a query can be presented in front of

less relevant ones. In other words, users prefer the retrieval results with better

ranking performance. This dissertation proposes a novel Ranking Preserving

Hashing (RPH) approach that directly optimizes the popular ranking accuracy

measure, Normalized Discounted Cumulative Gain (NDCG), to learn effective

ranking preserving hashing codes that not only preserves the ranking order but

also models the relevance values of data examples to the queries in the training

data. The main difficulty in direct optimization of NDCG is that it depends on

the rankings of data examples rather than their hashing codes, which forms a

non-convex non-smooth objective. We then address this challenge by optimizing

the expectation of NDCG measure calculated based on a linear hashing function
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to convert the problem into a smooth and differentiable optimization problem.

A gradient descent method is applied to solve this relaxed problem.

• When the supervised information is insufficient or even not available, it is

important to design effective methods to actively identify only a small set of

the most informative data examples for users to label. In this dissertation, we

proposes a novel active hashing approach to actively select the most informative

data examples and tags in a joint manner for hashing function learning. We

first identify a set of informative data examples and tags for users to label

based on the selection criteria that both the data examples and tags should be

most uncertain and dissimilar with each other. Then this labeled information

is combined with the unlabeled data to generate an effective hashing function.

An iterative procedure is proposed for learning the optimal hashing function

and selecting the most informative data examples and tags.

The rest of the dissertation is organized as follows: Chapter 2 proposes a novel

hashing approach to leverage the semantic tag knowledge by modeling semantic

correlations between hashing codes and tags. Chapter 3 discusses the solution of

dealing with partial multi-modal data. A novel hashing on structured data approach

is given in Chapter 4 to incorporate the structure knowledge among data examples.

Chapter 5 presents a hashing method to learn ranking based hashing codes with

relevance supervision via optimizing the NDCG measure. Chapter 6 designs an active

hashing method with joint data example and tag selection to handle the insufficient

supervision problem. Finally, Chapter 7 gives the conclusions and future work.

1.3 Origins of the Material

The material in this dissertation is based on a number of papers listed below,

some of which have already been published, while others are currently in submission.

1. Qifan Wang, Luo Si and Bin Shen. Learning to Hash on Partial Multi-Modal

Data. In submission, 2015.
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2. Qifan Wang, Zhiwei Zhang and Luo Si. Ranking Preserving Hashing for Large

Scale Similarity Search. In submission, 2015.

3. Dennis Strelow, Qifan Wang, Anders Eriksson and Luo Si. General, Nested,

and Constrained Wiberg Minimization. IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 2015. In submission.

4. Qifan Wang, Luo Si and Bin Shen. Learning to Hash on Structured Data.

The Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI), 2015.

5. Bin Shen, Baodi Liu, Qifan Wang, Yi Fang and Jan Allebach. SP-SVM:

Large Margin Classifier for Data on Multiple Manifolds. The Twenty-Ninth

AAAI Conference on Artificial Intelligence (AAAI), 2015.

6. Xiaojun Quan, Qifan Wang, Ying Zhang, Luo Si and Wenyin Liu. Latent
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2 LEARNING TO HASH WITH SEMANTIC TAGS

2.1 Motivation

Most of existing supervised and semi-supervised hashing methods assume the

tags are complete and clean. But in many real world applications such as web image

retrieval, tags tend to be noisy and are usually partially assigned to images by users.

Moreover, semantic similar tags may have different representations (e.g.,‘car’ versus

‘automobile’). Therefore, the assumption made by the existing hashing methods may

limit the performance of learned hashing codes. In this dissertation, we propose a

novel semi-supervised tag hashing approach to fully exploit tag information in learning

effective hashing function by modeling the semantic correlation between tags and

hashing bits. The hashing function is learned in a unified learning framework by

simultaneously ensuring the tag consistency and preserving the similarities between

data examples. An iterative coordinate descent algorithm is designed as the

optimization procedure. We also improve the effectiveness of hashing function through

orthogonal transformation by minimizing the quantization error. Furthermore, we

extend this framework by preserving the topic level similarity between data examples

to obtain more effective codes when original feature distances do not reflect the

similarity between data examples.

2.2 Background and Related Work

2.2.1 Introduction

Due to the explosive growth of the Internet, a huge amount of data such as

texts, images and videos has been generated, which indicates that efficient similarity

search becomes more important. Traditional similarity search methods are difficult
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to be directly used for large scale datasets since the computational cost of similarity

calculation using the original data features (i.e. often in high dimensional space)

is impractical for large scale applications. Recently, hashing has become a popular

approach in large scale problems, which designs compact binary codes to represent

data examples so that similar examples are mapped into similar codes. In the

retrieving process, these hashing methods first transform query examples into the

corresponding hashing codes and then similarity search can be simply conducted by

calculating the Hamming distances between the query code and the codes in the

database, and selecting data examples within small Hamming distances.

Recently, hashing methods have shown that the code performance could be

boosted by leveraging supervised information into hashing function learning, i.e.,

semantic tags/labels [34–37]. Although existing supervised hashing methods generate

promising results in large scale similarity search, tag information is not fully exploited

in previous methods, especially when tags are incomplete and noisy. Most of the

existing hashing methods only utilize a small portion of the knowledge contained

in tags such as pairwise similarity and listwise ranking information, which might

not be accurate or reliable under the situation where only partial tags are available.

There are three main challenges to incorporate tag information into hashing function

learning: (1) we have no knowledge about how tags are related to the hashing bits; (2)

we need to deal with noisy and incomplete tags when only partial tags are available;

(3) we need to deal with the ambiguity of semantically similar tags.

This dissertation proposes a novel semi-supervised tag hashing (SSTH) approach

to fully exploit tag information in learning effective hashing function by modeling the

semantic correlation between tags and hashing bits. The hashing function is learned

in a unified framework by simultaneously ensuring the tag consistency and preserving

the similarities between data examples. In particular, the objective function of the

proposed SSTH approach is composed of two components. (1) Tag consistency term

(supervised), which ensures the hashing codes to be consistent with the observed tags.

The key observation is that: the more common tags two data examples share, the
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more similar their hashing codes should be. This observation is then transformed

into a latent factor model. (2) Similarity preservation term (unsupervised), which

aims at preserving the original feature similarity between data examples in the

learned hashing codes. This term is important especially when the data examples

are associated with very few tags. An iterative algorithm is then derived based on

the relaxed objective function using a coordinate descent optimization procedure.

Moreover, we prove the orthogonal invariant property of the optimal relaxed solution

and learn an orthogonal matrix by minimizing the quantization error to further

improve the code effectiveness. We also extend this framework by preserving the topic

level similarity between data examples to obtain more effective codes when original

feature distances do not reflect the similarity between data examples. Extensive

experiments on several large scale datasets demonstrate the superior performance of

the proposed approach over several state-of-the-art hashing methods.

2.2.2 Related Work

Efficiency is a crucial issue for large scale information retrieval applications with a

huge amount of data examples. When there is only a low-dimensional feature space,

similarity search can be carried out by some space partitioning index structures, such

as TF-IDF methods [1,2], KD-tree, or data partitioning index structures, like R-tree

[3]. Several types of structures and operations of inverted indexing are also proposed

[4–6] for traditional ad-hoc text search with relatively short user queries. However,

traditional similarity search may fail to work efficiently within a high-dimensional

vector space [7], which is often the case for many real world information retrieval

applications.

Hashing method [14, 48, 49, 51–63] is proposed to address the similarity search

problem within a high-dimensional feature space. In particular, hashing methods

try to represent each data example by using a small fixed number of binary bits

so that the queries can be answered in a short time [64]. The hashing based fast
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similarity search can be viewed as a strategy to transform data examples from a

high-dimensional space into a low-dimensional binary space, and at the same time

preserve the semantic similarity between data examples as much as possible. Hashing

methods generate binary codes for efficient search, which is different from traditional

dimensionality reduction methods such as Principal Component Analysis (PCA) and

Latent Semantic Indexing (LSI) [65, 66].

Locality-Sensitive Hashing (LSH) [15, 67] is one of the most popularly used

hashing methods. It simply utilizes random linear projections to map data examples

from a high-dimensional Euclidean space to a low-dimensional one. It has already

been shown that the Hamming distance between different data examples will

asymptotically approach their Euclidean distance in the original feature space with

the increase of the hashing bits. LSH has been extended to Kernelized Locality-

Sensitive Hashing (KLSH) [21, 23] by exploiting kernel similarity for better retrieval

efficacy. Recently, the work in [68] further extends the KLSH to the scheme of

Boosting Multi-Kernel Locality-Sensitive Hashing (BMKLSH) that improves the

retrieval performance of KLSH by making use of multiple kernels.

Several machine learning approaches have been proposed to solve the hashing

problem. For example, the PCA Hashing [17] method projects each example to

the top principal components of the training set, and then binarizes the coefficients

by setting a bit to 1 when its value is larger than the median value seen for the

training set, and -1 otherwise. The work in [8] uses stacked Restricted Boltzman

Machine (RBM) [69, 70] to generate compact binary hashing codes, which can be

viewed as binarized LSI. Recently, Spectral Hashing (SH) [19] is proposed to learn

compact binary codes that preserve the similarity between data examples by forcing

the balanced and uncorrelated constraints into the learned codes, which be viewed

as an extension of spectral clustering [71]. A graph-based hashing method has

been proposed in work [12] to automatically discover the neighborhood structure

inherent in the data to learn appropriate compact codes. A Self-taught Hashing

method [22] combines an unsupervised step with a supervised step to learn more
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accurate hashing codes. More recently, the work [10] proposes a Composite Hashing

with Multiple Information Sources (CHMIS) method to integrate information from

different sources. In another recent work [56], an isotropic hashing (IsoHash)

method is proposed to learn projection functions of individual hashing codes with

equal variances. A bit selection method [72] has been proposed to select the most

informative hashing bits from a pool of candidate bits generated from different hashing

methods. A Topology Preserving Hashing (TPH) [73] method is proposed to preserve

the neighborhood rankings of data points in Hamming space. Most recently, several

supervised/semi-supervised hashing methods have been proposed. For example, a

Canonical Correlation Analysis with Iterative Quantization (CCA-ITQ) method has

been proposed in [35, 36] which treats the data features and tags as two different

views. The hashing function is then learned by extracting a common space from

these two views. The semi-supervised hashing (SSH) method in [28, 29] utilizes

pairwise knowledge between data examples besides their original features for learning

more effective hashing function. A kernelized supervised hashing (KSH) framework

proposed in [30] imposes the pairwise relationship between data examples to obtain

good hashing codes. Complementary Hashing (CH) [9] uses pairwise information to

learn multiple complementary hash tables in a boosting manner. A ranking-based

supervised hashing (RSH) [31] method is proposed to leverage the listwise ranking

information to improve the search accuracy.

In the following sections, we mainly discuss several state-of-the art hashing

methods including three unsupervised methods, i.e., Locality-Sensitive Hashing

(LSH) [15], Spectral Hashing (SH) [19] and Self-taught Hashing (STH) [22], and

three supervised/semi-supervised hashing methods, i.e., Semi-Supervised Hashing

(SSH) [28,29], Kernelized Supervised Hashing (KSH) [30] and Canonical Correlation

Analysis with Iterative Quantization (CCA-ITQ) [35,36].
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Locality-Sensitive Hashing (LSH)

Locality-Sensitive Hashing [15] is one of the most popularly used hashing methods.

It simply utilizes k random linear projections to map data examples from a high-

dimensional Euclidean space to a low-dimensional binary space as follows:

yp = sgn(wT
p x+ bp) (2.1)

where yp is the p-th bit for data example x and wp is the linear projection which

is randomly samples from Gaussian distribution. bp is the bias. We also illustrate

LSH in figure 2.1 and 2.2. Although LSH is a data-independent hashing method, it

has already been shown that the Hamming distance between different data examples

will asymptotically approach their Euclidean distance in the original feature space

with the increase of the hashing bits. LSH method has been extended to Kernelized

Locality-Sensitive Hashing (KLSH) [21, 23] by exploiting kernel similarity for better

retrieval efficacy. Recently, the work in [68] further extends the KLSH to the scheme

Figure 2.1. LSH example: one bit.
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Figure 2.2. LSH example: two bits.

of Boosting Multi-Kernel Locality-Sensitive Hashing (BMKLSH) that improves the

retrieval performance of KLSH by making use of multiple kernels.

Spectral Hashing (SH)

Spectral Hashing (SH) [19] method tries to seek hashing codes that satisfy (1)

easily computed for a novel input query (2) requires a small number of bits to code

the full dataset and (3) maps similar data examples to similar binary codes. For a

code to be efficient, it also require that each bit has a 50% chance of being +1 or

−1, and that different bits are independent of each other. Among all codes that have

this property, it seek the ones where the average Hamming distance between similar

examples is minimal.
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Let yi be the hashing code with k bits for data example xi. SSSi,j be the affinity

matrix. Since it is assuming the inputs are embedded in Rd so that Euclidean distance

correlates with similarity, it use SSSi,j = exp(−‖xi − xj‖2/σ2), where σ is the scaling

parameter that defines the distance in Rd. Using this notation, the average Hamming

distance between similar neighbors can be written as
∑

i,j SSSi,j‖yi − yj‖2. Then the

optimal hashing codes can be obtain by solving the following problem:

min
y

∑
i,j

SSSi,j‖yi − yj‖2

s.t. yi ∈ {−1,+1}k∑
i

yi = 0

1

n

∑
i

yiy
T
i = III

(2.2)

where the constraint
∑

i yi = 0 is the bit balance constraint which requires each bit

to appear 50% of the time, and the constraint 1
n

∑
i yiy

T
i = III requires the bits to

be uncorrelated or orthogonal. The objective function incurs a heavy penalty if two

similar data examples are mapped far away, which preserves the similarity between

data examples. Obtaining exact solution of the above problem turns out to be NP-

hard by the following theorem.

Theorem 2.2.1 For k=1, solving problem 2.2 is equivalent to balanced graph

partitioning and is NP hard.

Proof Consider an undirected graph whose vertices are the data points and where

the weight between data i and j is given by SSSi,j. Consider a code with a single bit.

The bit partitions the graph into two equal parts (A, B), vertices where the bit is on

and vertices where the bit is off. For a single bit,
∑

i,j SSSi,j‖yi − yj‖2 is simply the

weight of the edges cut by the partition: cut(A,B) =
∑

i∈A,j∈B SSSi,j. Thus problem 2.2

is equivalent to minimizing cut(A, B) with the requirement that ‖A‖ = ‖B‖ which is

known to be NP hard [74].
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The problem in Eqn.2.2 is then approximated using spectral relaxation. By

introducing a n × k matrix YYY whose i-th row is yTi and a diagonal n × n matrix

DDDi,i =
∑

j SSSi,j and relaxing the binary and bit balance constraint, the problem can

be rewritten as:

min
y

tr(YYY T(D − S)Y(D − S)Y(D − S)Y )

s.t. YYY TYYY = III

(2.3)

Then the problem becomes an easy problem whose solutions are simply the k

eigenvectors ofD − SD − SD − S with minimal eigenvalue (after excluding the trivial eigenvector

1 which has eigenvalue 0).

Self-Taught Hashing (STH)

Self Taught Hashing (STH) [22] usually generally provides more effective hashing

solutions than LSH and SH. STH combines an unsupervised learning step with a

supervised learning step to learn hashing codes.

In the unsupervised learning step, STH constructs a similarity graph using a fix

number of nearest neighbors for the given dataset, and then embeds all the data

examples into a k dimensional space through spectral analysis similar to SH, and

finally uses simple thresholding to obtain the binary hashing code for each data

example. This step is exactly the same as in Eqn.2.3 of SH method.

In the supervised learning step, a set of k SVM classifiers are trained based

on existing documents and their binary hashing codes learned from the previous

step. Then, the k classifiers can be used to generate the hashing codes for the query

documents as a classification problem. STH does not assume that data are uniformly

distributed in a hyper-rectangle as requested by SH, which is often too restrictive for

real world applications. STH often generates more effective hashing codes than SH.
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Semi-Supervised Hashing (SSH)

The work in [28, 29] proposes a Semi-Supervised Hashing (SSH) approach for

incorporating the pairwise relationships between data examples into learning hashing

function. More precisely, these pairwise similarity constraints are also called Must-

Link and Cannot-Link, which could be partially generated from tags. For example, a

Must-Link is created when two data examples share a common tag, i.e., (xi, xj) ∈ M ,

and a Cannot-Link is created when two examples share no tag , i.e., (xi, xj) ∈ C.

Their basic motivation is that the hashing codes of data example pairs with Must-

Link should be as close as possible, while the hashing codes of example pairs with

Cannot-Link should be as different as possible. This motivation is then incorporated

into the objective function for learning the hashing codes.

In SSH method, it first define a pairwise constraint matrix SSS incorporating the

pairwise link information as:

SSSij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if (xi, xj) ∈ M

−1, if (xi, xj) ∈ C

0, otherwise

(2.4)

Then the supervised part of the objective function can be represented as:

J(WWW ) = tr
(
sgn(WWW TXXX)SSSsgn(WWW TXXX)T

)
(2.5)

The unsupervised part of the objective is constructed based on the maximum entropy

principle that a binary bit that gives balanced partitioning of XXX provides maximum

information. Then it shows that maximum entropy partitioning is equivalent to

maximizing the variance of a bit and thus the unsupervised term is defined as:

R(WWW ) =
∑
k

var[sgn(wT
k x)] (2.6)

Maximizing the above function with respect to WWW is still hard due to its non-

differentiability. To overcome this problem, it shows that the maximum variance

of a hash function is lower-bounded by the scaled variance of the projected data.



25

Theorem 2.2.2 The maximum variance of a hash function is lower-bounded by the

scaled variance of the projected data, i.e., max var[sgn(wT
k x)] ≥ α var[wT

k x]

Proof Suppose ‖xi‖2 ≤ β. Since we assume ‖wk‖2 = 1, from Cauchy-Schwarz

inequality,

‖wT
k x‖2 ≤ ‖wk‖2‖x‖2 ≤ β = β‖sgn(wT

k x)‖2

⇒ E[‖sgn(wT
k x)‖2] ≥ 1

β
E[‖wT

k x‖2]
⇒ max var[sgn(wT

k x)] ≥ α var[wT
k x]

since the data is zero centered, i.e., E[wT
k x] = 0, and for maximum bit variance

E[sgn(wx
k)] = 0.

Given the above theorem, it uses the lower bound on the maximum variance of a

hash function as a regularizer, which is easy to optimize:

R(WWW ) =
1

β

∑
k

E[‖wT
k x‖2] =

1

nβ
tr
(
WWW TXXXXXXTWWW

)
(2.7)

Combining equations 2.5 and 2.7 and relaxing the sign function, the overall semi-

supervised objective function is given as:

J(WWW ) = tr
(
WWW TXXXSSSXXXTWWW

)
+ γtr

(
WWW TXXXXXXTWWW

)
= tr

(
WWW T (XXXSSSXXXT +XXXXXXT )WWW

)
= tr

(
WWW TMMMWWW

) (2.8)

The learning of optimal projectionsWWW becomes a typical eigen-problem, which can

be easily solved by doing an eigenvalue decomposition on matrixMMM . Mathematically,

it is very similar to finding maximum variance direction using PCA except that

the original covariance matrix gets ‘adjusted’ by another matrix arising from the

labeled data. A sequential projection method is also porposed to solve the resulting

optimization problem.

The SSH has shown promising results for improving hashing effectiveness by

leveraging the pairwise information, but there are several limitations for SSH. Firstly,

the SSH method only utilizes the pairwise similarity constraints as the summary of tag

information, which is suboptimal with respect to the complete information in the tags.
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Secondly, the pairwise link information may not be accurately generated when tags

are missing, incomplete or mismatched, which is often the case for many real world

applications. Furthermore, SSH also directly works in the original keyword feature

space for modeling content similarity of documents. These problems may potentially

limit the performance of the hashing methods based on pairwise constraints.

Kernelized Supervised Hashing (KSH)

Kernelized Supervised Hashing (KSH) [30] method employs kernel trick similar to

that in Kernelized Locality-Sensitive Hashing (KLSH) [75] algorithm. The hashing

function is defined as follows:

y = sgn(
m∑
j=1

κ(x(j), x)aj − b) (2.9)

where x(1), . . . , x(m) are m samples uniformly selected at random from X, aj ∈ R is

the coefficient, and b ∈ R is the bias. Note that m is fixed to a constant much smaller

than the data set size n in order to maintain fast hashing. Based on the balancing

criterion, the bias b is set to be the median as b =
∑n

i=1

∑m
j=1 κ(x(j), xi)aj/n. Then

the hashing function can be rewritten as:

y = sgn(aT κ̂(x)) (2.10)

where a = [a1, . . . , am]
T . The objective function of KSH is given as:

min
A

‖1
k
sgn(KAKAKA)sgn(KAKAKA)T −SSS‖2F (2.11)

Here SSS is the pairwise constraint matrix defined in Eqn.2.4. A greedy optimization

method is utilized to solve the above problem. In KSH method, it also proposes to

use a sigmoid smoothing function to approximate the sgn(x).

The time complexities for training KSH are both bounded by O(nmk + l2mk +

m2lk +m3k) which scales linearly with n given n > l > m.
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Canonical Correlation Analysis with Iterative Quantization (CCA-ITQ)

The Canonical Correlation Analysis with Iterative Quantization (CCA-ITQ)

method [35, 36] consists of two main components. The first part is the Canonical

Correlation Analysis which treats the tags and features of data examples as two

views and extracts a common latent space from these two views. Denote the tag

matrix as TTT ∈ {0, 1}n×l. The goal of CCA is to find projection directions wk and uk

for feature and tag vectors to maximize the correlation between the projected data

XXXwk and TTTuk as:

max
w,u

wT
kXXX

TTTTuk

s.t. wT
kXXX

TXXXwk = 1, uT
kTTT

TTTTuk = 1.

(2.12)

Maximizing the above objective function involves solving the following generalized

eigenvalue problem to get wk:

XXXTTTT (TTT TTTT + ρI)−1TTT TXXXwk = λ2
k(XXX

TXXX + ρI)wk (2.13)

in which ρ is a small regularization constant used to prevent a trivial solution. The

leading generalized eigenvectors of the above equation then give us a sequence of

orthogonal wk directions that span the solution space, just as for PCA. Note that

once we have wk, we can also solve for the corresponding uk, but in our case, we

only care about the projection directions in the data space, since we assume that tag

information will be unavailable at test time.

The second component is iterative quantization. Assume we obtain the projection

direction from the first part of CCA-ITQ denoted as WWW . Then the relaxed solution

before binarization is VVV =XWXWXW . By the observation that ifWWW is the optimal solution

of Eqn.2.12, then so is Ŵ̂ŴW = WRWRWR for any orthogonal k × k matrix RRR. Therefore, we

are free to orthogonally transform the projected data VVV in such a way as to minimize

the quantization loss:

Q(YYY ,RRR) = ‖YYY − V RV RV R‖2F (2.14)
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Intuitively, we seek binary codes that are close to some orthogonal transformation of

the relaxed solution. The orthogonal transformation not only preserves the optimality

of the relaxed solution but also provides us more flexibility to achieve better hashing

codes with low quantization error. Then the optimal orthogonal matrix RRR and

binarization codes YYY can be obtained by iteratively optimizing the above equation.

2.3 Algorithm

2.3.1 Problem Definition and Notation

Assume there are total n training examples. Let us denote their features as:

XXX = {x1, x2, . . . , xn} ∈ Rd×n, where d is the dimensionality of the feature. Denote

the observed/partial tags as: TTT = {t1, t2, . . . , tl} ∈ {0, 1}n×l, where l is the total

number of possible tags for each data example. A label TTT ij = 1 means the i-th

data example is associated with the j-th tag, while a label 0 means a missing tag or

the tag is not associated with that example. The goal is to obtain a linear hashing

function f : Rd → {−1, 1}b, which maps data examples XXX to their binary hashing

codes YYY = {y1, y2, . . . , yn} ∈ {−1, 1}b×n (b is the binary code length). The linear

hashing function is defined as:

yi = f(xi) = sgn(WWW Txi) (2.15)

where WWW ∈ Rd×b is the coefficient matrix representing the hashing function and sgn

is the sign function. yi ∈ {−1, 1}b is the binary hashing code1 of xi. Without loss of

generality, we assume the data are zero-centered, thus there is no bias in Eqn.2.15.

The objective function of Semi-Supervised Tag Hashing (SSTH) is composed of

two components: (1) Tag consistency term, the supervised part which ensures that

the hashing codes are consistent with the observed tags. (2) Similarity preservation

term, the unsupervised part which aims at preserving the data similarity in the learned

hashing codes. In the rest of this section, we will present the formulation of these two

1We generate hashing bits as {−1, 1}, which can be simply converted to {0, 1} valued hashing codes.
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components respectively. Then in the next section, we will describe the optimization

algorithm together with a scheme that can further improve the quality of the hashing

function by minimizing the quantization error.

2.3.2 Tag Consistency

In many real-world applications, data examples are often associated with various

tags. These tag information provides useful supervised knowledge in learning effective

hashing function. Therefore, it is necessary to design a scheme for leveraging tag

information. There are three main challenges to incorporate tags. (1) We have no

knowledge about how tags are related to the hashing bits. Therefore, we need to

explore the correlation between them in order to bridge tags with hashing codes.

(2) Tags tend to be noisy and missing, and we need to deal with the situation of

incomplete tags. (3) We need to deal with the ambiguity of semantically similar tags

(e.g., ‘human’ versus ‘people’, ‘car’ versus ‘automobile’).

In this dissertation, we propose to model the consistency between observed tags

and hashing codes via matrix factorization using the latent factor model [76, 77].

Semantically similar tags are represented by different tags (e.g., ‘human’ and ‘people’

are two distinct tags) in our model and we will discuss how this issue can be

addressed later. In the latent factor model, a set of latent variables cj for each

tag tj is first introduced to model the correlation between tags and hashing bits,

where j ∈ {1, 2, . . . , l} and cj is a b× 1 vector indicating the correlation between the

j-th tag and the b hashing bits. Then a tag consistency component can be naturally

formulated as:
n∑

i=1

l∑
j=1

‖TTT ij − yTi cj‖2 + α

l∑
j=1

‖cj‖2 (2.16)

here TTT ij is the label of j-th tag on the i-th data example. Intuitively, yTi cj can be

essentially viewed as a weighted sum that indicates how the j-th tag is related to

the i-th data example, and this weighted sum should be consistent with the observed

label TTT ij as much as possible.
∑l

j=1 ‖cj‖2 is a regularizer to avoid overfitting and α is
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the trade-off parameter. In this way, the latent correlation between tags and hashing

bits can be learned by ensuring this consistency term.

The ambiguity issue for semantically similar tags is addressed by the latent factor

model since these tags are often associated with common data examples, and thus the

learned corresponding latent variables will be similar by ensuring the tag consistency

term. This can also be explained by the formulation above, which ensures the

consistency between tag t and YYY c (i.e., t ≈ YYY c). Therefore, if two tags ti and

tj are associated with similar set of data examples (indicating these two tags are

semantically similar), their corresponding ci and cj will be close as well. In the

extreme case, if two tags appear in exactly the same set of examples, their latent

variables will be identical.

An importance matrix III ∈ Rn×l is introduced to deal with the missing tag

problem. As mentioned above, TTT ij = 0 can be interpreted into two ways: j-th tag

on the i-th data example is either missing or not related. Therefore, we set III ij = u

with a higher value when TTT ij = 1 than III ij = v when TTT ij = 0, where u and v are

parameters satisfying u > v > 02. Then the whole tag consistency term becomes:

n∑
i=1

l∑
j=1

III ij‖TTT ij − yTi cj‖2 + α

l∑
j=1

‖cj‖2 (2.17)

By substituting Eqn.2.15, the above equation can be rewritten as a compact matrix

form:

‖III 1
2 ··· (TTT − sgn(XXXTWWW )CCC)‖2F + α‖CCC‖2F (2.18)

where III
1
2 is the element-wise square root matrix of III, and ··· is the element-wise matrix

multiplication. ‖‖F is the matrix Frobenius norm and CCC is a b× l correlation matrix

bridging the hashing codes with tags. By minimizing this term, the consistency

between tags and the learned hashing codes is ensured.

2In our experiments, we set the importance parameters u=1 and v=0.01.
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2.3.3 Similarity Preservation

One of the key problems in hashing algorithms is similarity preserving, which

indicates that similar data examples should be mapped to similar hashing codes

within a short Hamming distance. Preserving the original data similarity is important

in learning effective hashing function especially when training tags are limited or

even not available. The Hamming distance between two binary codes yi and yj

can be calculated as 1
4
‖yi − yj‖2. To measure the similarity between data examples

represented by the binary hashing codes, one natural way is to minimize the weighted

average Hamming distance as follows:

∑
i,j

SSSij‖yi − yj‖2 (2.19)

Here, SSS is the similarity matrix which is calculated based on the data features. To

meet the similarity preservation criterion, we seek to minimize this quantity, because

it incurs a heavy penalty if two similar examples are mapped far away.

There are many different ways of defining the similarity matrix SSS. In SH [19], the

authors used the global similarity structure of all data pairs, while in [22], the local

similarity structure, i.e., k-nearest-neighborhood, is used. In this dissertation, we use

the local similarity, due to its nice property in many machine learning applications. In

particular, the corresponding weights are computed by Gaussian function as follows:

SSSij =

⎧⎪⎨
⎪⎩

e
− ‖xi−xj‖2

σ2
ij , if xi ∈ Nk(xj) or xj ∈ Nk(xi)

0, otherwise

(2.20)

The variance σij is determined automatically by local scaling [71], and Nk(x)

represents the set of k-nearest-neighbors of the data example x.

By introducing a diagonal n × n matrix DDD, whose entries are given by DDDii =∑n
j=1SSSij. Eqn.2.19 can be rewritten as:

tr
(
YYY (DDD −SSS)YYY T

)
= tr

(
YYYLLLYYY T

)
= tr

(
sgn(WWW TXXX)LLLsgn(XXXTWWW )

) (2.21)
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where LLL is called graph Laplacian [19,78] and tr() is the matrix trace function. The

similarity preservation term plays an important role in hashing function learning

especially when the supervised information is limit due to noisy and incomplete

tags. By minimizing this term, the similarity between different data examples can be

preserved in the learned hashing codes.

2.3.4 Overall Objective and Optimization

The entire objective function consists of two components: the tag consistency term

in Eqn.2.18 and the data similarity preservation term given in Eqn.2.21 as follows:

min
W,CW,CW,C

‖III 1
2 ··· (TTT − sgn(XXXTWWW )CCC)‖2F + α‖CCC‖2F

+γ tr
(
sgn(WWW TXXX)LLLsgn(XXXTWWW )

)
s.t. WWW TWWW = IbIbIb

(2.22)

where α and γ are trade-off parameters to balance the weights among the terms. The

hard orthogonality constraints enforce the hashing bits to be uncorrelated with each

other and therefore the learned hashing codes can hold least redundant information.

Relaxation

Directly minimizing the objective function in Eqn.2.22 is intractable since it is a

constrained integer programming, which is proven to be NP-hard to solve. Therefore,

we first convert the hard constraints into a soft penalty term by adding a regularizer to

the objective and use the signed magnitude instead of the sign function as suggested

in [29, 30]. Then the relaxed objective function becomes:

min
W̃ ,CW̃ ,CW̃ ,C

‖III 1
2 ··· (TTT −XXXT W̃̃W̃WCCC)‖2F + α‖CCC‖2F

+γ tr
(
W̃̃W̃W T L̃̃L̃LW̃̃W̃W

)
+ β‖W̃̃W̃W T W̃̃W̃W − IbIbIb‖2F

(2.23)

where L̃̃L̃L ≡XLXLXLXXXT and can be pre-computed. However, even after the relaxation, the

objective function is still difficult to optimize since W̃̃W̃W and CCC are coupled together and
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it is non-convex with respect to W̃̃W̃W andCCC jointly. We propose to split the optimization

problem into two simpler sub-problems. The idea is that given W̃̃W̃W , CCC has a closed

form solution with respect to W̃̃W̃W (see details in SP2 below). Thus we split the relaxed

objective with respect to W̃̃W̃W and CCC and solve the two sub-problems iteratively using

coordinate descent method. The two sub-problems are given as:

SP1 : min
W̃̃W̃W

‖III 1
2 ··· (TTT −XXXT W̃̃W̃WCCC)‖2F + γ tr

(
W̃̃W̃W T L̃̃L̃LW̃̃W̃W

)
+β‖W̃̃W̃W T W̃̃W̃W − IbIbIb‖2F

(2.24)

SP2 : min
CCC

‖III 1
2 ··· (TTT −XXXT W̃̃W̃WCCC)‖2F + α‖CCC‖2F (2.25)

SP1 is still non-convex, but it is smooth and differentiable which enables gradient

descent methods for efficient optimization. The gradient of SP1 is calculated as

follows:

∂SP1

∂W̃̃W̃W
= 2XXX(III ··· (XXXTW̃CW̃CW̃C − TTT ))CCCT + 2γL̃W̃L̃W̃L̃W̃

+4βW̃̃W̃W (W̃̃W̃W T W̃̃W̃W − IbIbIb)

(2.26)

With this obtained gradient, L-BFGS quasi-Newton method [79] is applied to solve

SP1.

By taking the derivative of SP2 w.r.t. CCC and setting it to 000, we can obtain the

closed form solution of SP2 below:

∂SP2

∂CCC
= 2W̃̃W̃W TXXX(III ··· (XXXTW̃CW̃CW̃C − TTT )) + 2αCCC = 000

⇒ cj = (W̃̃W̃W TXXXIIIjXXX
T W̃̃W̃W + αIbIbIb)

−1W̃̃W̃W TXXXIIIjTTT j

(2.27)

where IIIj is a n × n diagonal matrix with III ij, i = 1, 2, . . . , n as its diagonal elements

and TTT j = (TTT ij), i = 1, 2, . . . , n is a n× 1 label vector of j-th tag.

We alternate the process of updating W̃̃W̃W and CCC for several iterations to find a

locally optimal solution. In practice, we have found that a reasonable small number

of iterations (i.e., 30 in our experiments) can achieve good performance.
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Orthogonal Transformation

After obtaining the optimal hashing function W̃̃W̃W for the relaxation, the hashing

codes YYY can be generated using Eqn.2.15. It is obvious that the quantization error

can be measured as ‖YYY − W̃ TXXXW̃ TXXXW̃ TXXX‖2F . Inspired by [36], we propose to further improve

the hashing function by minimizing this quantization error using an orthogonal

transformation. We first prove the following orthogonal invariant theorem.

Theorem 2.3.1 Assume QQQ is a k × k orthogonal matrix, i.e., QQQTQQQ = IbIbIb. If W̃̃W̃W and

CCC are an optimal solution to the relaxed problem in Eqn.2.23, then W̃QW̃QW̃Q and QQQTCCC are

also an optimal solution.

Proof By substituting W̃QW̃QW̃Q and QQQTCCC into Eqn.2.23, we have:

‖III 1
2 ··· (TTT −XXXTW̃QW̃QW̃QQQQTCCC)‖2F = ‖III 1

2 ··· (TTT −XXXT W̃̃W̃WCCC)‖2F ,
tr
(
(W̃QW̃QW̃Q)T L̃̃L̃LW̃QW̃QW̃Q

)
= tr

(
QQQT W̃̃W̃W T L̃̃L̃LW̃QW̃QW̃Q

)
= tr

(
W̃̃W̃W T L̃̃L̃LW̃̃W̃W

)
, ‖QQQTCCC‖2F=‖CCC‖2F

and ‖(W̃QW̃QW̃Q)TW̃QW̃QW̃Q− IbIbIb‖2F = ‖QQQT (W̃̃W̃W T W̃̃W̃W − IbIbIb)QQQ‖2F = ‖W̃̃W̃W T W̃̃W̃W − IbIbIb‖2F .
Thus, the value of the objective function in Eqn.2.23 does not change by the

orthogonal transformation.

According to the above theorem, we propose to find a better hashing function WWW =

W̃QW̃QW̃Q by minimizing the quantization error between the binary hashing codes and the

orthogonal transformation of the relaxed solution as follows:

min
Y,QY,QY,Q

‖YYY − (W̃QW̃QW̃Q)TXXX‖2F

s.t. YYY ∈ {−1, 1}k×n, QQQTQQQ = IbIbIb

(2.28)

Intuitively, we seek binary codes that are close to some orthogonal transformation of

the relaxed solution. The orthogonal transformation not only preserves the optimality

of the relaxed solution but also provides us more flexibility to achieve better hashing

codes with low quantization error. The idea of orthogonal transformation is also

utilized in ITQ [36]. However, ITQ method is not designed for incorporating partial

tag information into learning effective hashing function and it does not preserve the
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local similarities among data examples. The above optimization problem can be

solved by minimizing Eqn.2.28 with respect to YYY and QQQ alternatively as follows:

Fix Q and update Y . The closed form solution can be expressed as:

YYY = sgn
(
(W̃QW̃QW̃Q)TXXX

)
= sgn(WWW TXXX) (2.29)

which is identical with our linear hashing function in Eqn.2.15.

Fix Y and update Q. The objective function becomes:

min
QQQTQQQ=IbIbIb

‖YYY −QQQT W̃̃W̃W TXXX‖2F (2.30)

In this case, the objective function is essentially the classic Orthogonal Procrustes

problem [80], which can be solved efficiently by singular value decomposition using

the following theorem (we refer to [80] for the detailed proof).

Theorem 2.3.2 Let SΛVSΛVSΛV T be the singular value decomposition of YYYXXXT W̃̃W̃W . Then

QQQ = V SV SV ST minimizes the objective function in Eqn.2.30.

We then perform the above two steps alternatively to obtain the optimal hashing

codes and the orthogonal transform matrix. In our experiments, we find that the

algorithm usually converges in about 40∼60 iterations. The full learning algorithm

is described in Table 2.1.

2.3.5 Discussion

This section discusses the connections between the proposed SSTH approach

with several previous hashing methods. It also provides some analysis on the

time complexity of the optimization algorithm. The unsupervised hashing methods

Spectral Hashing (SH) [19] and Self-Taught Hashing (STH) [22] can be viewed

as a reformulation of the unsupervised part of SSTH. In other words, both these

methods only consider preserving the original similarity between data examples but

not leveraging the supervised information contained in tags while our SSTH approach

also ensures the tag consistency. For some supervised hashing methods such as
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Table 2.1.
Semi-Supervised Tag Hashing (SSTH)

Input: Data examples XXX, Observed tags TTT and trade-off parameters

Output: Hashing function WWW , Hashing codes YYY and Correlation CCC

Initialize CCC = 000 and QQQ = IbIbIb, Calculate L̃̃L̃L.

Repeat

Optimize SP1 using Eqn.2.26 and update W̃̃W̃W

Optimize SP2 using Eqn.2.27 and update CCC

Until the solution converges

Repeat

Update YYY using Eqn.2.29

Update QQQ = V SV SV ST according to Theorem 2.

Until the solution converges

semi-supervised hashing (SSH) [29], supervised hashing with kernels (KSH) [30] and

ranking-based supervised hashing (RSH) [31], they only consider pairwise or listwise

supervised information for learning hashing codes. The pairwise or listwise constraints

are very coarse representation of tag information, which are also subject to noise

within tags. On the other side, the proposed SSTH approach fully incorporates tag

knowledge in a more desired manner by directly exploring the semantic correlation

between tags and hashing bits.

For the training complexity, the optimization algorithm of SSTH consists of two

main loops. In the first loop, we iteratively solve SP1 and SP2 to obtain the optimal

solution, where the time complexities for solving SP1 and SP2 are bounded by

O(nlb+nbd+nb2) and O(nb2+nbl) respectively. The second loop iteratively optimizes

the binary hashing codes and the orthogonal transformation matrix, where the time

complexities for updating YYY and QQQ are bounded by O(nb2 + nbd + b3). Moreover,

both two loops take less than 60 iterations to converge as mentioned before. Thus, the
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total time complexity of the learning algorithm is bounded by O(nlb+nbd+nb2+b3),

which scales linearly with n given n � l > d > b. For each query, the hashing time is

constant O(db). In our implementation, the stop criteria for SP1 is that the difference

between two consecutive objectives is less than ε=10−5. And we also set the maximum

number of iterations for both loops to 100.

2.3.6 Extension using Topic Modeling

In the application of document similarity search, document similarity in the

original keyword feature space is used as guidance for generating hashing codes,

which may not fully reflect the semantic relationship. For example, two documents

in the same topic may have low document content similarity in keyword space due

to the vocabulary gap, although their semantic similarity can be high. Based on this

observation, features from topic modeling are used to measure the semantic similarity

between documents instead of features from the original keyword space. Topic

modeling algorithms (e.g., [81, 82]) are used to discover a set of ‘topics’ from a large

collection of documents and provide an interpretable low-dimensional representation

of the documents associated with the topics. Topic modeling has been widely

used in many information retrieval applications such as document clustering and

classification. Here we exploit the Latent Dirichlet Allocation (LDA) [83] approach of

topic modeling to extract k latent topics from the document corpus. Each document

xj corresponds to a distribution θj over the topics where two semantically similar

documents have similar topic distributions. In this way, document semantic similarity

is preserved in the extracted topic distributions θθθ. Since we require the hashing codes

to reflect the topic distributions, a document similarity preservation component can

be naturally defined as follows instead of equation 2.21:
n∑

j=1

||yj − θj||2 = ||YYY − θθθ||2 (2.31)

Then we can combine the above similarity preservation term with the tag consistency

term and using a similar iterative optimization method to obtain the optimal hashing
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codes. We call this extended method Semantic Hashing using Tags and Topic

Modeling (SHTTM).

Figure 2.3. Precision results of SSTH on three image datasets. (a)-(c):
Precision of the top 200 returned examples using Hamming Ranking.
(d)-(f): Precision within Hamming radius 2 using Hash Lookup.
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Figure 2.4. Precision-Recall behavior of SSTH on three image
datasets. (a)-(c): Precision-Recall curve with 16 hashing bits. (d)-(f):
Precision-Recall curve with 32 hashing bits.

2.4 Experiments

2.4.1 Datasets and Setup

We evaluate the SSTH method for large scale image retrieval on three image

benchmarks: NUS-WIDE3, Flickr-1M4 and ImageNet5. NUS-WIDE [84] is created

3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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by NUS lab for evaluating image annotation and retrieval techniques. It contains 270k

images associated with 5k unique tags. 500-dimensional visual features are extracted

using a bag-of-word model with local SIFT descriptor [85]. We randomly partition this

dataset into two parts, 1k for testing and around 269k for training. Flickr-1M [86]

is collected from Flicker images for image retrieval tasks. This benchmark contains 1

million image examples associated with more than 7k unique tags. 512-dimensional

GIST descriptors [87] are extracted from these images and are used as image features

for hashing function learning. We randomly choose 990k image examples as the

training set and 10k for testing. ImageNet [88] contains 1.2m images collected from

flickr and other search engines. It is hand labeled with the presence or absence of

1000 object categories. 500-dimensional bag-of-word SIFT features are also used. We

randomly select 10k images as test queries and the rest are used for training.

We also evaluate the extended SHTTM method using topic modeling for large

scale text retrieval on four text collections: ReutersV 1 (Reuters-Volume I) contains

over 800,000 manually categorized newswire stories [89]. There are in total 126

tags associated with this dataset. A subset of 365001 documents of ReutersV1 is

used in our experiment. 328501 documents are randomly selected as the training

data, while the remaining 36500 documents are used as testing queries. 106 tags are

selected for training and 20 for testing. Reuters (Reuters21578)6 is a collection of

documents that appeared on Reuters newswire in 1987. It contains 21578 documents,

and 135 tags/categories. In our experiments, documents corresponding to the top

57 categories are kept7, with approximately 10376 documents. 9339 documents are

randomly chosen as the training set, while 1037 for testing. 47 tags are utilized in

training and 10 left for testing. 20Newsgroups8 corpus is collected and originally

used for document categorization in [90]. We use the popular ‘18828’ version which

4http://press.liacs.nl/mirflickr/
5http://image-net.org/challenges/LSVRC/2010/index
6http://daviddlewis.com/resources/textcollections/reuters2 1578/.
7we removed the tags which only have a limited number of examples.
8http://people.csail.mit.edu/jrennie/20Newsgroups/
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contains 18828 documents. The data is organized into 20 different newsgroups, each

corresponding to a different topic. Since some of the newsgroups are very closely

related to each other (e.g. comp.sys.ibm.pc.hardware / comp.sys.mac.hardware),

while others are highly unrelated (e.g.misc.forsale / soc.religion.christian). Therefore,

we partition these documents according to subject matter into 6 categories, which are

denoted as 6 different tags. 16946 documents are randomly chosen for training and the

rest 1882 documents are used for testing. 3 tags are utilized in training process and

3 for testing. WebKB9 consists of 6883 webpages, collected from four universities,

and is divided into 7 categories/tags. 90% documents (6195) are randomly selected

as training data, while the remaining (688) documents are used for testing. 4 tags

are used in training while 3 for testing. In all text datasets, term frequency (i.e. tf)

features are used as content features and also used for learning topic distributions.

Note that tags in each dataset are divided into two groups, one set is used only in

training and the other is treated as ground truth only for testing.

We implement our algorithm using Matlab on a PC with Intel Duo Core i5-

2400 CPU 3.1GHz and 16GB RAM. The parameters α, β and γ are tuned by 5-

fold cross validation on the training set and we will discuss how these parameters

affect the results later. The number of nearest neighbors k is fixed to be 7 when

constructing the graph Laplacian (we found that setting k to a larger number gives

similar performance). Note that the graph Laplacian is a very sparse matrix consist

of n × k non-zero elements and is only used to compute L̃̃L̃L, which can be calculated

efficiently by sparse matrix multiplication.

The proposed SSTH and SHTTM approach is compared with several different

hashing algorithms, including four unsupervised methods Spectral Hashing (SH) [19],

Latent Semantic Hashing (LSH) [15], PCA Hashing (PCAH) [17] and Self Taught

Hashing (STH:2010), and three supervised methods Canonical Correlation Analysis

with Iterative Quantization (CCA-ITQ) [35,36], Semi-Supervised Hashing (SSH) [29]

9CMU world wide knowledge base (WebKB) project. Available at http://www.cs.cmu.edu/
WebKB/.
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and Kernel Supervised Hashing (KSH) [30] as they are the state-of-the-art supervised

hashing methods which achieve good performance in incorporating tag knowledge into

hashing function learning. For LSH, we randomly select projections from a Gaussian

distribution with zero-mean and identity covariance to construct the hash tables. For

SSH and KSH, we sample 2k (which is used in their work) random points from the

training set to construct the pairwise constraint matrix. Gaussian RBF kernel is used

in KSH.

Table 2.2.
Precision of the top 200 returned examples using Hamming Ranking
on NUS-WIDE with different hashing bits.

NUS-WIDE
��������������
method

code length
16 32 64 128

SSTH 0.3790.3790.379 0.3840.3840.384 0.3930.3930.393 0.3980.3980.398

SSTH0 0.356 0.366 0.384 0.392

KSH [30] 0.312 0.316 0.327 0.341

CCA-ITQ [35,36] 0.306 0.308 0.315 0.322

SSH [29] 0.289 0.295 0.311 0.298

SH [19] 0.264 0.282 0.297 0.304

LSH [15] 0.226 0.247 0.258 0.261

2.4.2 Evaluation Method

To conduct fair evaluation, we follow two criteria which are commonly used in the

literature [29, 31, 35, 36]: Hamming Ranking and Hash Lookup. Hamming Ranking

ranks all the points in the database according to their Hamming distance from the

query and the top k points are returned as the desired neighbors. Hash Lookup
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Table 2.3.
Precision of the top 200 returned examples using Hamming Ranking
on Flickr-1M with different hashing bits.

Flickr-1M
��������������
method

code length
16 32 64 128

SSTH 0.432 0.5180.5180.518 0.5630.5630.563 0.5970.5970.597

SSTH0 0.428 0.505 0.549 0.580

KSH [30] 0.4480.4480.448 0.494 0.531 0.556

CCA-ITQ [35,36] 0.386 0.464 0.491 0.539

SSH [29] 0.396 0.439 0.452 0.486

SH [19] 0.377 0.392 0.428 0.447

LSH [15] 0.337 0.371 0.423 0.464

returns all the points within a small Hamming radius r of the query. The search

results are evaluated based on whether the retrieved examples and the query image

share the same semantic tags in the testing. For Hamming Ranking based evaluation,

we calculate the precision at top k which is the percentage of true neighbors among

the top k returned examples, where we set k to be 200 in the experiments. We

also compute the precision-recall value which is a widely used metric in information

retrieval applications. A hamming radius of r = 2 is used to retrieve the neighbors

in the case of Hash Lookup. The precision of the returned examples falling within

Hamming radius 2 is reported. Note that if a query image returns no points inside

Hamming ball with radius 2, it is treated as zero precision.
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Table 2.4.
Precision of the top 200 returned examples using Hamming Ranking
on ImageNet with different hashing bits.

ImageNet
��������������
method

code length
16 32 64 128

SSTH 0.4470.4470.447 0.4580.4580.458 0.4820.4820.482 0.5130.5130.513

SSTH0 0.438 0.446 0.477 0.501

KSH [30] 0.420 0.438 0.471 0.488

CCA-ITQ [35,36] 0.427 0.441 0.468 0.479

SSH [29] 0.414 0.436 0.445 0.462

SH [19] 0.373 0.381 0.416 0.442

LSH [15] 0.338 0.367 0.386 0.394

Table 2.5.
Precision of the top 200 returned examples under different training
tag ratios on NUS-WIDE with 32 hashing bits.

NUS-WIDE
��������������
method

tag ratio
0.2 0.4 0.6 0.8

SSTH 0.3370.3370.337 0.3410.3410.341 0.3540.3540.354 0.3690.3690.369

SSTH0 0.328 0.332 0.347 0.351

KSH [30] 0.288 0.296 0.301 0.308

CCA-ITQ [35,36] 0.287 0.290 0.305 0.330

SSH [29] 0.283 0.285 0.291 0.297

2.4.3 Results and Discussion

We conduct several sets of experiments to evaluate the proposed approach from

different perspectives.
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Evaluation on different number of hashing bits

In the first set of experiments, we report the precisions for the top 200 retrieved

images and the precisions for retrieved images within Hamming ball with radius 2

by varying the number of hashing bits in the range of {8, 16, 32, 64, 128} in Fig.2.3

and Table 2.2, 2.3 and 2.4. We also evaluate our method without orthogonal

transformation (by setting QQQ = IbIbIb) and call this SSTH0 in the tables. The precision-

recall curves with 16 and 32 hashing bits on all datasets are reported in Fig.2.4.

Table 2.6.
Precision of the top 200 returned examples under different training
tag ratios on Flickr-1M with 32 hashing bits.

Flickr-1M
��������������
method

tag ratio
0.2 0.4 0.6 0.8

SSTH 0.4530.4530.453 0.4610.4610.461 0.4760.4760.476 0.480

SSTH0 0.443 0.449 0.464 0.476

KSH [30] 0.422 0.448 0.459 0.4810.4810.481

CCA-ITQ [35,36] 0.410 0.427 0.445 0.467

SSH [29] 0.398 0.416 0.422 0.435

From these comparison results, we can see that SSTH provides the best results

among all six hashing methods in most cases. LSH does not perform well on all

datasets since LSH method is data-independent, which may generate inefficient codes

compared to those data-depend methods. The unsupervised SH method only tries to

preserve image similarity in learned hashing codes, but does not utilize the supervised

information contained in tags. SSH and KSH achieves better performance than SH

and LSH due to the modeling of pairwise information. However, as pointed out in

section 2, the coarse pairwise constraints generated from tags do not fully represent
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tag knowledge. The supervised method CCA-ITQ have similar performance to KSH

since it also incorporates tags into learning better data representations. But in CCA-

ITQ, it treats tags as another independent source where it may not be even reliable as

tags can be incomplete, noisy and partially available. Moreover, the visual similarity

is not well preserved in its hashing function learning. On the other hand, our SSTH

not only exploits tag information via modeling the correlation between tags and

hashing bits, but also preserves image similarity at the same time in the learned

hashing function, which enables SSTH to generate higher quality hashing codes than

the other supervised hashing methods. In Fig.2.3(d)-(f), we observe the precision

of Hash Lookup for most of the compared methods decreases significantly with the

increasing number of hashing bits. The reason is that the Hamming space becomes

increasingly sparse with longer hashing bits and very few data points fall within the

Hamming ball with radius 2, which makes many queries have 0 precision results.

However, the precision of SSTH is still consistently higher than the other methods

for Hash Lookup.

Table 2.7.
Precision of the top 200 returned examples under different training
tag ratios on ImageNet with 32 hashing bits.

ImageNet
��������������
method

tag ratio
0.2 0.4 0.6 0.8

SSTH 0.4090.4090.409 0.4210.4210.421 0.4290.4290.429 0.4370.4370.437

SSTH0 0.402 0.415 0.423 0.429

KSH [30] 0.391 0.408 0.415 0.421

CCA-ITQ [35,36] 0.383 0.402 0.411 0.428

SSH [29] 0.387 0.403 0.412 0.424
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Figure 2.5. Tag prediction results on Flickr-1M .

Evaluation on different training tag ratio

In the second set of experiments, we evaluate the effectiveness of the proposed

SSTH if only partial tags are available. We progressively increase the number of

training tags by varying the training tag ratio from {0.2, 0.4, 0.6, 0.8}10 and compare

our SSTH with the other supervised hashing methods11, CCA-ITQ, SSH and KSH on

all datasets by fixing the hashing bits to 32. The precision results of top 200 retrieved

images are reported in Table 2.5, 2.6 and 2.7. It can be seen from the results that

our SSTH gives the best performance among all supervised hashing methods in most

cases. We also observe that the precision result of compared supervised hashing

methods drop faster than SSTH when the number of training tags decreases. Our

hypothesis is that when training tags are very sparse and incomplete, the pairwise

constraints generated by SSH and KSH from these partial tags are not accurate

10Tags are randomly sampled from the training data based on the ratio.
11SH and LSH do not utilize tags and thus are not necessary to be compared here.
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and reliable, resulting in less effective hashing codes. Similarly, the common space

learned from partial tags and visual features by CCA-ITQ is not very meaningful due

to the lack of training tags. On the other side, the unsupervised part of SSTH plays

an important role in similarity preservation, which preserves the neighbor structure

in the learned hashing codes even with very few tags. We also observe that the

comparison results of SSTH and SSTH0 in all tables demonstrate that the orthogonal

transformation can further improve the effectiveness of the hashing function, which

is consistent with our expectation.

Table 2.8.
Training and testing time (in second) on three datasets with 32 hashing bits.

NUS-WIDE Flickr-1M ImageNet
���������
method

time
training testing training testing training testing

SSTH 83.57 0.4x10−4 219.03 0.6x10−4 284.25 0.4x10−4

KSH [30] 248.85 2.4x10−4 592.16 2.5x10−4 686.82 2.4x10−4

CCA-ITQ [35,36] 46.13 0.5x10−4 135.37 0.5x10−4 168.54 0.5x10−4

SSH [29] 23.56 0.4x10−4 40.83 0.5x10−4 58.39 0.4x10−4

SH [19] 51.63 3.6x10−4 173.68 4.1x10−4 224.07 3.7x10−4

LSH [15] 3.75 0.4x10−4 3.84 0.4x10−4 3.76 0.4x10−4

Qualitative results on tag prediction

The third set of experiments demonstrate how the learned correlations, CCC, can

bridge tags and hashing codes12. We conduct the experiments on Flickr-1M to

predict tags for query images based on their hashing codes. In particular, we first

12In this set of experiments, we choose the most popular 50 tags in the training process and remove
all images that are not associated with any tags.
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generate hashing code for each query image by yq = WWW Txq, and predict its tag

vector using tq = CCCTyq. Then we select the top 3 tags with largest values in tag

vector tq as the predicted tags for the query image. The comparison results of the

top 3 predicted tags with ground truth tags on several images are shown in Fig.2.5.

From this figure we can see that our SSTH can generate reasonable accurate tags for

query images. The reason is that our method not only incorporates tags in learning

effective hashing function, but also extracts the correlation between tags and hashing

bits. Therefore, the tag information is fully explored in our SSTH. Note that previous

supervised (pairwise or listwise) hashing methods can not directly generate tags for

unseen images13.

Figure 2.6. Parameter sensitivity results of precision of the top 200
retrieved examples with 32 hashing bits.

13Although in [35] tags can also be predicted by employing additional decoding methods, it is more
complicated and time consuming for learning another set of decoding parameters, which is also
pointed out by the authors.
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Figure 2.7. Precision of the top 100 retrieved examples on four text datasets.

Training and testing cost

In the fourth set of experiments, the training time for learning hashing function

and testing time for encoding each query image on all datasets (with 32 bits) are

reported in Table 2.8. Note that we do not include the cross-validation time and any

pre-calculation cost in all methods for fair comparison. We can see from this table

that the training cost of SSTH is around several hundred seconds, which is comparable

with most of the other hashing methods and it is not slow in practice considering the

complexity of training. In contrast to the offline training, the online code generation

time is more critical for real-world search applications. The test time for SSTH is

sufficiently fast especially when compared to the nonlinear hashing method SH and

kernel hashing method KSH. The reason is that it only needs linear projection and

binarization to generate the hashing codes for queries. Moreover, we also conduct
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another experiment by fixing the performance of different methods to figure out how

many bits and how much time does each method cost. We found that our method

utilizes much less time and bits than other methods to achieve a certain performance.

For example, to achieve 0.55 precision under Hamming Ranking on Flickr-1M . Our

method uses about 150 seconds and 60 bits, while CCA-ITQ takes about 374 seconds

with 270 bits and SSH costs around 420 seconds with 500 bits.

Parameter sensitivity

The fifth set of experiments study the performance of SSTH with respect to the

parameters α, β and γ. To show the robustness of the proposed method, we conduct

parameter sensitivity experiments on all datasets. In each experiment, we tune only

Figure 2.8. Precision of the retrieved examples within Hamming
radius 2 on four text datasets.
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one parameter from the grid {0.5, 1, 2, 4, 8, 32, 128}, while fixing the other two to

the optimal values obtained from the first set of experiments.

Figure 2.9. Results of Precision-Recall curve with 32 hashing bits on
four text datasets.

We report the results of top 200 returned examples with 32 hashing bits in Fig.2.6.

It is clear from these experimental results that the performance of SSTH is relatively

stable with respect to α, β and γ in a wide range of values. The results also prove

that using soft penalty with an appropriate weight parameter is better than enforcing

the hard orthogonality constraint (corresponds to infinite β).

Evaluation of Topic Modeling

In the sixth set of experiments, we evaluation the performance of SHTTM method

on four text datasets. The precision for the top 100 retrieved documents with different

numbers of hashing bits is reported in Fig.2.7. The precisions for the retrieved
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documents within hamming radius 2 are shown in Fig.2.8. We also report the

precision-recall curves of different methods with 32 hashing bits on different datasets

in Fig.2.9. From these comparison results, it can be seen that SHTTM gives the

overall best performance among all six hashing methods on all four datasets.

In Fig.2.8, the precision of most compared methods decreases when the number of

hashing bits increases from 16 to 128 This is because when using longer hashing bits,

the Hamming space becomes increasingly sparse and very few data points fall within

the Hamming ball of radius 2, resulting in even queries with precision 0. Similar

behavior is also observed in [30] and [29]. In this situation, the precision results

of top 100 documents from Fig.2.7 provide better performance measurement, while

the precision results of SHTTM are still consistently better than other methods.

For methods SH and STH, although these methods try to preserve the similarity

between documents in their learned hashing codes, they do not utilize the supervised

information contained in tags. Moreover, the similarity matrices in both methods

are computed from the original keyword feature space, which may not fully reflect

the semantic similarity between documents that goes beyond keyword matching.

Therefore, the SHTTM method substantially outperforms these two methods by

leveraging tag information and topic modeling.
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3 LEARNING TO HASH ON PARTIAL MULTI-MODAL DATA

3.1 Motivation

In many applications, data examples are usually represented by multiple

modalities captured from different sources. Although existing multi-modal hashing

methods generate promising results in dealing with multi-modal data, most of them

assume that all data examples have full information in all modalities, or there exists

at least one modality which contains all the examples. However, in real world tasks,

it is often the case that every modality suffers from some missing information, which

results in many partial examples. Therefore, it is a practical and important research

problem to design effective hashing methods for partial multi-modal data.

3.2 Background and Related Work

3.2.1 Introduction

In various real world tasks, data examples usually have multiple modalities

extracted from different sources. For example, in web page search, the web page

content and its linkage information can be regarded as two modalities. In web image

retrieval, the image visual feature, text description and textual tags can be viewed as

multiple modalities. Recently, several multi-modal hashing methods (also known as

multi-view or cross-view hashing) have been proposed to handle multi-modal data.

Roughly speaking, these multi-modal hashing approaches can be divided into two

categories: modality-specific hashing methods and modality-integrated ones. The

modality-specific methods learn independent hashing codes for each modality of an

example, and then concatenate multiple modality-specific binary codes into the final
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hashing codes [39–42], whereas the modality-integrated ones directly learn unified

hashing codes for data examples [10, 43–45].

Although existing multi-modal hashing methods generate promising results in

dealing with multi-modal data, they assume that all data examples have full

information in all modalities, or there exists at least one modality which contains all

the examples. However, in real world tasks, it is often the case that every modality

suffers from some missing information, which results in many partial examples.

Consider again the aforementioned two examples, for web page search, many web

pages may not contain any linkage information. For web image retrieval, not all

images are associated with tags or text descriptions. Moreover, the image itself may

be inaccessible due to deletion or invalid url. Therefore, it is a practical and important

research problem to design effective hashing methods for partial multi-modal data.

In order to apply existing multi-modal hashing methods to partial data, we can

either remove the data examples that suffer from missing information, or preprocess

the partial examples by first filling in the missing data. The first strategy is clearly

not suitable since the purpose is to map all examples to their corresponding binary

codes, whereas our experiments show that the second strategy does not achieve good

performance either. In this dissertation, we propose a novel Partial Multi-Modal

Hashing (PM2H) approach to deal with such partial data. More specifically, a unified

learning framework is developed to learn the binary codes, which simultaneously

ensures the data consistency among different modalities via latent subspace learning,

and preserves data similarity within the same modality through graph Laplacian.

A coordinate descent algorithm is applied as the optimization procedure. We then

further reduce the quantization error via orthogonal rotation based on the orthogonal

invariant property of our formulation. Experiments on two datasets demonstrate

the advantages of the proposed approach over several state-of-the-art multi-modal

hashing methods.
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3.2.2 Related Work

Hashing methods [13,15,24,48,91,92] are proposed to generate reasonably accurate

search results in a fast process with compact binary vector representation. These

methods transform the original features into a low dimensional binary space, while

at the same time preserve the similarity between data examples as much as possible.

In this section, we mainly review the previous hashing methods on multiple modality

data.

Multi-modal hashing methods have recently been developed to extend the single-

modal methods to multi-modal scenarios. The key problem of hashing code learning

for multi-modal is to deal with multiple modalities sampled from different probability

distributions. Existing multi-modality hashing methods can be divided into two

categories: modality-specific and modality-integrated methods. The modality-specific

methods [39–42, 93] learn independent hashing codes for each modality of data

examples, and then merge multiple binary codes from different modalities into the

final hashing codes. A cross-modality similarity search hashing (CMSSH) method

[39] is proposed to embed data from different feature space into a common metric

space. The hashing codes are learned through eigen-decomposition with AdaBoost

framework. In work [40], a cross-view hashing method is designed based on spectral

hashing, which generates the hashing codes by minimizing the distance of hashing

codes for the similar data and maximizing the distance for the dissimilar data. Co-

Regularized Hashing [42] method intends to project data from multiple sources, and

at the same time, preserve the inter-modality similarity effectively.

The modality-integrated hashing methods [10, 35, 36, 43, 44] directly learn unified

hashing codes for each data example. In the work of [10], a Composite Hashing

with Multiple Information Sources (CHMIS) method is proposed to incorporate

information from multiple sources into final integrated hashing codes by linearly

combining the hashing codes from different modalities. Multi-View Spectral Hashing

(MVSH) [44] integrates multi-view information into binary codes, and uses product of
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codewords to avoid undesirable embedding. More recently, A Canonical Correlation

Analysis with Iterative Quantization (CCA-ITQ) method has been proposed in [35,36]

which treats the image features and tags as two different modalities. The hashing

function is then learned by extracting a common space from these two modalities.

The work in [43] introduces collective matrix factorization into multi-modal hashing

(CMFH), which learns unified hashing codes by collective matrix factorization with

latent factor model from different modalities. However, existing multi-modal hashing

methods fail to handle the situation where only partial examples are available in

different modalities.

3.3 Algorithm

3.3.1 Problem Setting and Overview

We introduce some notations in our problem of PM2H. For the convenience of

discussion, assume that we are handling two-modality data, i.e., given a data set

of N data examples XXX={(x1
i , x

2
i ), i = 1, . . . , N}, where x1

i ∈ R
d1 is the instance

of the i-th example in the first modality and x2
i ∈ R

d2 is the i-th example in the

second modality (usually d1 �= d2). In the partial modality setting, a partial data set

X̂̂X̂X={X̂̂X̂X(1,2), X̂̂X̂X(1), X̂̂X̂X(2)} instead of XXX is given, where X̂̂X̂X(1,2)={(x1
1, x

2
1), . . . , (x

1
c , x

2
c)} ∈

R
c×(d1+d2) denotes the common examples present in both modalities, X̂̂X̂X(1) =

{x1
c+1, . . . , x

1
c+m} ∈ R

m×d1 denotes the examples only present in the first modality

and X̂̂X̂X(2)={x2
c+m+1, . . . , x

2
c+m+n} ∈ R

n×d2 denotes the examples only present in the

second modality. Note that the number of examples present and only present in both

modalities, the first modality, and the second modality are c, m and n, N = c+m+

n. The purpose of PM2H is to learn unified hashing codes YYY = {y1, y2, . . . , yN} ∈
{−1, 1}N×k together with the modality-specific hashing functions HHH1 and HHH2 to map

each data example xi to the corresponding hashing codes yi:

yi = sgn(vi) = sgn(HHH txt
i) t = 1, 2 (3.1)
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where HHH t ∈ R
k×dt is the coefficient matrix representing the hashing function for the

t-th modality and sgn is the sign function. k is the length of the code. vi is the signed

magnitude relaxation of binary code yi, which is widely adopted in previous hashing

approaches [30, 31, 94].

The objective function of PM2H is composed of two components: (1) Data

consistency between modalities, latent subspace learning is utilized to ensure that

the hashing codes generated from different modalities are consistent. (2) Similarity

preservation within modality, graph Laplacian is applied to enforce that similar data

examples within each modality are mapped into similar codes. A coordinate descent

method is utilized for solving the optimization problem to achieve the relaxed solution

vi. Then the binary hashing codes yi will be obtained from vi with orthogonal rotation

by minimizing the quantization error.

3.3.2 Data Consistency between Modalities

In the partial modality setting, X̂̂X̂X(1,2), X̂̂X̂X(1), X̂̂X̂X(2) are represented by heterogeneous

features of dimensions (d1 + d2), d1, d2, which makes it hard for their hashing codes

learning. But investigating the problem from modality perspective, in each individual

modality, the data instances are sharing the same feature space. The two different

modalities are coupled/bridged by the shared common examples. If we can learn

a common latent subspace for the two modalities, where instances belonging to the

same example between different modalities are consistent, while at the same time

for each modality, the representations for similar instances are close in the latent

subspace. Then the hashing codes can be directly learned from this subspace, and

we do not need to fill in or complete the partial modality examples. Let X̂̂X̂X(1,2) =

[X̂̂X̂X
(1)
c , X̂̂X̂X

(2)
c ], where X̂̂X̂X

(1)
c ∈ R

c×d1 , X̂̂X̂X
(2)
c ∈ R

c×d2 are the instances of the common

examples coming from the two modalities. We denote the instances of each modality
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as: X̄̄X̄X(1) = [X̂̂X̂X
(1)
c , X̂̂X̂X(1)] ∈ R

(c+m)×d1 , X̄̄X̄X(2) = [X̂̂X̂X
(2)
c , X̂̂X̂X(2)] ∈ R

(c+n)×d2 . Following the

above idea, the latent subspace learning can be formulated as:

min
V̄̄V̄V (1),BBB(1)

‖X̄̄X̄X(1) − V̄̄V̄V (1)BBB(1)‖2F + λ R(V̄̄V̄V (1),BBB(1)) (3.2)

min
V̄̄V̄V (2),BBB(2)

‖X̄̄X̄X(2) − V̄̄V̄V (2)BBB(2)‖2F + λ R(V̄̄V̄V (2),BBB(2)) (3.3)

where BBB(1) ∈ R
k×d1 and BBB(2) ∈ R

k×d2 are the basis matrix for each modality’s latent

space. V̄̄V̄V (1) = [V̂̂V̂V
(1)
c , V̂̂V̂V (1)] ∈ R

(c+m)×k and V̄̄V̄V (2) = [V̂̂V̂V
(2)
c , V̂̂V̂V (2)] ∈ R

(c+n)×k are the

latent representation of instances in the latent space, which can also be viewed as

the relaxed representation of binary codes YYY . The same latent space dimension k

is shared between the two modalities. R(· ) = ‖· ‖2F is the regularization term to

avoid overfitting and λ is the tradeoff parameter. By Eqn.3.2 and Eqn.3.3, the latent

space basis BBB and corresponding instance latent representation VVV are simultaneously

learned to minimize the reconstruction error from each individual modality.

In the above equations, the latent space are learned independently for each

modality. But in the partial modality setting, for examples present in both

modalities X̂̂X̂X
(1)
c , X̂̂X̂X

(2)
c , their latent representation V̂̂V̂V

(1)
c , V̂̂V̂V

(2)
c should also be consistent.

Incorporating the above formulations by ensuring V̂̂V̂V
(1)
c = V̂̂V̂V

(2)
c = V̂̂V̂V c, we seek to

minimize the following problem:

min
VVV ,BBB

∥∥∥∥∥∥
⎡
⎣ X̂̂X̂X

(1)
c

X̂̂X̂X(1)

⎤
⎦−

⎡
⎣ V̂̂V̂V c

V̂̂V̂V (1)

⎤
⎦BBB(1)

∥∥∥∥∥∥
2

F

+

∥∥∥∥∥∥
⎡
⎣ X̂̂X̂X

(2)
c

X̂̂X̂X(2)

⎤
⎦−

⎡
⎣ V̂̂V̂V c

V̂̂V̂V (2)

⎤
⎦BBB(2)

∥∥∥∥∥∥
2

F

+ λ R(VVV ,BBB)

(3.4)

By solving the above problem, we can obtain the homogeneous feature (relaxed

hashing) representation for all examples as VVV = [V̂̂V̂V c, V̂̂V̂V
(1), V̂̂V̂V (2)] ∈ R

(c+m+n)×k, whether

they are originally partial or not. Then the hashing codes YYY can be directly achieved

via binarization from this relaxed latent representation. Note that Eqn.3.4 is different

from previous subspace based multi-modal hashing approaches, which either requires

V̄̄V̄V (1) and V̄̄V̄V (2) to be the same or do not require V̄̄V̄V (1) and V̄̄V̄V (2) to share any common part.
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In the above formulation, V̄̄V̄V (1) and V̄̄V̄V (2) share one common representation V̂̂V̂V c, while

at the same time have their own individual components. Moreover, the individual

basis matrix BBB(1) and BBB(2), which are learned by using all available instances from

both modalities, are connected by the common V̂̂V̂V c.

3.3.3 Similarity Preservation within Modality

One of the key problems in hashing algorithms is similarity preserving, which

indicates that similar data examples should be mapped to similar hashing codes within

a short Hamming distance. Therefore, besides the data consistency between different

modalities, we also preserve the data similarity within each individual modality. In

other words, we want the learned relaxed representation VVV to preserve the similarity

structure in each modality. In this dissertation, we use the L2 distance to measure

the similarity between vi and vj as ‖vi − vj‖2, which is consistent with the Hamming

distance between the binary codes yi and yj (
1
4
‖yi − yj‖2). Then one natural way to

preserve the similarity in each modality is to minimize the weighted average distance

as follows: ∑
i,j

SSS
(t)
ij ‖vi − vj‖2 t = 1, 2 (3.5)

Here, SSS(t) is the similarity matrix in t-th modality, which can be calculated from the

instances X̄̄X̄X(t). In this dissertation, we adopt the local similarity [10,94], due to its nice

property in many machine learning applications. To meet the similarity preservation

criterion, we seek to minimize this quantity in each modality since it incurs a heavy

penalty if two similar examples have very different latent representations.

By introducing a diagonal n × n matrix DDD(t), whose entries are given by DDD
(t)
ii =∑n

j=1SSS
(t)
ij . Eqn.3.5 can be rewritten as:

tr
(
V̄̄V̄V (t)T (DDD(t) −SSS(t))V̄̄V̄V (t)

)
= tr

(
V̄̄V̄V (t)TLLL(t)V̄̄V̄V (t)

)
t = 1, 2 (3.6)
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where LLL is called graph Laplacian [19] and tr(· ) is the matrix trace function. By

minimizing the above objective in all modalities, the similarity between different

examples can be preserved in the latent representation.

3.3.4 Overall Objective and Optimization

The entire objective function consists of two components: the data consistency

between modalities in Eqn.3.4 and similarity preservation within modality given in

Eqn.3.6 as follows:

min
VVV ,BBB

O = ‖X̄̄X̄X(1) − V̄̄V̄V (1)BBB(1)‖2F + ‖X̄̄X̄X(2) − V̄̄V̄V (2)BBB(2)‖2F

+α
(
tr
(
V̄̄V̄V (1)TLLL(1)V̄̄V̄V (1)

)
+ tr

(
V̄̄V̄V (2)TLLL(2)V̄̄V̄V (2)

))
+λ R(VVV ,BBB)

(3.7)

where α and λ are trade-off parameters to balance the weights among the terms. Note

that V̄̄V̄V (1) and V̄̄V̄V (2) share an identical part V̂̂V̂V c corresponding to the common examples

present in both modalities.

Directly minimizing the objective function in Eqn.3.7 is intractable since it is a

non-convex optimization problem with VVV and BBB coupled together. We propose to

use coordinate descent scheme by iteratively solving the optimization problem with

respect to VVV and BBB as follows:

(1) Optimizing O with respect to V̂̂V̂V c, V̂̂V̂V
(1) and V̂̂V̂V (2) by fixing BBB. Given the

basis matrix BBB(t) for both modalities, we can decompose the objective since V̂̂V̂V c and

V̂̂V̂V (t) will not depend on each other.

min
V̂̂V̂V (t)

O(V̂̂V̂V (t)) = ‖X̂̂X̂X(t) − V̂̂V̂V (t)BBB(t)‖2F

+α tr
(
V̂̂V̂V (t)T L̂̂L̂L(t)V̂̂V̂V (t)

)
+ λ R(V̂̂V̂V (t)) + const t = 1, 2

(3.8)

min
V̂̂V̂V c

O(V̂̂V̂V c) = ‖X̂̂X̂X(1)
c − V̂̂V̂V cBBB

(1)‖2F + ‖X̂̂X̂X(2)
c − V̂̂V̂V cBBB

(2)‖2F

+α tr
(
V̂̂V̂V c

T
(L̂̂L̂L(1)

c + L̂̂L̂L(2)
c )V̂̂V̂V c

)
+ λ R(V̂̂V̂V c) + const

(3.9)
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where L̂̂L̂L(t) and L̂̂L̂L
(t)
c can be simply derived from LLL(1) with some addition mathematical

operation. const is the constant value independent with the parameter that to

be optimized with. Although Eqn.3.8 and Eqn.3.9 are still non-convex, but they

are smooth and differentiable which enables gradient descent methods for efficient

optimization. The gradients of Eqn.3.8 and Eqn.3.9 are calculated as follows:

∂
O(V̂̂V̂V (t))

V̂̂V̂V (t)
= −2X̂̂X̂X(t)BBB(t)T + 2V̂̂V̂V (t)BBB(t)BBB(t)T

+2αL̂̂L̂L(t)V̂̂V̂V (t) + 2λV̂̂V̂V (t)

(3.10)

∂
O(V̂̂V̂V c)

V̂̂V̂V c

= −2X̂̂X̂X(1)
c BBB(1)T − 2X̂̂X̂X(2)

c BBB(2)T + 2λV̂̂V̂V c

+2V̂̂V̂V c(BBB
(1)BBB(1)T +BBB(2)BBB(2)T ) + 2α(L̂̂L̂L(1)

c + L̂̂L̂L(2)
c )V̂̂V̂V c

(3.11)

With these obtained gradients, L-BFGS quasi-Newton method [79] is applied to solve

Eqn.3.8 and Eqn.3.9.

(2) Optimizing O with respect to BBB(t) by fixing VVV . It is equivalent to solve

the following least square problems:

min
BBB(t)

O(BBB(t)) = ‖X̄̄X̄X(t) − V̄̄V̄V (t)BBB(t)‖2F + λ‖BBB(t))‖2F t = 1, 2 (3.12)

By taking the derivative of Eqn.3.12 w.r.t. BBB(t) and setting it to 000, a closed form

solution can be simply obtained. We then alternate the process of updating VVV and

BBB for several iterations to find a locally optimal solution.

3.3.5 Orthogonal Rotation

After obtaining the optimal latent representation VVV , the hashing codes YYY and

modality-specific hashing functions HHH t can be generated using Eqn.3.1. It is obvious

that the quantization error can be measured as ‖YYY −VVV ‖2F . Inspired by [36], we propose

to further improve the hashing codes by minimizing this quantization error using an

orthogonal rotation. We first prove the following orthogonal invariant theorem.
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Theorem 3.3.1 Assume QQQ is a k × k orthogonal matrix, i.e., QQQTQQQ = III. If VVV and

BBB are an optimal solution to the problem in Eqn.3.7, then V QV QV Q and QQQTBBB are also an

optimal solution.

Proof By substituting V QV QV Q and QQQTBBB into Eqn.3.7, it is obvious that: ‖X̄̄X̄X(t) −
V̄̄V̄V (t)QQQQQQTBBB(t)‖2F=‖X̄̄X̄X(t) − V̄̄V̄V (t)BBB(t)‖2F , tr

(
(V̄̄V̄V (t)QQQ)

T
LLL(t)V̄̄V̄V (t)QQQ

)
=tr

(
QQQT V̄̄V̄V (t)TLLL(t)V̄̄V̄V (t)QQQ

)
=tr

(
V̄̄V̄V (t)TLLL(t)V̄̄V̄V (t)

)
, and ‖V QV QV Q‖2F = ‖VVV ‖2F , ‖QQQTBBB‖2F = ‖BBB‖2F . Thus, the value of the

objective function in Eqn.3.7 does not change by the orthogonal rotation.

According to the above theorem, we propose to seek for better hashing codes by

minimizing the quantization error between the binary hashing codes YYY and the

orthogonal rotation of the latent representation V QV QV Q as follows:

min
Y,QY,QY,Q

‖YYY − V QV QV Q‖2F

s.t. YYY ∈ {−1, 1}N×k, QQQTQQQ = III

(3.13)

Intuitively, we seek binary codes that are close to some orthogonal transformation of

the latent representation. The orthogonal rotation not only preserves the optimality of

the solution but also provides us more flexibility to achieve better hashing codes with

low quantization error. The idea of orthogonal rotation is also utilized in ITQ [36].

However, ITQ method is not designed for handling partial multi-modal data and it

does not preserve the local similarities among data examples. The above optimization

problem can be solved by minimizing Eqn.3.13 with respect to YYY andQQQ alternatively.

Fix Q and update Y . The closed form solution can be expressed as:

YYY = sgn (V QV QV Q) (3.14)

which is identical with Eqn.3.1 except the rotation.

Fix Y and update Q. The objective function becomes:

min
QQQTQQQ=III

‖YYY − V QV QV Q‖2F (3.15)

In this case, the objective function is essentially the classic Orthogonal Procrustes

problem [80], which can be solved efficiently by singular value decomposition using

the following theorem.
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Theorem 3.3.2 Let SΛUSΛUSΛUT be the singular value decomposition of YYY TVVV . Then QQQ =

USUSUST minimizes the objective function in Eqn.3.15.

We perform the above two steps alternatively to obtain the optimal hashing codes

and the orthogonal rotation matrix.1 The modality-specific hashing functions can be

then derived by minimizing the projection error as:

min
HHHt

‖HHH tX̄̄X̄X(t) − V̄̄V̄V (t)QQQ‖2F + γ‖HHH t)‖2F t = 1, 2 (3.16)

where γ is the tradeoff parameter of the regularization term. The full learning

algorithm is described in Table 3.1.

Table 3.1.
Partial Multi-Modal Hashing (PM2H)

Input: Partial data {X̂̂X̂X(1,2), X̂̂X̂X(1), X̂̂X̂X(2)}, trade-off parameters α, λ and γ

Output: Unified hashing codes YYY and hashing functions HHH1, HHH2

Initialize BBB using Eqn.3.17, Calculate LLL.

Repeat

Optimize Eqns.3.8 and 3.9 and update V̂̂V̂V c, V̂̂V̂V
(1) and V̂̂V̂V (2).

Optimize Eqn.3.12 and update BBB(1) and BBB(2).

Until the solution converges

Repeat

Update YYY using Eqn.3.14.

Update QQQ = USUSUST according to Theorem 2.

Until the solution converges

Obtain the hashing functions HHH1 and HHH2 from Eqn.3.16.

1In our experiments, we find that the algorithm usually converges in about 30∼60 iterations.
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3.3.6 Analysis

This section provides some complexity analysis on the training cost of the learning

algorithm. The optimization algorithm of PM2H consists of two main loops. In the

first loop, we iteratively solve VVV and BBB to obtain the optimal solution, where the time

complexities for solving VVV and BBB are bounded by O(Nkd1+Nkd2+Nk2+N2k) and

O(Nk2+Nkd1+Nkd2) respectively. The second loop iteratively optimizes the binary

hashing codes and the orthogonal rotation matrix, where the time complexities for

updating YYY and QQQ are bounded by O(Nk2 + k3). Thus, the total time complexity of

the learning algorithm is bounded by O(Nkd1 +Nkd2 +N2k +Nk2 + k3). For each

query, the hashing time is constant O(d1k) and O(d2k).

We also want to point out that the efficiency of the iterative coordinate

descent optimization is greatly affected by the initialization step. Therefore in this

dissertation, we learn the initial value ofBBB rather than random assignment as follows:

min
BBB(1),BBB(2),V̂̂V̂V c

‖X̂̂X̂X(1)
c − V̂̂V̂V cBBB

(1)‖2F + ‖X̂̂X̂X(2)
c − V̂̂V̂V cBBB

(2)‖2F

+λ R(BBB(1),BBB(2), V̂̂V̂V c)

(3.17)

It can be seen that BBB(1) and BBB(2) are essentially initialized by applying standard

multi-modal subspace learning methods on examples without partial modalities. The

above optimization can also be solved iteratively. But the resulting subproblems

are all convex with closed form solutions, which can be efficiently obtained. In our

experiments, we find out that the proposed method converges much faster using this

initialization than random assignment.

3.4 Experiments

3.4.1 Datasets

We evaluate our method on two image datasets: NUS-WIDE and MIRFLICKR-

25k. NUS-WIDE2 contains 270k images associated with more than 5k unique tags. 81

2http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Table 3.2.
Precision of top 100 retrieved examples with PDR=0.4.

modality 1 NUS-WIDE MIRFLICKR-25k

# of bits 8 16 32 64 128 8 16 32 64 128

PM2H 0.450.450.45 0.470.470.47 0.510.510.51 0.520.520.52 0.530.530.53 0.540.540.54 0.560.560.56 0.580.580.58 0.600.600.60 0.610.610.61

CMFH 0.43 0.44 0.46 0.47 0.48 0.52 0.53 0.54 0.56 0.57

CCA-ITQ 0.39 0.41 0.43 0.44 0.44 0.45 0.47 0.48 0.49 0.51

CMSSH 0.36 0.38 0.40 0.41 0.42 0.40 0.41 0.42 0.42 0.43

CVH 0.28 0.30 0.32 0.33 0.33 0.43 0.45 0.47 0.47 0.47

modality 2 NUS-WIDE MIRFLICKR-25k

# of bits 8 16 32 64 128 8 16 32 64 128

PM2H 0.420.420.42 0.440.440.44 0.460.460.46 0.470.470.47 0.480.480.48 0.550.550.55 0.570.570.57 0.590.590.59 0.610.610.61 0.620.620.62

CMFH 0.38 0.40 0.41 0.43 0.43 0.50 0.52 0.53 0.54 0.55

CCA-ITQ 0.34 0.36 0.37 0.38 0.39 0.50 0.51 0.52 0.53 0.54

CMSSH 0.35 0.37 0.39 0.38 0.38 0.47 0.49 0.50 0.50 0.50

CVH 0.31 0.33 0.34 0.35 0.35 0.45 0.46 0.48 0.47 0.47

ground-truth concepts are annotated on these images. We filter out those images with

less than 10 tags, resulting in a subset of 110k image examples. Visual features are

represented by 500-dimension SIFT [85] histograms, and text features are represented

by index vectors of the most common 2k tags. We use 90% of the data as the training

set and the rest 10% as the query set. MIRFLICKR-25k3 is collected from Flicker

images for image retrieval tasks. This dataset contains 25k image examples associated

with 38 unique labels. 100-dimensional SIFT descriptors and 512-dimensional GIST

descriptors [87] are extracted from these images as the two modalities. We randomly

choose 23k image examples as the training set and 2k for testing. Two image examples

are considered to be similar if they share at least one ground-truth concept/label. In

3http://press.liacs.nl/mirflickr/
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our experiments, SIFT feature is viewed as modality 1, while text and GIST features

are viewed as modality 2.

To simulate the partial modality setting, we randomly select a fraction of training

examples to be partial examples, i.e., they are represented by either of the modality

but not both, and the remaining ones appear in both modalities. We refer the fraction

number of partial examples as Partial Data Ratio (PDR), i.e., m+n
N

.

3.4.2 Evaluation Method

Hamming Ranking ranks all the examples in the database according to their

Hamming distance from the query and the top k examples are returned as the desired

neighbors. Hash Lookup returns all the examples within a small Hamming radius r

of the query. For Hamming Ranking based evaluation, we calculate the precision at

top k which is the percentage of true neighbors among the top k returned examples,

where we set k to be 100 in the experiments. For Hash Lookup, the precision of the

returned examples falling within Hamming radius r = 2 is recorded. Note that the

hashing code for a query can be generated from either modality (using HHH1 or HHH2),

therefore we report the precision results on both modalities.

3.4.3 Baselines and Setting

The proposed PM2H approach is compared with four different multi-modal

hashing methods, i.e., CVH [40], CMSSH [39], CCA-ITQ [35, 36] and CMFH [43].4

We implement our algorithm using Matlab on a PC with Intel Duo Core i5-2400

CPU 3.1GHz and 8GB RAM. The parameters α, λ and γ are tuned by 5-fold cross

validation on the training set. To remove any randomness caused by random selection

of training set, all of the results are averaged over 10 runs.

4We implement CVH and obtain the codes of CMSSH and CMFH from the authors. The code of
CCA-ITQ is public available.
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Figure 3.1. Precision within Hamming radius 2 using different hashing
bits with PDR=0.4.

3.4.4 Results and Discussion

We first evaluate the performance of different methods by varying the number of

hashing bits in the range of {8, 16, 32, 64, 128}, with fixed PDR 0.4. To apply the

compared multi-modal hashing methods to the partial data, a simple way is to fill

in the missing data with 0. However, this may result in large fitting errors between

two modalities for the multi-modal methods, since the hashing code for the missing

instance will be 0. Therefore, to achieve stronger baseline results, we replace the
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missing instance using the linear combination of its 55 nearest neighbor examples

(weighed by their similarities) which appear in both modalities. Then the baseline

multi-modal hashing methods can be directly applied on these extended data.

The precisions for the top 100 retrieved examples are reported in Table 3.2.

We also show the precision results for retrieved examples within Hamming radius

2 in Fig.3.1. From these comparison results, we can see that PM2H provides the

best results among all five hashing methods on both datasets. For example, the

precision of PM2H increases over 8% and 15% on average compared with CMFH

and CCA-ITQ on NUS-WIDE under modality 1. The reason is that PM2H can

effectively handle the partial data by common subspace learning between modalities

and similarity preservation within modality, while the compared methods fail to

accurately extract a common space from the partial examples. It can be seen from

Table 3.2 that CMSSH and CVH do not perform well especially with 64 or 128 bits.

This phenomenon has also been observed in [12, 43]. Actually, in CMSSH and CVH

methods, the hashing codes are learned by eigenvalue decomposition under the hard

bit orthogonality constraint, which makes the first few projection directions very

discriminative with high variance. However, the hashing codes will be dominated

by bits with very low variance when the code length increases, resulting in many

meaningless and ambiguous bits. We also observe from Fig.3.1 that the precision

of Hash Lookup for most of the compared methods decreases significantly with the

increasing number of hashing bits. The reason is that the Hamming space becomes

increasingly sparse with longer hashing bits and very few data points fall within the

Hamming ball with radius 2, which makes many queries have 0 precision results.

However, the precision of PM2H is still consistently higher than the other methods.

Another interesting observation is that the retrieval result from modality 1 is better

than that from modality 2 on NUS-WIDE. This coincides with our expectation that

the image modality is more informative than the tag modality since tags are usually

noisy and incomplete.

5We empirically choose 5 in our experiments. But other numbers can also be applied.
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Figure 3.2. Precision of top 100 retrieved examples under different
PDRs with 32 bits.

To evaluate the effectiveness of the proposed PM2H under different partial data

ratios, we progressively increase the PDR from {0, 0.2, 0.4, 0.6, 0.8} and compare

our method with the other baselines by fixing the hashing bits to 32. The precision

results of top 100 retrieved examples are shown in Fig.3.2. It can be seen from the

figure that when the partial data ratio PDR is 0, the data actually becomes the

traditional multi-modal setting with each example appears in both modalities. In

this case, PM2H is also able to perform better than most baselines and is comparable

with CMFH. As the PDR increases from 0 to 0.8, our PM2H approach always achieves

the best performance among all compared methods. Although the missing instances

are recovered from the common examples in both modalities, the baseline methods

seem less effective in the modality missing case. Our hypothesis is that the missing

data may not be accurately recovered when the data are missing blockwise for the

partial data setting. In other words, the missing examples can be dissimilar to all the

examples appear in both modalities.

We also evaluate the code effectiveness with and without orthogonal rotation.

The comparison results (before and after rotation) in Table 3.3 demonstrate that

the orthogonal rotation can further improve the effectiveness of the codes, which is

consistent with our expectation since the quantization error is minimized through the

rotation. Similar results on modality 2 are observed. But due to space limit, they are

not presented here.
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Table 3.3.
Precision of top 100 examples before and after orthogonal rotation
with PDR=0.4 on modality 1.

mod 1 NUS-WIDE MIRFLICKR-25k

bits 16 32 64 16 32 64

After 0.476 0.514 0.522 0.567 0.582 0.601

Before 0.463 0.504 0.515 0.552 0.566 0.587

Figure 3.3. Parameter sensitivity results with 32 bits under PDR=0.4.

To prove the robustness of the proposed method, we conduct parameter sensitivity

experiments on both datasets for α and λ. In each experiment, we tune only one

parameter while fixing the other one to the optimal values obtained from the previous

experiments. We report the results in Fig.3.3 with 32 bits and PDR to be 0.4. It

is clear from these experimental results that the performance of PM2H is relatively

stable with respect to α ∈ (2, 100) and λ ∈ (0.001, 0.1).
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4 LEARNING TO HASH ON STRUCTURED DATA

4.1 Motivation

Hashing techniques have been widely applied for large scale similarity search

problems due to the computational and memory efficiency. However, most existing

hashing methods assume data examples are independently and identically distributed.

But there often exists various additional dependency/structure information between

data examples in many real world applications. This structure information have

been utilized in clustering [46] and classification [38] problems, and proven to be

helpful knowledge. Ignoring this structure information may limit the performance of

existing hashing algorithms. Therefore, it is important to design hashing method that

preserves the structure information among data examples in the learned Hamming

space.

4.2 Background and Related Work

4.2.1 Introduction

With the explosive growth of the Internet, a huge amount of data has been

generated, which indicates that efficient similarity search becomes more important.

Traditional similarity search methods are difficult to be directly used for large scale

applications since linear scan between query example and all candidates in the

database is impractical. Moreover, the similarity between data examples is usually

conducted in high dimensional space. Recently, hashing methods [8,12,48,53,95–97]

are proposed to address the similarity search problem within large scale data. These

hashing methods design compact binary code in a low-dimensional space for each

data example so that similar examples are mapped to similar binary codes. In the



73

retrieval process, these hashing methods first transform each query example into

its corresponding binary code. Then similarity search can be simply conducted by

calculating the Hamming distances between the codes of available data examples and

the query and selecting data examples within small Hamming distances, which can

be calculated using efficient bitwise operator XOR.

Hashing methods generate promising results by successfully addressing the

storage and search efficiency challenges. However, most existing hashing methods

assume that data examples are independently and identically distributed. But in

many applications, the dependencies between data examples naturally exist and if

incorporated in models, they can potentially improve the hashing code performance

significantly. For example, many webpages have hyperlinks pointing to other related

webpages (see Fig.1.3(a)). The contents of these linked webpages are usually relevant,

which present similar topics. The hyperlinks among webpages provide important

structure knowledge. Another example is that similar images often share semantic

labels (see Fig.1.3(b)). The more labels two images have in common, the more

similar the images are. The shared semantic labels among images offer valuable

information in binary codes learning. These structure information have been utilized

in clustering [46] and classification [38] problems, and proven to be helpful knowledge.

Therefore, it is important to design hashing method that preserve the structure

information among data examples in the learned Hamming space.

This dissertation proposes a novel approach of learning to Hash on Structured

Data (HSD) that incorporates the structure information associated with data. The

hashing function is learned in a unified learning framework by simultaneously ensuring

the structural consistency and preserving the similarities between data examples.

In particular, the objective function of the proposed HSD approach is composed

of two parts: (1) Structure consistency term, which ensures the hashing codes to

be consistent with the structure information. (2) Similarity preservation term, which

aims at preserving the similarity between data examples in the learned hashing codes.

An iterative gradient descent algorithm is designed as the optimization procedure. We
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further improve the quality of hashing function by minimizing the quantization error.

Experimental results on two datasets demonstrate the superior performance of the

proposed method over several state-of-the-art hashing methods.

4.2.2 Related Work

Locality-Sensitive Hashing (LSH) [15] is one of the most commonly used data-

independent hashing methods. It utilizes random linear projections, which are

independent of training data, to map data points from a high-dimensional feature

space to a low-dimensional binary space. This method has been extended to

Kernelized Locality-Sensitive Hashing [21] by exploiting kernel similarity for better

retrieval efficacy. Another class of hashing methods are called data-dependent

methods, whose projection functions are learned from training data. These data-

dependent methods include spectral hashing (SH) [19], principal component analysis

based hashing (PCAH) [17], self-taught hashing (STH) [22] and iterative quantization

(ITQ) [36]. SH learns the hashing codes based on spectral graph partitioning and

forcing the balanced and uncorrelated constraints into the learned codes. PCAH

utilizes principal component analysis (PCA) to learn the projection functions. STH

combines an unsupervised learning step with a supervised learning step to learn

effective hashing codes. ITQ learns an orthogonal rotation matrix to refine the initial

projection matrix learned by PCA so that the quantization error of mapping the data

to binary codes is minimized. Compared with the data-independent methods, these

data-dependent methods generally provide more effective hashing codes.

Recently, supervised hashing methods [20,30,31,94,98] have incorporated labeled

data/information, e.g. semantic tags, for learning more effective hashing function.

For example, in semi-supervised hashing [29] method, pairwise similarity constraints

are imposed in the learning framework. In work [94], tags are incorporated to obtain

more effective hashing codes via a matrix factorization formulation. More recently,

some multi-view hashing methods [10,35,43] have been proposed to deal with multi-
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modal data for cross-view similarity search. These multi-view methods can be applied

by treating the structure information as second view. However, structure information

is usually very sparse, e.g., each webpage may contain very few hyperlinks. Directly

using it as a second information source can lead to unreliable results. More discussion

will be provided later in the experiments.

4.3 Algorithm

4.3.1 Problem Setting

Before presenting the details, we first introduce some notations. Assume there are

total n training examples. Let us denote their features as: XXX = {x1, x2, . . . , xn} ∈
Rd×n, where d is the dimensionality of the feature. A directed or undirected graph

G = (V,E) is used to depict the structure between data examples. Each node v ∈ V

corresponds to a data example, and an edge e = (i, j) ∈ E with a weight wij represents

a link/connection between nodes i and j. The larger the weight wij is, the more

relevant xi and xj should be. We will discuss how to assign w later. The goal is to

obtain a linear hashing function f : Rd → {−1, 1}k, which maps data examples XXX

to their binary hashing codes YYY = {y1, y2, . . . , yn} ∈ {−1, 1}k×n (k is the length of

hashing code). The linear hashing function is defined as:

yi = f(xi) = sgn(HHHTxi) (4.1)

where HHH ∈ R
d×k is the coefficient matrix representing the hashing function and sgn

is the sign function. yi ∈ {−1, 1}k is the binary hashing code1 of xi.

The objective function of HSD is composed of two components: (1) Structure

consistency, which ensures that the hashing codes are consistent with the structure

information. (2) Similarity preservation, which aims at preserving the data similarity

in the learned hashing codes. In the rest of this section, we will present the formulation

of these two components respectively. Then we will describe the optimization

1We generate hashing bits as {−1, 1}, which can be simply converted to {0, 1} valued hashing codes.
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algorithm together with a scheme that can further improve the quality of the hashing

function by minimizing the quantization error.

4.3.2 Structure Consistency

Our motivation is that the similarity between the learned hashing codes should

agree or be consistent with the structure information defined on the graph G.

Specifically, a pair of nodes linked by an edge tend to have similar hashing codes.

The larger the weight between nodes i and j, the smaller the Hamming distance

between their codes should be. For webpages, we define the weight wij associated

with edge (i, j) to be the number of hyperlinks between the two webpages. Similarly

for images, we assign weight wij using the number of common labels shared by image

xi and xj.

Then a structure consistency component can be directly formulated as:

∑
(i,j)∈E

wijdH(yi, yj) =
1

4

∑
(i,j)∈E

wij‖yi − yj‖2 (4.2)

where dH(yi, yj)=
1
4
‖yi − yj‖2 is the Hamming distance between binary codes yi and

yj. This definition says that for each linked node pair (i, j), the Hamming distance

between the corresponding hashing codes yi and yj should be consistent with the edge

weight wij. In other words, we assign a heavy penalty if two strongly connected data

examples are mapped far away.

By substituting Eqn.4.1 with some additional mathematical operations, the above

equation can be rewritten as a compact matrix form as:

tr
(
YYY W̄̄W̄WYYY T

)
= tr

(
sgn(HHHTXXX)W̄̄W̄Wsgn(XXXTHHH)

)
(4.3)

where tr() is the matrix trace function. W̄̄W̄W = DDD −WWW is called graph Laplacian [19]

and DDD is a diagonal n × n matrix whose entries are given by DDDii =
∑n

j=1 wij. By

minimizing the structure consistency term, structure information is well preserved in

Hamming space by hashing function HHH.
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4.3.3 Similarity Preservation

One of the key problems in hashing algorithms is similarity preserving, which

indicates that similar data examples should be mapped to similar hashing codes

within a short Hamming distance. To measure the similarity between data examples

represented by the binary hashing codes, one natural way is to minimize the weighted

average Hamming distance as follows:

∑
i,j

SSSij‖yi − yj‖2 (4.4)

Here, SijSijSij is the pairwise similarity between data example xi and xj. To meet the

similarity preservation criterion, we seek to minimize this quantity, because it incurs

a heavy penalty if two similar examples have very different hashing codes.

There are many different ways of defining the similarity matrix SSS. In SH [19], the

authors used the global similarity structure of all data pairs, while in [10], the local

similarity structure, i.e., k-nearest-neighborhood, is used. In this dissertation, we use

the local similarity, due to its nice property in many machine learning applications.

In particular, the corresponding weights are computed by Gaussian functions:

SSSij =

⎧⎪⎨
⎪⎩

e
− ‖xi−xj‖2

σ2
ij , if xi ∈ Nk(xj) or xj ∈ Nk(xi)

0, otherwise

(4.5)

The variance σij is determined automatically by local scaling [71], and Nk(x)

represents the set of k-nearest-neighbors of data example x. Similarly, Eqn.4.4 can

be rewritten as a compact form:

tr
(
YYY S̄̄S̄SYYY T

)
= tr

(
sgn(HHHTXXX)S̄̄S̄Ssgn(XXXTHHH)

)
(4.6)

By minimizing this term, the similarity between different data examples can be

preserved in the learned hashing codes.
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4.3.4 Overall Objective

The entire objective function consists of three components: the structure

consistency term in Eqn.4.3, the similarity preservation term given in Eqn.4.6 and an

orthogonal constraint term as follows:

min
HHH

tr
(
sgn(HHHTXXX)W̄̄W̄Wsgn(XXXTHHH)

)
+α tr

(
sgn(HHHTXXX)S̄̄S̄Ssgn(XXXTHHH)

)
+ β ‖HHHTHHH − III‖2F

(4.7)

where α and β are trade-off parameters to balance the weights among the terms. The

orthogonality constraint enforce the hashing bits to be uncorrelated with each other

and therefore the learned hashing codes can hold least redundant information.

4.3.5 Relaxation

Directly minimizing the objective function in Eqn.4.7 is intractable since it is an

integer programming problem, which is proven to be NP-hard to solve. Therefore, we

use the signed magnitude instead of the sign function as suggested in [31, 94]. Then

the relaxed objective function becomes:

min
H̃̃H̃H

tr
(
H̃̃H̃HTLLLH̃̃H̃H

)
+ β ‖H̃̃H̃HT H̃̃H̃H − III‖2F (4.8)

where LLL ≡ XXX(W̄(W̄(W̄ + αS̄)S̄)S̄)XXXT and can be pre-computed. H̃̃H̃H represents the relaxed

solution. Although the relaxed objective in Eqn.4.8 is still non-convex, it is smooth

and differentiable which enables gradient descent methods to be applied for efficient

optimization. The gradients of the two terms with respect to H̃̃H̃H are given below:

d Eqn.4.8

d H̃̃H̃H
= 2LH̃LH̃LH̃ + 4βH̃̃H̃H(H̃̃H̃HT H̃̃H̃H − III) (4.9)

With this obtained gradient, L-BFGS quasi-Newton method [79] is applied to solve

the optimization problem.
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4.3.6 Orthogonal Transformation

After obtaining the optimal hashing function H̃̃H̃H from the relaxation, the hashing

codes YYY can be generated using Eqn.4.1. It is obvious that the quantization error

can be measured as ‖YYY − H̃TXXXH̃TXXXH̃TXXX‖2F . Inspired by [36], we propose to further improve

the hashing function by minimizing this quantization error using an orthogonal

transformation. We first prove the following orthogonal invariant theorem.

Theorem 4.3.1 Assume QQQ is a k × k orthogonal matrix, i.e., QQQTQQQ = III. If H̃̃H̃H is

an optimal solution to the relaxed problem in Eqn.4.8, then H̃QH̃QH̃Q is also an optimal

solution.

Proof By substituting H̃QH̃QH̃Q into Eqn.4.8, we have:

tr
(
(H̃QH̃QH̃Q)TLLLH̃QH̃QH̃Q

)
= tr

(
QQQT H̃̃H̃HTLLLH̃QH̃QH̃Q

)
= tr

(
H̃̃H̃HTLLLH̃̃H̃H

)
, and ‖(H̃QH̃QH̃Q)TH̃QH̃QH̃Q − III‖2F =

‖QQQT (H̃̃H̃HT H̃̃H̃H − III)QQQ‖2F = ‖H̃̃H̃HT H̃̃H̃H − III‖2F .
Thus, the value of the objective function in Eqn.4.8 does not change by the orthogonal

transformation.

According to the above theorem, we propose to find a better hashing function HHH =

H̃QH̃QH̃Q by minimizing the quantization error between the binary hashing codes and the

orthogonal transformation of the relaxed solution as follows:

min
Y,QY,QY,Q

‖YYY − (H̃QH̃QH̃Q)TXXX‖2F

s.t. YYY ∈ {−1, 1}k×n, QQQTQQQ = III

(4.10)

Intuitively, we seek binary codes that are close to some orthogonal transformation of

the relaxed solution. The orthogonal transformation not only preserves the optimality

of the relaxed solution but also provides us more flexibility to achieve better hashing

codes with low quantization error. The idea of orthogonal transformation is also

utilized in ITQ [36]. However, ITQ method is not designed for incorporating structure

information into learning effective hashing function and it does not preserve the local

similarities among data examples. The above optimization problem can be solved by

minimizing Eqn.4.10 with respect to YYY and QQQ alternatively as follows:



80

Fix Q and update Y . The closed form solution can be expressed as:

YYY = sgn
(
(H̃QH̃QH̃Q)TXXX

)
= sgn(HHHTXXX) (4.11)

which is identical with our linear hashing function in Eqn.4.1.

Fix Y and update Q. The objective function becomes:

min
QQQTQQQ=III

‖YYY −QQQT H̃̃H̃HTXXX‖2F (4.12)

In this case, the objective function is essentially the classic Orthogonal Procrustes

problem [80], which can be solved efficiently by singular value decomposition using

the following theorem (we refer to [80] for the detailed proof).

Theorem 4.3.2 Let SΛVSΛVSΛV T be the singular value decomposition of YYYXXXT H̃̃H̃H. Then

QQQ = V SV SV ST minimizes the objective function in Eqn.4.12.

We then perform the above two steps alternatively to obtain the optimal hashing

codes and the orthogonal transform matrix. In our experiments, we find that the

algorithm usually converges in about 40∼60 iterations. The full learning algorithm

is described in Table 4.1.

4.3.7 Complexity Analysis

This section provides some analysis on the training cost of the optimization

algorithm. The optimization algorithm of HSD consists of two main loops. In the

first loop, we iteratively solve for H̃̃H̃H to obtain the relaxed solution, where the time

complexities for computing the gradient in Eqn.4.9 are bounded by O(nkd + nk2).

The second loop iteratively optimizes the binary hashing codes and the orthogonal

transformation matrix, where the time complexities for updating YYY and QQQ are

bounded by O(nk2+nkd+k3). Moreover, both two loops take less than 60 iterations

to converge in our experiments. Thus, the total time complexity of the learning

algorithm is bounded by O(nkd + nk2 + k3), which scales linearly with n given

n � d > k. For each query, the hashing time is constant O(dk).
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Table 4.1.
Hashing on Structured Data (HSD)

Input: Data examples XXX, Structure graph G and trade-off parameters.

Output: Hashing function HHH and Hashing codes YYY .

Initialize HHH and QQQ = III, Calculate LLL.

Repeat

Compute the gradient in Eqn.4.9 and update H̃̃H̃H

Until the solution converges

Repeat

Update YYY using Eqn.4.11.

Update QQQ = V SV SV ST according to Theorem 2.

Until the solution converges

Compute hashing function HHH = H̃QH̃QH̃Q.

4.4 Experiments

4.4.1 Datasets and Setting

We evaluate our method on two datasets: WebKB and NUS-WIDE. WebKB2

contains 8280 webpages in total collected from four universities. The webpages

without any incoming and outgoing links are deleted, resulting in a subset of 6883

webpages. The tf-idf (normalized term frequency and log inverse document frequency)

[99] features are extracted for each webpage. 90% documents (6195) are randomly

selected as training data, while the remaining (688) documents are used for testing.

NUS-WIDE3 is created by NUS lab for evaluating image annotation and retrieval

techniques. It contains 270k images associated with 81 ground truth labels. A subset

of 21k images associated with these semantic labels are used in our experiments.

500-dimensional visual features are extracted using a bag-of-visual-word model with

2http://www.cs.cmu.edu/∼WebKB
3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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local SIFT descriptor [85]. We randomly partition this dataset into two parts, 1k for

testing and 20k for training.

We implement our algorithm using Matlab on a PC with Intel Duo Core i5-

2400 CPU 3.1GHz and 8GB RAM. The parameter α and β are tuned by 5-fold cross

validation through the grid {0.01, 0.1, 1, 10, 100} on the training set and we will discuss

more details on how it affects the performance of our approach later. We repeat each

experiment 10 times and report the result based on the average over these runs. Each

run adopts a random split of the dataset.

4.4.2 Comparison Methods

The proposed Hashing on Structure Data (HSD) approach is compared with

five different hashing methods, including Locality Sensitivity Hashing (LSH) [15],

Spectral Hashing (SH) [19], ITerative Quantization (ITQ) [36], Composite Hashing

from Multiple Information Sources (CHMIS) [10] and Collective Matrix Factorization

Hashing (CMFH) [43]. LSH, SH and ITQ methods do not use any structure knowledge

for learning hashing codes. We use the standard settings in their papers for our

experiments. For the multi-view hashing methods CHMIS and CMFH, the structure

information is treated as the second view. Specifically, the link information from

webpages and the binary labels on images are used as the additional view in these

methods.

4.4.3 Evaluation Metrics

To conduct fair evaluation, we follow two criteria which are commonly used in

the literature [29, 36]: Hamming Ranking and Hash Lookup. Hamming Ranking

ranks all the points in the database according to their Hamming distance from the

query and the top k points are returned as the desired neighbors. Hash Lookup

returns all the points within a small Hamming radius r of the query. We use several

metrics to measure the performance of different methods. For Hamming Ranking



83

Table 4.2.
Precision of the top 100 retrieved examples using Hamming Ranking
on both datasets with different hashing bits.

WebKB NUS-WIDE

bits 8 16 32 64 128 8 16 32 64 128

HSD 0.6060.6060.606 0.6690.6690.669 0.7320.7320.732 0.7630.7630.763 0.7860.7860.786 0.4060.4060.406 0.409 0.4450.4450.445 0.4780.4780.478 0.4930.4930.493

CMFH 0.571 0.635 0.650 0.704 0.722 0.371 0.4110.4110.411 0.427 0.436 0.468

CHMIS 0.511 0.558 0.613 0.646 0.674 0.334 0.367 0.369 0.373 0.386

ITQ 0.523 0.548 0.604 0.637 0.652 0.253 0.306 0.308 0.315 0.322

SH 0.504 0.513 0.536 0.541 0.547 0.251 0.264 0.282 0.297 0.304

LSH 0.339 0.377 0.389 0.387 0.401 0.234 0.226 0.247 0.258 0.261

based evaluation, we calculate the precision at top K which is the percentage of true

neighbors among the top K returned examples, where we set K to be 100 in the

experiments. A hamming radius of R = 2 is used to retrieve the neighbors for Hash

Lookup. The precision of the returned examples falling within Hamming radius 2 is

reported. Note that if a query returns no points inside Hamming ball with radius 2,

it is treated as zero precision.

4.4.4 Results and Discussion

We first report precisions for the top 100 retrieved examples and the precisions

for retrieved examples within Hamming ball with radius 2 by varying the number

of hashing bits in the range of {8, 16, 32, 64, 128} in Table 4.2 and Fig.4.1. From

these comparison results, we can see that HSD provides the best results among all

compared methods in most cases. LSH does not perform well since LSH method

is data-independent, which may generate inefficient codes compared to those data-

depend methods. SH and ITQ methods learn the hashing codes from data and
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Figure 4.1. Precision on both datasets with different bits. (a)-(b):
Precision of the top 100 returned examples using Hamming Ranking.
(c)-(d): Precision within Hamming radius 2 using Hash Lookup.

try to preserve similarity between data examples. Thus they usually obtain higher

precision results than LSH method. But both SH and ITQ methods do not utilize

the structure information contained in data. CHMIS and CMFH methods achieve

better performance than SH and ITQ due to incorporating structure information

as an additional view into hashing codes learning. However, learning a common

space between the two views by treating the structure as a second view may lead to

unreliable results especially when structure information is very sparse or incomplete

(more discussion will be provided later). Moreover, the data similarity is not well

preserved in their hashing function learning. On the other hand, our HSD not

only exploits structure information via modeling the structure consistency, but also

preserves data similarity at the same time in the learned hashing function, which

enables HSD to generate higher quality hashing codes than the hashing methods. In
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Fig.4.1(c)-(d), we observe the precision of Hash Lookup for most of the compared

methods decreases significantly with the increasing number of hashing bits. The

reason is that the Hamming space becomes increasingly sparse with longer hashing

bits and very few data points fall within the Hamming ball with radius 2, which makes

many queries have 0 precision. However, the precision of HSD is still consistently

higher than the other methods for Hash Lookup.

Table 4.3.
Precision of the top 100 examples under different training ratios on
both datasets with 32 hashing bits.

WebKB NUS-WIDE

ratio 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

HSD 0.6570.6570.657 0.6880.6880.688 0.7020.7020.702 0.7150.7150.715 0.7320.7320.732 0.3630.3630.363 0.3910.3910.391 0.4160.4160.416 0.4300.4300.430 0.4450.4450.445

CMFH 0.528 0.546 0.584 0.628 0.650 0.304 0.336 0.369 0.402 0.427

CHMIS 0.517 0.549 0.565 0.580 0.613 0.270 0.287 0.314 0.331 0.369

We also evaluate the effectiveness of the proposed HSD when partial structure

information is available since the structure knowledge may be very sparse in real world

applications. For example, labels associated with image tend to be incomplete and

hyperlinks on the webpage are often missing. We progressively increase the number

of edges in the structure graph by varying the edge ratio from {0.2, 0.4, 0.6, 0.8, 1}
(edges are randomly sampled based on the ratio) and compare HSD with the two

multi-view hashing methods4 using 32 bits. The precision results of top 100 retrieved

examples are reported in Table 4.3. It can be seen from the results that our HSD

gives the best performance among all methods. We also observe that the precision

result of the other two methods drops much faster than HSD when the structure

information reduces. Our hypothesis is that when structure graph is very sparse, the

common space learned from structure information and data features by the multi-view

4LSH, SH and ITQ do not utilize structure information thus are not necessary to be compared here.
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hashing methods is not accurate and reliable. Therefore, the hashing codes generated

by these methods have lower performance compared to the HSD method, which not

only ensures the structure consistency but also preserves the similarity between data

examples. However, we would like to point out that if the structure information is

inconsistent with the true correlation among data examples, the learned hashing codes

could be less effective. To better demonstrate this, we conduct another experiment by

constructing an inconsistent graph on WebKB. Specifically, we assign large weights

on a certain portion of edges that connect uncorrelated nodes (based on the ground-

truth labels). Then we apply our approach on this newly constructed graph and

obtain the precision result 0.327, which is much lower than the result without using

structure knowledge (0.574). Therefore, in practice, it is important to examine the

reliability of structure graph in advance.

Table 4.4.
Training and testing time (in second) on both datasets with 32 hashing bits.

WebKB NUS-WIDE

Methods training testing training testing

HSD 24.13 0.6x10−4 54.33 0.4x10−4

CMFH 58.82 0.6x10−4 138.64 0.4x10−4

CHMIS 42.59 0.7x10−4 92.16 0.5x10−4

ITQ 10.67 0.6x10−4 20.96 0.4x10−4

SH 13.22 4.2x10−4 27.38 3.3x10−4

LSH 4.75 0.6x10−4 2.62 0.4x10−4

The training cost for learning hashing function and testing cost for encoding each

query on both datasets with 32 bits are reported in Table 4.4. We can see from

this table that the training cost of HSD is less than a hundred seconds, which is

comparable with most of the other hashing methods and it is not slow in practice

considering the complexity of training. In contrast to the offline training, the online
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code generation time is more critical for real-world search applications. The test time

for HSD is sufficiently fast especially when compared to the nonlinear hashing method

SH. The reason is that it only needs linear projection and binarization to generate

the hashing codes for queries.

Figure 4.2. Parameter sensitivity results of precision of the top 100
retrieved examples with 32 hashing bits.

To prove the robustness of the proposed method, we conduct parameter sensitivity

experiments on both datasets. In each experiment, we tune the trade-off parameter

β from the grid {0.5,1,2,4,8,32,128}. We report the precision of top 100 examples

with 32 hashing bits in Fig.4.2. It is clear from these experimental results that the

performance of HSD is relatively stable with respect to β in a wide range of values.

We also observe similar behavior of parameter α. But due to space limit, they are

not presented here.
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5 RANKING PRESERVING HASHING WITH RELEVANCE JUDGEMENT

5.1 Motivation

Hashing method becomes popular for large scale similarity search due to its

storage and computational efficiency. Many machine learning techniques, ranging

from unsupervised to supervised, have been proposed to design compact hashing

codes. However, most of the existing hashing methods generate binary codes to

satisfy pairwise or listwise supervision but do not model the search/ranking accuracy.

But in many information retrieval applications, such as similarity search, learning

to rank, recommendation, etc., it is more realistic and desirable that the most

relevant examples to a query can be presented in front of less relevant ones. In

other words, users prefer the retrieval results with better ranking performance.

Therefore, it is important to design effective hashing method to incorporate relevance

value/judgement information from users in learning more effective hashing codes that

could achieve high ranking accuracy.

5.2 Background and Related Work

Traditional similarity search methods are difficult to be used directly on a

large dataset since computing the similarity using the original features (usually

in high dimensional space) exhaustively between the query example and every

candidate example is impractical for large applications. Recently, hashing methods

[53,54,56,95,100–103] have been proposed for fast similarity search in many large scale

problems including document retrieval [20], object recognition [104], image matching

[14], etc. Existing hashing methods can be divided into two groups: unsupervised

and semi-supervised/supervised hashing methods.
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Unsupervised hashing methods generate hashing codes without the requirement

of supervised information (e.g., tags for images or documents). Locality-Sensitive

Hashing (LSH) [15] is one of the most popular methods, which simply uses random

linear projections to map data examples from a high dimensional Euclidean space to

a low-dimensional binary space. The work in [23] extended LSH by exploiting kernel

similarity for better retrieval efficacy. The Principle Component Analysis (PCA)

Hashing [17] method utilize the coefficients from the top k principal components to

represent each example, and the coefficients are further binarized using the median

value. A Restricted Boltzman Machine (RBM) [69, 70] is used in [8] to generate

compact binary hashing codes. Recently, Spectral Hashing (SH) [19] is proposed to

design compact binary codes with balanced and uncorrelated constraints. A graph-

based hashing method has been proposed in work [12] to automatically discover the

neighborhood structure inherent in the data to learn appropriate compact codes. In

work [13], a hyperplane hashing method is proposed for efficient active learning, which

can find nearest points to a query hyperplane in sublinear time. Isotropic Hashing

(IsoHash) [56] tries to learn an orthogonal matrix to make the data variance as equal

as possible along each projection dimension (i.e., hashing bit). Most recently, the

work in [48] proposes a weighted Hamming distance ranking algorithm to rank the

binary codes by assigning different bit-level weights to different hash bits. A bit

selection method [72] is proposed to select the most informative hashing bits from a

pool of candidate bits generated from different hashing methods.

Semi-supervised or supervised hashing methods utilize some supervised infor-

mation such as semantic labels for generating effective hashing codes. Iterative

Quantization (ITQ) method has been proposed in [36, 51] that treats the content

features and tags as two different views, and the hashing codes are then learned by

extracting a common space from these two views. This method has been extended

to multi-view hashing [35]. A semi-supervised hashing (SSH) method is proposed

in [29] which utilizes pairwise knowledge between data examples besides their content

features for learning more effective hashing codes. A kernelized supervised hashing
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(KSH) framework proposed in [30] imposes pairwise relationship between data

examples to obtain good hashing codes. Complementary Hashing (CH) [9] uses

pairwise information to learn multiple complementary hash tables in a boosting

manner. More recently, the work in [20] proposes a semantic Hashing method

which combines tag information with topic modeling by extracting topics from texts

for document retrieval. A ranking-based supervised hashing (RSH) [31] method is

proposed to leverage listwise ranking information to preserve the ranking order.

Although existing hashing methods have achieved promising results, very limited

work explores the ranking accuracy, which is important for evaluating the quality of

hashing codes in real world applications. Consider the following scenario: given

a query example xq and three relevant/similar data examples x1, x2, x3 but with

different relevance values as r1 > r2 > r3 to the query. Most existing hashing methods

only model the relevance of a data example to a query in a binary way, i.e., each

example is either relevant to the query or irrelevant. In other words, these methods

treat x1, x2 and x3 as relevant examples to xq with no difference. But in practice

it will be more desirable if x1 could be presented before x2 and x3 since it is more

relevant to xq than the other two. Some ranking based hashing methods [31, 47, 48]

have been recently proposed to improve the hashing code performance by modeling

the ranking order with respect to relevance values. However, these methods do not

differentiate the situations where (r1, r2, r3) = (3, 2, 1) and (r1, r2, r3) = (10, 2, 1)

due to their identical ranking orders, i.e., r1 > r2 > r3. But ideally, the Hamming

distance between the learned hashing codes of x1 and xq should be smaller in the later

situation than in the former one since the relevance value of x1 to xq is much larger

in the later situation (10 versus 3). Therefore, these methods may fail to preserve the

specific relevance values in the learned hashing codes, while the relevance values are

important in evaluating the search accuracy.

This dissertation proposes a novel Ranking Preserving Hashing (RPH) approach

that directly optimizes the popular ranking accuracy measure, Normalized Discounted

Cumulative Gain (NDCG), to learn effective ranking preserving hashing codes that
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not only preserves the ranking order but also models the relevance values of data

examples to the queries in the training data. The main difficulty in direct optimization

of NDCG is that it depends on the rankings of data examples rather than their

hashing codes, which forms a non-convex non-smooth objective. We then address

this challenge by optimizing the expectation of NDCG measure calculated based on

a linear hashing function to convert the problem into a smooth and differentiable

optimization problem. A gradient descent method is applied to solve this relaxed

problem. We conduct an extensive set of experiments on two large scale datasets of

both images and texts to demonstrate the superior search accuracy of the proposed

approach over several state-of-the-art hashing methods.

Figure 5.1. An overview of the proposed RPH approach.

5.3 Algorithm

5.3.1 Approach Overview

The proposed Ranking Preserving Hashing (RPH) approach via optimizing NDCG

measure mainly contains three ingredients as shown in Figure 5.1: (1) Ground-truth

relevance list to a query, which is constructed from the training data (the left part

in Fig.5.1). (2) Ranking positions of data examples to a query, which are computed

based on the hashing codes (the right part in Fig.5.1). (3) NDCG value, which

measures the consistency between the ground-truth relevance list and the calculated
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ranking positions (the middle part in Fig.5.1). In other words, the more the hashing

codes agree with the relevance list, the higher the NDCG value will be. Then the

ranking preserving hashing codes are learned by optimizing the NDCG measure on

the training data.

5.3.2 Problem Statement

We first introduce the problem of RPH. Assume there are n data examples in

the dataset, denoted as: XXX = {x1, x2, . . . , xn} ∈ R
d×n, where d is the dimensionality

of the features. In addition, there is a query set QQQ = {q1, q2, . . . , qm} and for each

query example qj, we have a relevance list of nj data examples from XXX, which can be

written as:

r(qj,XXX) = (rj1, r
j
2, . . . , r

j
nj
) (5.1)

where each element rji represents the relevance of data example xj
i to the query qj.

If rju > rjv, it indicates that data example xj
u is more relevant or more similar to qj

than xj
v and xj

u should rank higher than xj
v. The goal is to obtain a linear hashing

function f : Rd → {−1, 1}B, which maps each data example xi to its binary hashing

code ci (B is the number of hashing bits) to maximize the search/ranking accuracy.

The linear hashing function is defined as:

ci = f(xi) = sgn(WWWxi) (5.2)

where WWW ∈ R
B×d is the coefficient matrix representing the hashing function and sgn

is the sign function. ci ∈ {−1, 1}B is the binary hashing code of xi.

Note that the ground-truth relevance list can be easily obtained if a relevance

measure between data examples is predefined, e.g., l2 distance in Euclidean space.

On the other hand, if given the semantic label/tag information, it is also fairly

straightforward to convert semantic labels to relevance values through counting the

number of shared labels between the query and the data example.
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5.3.3 Problem Formulation

Hashing methods are popularly used for large scale similarity search. As

aforementioned, most of existing hashing methods only focus on retrieving all relevant

or similar data examples to a given query without exploring the ranking accuracy.

However, in many real world applications, it is desirable and important to present

a more relevant example to a query in front of a less relevant one. Different from

existing hashing method, in this dissertation, we propose to learn ranking preserving

hashing codes that not only retrieve all possible relevant examples but at the same

time preserve their rankings based on their relevance values to the query.

Given the binary hashing codes, the ranking positions of data examples to a

query q are determined by the Hamming distances between their hashing codes and

the query code. Specifically, if a data example is similar or relevant to a query, then

their Hamming distance should be small. In other words, the higher the rank of a

data example to a query, the smaller the Hamming distance between the hashing

codes is. The Hamming distance between two binary hashing codes is given by the

number of bits that are different between them and can be calculated as:

Ham(cq, ci) =
1

4
‖cq − ci‖2 = 1

2
(B − cTq ci) (5.3)

Then the ranking position π(xi) can be calculated as:

π(xi) = 1 +
n∑

k=1

I (Ham(cq, ci) > Ham(cq, ck))

= 1 +
n∑

k=1

I
(
cTq (ck − ci) > 0

) (5.4)

where I(s) is the indicator function that outputs 1 when statement s is true and 0

otherwise. Intuitively, the ranking position of a data example to a query is equivalent

to 1 plus the number of data examples whose hashing codes are closer to the query

code.

In order to achieve high ranking quality hashing codes, we want the ranking

positions calculated in the Hamming space in Eqn.5.4 to be consistent with the
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ground-truth relevance list in Eqn.5.1. Then a natural question to ask is how to

measure the ranking consistency? In this dissertation, we use a well-known measure,

Normalized Discounted Cumulative Gain (NDCG) [105,106] which is widely applied

in many information retrieval and machine learning applications, to evaluate the

ranking consistency as:

NDCG =
1

Z

n∑
i=1

2rπ−1(i) − 1

log(1 + i)
=

1

Z

n∑
i=1

2ri − 1

log(1 + π(xi))
(5.5)

where Z is the normalization factor so that the maximum value of NDCG is 1, which

can be calculated by ranking the examples based on their relevance to the query. π(xi)

is the ranking position of xi to the query based on the Hamming distance of their

hashing codes and π−1(i) denotes the data example at i-th ranking position. ri is the

corresponding relevance value. 1
log(1+i)

can be viewed as the weight of the i-th rank

data example, which indicates that NDCG emphasizes the importance of the higher

ranked data examples than those examples with lower ranks. Therefore, NDCG is

usually truncated at a particular rank level (e.g., top K retrieved examples) instead

of all n examples. From the above definition of NDCG, it can be seen that the larger

the NDCG value is, the more the hashing codes agree with the relevance list, and

the maximal NDCG value is obtained when the ranking positions of data examples

are completely consistent with their relevance values to the query. By optimizing the

NDCG measure, the learned hashing function not only preserves the ranking order

of the data examples but also ensures that the hashing codes are consistent with the

relevance values in the training data. Then the entire objective is to minimize the

negative summation of NDCG values on all training queries:

J(WWW ) = −
m∑
j=1

1

Zj

nj∑
i=1

2r
j
i − 1

log(1 + πj(x
j
i ))

(5.6)

Directly minimizing the objective function in Eqn.5.6 is intractable since it

depends on the ranking positions of data examples (Eqn.5.4), resulting in a non-
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convex non-smooth optimization problem. We then address this challenge by using

the expectation of ranking position π̂j(x
j
i ) instead of πj(x

j
i ) as:

π̂j(x
j
i ) = 1 + E

[
n∑

k=1

I(cTqj(ck − ci) > 0)

]

= 1 +
n∑

k=1

Pr
(
cTqj(ck − ci) > 0

) (5.7)

where Pr(cTqj(ck − ci) > 0) means the probability that the ranking position of data

example xk is higher than the position of xi to query qj and we use a logistic function

to model this probability as:

Pr
(
cTqj(ck − ci) > 0

)
=

1

1 + exp(−cTqj(ck − ci))

=
1

1 + exp(−sgn(WWWqj)T (sgn(WWWxk)− sgn(WWWxi)))

(5.8)

The motivation of the derivation in Eqn.5.7 and Eqn.5.8 is that we approximate

the intractable optimization for NDCG with a tractable probabilistic framework.

Firstly, the ranking position of each data example can be calculated exactly based on

Eqn.5.4. However, due to the intractability, we model the problem in a probabilistic

framework by computing the expectation of the ranking position. The using of

expectation to represent the true ranking position is widely adopted in learning

to rank approaches due to its good probability approximation and computational

tractability. Secondly, the using of logistic function in Eqn.5.8 to model the

probability is based on the intuition that a data example should be ranked higher if

its hashing code is closer to the query. There are also other alternatives to model the

probability. Due to the popularity of logistic function used in learning to rank, we

adopt it in our formulation.

The above probability function is still non-differentiable with respect toWWW due to

the embedded sign function. Therefore, as suggested in [31, 94], we drop off the sign

function and use the signed magnitude in the probability function as:

Pr
(
cTqj(ck − ci) > 0

)
=

1

1 + exp(−qTj WWW
TWWW (xk − xi))

(5.9)
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By substituting the expected ranking position into the NDCG measure, the final

objective in Eqn.5.6 can be rewritten as:

min J(WWW ) = −
m∑
j=1

1

Zj

nj∑
i=1

2r
j
i − 1

log(1 + π̂j(x
j
i ))

s.t. WWWWWW T = III

(5.10)

where WWWWWW T = III is the orthogonality constraint which ensures the learned hashing

codes to be uncorrelated with each other and hold least redundant information.

5.3.4 Optimization

We first convert the hard constraint into a soft penalty term by adding a regularizer

to the objective. The reason is that most of the variance is contained in a few top

projections for many real world datasets. The orthogonality constraint forces hashing

methods to choose those directions with very low variance progressively, which may

substantially reduce the quality of hashing codes. This issue is also pointed out

in [29, 30]. Therefore, instead of adding hard orthogonality constraint, we impose a

soft orthogonality/penalty term as:

J(WWW ) = −
m∑
j=1

1

Zj

nj∑
i=1

2r
j
i − 1

log(1 + π̂j(x
j
i ))

+ α‖WWWWWW T − III‖2F (5.11)

where α is a trade-off parameter to balance the weights between the two terms.

Although the objective in Eqn.5.11 is still non-convex, it is smooth and differentiable

which enables gradient descent methods to be applied for efficient optimization. The

gradients of the two terms with respect to WWW are given below:

dπ̂j(x
j
i )

dWWW
=

nj∑
k=1

exp(−qTj WWW
TWWW (xk − xi))

WWW
(
(xk − xi)q

T
j + qj(xk − xi)

T
)

(1 + exp(−qTj WWW
TWWW (xk − xi)))2

(5.12)

d‖WWWWWW T − III‖2F
dWWW

= 4WWW T (WWWWWW T − III) (5.13)
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Then the gradient of dJ(WWW )
dWWW

can be computed by combining the above two gradients

with some additional mathematical calculation. With this obtained gradient, L-BFGS

quasi-Newton method [79] is applied to solve the optimization problem. Note that if

the number of training queries is large, a stochastic optimization method [107] can

be applied to Eqn.5.11 by only updating the solution with respect to a randomly

selected subset of queries during each iteration as follows: More precisely, during

each iteration, we randomly pick a set of queries, S, of small size from the m queries

and a random set of examples M in the relevance list. And we calculate the gradients

on these selected queries and examples as:

dJ

dWWW |{S,M}
=

∑
j∈S

1

Zj

∑
i∈M

2r
j
i − 1

(log(1 + π̂j(x
j
i )))

2(1 + π̂j(x
j
i ))

dπ̂j(x
j
i )

dWWW
(5.14)

and we use this gradient in each iteration for updating the new solution. The full

RPH approach is summarized in Table 5.1.

Table 5.1.
Ranking Preserving Hashing (RPH)

Input: Training examples XXX, query examples QQQ and parameters α.

Output: Hashing function WWW and hashing codes CCC.

Compute the relevance vector rji in Eqn.5.1.

Initialize WWW .

Repeat Gradient Descent

Compute the gradient in Eqn.5.12.

Compute the gradient in Eqn.5.13.

Update WWW by optimizing the objective function.

Until the solution converges

Compute the hashing codes CCC using Eqn.5.2.
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5.3.5 Discussion

The idea of modeling the NDCG measure to maximize the search/ranking

accuracy is also utilized in learning to rank [108, 109]. However, these learning

to rank methods are not based on binary hashing codes, but on learning effective

document permutation. Unlike in our formulation, the NDCG measure modeled in

learning to rank methods does not involve linear-projection based hashing function,

on which the ranking position is determined. Moreover, we need to find the expected

ranking position of each data example according to the Hamming distance between

the hashing codes, which is very different to learning to rank methods.

The learning algorithm of RPH for deriving the optimal hashing function is fairly

fast. During each iteration of the gradient descent method, we need to compute the

gradients in Eqns.5.12 and 5.13, which involves some matrix multiplications. The

complexity for calculating the gradient in Eqn.5.12 is bounded by O(mnjdB) since

both WWW (xk − xi) and WWW (xk − xi)q
T
j requires O(dB). The complexity for calculating

the gradient in Eqn.5.13 is simply O(d2B) which only involves WWWWWW T . Therefore, the

total complexity of each iteration of the gradient descent method is O(mn̂dB + d2B)

and the learning algorithm is fairly scalable since its time complexity is linear in the

number of training queries m and the average number of data examples n̂ associated

with each query. Note that n̂ is much smaller than the total number of data examples.

We will provide more details in the experiments.

5.4 Experiments

5.4.1 Datasets and Implementation

We evaluate proposed research on two image benchmarks: NUSWIDE and

Flickr1m, which have been widely used in the evaluation of hashing methods

[31, 36, 94]. NUSWIDE1 is created by NUS lab for evaluating image retrieval

1http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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techniques. It contains 270k images associated with about 5k different tags. We use

a subset of 110k image examples with the most common 1k tags in our experiment.

Flickr1m2 is collected from Flicker images for image annotation and retrieval tasks.

This dataset contains 1 million image examples associated with more than 7k unique

semantic tags. A subset of 250k image examples with the most common 1k tags is

used in our experiment. 512-dimensional GIST descriptors [87] are used as image

features. Since both datasets are associated with multiple semantic labels/tags, the

ground-truth relevance values can be naturally derived based on the number of shared

semantic labels between data examples.

We implement our algorithm using Matlab on a PC with Intel Duo Core i5-

2400 CPU 3.1GHz and 8GB RAM. The parameter α is tuned by cross validation

through the grid {0.01, 0.1, 1, 10, 100} and we will discuss more details on how it

affects the performance of our approach later. For each experiment, we randomly

choose 1k examples as testing queries. Within the remaining data examples, we

randomly sample 500 training queries and for each query, we randomly sample

1000 data examples to construct the ground-truth relevance list. We will discuss

the performance with different number of training queries later in our experiments.

Finally, we repeat each experiment 10 times and report the result based on the average

over the 10 runs.

5.4.2 Comparison Methods

The proposed RPH approach is compared with four different hashing methods,

including Spectral Hashing (SH) [19], Semi-Supervised Hashing (SSH) [29], Kernel

Supervised Hashing (KSH) [30] and Ranking-based Supervised Hashing (RSH) [31].

SH is an unsupervised method and does not use any label information. We use the

standard settings in [19] in our experiments. For SSH and KSH, we randomly sample

2k data examples and use their ground-truth labels to generate pairwise similarity

2http://press.liacs.nl/mirflickr/
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matrix as part of the training data. Gaussian RBF kernel is used in KSH. To get a

fair comparison, for RSH, we randomly sample 500 query examples and 1000 data

examples to compute the ground-truth ranking lists.

Table 5.2.
Results of NDCG@K using Hamming Ranking on both datasets,
with 64 hashing bits.

NUSWIDE Flickr1m

NDCG@K 5 10 20 5 10 20

RPH 0.2570.2570.257 0.2490.2490.249 0.2340.2340.234 0.3130.3130.313 0.2980.2980.298 0.2830.2830.283

RSH 0.242 0.238 0.226 0.288 0.271 0.259

KSH 0.223 0.217 0.198 0.265 0.252 0.237

SSH 0.216 0.209 0.195 0.251 0.242 0.230

SH 0.193 0.185 0.172 0.250 0.234 0.221

5.4.3 Evaluation Metrics

To conduct fair evaluation, we follow two criteria which are commonly used in

the literature: Hamming Ranking and Hash Lookup. Hamming Ranking ranks

all the examples in the dataset according to their Hamming distance from the query

and the top K examples are returned as the desired neighbors. We use NDCG@K

to evaluate the ranking quality of the top K retrieved examples for each individual

query and calculate the average NDCG values over all test queries. For those data

examples falling in the same Hamming distance to query examples, the expectation

of NDCG is computed.

Hash Lookup returns all the examples within a certain Hamming radius r of the

query. Since hash lookup does not provide ranking for returned points with equal
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Hamming distance to the queries, we use average cumulative gain (ACG) to measure

the quality of these returned examples, which is calculated as:

ACGr =
1

|Nr|
∑
xi∈Nr

ri (5.15)

where Nr is the set of the retrieved data examples within a Hamming radius r and ri

is the relevance value of a retrieved data example xi. Here the scale value of |Nr| is
the total number of retrieved data examples. Hence, ACG essentially measures the

average precision weighted by the relevance of each retrieved example. In summary,

both metrics emphasize the quality of ranking, which is important in practical. A

hamming radius of r = 2 is used to retrieve the neighbors in the experiments.

5.4.4 Results and Discussion

Table 5.3.
Precision of the top 100 retrieved data examples on both datasets
with different hashing bits.

NUSWIDE Flickr1m

Methods 16 bits 64 bits 256 bits 16 bits 64 bits 256 bits

RPH 0.298 0.3270.3270.327 0.3460.3460.346 0.3700.3700.370 0.4990.4990.499 0.5610.5610.561

RSH 0.281 0.314 0.343 0.340 0.474 0.537

KSH 0.3060.3060.306 0.316 0.341 0.359 0.494 0.556

SSH 0.246 0.295 0.298 0.345 0.439 0.486

SH 0.251 0.282 0.304 0.331 0.392 0.447

We first report the results of NDCG@5, NDCG@10 and NDCG@20 of different

hashing methods using Hamming Ranking on two datasets with 64 hashing bits in

Table 5.2. From these comparison results, it can be seen that RPH gives the overall

best performance among all five hashing methods on both datasets. For example,

the performance of our method boosts about 4.6% on NUSWIDE dataset, with 9.9%
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Figure 5.2. Performance evaluation on both datasets with different
number of hashing bits. (a)-(b): NDCG@10 using Hamming
Ranking. (c)-(d): ACG with Hamming radius 2 using Hash Lookup.

improvement on Flickr1m dataset compared to RSH under NDCG@10 measure. We

can see from Table 5.2 that SH does not perform well in all cases. This is because SH

is an unsupervised hashing method which does not utilize any supervised information

into learning hashing codes. For methods SSH and KSH, they both achieve better

results than SH since these methods incorporate some pairwise knowledge between
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data examples in addition to the content features for learning effective hashing codes.

KSH obtains slightly larger NDCG values than SSH due to the exploitation of kernel

similarity. However, the ranking order is not preserved in the learned hashing codes

of these two methods and thus, the ranking-based supervised hashing method RSH

which models the listwise ranking information can generate more accurate hashing

codes with larger NDCG values than SSH and KSH. On the other hand, our RPH

method substantially outperforms RSH since it directly optimizes the NDCG measure

to learn high quality hashing codes that not only preserve the ranking order but also

preserve the relevance values of data examples to the query in the training data.

Therefore, the search/ranking accuracy can be maximized which is coincides with

our expectation.

The second set of experiments evaluate the performance of different hashing

methods by varying the number of hashing bits in the range of {16, 32, 64, 128, 256}.
The results of NDCG@10 using Hamming Ranking on both datasets are reported

in Fig.5.2(a)-(b), with the ACG results of Hamming radius 2 using Hash Lookup

shown in Fig.5.2(c)-(d). Not surprisingly, from Fig.5.2(a)-(b) we can see that the

performance of different methods improves when the number of hashing bits increases

from 16 to 256 and our RPH method outperforms the other compared hashing

methods which is consistent with the results in Table 5.2. However, we can also

observe from Fig.5.2(c)-(d) that the ACG result of most compared methods decreases

when the number of hashing bits increases after 64. The reason is that when using

longer hashing bits, the Hamming space becomes increasingly sparse and very few

data examples fall within the Hamming ball of radius 2, resulting in many queries

with empty returns (we count the ACG as zero in this case). Similar behavior is also

observed in [31] and [94]. In this situation, the NDCG results from Fig.5.2(a)-(b)

provide better performance measurement, while the ACG results of RPH are still

consistently better than other baselines.

In the third set of experiments, we examine the performance of RPH under non-

ranking measure, i.e., precision of top 100 retrieved data examples using Hamming
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Figure 5.3. (a)-(b): NDCG@10 with different number of training
queries using 64 hashing bits on both datasets. (c)-(d): NDCG@10
with different number of data examples associated with each query
using 64 hashing bits on both datasets.

Ranking. This measure is widely used in previous hashing methods, which do not

emphasize on the ranking accuracy, to evaluate how the hashing codes perform in

finding similar data examples. The precision results of all compared methods with

different hashing bits are reported in Table 5.3. It can be seen from Table 5.3 that
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the RPH method achieves best results among all compared methods in most cases.

The reason is that although RPH does not directly preserve the pairwise similarity

between data examples as in KSH, SSH and SH, the similarities among data examples

are implicitly preserved in the modeling of relevance and ranking consistency. In other

words, the strategy of ensuring ranking order consistency enables a more similar

example to the query to rank higher than a less similar example and to be found

in top retrieval results. We also observe that the precisions of all hashing methods

increase when the number of hashing bits increases, which is consistent with the

results in Fig.5.2(a)-(b).

Figure 5.4. Parameter sensitivity results of NDCG@10 on both
datasets with 64 hashing bits.

We also evaluate the ranking performance of RPH by varying the number of

training queries m and the number of data examples associated with each query

respectively. We report the NDCG@10 results by fixing the number of data examples

associated with each training query to 1000, and vary the number of training

queries from 50 to 3000 in Fig.5.3(a)-(b). Similarly, the NDCG@10 results of fixing

the number of training queries to 500, and varying the number of data examples

associated with each training query from 100 to 6000 are shown in Fig.5.3(c)-(d).
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Not surprisingly, we can observe that the NDCG value increases with the increasing

number of training queries and data examples. We also found that, take Flickr1m for

example, the performance of RPH does not increase much after around 700 training

queries (Fig.5.3(b)) and 1800 data examples (Fig.5.3(d)). Our hypothesis is that we

have gained sufficient ranking information to learn a good hashing function using

these many training queries and data examples. However, the training cost increases

almost linearly with the size of training data. Therefore, we choose 500 queries and

1000 data examples associated with each query consistently in our method to form

the training data, which can obtain good performance with reasonable training cost.

To prove the robustness of the proposed method, we conduct parameter sensitivity

experiments on both datasets. In each experiment, we tune the trade-off parameter

α from the grid {0.5, 1, 2, 4, 8, 32, 128}. We report the results of NDCG@10 with

64 hashing bits in Fig.5.4. It is clear from these experimental results that the

performance of RPH is relatively stable with respect to α in a wide range of values.

The results also prove that using soft penalty with an appropriate weight parameter

is better than enforcing the hard orthogonality constraint (corresponds to infinite α).
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6 ACTIVE LEARNING VIA JOINT DATA EXAMPLE AND LABEL

SELECTION

6.1 Motivation

Hashing methods have been widely used for large scale similarity search.

Recent research has shown that hashing quality can be dramatically improved by

incorporating supervised information, e.g. semantic tags/labels, into hashing function

learning. However, most existing supervised hashing methods can be regarded as

passive methods, which assume that the labeled data are provided in advance. But

in many real world applications, such supervised information may not be sufficient

or available and it is often expensive to acquire for a large dataset. Therefore, it is

important to design effective methods to actively identify only a small set of the most

informative data examples for users to label. On the other side, the labeling cost also

depends on the total number of tags that the users label to the selected data examples.

In many large scale applications, there are often hundreds or thousands of tags for

users to label. Moreover, similar tags usually carry similar semantic meanings. For

instance, ‘car’ and ‘automobile’ have similar meanings and choosing both of them

may not gain substantial new information over just selecting one. Therefore, it is

important to design effective method that jointly selects the most informative data

examples and tags such that the hashing function can be learned efficiently with only

a small number of labeled data, which can greatly reduces the labeling cost.
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6.2 Background and Related Work

6.2.1 Introduction

Similarity search is a key problem in many information retrieval applications

including image and text retrieval, content reuse detection and collaborative filtering.

The purpose of similarity search is to identify similar data examples given a query

example. With the explosive growth of the internet, a huge amount of data such

as texts, images and video clips have been generated, which indicates that efficient

similarity search with large scale data becomes more important. Traditional similarity

search methods are difficult to be used directly for large scale data since computing

the similarity using the original features (i.e., often in high dimensional space)

exhaustively between the query example and every candidate example is impractical

for large applications. There are two major challenges for using similarity search in

large scale data: storing the large data and retrieving desired data efficiently.

Hashing methods [8, 10, 19, 22] have been proposed for addressing these two

challenges and have achieved promising results. These hashing methods design

compact binary code in a low-dimensional space for each data example so that similar

data examples are mapped to similar binary codes. In the retrieval process, these

hashing methods first transform each query example into its corresponding binary

code. Then similarity search can be simply conducted by calculating the Hamming

distances between the codes of available data examples and the query and selecting

data examples within small Hamming distances. In this way, the two major challenges

for large scale similarity search can be addressed as: data examples are encoded and

highly compressed within a low-dimensional binary space, which can usually be loaded

in main memory and stored efficiently. The retrieval process is also very efficient, since

the Hamming distance between two codes is simply the number of bits that differ,

which can be calculated using bitwise XOR.

Recently, some supervised hashing methods [20, 29, 30] have incorporated labeled

data/information, e.g. semantic tags, for learning more effective hashing function
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than unsupervised hashing methods. It has been shown that hashing quality could

be dramatically improved by leveraging supervised information. For example, in text

retrieval applications, semantic tags (e.g. documents labeled with the same tag)

reflect the semantic relationship between documents and thus can be very important

and helpful for learning hashing function. However, most existing supervised hashing

methods can be regarded as passive methods, which assume that the labeled data

are provided beforehand. But in many real world applications, such supervised

information may not be available and it is often expensive to acquire for a large

dataset. Therefore, it is important to design effective methods to actively identify

only the most informative data examples for users to label. On the other hand, the

labeling cost will also depend on the total number of tags that the users label to the

selected data examples. In many large scale applications, there are often hundreds

or thousands of tags for users to label. Moreover, similar tags usually carry similar

semantic meanings. For instance, ‘car’ and ‘automobile’ have similar meanings and

choosing both of them may not gain substantial new information over just selecting

one. Therefore, selecting a small set of most informative tags is also important to

lower the efforts of user labeling.

This dissertation proposes a novel active hashing approach, Active Hashing with

Joint Data Example and Tag Selection (AH-JDETS), to achieve the goal of learning

accurate hashing function with a limited amount of labeling efforts. AH-JDETS

actively selects the most informative data examples and tags in a joint manner for

hashing function learning. Specifically, it first identifies a set of informative data

examples and tags for users to label based on the selection criteria that both the

data examples and tags should be most uncertain and dissimilar with each other.

Then the supervised information is combined with the unlabeled data to generate

an effective hashing function. An iterative procedure is proposed for learning the

optimal hashing function and selecting the most informative data examples and

tags. Extensive experiments on four different datasets have been conducted to

demonstrate that AH-JDETS can achieve good performance with much less labeling



110

cost when compared to state-of-the-art supervised hashing methods, which overcomes

the limitations of passive hashing methods. Moreover, the experiments have clearly

shown the advantages of the proposed AH-JDETS approach against several other

selection methods for obtaining training data.

6.2.2 Related Work

This section reviews the related work in two research areas: hashing function

learning and active learning.

Hashing Function Learning

Hashing methods [27, 41, 110–113] are proposed to address the similarity search

problem within large scale data. These hashing methods try to encode each data

example by using a small fixed number of binary bits while at the same time preserve

the similarity between data examples as much as possible. In this way, data examples

are transformed from a high-dimensional space into a low-dimensional binary space

and therefore, the similarity search can be done very fast by only computing the

Hamming distance between binary codes. Existing hashing methods can be divided

into two groups: unsupervised and supervised hashing methods.

Among the unsupervised hashing methods, Locality-Sensitive Hashing (LSH) [15]

is one of the most popular methods, which simply uses random linear projections to

map data examples from a high dimensional Euclidean space to a low-dimensional

binary space. This method has been extended to Kernelized and Multi-Kernel

Locality-Sensitive Hashing [23] by exploiting kernel similarity for better retrieval

efficacy. The Principle Component Analysis (PCA) Hashing [17] method represents

each example by coefficients from the top k principal components of the training

set, and the coefficients are further binarized using the median value. A Restricted

Boltzman Machine (RBM) [69, 70] is used in [8] to generate compact binary hashing

codes. Recently, Spectral Hashing (SH) [19] is proposed to design compact binary
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codes with balanced and uncorrelated constraints. Self-Taught Hashing (STH) [22]

combines an unsupervised learning step with a supervised learning step to learn

hashing codes. More recently, the work in [10] proposes a Composite Hashing

with Multiple Information Sources (CHMIS) method to integrate information from

different sources. In work [13], a hyperplane hashing method is proposed for efficient

active learning, which can find nearest points to a query hyperplane in sublinear time.

For the supervised hashing methods, a Canonical Correlation Analysis with

Iterative Quantization (CCA-ITQ) method has been proposed in [36] which treats the

content features and tags as two different views. The hashing codes are then learned

by extracting a common space from these two views. Recently, several pairwise

hashing methods have been proposed. The semi-supervised hashing (SSH) method

in [29] utilizes pairwise knowledge between data examples besides their content

features for learning more effective hashing codes. A kernelized supervised hashing

(KSH) framework proposed in [30] imposes the pairwise relationship between data

examples to obtain good hashing codes. More recently, a ranking-based supervised

hashing (RSH) [31] method is proposed to leverage listwise ranking information to

improve the search accuracy. Most recently, the work in [20] proposes a Semantic

Hashing method which combines Tag information with Topic Modeling (SHTTM) by

extracting topics from texts and exploiting the correlation between tags and hashing

codes for document retrieval. It has been shown that supervised hashing methods

achieve better performance than unsupervised methods. However, as aforementioned,

most existing supervised hashing methods can be regarded as passive methods which

assume the labeled data are provided beforehand but in practice, such supervised

information may not be available or can be expensive to obtain. Therefore, it is

important to design effective methods to actively identify only the most informative

data for users to label for generating accurate hashing codes with low cost.
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Active Learning

The purpose of active learning [114–116] is to select data examples from an

unlabeled pool which will be very beneficial in training the model, thereby reducing

the labeling cost since noninformative instances are not selected. Many strategies

have been proposed to measure the informativeness of unlabeled data examples.

Uncertainty sampling [117] selects the data examples whose predicted labels are the

most uncertain. A batch mode active learning method is proposed in [115] that

applies the Fisher information matrix to select a number of informative examples

simultaneously based on the criteria that the selected set of unlabeled examples should

result in the largest reduction in the Fisher information. The work in [114] proposes a

discriminative batch mode active learning strategy that exploits information from an

unlabeled set to learn a good classifier directly, which obtains high likelihood on the

labeled training instances and low uncertainty on labels of the unlabeled instances.

A comprehensive survey of active learning can be found in [118].

Recently, active learning has been extended to various tasks including image

classification [115], learning to rank [119, 120], query selection [121, 122] and

collaborative filtering [123,124]. For example, the work in [119] addresses active rank

learning based on expected hinge rank loss minimization. Inspired by the expected

loss reduction strategy, [120] recently introduces an expected loss optimization

framework for ranking, where the selection of query and documents is integrated

in a principled manner. The work in [122] generalizes the empirical risk minimization

principle to active learning which identifies the most uncertain and representative

queries by preserving the source distribution as much as possible. A Bayesian selection

approach is proposed in [124] for collaborative filtering, which identifies the most

informative items such that the updated user model will be close to the expected user

model.

The only work we found using active learning in hashing is [50], which directly

chooses the most uncertain data examples based on the hashing function. A batch
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Figure 6.1. An overview of the proposed AH-JDETS approach.

mode algorithm is also proposed in this work to speed up their active selection.

However, the method in [50] only considers identifying the most informative data

examples and tries to label all possible tags to these selected examples, which requires

a great amount of labeling efforts for those datasets associated with a huge number of

tags. Therefore, in this dissertation, we develop a novel active hashing approach that

jointly selects the most informative data examples and tags such that the hashing

function can be learned efficiently with only a small number of labeled data, which

greatly reduces the labeling cost.

6.3 Algorithm

6.3.1 Approach Overview

The proposed AH-JDETS approach mainly consists of two components as shown

in Figure 6.1: (1) Supervised hashing, which incorporates the labeled information

into hashing function learning. In this dissertation, we modify the recent supervised

hashing method in [20] to learn effective hashing function and present the details in

next section. (2) Joint data example and tag selection, which actively selects a set of

most informative data examples and tags for users to label. These newly labeled data

are added to existing labeled information for learning a more accurate and effective

hashing function.
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6.3.2 Supervised Hashing

Our active hashing method is related to a recent supervised hashing method,

Sematic Hashing using Tags and Topic Modeling (SHTTM) [20], which utilizes tags

and topic modeling together to learn effective hashing function. One main advantage

of this method is that it not only learns high quality hashing codes but extracts a

set of tag correlation variables, which reflect the correlation between tags and learned

hashing codes. Therefore, the relationship among different tags is also represented in

the tag correlation variables (more details will be given later).

We first introduce some notation. Assume there are n training examples total,

denoted as: XXX = {x1, x2, . . . , xn} ∈ RRRm×n, where m is the dimensionality of the

content feature. Denote the labeled tags as: TTT ∈ {0, 1}l×n, where l is the total

number of possible tags associated with each data example. A label 1 in TTT means

an example is associated with a certain tag, while a label 0 means the example is

not associated with that tag. The goal is to obtain optimal binary hashing codes

YYY = {y1, y2, . . . , yn} ∈ {−1, 1}k×n for the training examples, and a hashing function

f : RRRm → {−1, 1}k, which maps each example to its hashing code (i.e., yi = f(xi)).

Here k is the code length. A linear hashing function is utilized:

yi = f(xi) = sgn(WWWxi) (6.1)

where WWW is a k ×m parameter matrix representing the hashing function and sgn is

the sign function.

There are two key problems that need to be addressed in supervised hashing

methods: (1) how to incorporate the labeled tag information into learning effective

hashing codes, and (2) how to preserve the similarity between data examples in the

learned hashing codes. The SHTTM method solves the first problem by ensuring

the learned hashing codes to be consistent with labeled tag information through a

tag consistency component. In particular, a latent variable uj for each tag tj is first
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introduced, where uj is a k × 1 vector indicating the correlation between tag tj and

hashing codes. Then a tag consistency component can be formulated as follows:

n∑
i=1

l∑
j=1

‖TTT ij − yTi uj‖2 + α

l∑
j=1

‖uj‖2

= ‖TTT − YYYUUU‖2F + α‖UUU‖2F
(6.2)

where TTT ij is the binary label of the j-th tag on the i-th data example. yTi uj can

be viewed as a weighted sum that indicates how the j-th tag is related to the i-th

example, and this weighted sum should be consistent with the label TTT ij as much

as possible. The second regularization term,
∑l

j=1 ‖uj‖2, is introduced to avoid the

overfitting issue [125]. α is trade-off parameter and ‖‖F is the matrix Frobenius

norm. By minimizing this component, the consistency between tags and the learned

hashing codes can be ensured. Note that semantically similar tags will have similar

latent variables, since these tags are often associated with common data examples,

and thus the learned corresponding latent variables will be similar by ensuring the

tag consistency term. In the extreme case, if two tags are assigned in exactly the

same set of examples, their latent variables will be identical.

The second problem in supervised hashing methods is similarity preserving, which

indicates that semantically similar examples should be mapped to similar hashing

codes within a short Hamming distance. In SHTTM, it points out that the similarity

calculated using the original feature vector may not reflect the semantic similarity

between data examples. Therefore, it proposes to utilize features extracted from

topic modeling [81] to measure the semantic similarity between data examples instead

of original features, since topic modeling provides an interpretable low-dimensional

representation of the data examples associated with a set of topics. SHTTM

exploits the Latent Dirichlet Allocation (LDA) [83] approach of topic modeling

to extract k latent topics from the data examples. Each example xi corresponds

to a distribution θi over the topics where two semantically similar examples have

similar topic distributions. In this way, semantic similarity between data examples
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is preserved in the extracted topic distributions θθθ and the similarity preservation

component in SHTTM is defined as follows:

n∑
i=1

||yi − θi||2 = ||YYY − θθθ||2F (6.3)

By minimizing this component, the similarity between different examples is preserved

in the learned hashing codes.

Combining the tag consistency and similarity preservation components from

Eqns.6.2 and 6.3, and substituting Eqn.6.1, the overall objective function for learning

the hashing function and tag correlation can be formulated as:

min
W,UW,UW,U

‖TTT −WXWXWXUUU‖2F + α‖UUU‖2F + γ‖WXWXWX − θθθ‖2F (6.4)

where α and γ are trade-off parameters to balance the weight between the components.

Note that the sgn operator in Eqn.6.1 is relaxed to make the above optimization

problem tractable. Since the objective function in Eqn.6.4 is convex with respect

to either one of the two sets of parameters (WWW and UUU) when the other one is fixed,

the above problem can be solved iteratively by coordinate descent optimization with

guaranteed convergence similar to that in SHTTM.

6.3.3 Joint Data Example and Tag Selection

The main research problem in our AH-JDETS approach is to actively select a small

set of informative data examples and tags for users to label, which can be utilized for

learning a better hashing function. The goal of joint data example and tag selection

is that we hope to identify a set of L data examples, Ad, together with a set of M

tags, At, such that the labeling information of the selected data can best boost the

performance of supervised hashing. During the labeling process, for a given data

example and a tag, users label 1 or 0 to denote whether this specific tag is assigned

to this data example or not. The labeling cost will depend on the total number of

selected tags that the users need assign to the selected data examples, which can
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be measured as LM . The reason is that users need to label either 1 or 0 for each

data example and tag pair, and there are total LM such pairs. We will provide more

details and possibilities of measuring the labeling cost with respect to the sizes of L

and M for learning hashing function later in the experiments. As mentioned, for large

scale datasets, there might be millions of data examples associated with thousands of

different tags, which makes it impractical for labeling all tags to every data example.

Therefore, it is important to select only a small set of most informative data examples

and tags for users to label to save user labeling efforts.

An important question to ask is how to measure the informativeness of data

examples and tags? In this dissertation, we propose to combine two measuring

criteria, data uncertainty and data dissimilarity, which are widely used in active

learning literature [120–122]. In particular, the selected data (both data examples

and tags) are more informative if they are more uncertain. For example, the hashing

codes of some potential data examples are not certain/well-learned or the predicted

labeling results for some potential tags are not certain. The intuitive idea is that we

would gain more knowledge by labeling on uncertain data than on certain ones. On

the other hand, the selected data are more informative if they are more dissimilar to

each other, since similar data may provide redundant information which is not helpful

to the learning process. In the following sections, we first describe the data certainty

and similarity modeling based on the selection criteria respectively. Then the final

objective together with the optimization algorithm will be elaborated. Finally, we

discuss the computational cost of the learning algorithm.

Data Certainty Modeling

Recall that in our supervised hashing model, the binary hashing code yi, is

obtained by thresholding a linear projection of a data example xi, i.e., yi = sgn(WWWxi),

and the linear hashing function WWW can be viewed as k decision/classification

hyperplanes, each of which is used to generate one bit of a code. More precisely, if a
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data example sits on the positive side of a decision hyperplane, then its corresponding

hashing bit is 1, otherwise -1. The data example certainty with respect to coding can

be measured by its distance to the hyperplane, which is |wx|. Intuitively speaking,

the smaller the distance of a data example to a hyperplane, the more uncertain the

data example is. Considering an extreme case where a data example lies exactly on a

decision hyperplane, then it is highly uncertain to decide whether its corresponding

bit should be 1 or -1. Since there are total k decision hyperplanes, we use the l2

norm1 to calculate the certainty, cdi , of a data example as:

cdi = ‖WWWxi‖2 (6.5)

It can be seen that the data example certainty is inversely related to the

informativeness, i.e., the smaller the certainty value is, the more informative it is.

Then the total certainty of the selected data examples can be written as
∑

i∈Ad
cdi ,

where Ad is the active set of data examples.

Besides exploiting data example certainty, we also need to model the tag certainty.

In our supervised hashing method based on SHTTM, the correlation between tags

and hashing codes are learned in the latent variables UUU . Inspired by the data example

selection, we use the magnitude of uj to represent the tag certainty as:

ctj = ‖uj‖2 (6.6)

where small value indicates an uncertain tag. u = 0 is an extreme which means this

tag contributes no information in the hashing function learning. Therefore, we can

compute the total certainty of the selected tags as
∑

j∈At
ctj. Combining the data

example certainty and tag certainty terms, the joint data certainty can be modeled

as:

min
Ad,At

∑
i∈Ad

cdi + φ
∑
j∈At

ctj (6.7)

1Other norms such as l1 norm may also be used.
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where φ is a trade-off parameter to balance the weight between two data certainty

terms. By minimizing the above objective function, we can select a set of data

examples and tags that are most uncertain.

Data Similarity Modeling

Similar data may contain similar knowledge, which provides redundant informa-

tion in the learning process and is not desirable. For instance, the tags of ‘car’

and ‘automobile’ have similar meanings and choosing both of them may not gain

substantial new information over just selecting one. Therefore, selecting a set of

dissimilar data to label is very important for acquiring more information, which can

make the learning process more effective. The pairwise similarity SSSij between data

example xi and xj can be pre-calculated as:

SSSij = e−
‖xi−xj‖2

σ2 (6.8)

where σ2 is the bandwidth parameter. Note that we use the Gaussian function/kernel

to calculate the similarity in this dissertation due to its popularity in many hashing

methods [10, 22], but other similarity criteria may also be used, such as cosine

similarity or inner product similarity. Then the total sum of similarity values among

the selected data examples can be calculated as
∑

(i,j)∈Ad
SSSij.

For the tag similarity between ti and tj, we directly calculate it as the inner product

of their corresponding tag correlation vectors, uT
i uj. Then the sum of similarity values

between selected tags can be written as
∑

(i,j)∈At
uT
i uj. Combining the above two

similarity terms, the joint data similarity can be modeled as:

min
Ad,At

∑
(i,j)∈Ad

SSSij + λ
∑

(i,j)∈At

uT
i uj (6.9)

where λ is also a trade-off parameter to balance two data similarity terms. By

minimizing the above objective function, we can select a set of data examples and

tags that are most dissimilar to each other.
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6.3.4 Overall Objective and Optimization

The entire objective function of joint data example and tag selection integrates

two components such as data certainty component in Eqn.6.7 and data similarity

component given in Eqn.6.9 as:

min
Ad,At

∑
i∈Ad

cdi + φ
∑
j∈At

ctj + β
∑

(i,j)∈Ad

SSSij + λ
∑

(i,j)∈At

uT
i uj (6.10)

To formalize the above objective, we introduce an indicating vector μd ∈ {0, 1}n

whose entries specify whether or not the corresponding data examples are selected,

i.e., μdi = 1 when xi is selected and μdi = 0 when xi is not selected. Similarly, an

indicating vector μt ∈ {0, 1}l for tags is also used. Then the above formulation can

be rewritten as:

min
μd,μt

μd
TCd + φμt

TCt + β μd
TSSSμd + λ μt

TUUUTUUUμt

s.t. μd ∈ {0, 1}n, μt ∈ {0, 1}l, μd
T111 = L, μt

T111 = M

(6.11)

where Cd = [cd1, c
d
2, . . . , c

d
n]

T is the data example certainty vector and Ct =

[ct1, c
t
2, . . . , c

t
l ]
T is the tag certainty vector. φ, β and λ are trade-off parameters. 111

is a vector of all ones and the constraints μd
T111 = L and μt

T111 = M mean we wish

to select exact L data examples together with M tags. The first two terms in the

objective function are the sum of certainty values of the selected data, and the last

two terms are the sum of similarity values between them. By minimizing the above

objective function, we can jointly select a set of data examples and tags that are most

uncertain and dissimilar with each other.

Directly minimizing the objective function in Eqn.6.11 is intractable due to the

integer constraints, which makes the problem NP-hard to solve. Therefore, we propose

to relax these constraints to the continuous constraints 000 ≤ μd ≤ 111 and 000 ≤ μt ≤ 111

and further decompose the optimization problem into two sub-problems as:

min
μd

μd
TCd + β μd

TSSSμd

s.t. 000 ≤ μd ≤ 111, μd
T111 = L

(6.12)
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and

min
μt

μt
TCt + λ μt

TUUUTUUUμt

s.t. 000 ≤ μt ≤ 111, μt
T111 = M

(6.13)

where 000 is a vector of all zeros. These two relaxed sub-problems are standard

constrained quadratic programs (QP) which can be solved efficiently using convex

optimization methods, such as successive linear programming (SLP) [126] and the

bundle method [127]. After obtaining the relaxed solution from Eqn.6.12, we select

L data examples with the largest μd values to form the active data example set Ad.

Similarly, we choose M tags with the largest μt values based on the relaxed solution

from Eqn.6.13 to form the active tag set At. Finally, we will request the users to

label all tags from the selected tag set At to every data example in Ad, and update

the labeled information TTT to retrain the supervised hashing model (see Figure 6.1).

The alternative process of learning hashing function and actively selecting data can

be repeated for several iterations. We will discuss more in the experiments. The full

AH-JDETS algorithm including supervised hashing and joint data example and tag

selection is summarized in Table 6.1.

6.3.5 Computational Complexity Analysis

This section provides some analysis on the training cost of our AH-JDETS

approach. The learning algorithm of AH-JDETS consists of two main parts:

supervised hashing and joint selection of data examples and tags. For the supervised

hashing method, we iteratively solve the optimization problem in Eqn.6.4 to obtain

the hashing function and tag correlation, where the time complexity is bounded by

O(nlk + nk2). The second part involves selecting data examples and tags by solving

the two relaxed optimization problem in Eqns.6.12 and 6.13. Since these are standard

quadratic program problems, the time complexity for obtaining μd and μt is bounded

by O(n2 + l2). Thus, the total time complexity of the learning algorithm is bounded

by O(nlk + nk2 + n2 + l2). For large scale dataset, O(n2) cost for data example
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Table 6.1.
Active Hashing with Joint Data Example and Tag Selection

Input: Training examples XXX, initial labeled data TTT and parameters

α, β, γ and λ.

Output: Hashing function WWW , tag correlation UUU and hashing codes YYY .

Compute SSS and θθθ, initialize L and M .

Supervised Hashing

Solve the optimization problem in Eqn.6.4 to obtain WWW and UUU .

Joint Data Example and Tag Selection

Calculate data certainty Cd and Ct using Eqns.6.5 and 6.6 based on

WWW and UUU .

Calculate tag similarity UUUTUUU .

Solve the optimization problem in Eqn.6.12 to select a set of data

examples Ad.

Solve the optimization problem in Eqn.6.13 to select a set of tags At.

Labeling tags from At to data examples in Ad and update labeled data TTT .

Repeat for several iterations.

Generate the hashing codes YYY using Eqn.6.1.

selection might not be feasible. In practice, we reduce the computational cost in

the experiments by only considering the top 10% data examples corresponding to

the smallest certainty values without much loss in accuracy. However, the training

process is always conducted off-line and our focus of efficiency is on the retrieval

process. This process of generating hashing code for a query example only involves

some dot products and comparisons between two binary vectors, which can be done

in O(mk + k) time.
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6.4 Experiments

This section presents an extensive set of experiments to demonstrate the

advantages of the proposed approach.

6.4.1 Datasets and Implementation

We conduct experiments on four datasets, including two image datasets and two

text collections as follows:

1. Flickr1m [86] is collected from Flicker images for image annotation and retrieval

tasks. This dataset contains 1 million image examples associated with more

than 7k unique tags. A subset of 250k image examples with the most common

3k tags is used in our experiment. We randomly choose 240k image examples

as a training set and 10k for query testing.

2. NUS-WIDE [84] is created by NUS lab for evaluating image retrieval techniques.

It contains 270k images associated with about 5k different tags. We use a subset

of 110k image examples with the most common 3k tags in our experiment. We

randomly partition this dataset into two parts, 100k for training and 10k for

query testing.

3. ReutersV 1 (Reuters-Volume I): This dataset contains over 800k manually

categorized newswire stories [89]. There are in total 126 different tags associated

with this dataset. A subset of 130k documents of ReutersV 1 is used in our

experiment by discarding those documents with less than 3 labels. 120k text

documents are randomly selected as the training data, while the remaining 10k

documents are used as testing queries.

4. Reuters (Reuters21578)2 is a collection of text documents that appeared

on Reuters newswire in 1987. It contains 21578 documents, and 135

2http://daviddlewis.com/resources/textcollections/reuters2 1578/.
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tags/categories. In our experiments, documents with less than 3 labels are

removed. The remaining 13713 documents are randomly partitioned into a

training set with 12713 documents and 1000 test queries.

512-dimensional GIST descriptors [87] are used as image features and tf -idf features

are used to represent the documents.

We implement our method using Matlab on a PC with an Intel Duo Core i5-2400

CPU 3.1GHz and 8GB RAM. The parameters α, β, γ and λ are tuned by 3-fold

cross validation on the training set through the grid {0.01, 0.1, 1, 10, 100} and we

will discuss more details how they affect the performance of our approach later. We

randomly select 2k labeled data examples in the training set to form the initial tag

matrix TTT . We repeat each experiment 10 times and report the result based on the

average over the 10 runs. Each run adopts a random split of the dataset.

6.4.2 Evaluation Metrics

To conduct similarity search, each example in the testing set is used as a query

example to search for similar examples in the corresponding training set based on

the Hamming distance of their hashing codes. We follow two evaluation criteria

that are commonly used in the literature [10, 20, 36]: Hamming Ranking and Hash

Lookup. Hamming Ranking ranks all the data examples in the training set according

to their Hamming distance from the query and the top k examples are returned as

the desired neighbors. Hash Lookup returns all the data examples within a small

Hamming radius r of the query. The performance is measured with standard metrics

of information retrieval: precision as the ratio of the number of retrieved relevant

examples to the number of all returned examples and recall as the ratio of the

number of retrieved relevant examples to the number of all relevant examples. The

performance is averaged over all test queries in the datasets.
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Table 6.2.
Precision and recall of the top 200 retrieved examples of different
selection methods on four datasets with 32 hashing bits.

Flickr1m NUS-WIDE ReutersV 1 Reuters

Methods Pr Re Pr Re Pr Re Pr Re

AdAt 0.4590.4590.459 0.1140.1140.114 0.3480.3480.348 0.0850.0850.085 0.6750.6750.675 0.3060.3060.306 0.7420.7420.742 0.2370.2370.237

AdRt 0.431 0.101 0.334 0.081 0.663 0.295 0.738 0.236

RdAt 0.437 0.104 0.315 0.077 0.658 0.292 0.727 0.232

RdRt 0.412 0.092 0.287 0.070 0.653 0.286 0.724 0.230

6.4.3 Results and Discussions

We conduct the experiments under five different configurations to evaluate the

proposed AH-JDETS approach from different perspectives.

Comparison of different selection methods

In this set of experiments, we compare our joint selection method against three

other selection methods: 1. Actively select data examples and randomly select tags

(AdRt). 2. Randomly select data examples and actively select tags (RdAt). 3.

Randomly select data examples and Randomly select tags (RdRt). Clearly, our

method can be regarded as AdAt. The size of data examples, L, is set to be 1000 for

all datasets and the size of tags, M , is set to be 30 for the two image datasets and 10

for the other two text datasets. Note that for fair comparison, we adopt a modified

version of [50], the AdRt selection method, which has the same labeling cost as our

method by randomly selecting a set of tags instead of all tags.

We report the precision and recall for the top 200 retrieved examples with 32

hashing bits in Table 6.2. The precision and recall for the retrieved examples within

Hamming radius 2 are shown in Table 6.3. It can be seen that AH-JDETS gives
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Table 6.3.
Precision and recall of the retrieved examples within Hamming radius
2 of different selection methods on four datasets with 32 hashing bits.

Flickr1m NUS-WIDE ReutersV 1 Reuters

Methods Pr Re Pr Re Pr Re Pr Re

AdAt 0.4030.4030.403 0.186 0.3120.3120.312 0.1340.1340.134 0.4220.4220.422 0.2460.2460.246 0.5210.5210.521 0.1490.1490.149

AdRt 0.385 0.1890.1890.189 0.301 0.129 0.405 0.227 0.516 0.147

RdAt 0.367 0.175 0.296 0.123 0.387 0.232 0.504 0.144

RdRt 0.346 0.171 0.278 0.116 0.372 0.215 0.498 0.132

overall the best performance among all four selection methods on all datasets. From

these comparison results, we can see that RdRt does not perform well in terms of

both precision and recall. The reason is that the randomly selected data examples

and tags may be noninformative. For example, these selected data might carry much

redundant information if they are very similar to each other. It is also possible

that the selected data examples have high certainties. In other words, the hashing

codes of these data examples are already well-learned with high quality, and thus

cannot contribute much for learning more effective hashing codes and function. We

can also observe from the results that our AH-JDETS method outperforms the two

methods AdRt and RdAt which either actively select data examples or select tags.

This can be attributed to the joint selection strategy in our method, since it not only

identifies the most informative data examples but at the same time selects the most

informative tags. In this way, the learner could gain most information from labeling

these selected data. Moreover, a two-sided paired t-test [128] is used to determine

the statistical significance improvements in Tables 6.2 and 6.3. T-test shows that

AH-JDETS significantly outperforms RdRt (p < 0.01), RdAt (p < 0.03) and AdRt

(p < 0.03) on all datasets. The precision-recall curves of different selection methods

with 32 hashing bits on Flickr1m and ReutersV 1 are reported in Fig.6.2. It can
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be seen that among all of these comparison methods, AH-JDETS shows the best

performance, which is consistent with the results in Tables 6.2 and 6.3. We have also

observed similar results on the other two datasets. But due to the limit of space, they

are not presented here.

Figure 6.2. Results of Precision-Recall curve with 32 hashing bits on
Flickr1m and ReutersV 1 datasets.

To evaluate the effect of different code lengths, we conduct another experiment by

varying the number of hashing bits in the range of {8, 16, 32, 64, 128}. The precisions
for the top 200 retrieved examples with different numbers of hashing bits on four

datasets are shown in Fig.6.3. From this figure, we observe that larger code length

gives better precision results on all datasets. It also can be seen that our method

consistently outperforms the other three methods under different code lengths.

Comparison with SHTTM and STH

We compare our AH-JDETS with two state-of-the-art hashing methods, Semantic

Hashing using Tags and Topic Modeling (SHTTM) [20] and Self-Taught Hashing

(STH) [22], on all datasets to demonstrate the advantages of our active hashing
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Figure 6.3. Results of precision of top 200 examples on four datasets
with different hashing bits.

approach. SHTTM is a passive supervised hashing method which is briefly discussed

in section 4. STH is an unsupervised hashing method that does not utilize any of the

label information.

Precisions for the top 200 retrieved examples and the labeling costs of all three

methods using 32 hashing bits are reported in Table 6.4. Note that there is no

labeling cost for STH since it does not require any label knowledge. SHTTM is a
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Table 6.4.
Comparison with two state-of-the-art hashing methods. Results of
precision and labeling cost of the top 200 retrieved examples with 32
hashing bits.

Flickr1m NUS-WIDE

Methods Precision Cost Precision Cost

SHTTM [20] 0.508 33.5m 0.363 16.6m

AH-JDETS (5L, 2M) 0.499 300k 0.358 300k

AH-JDETS (L,M) 0.459 30k 0.348 30k

STH [22] 0.393 0 0.285 0

ReutersV 1 Reuters

Methods Precision Cost Precision Cost

SHTTM [20] 0.712 4.8m 0.754 2.64m

AH-JDETS (5L, 2M) 0.704 100k 0.751 100k

AH-JDETS (L,M) 0.675 10k 0.742 10k

STH [22] 0.633 0 0.721 0

supervised hashing method that incorporates all labels into hashing function learning.

Its labeling cost is simply the number of total labels associated with the training

examples. For our AH-JDETS, the labeling cost is LM since we have to label each

data example and tag pair and there are total LM such pairs. We evaluate AH-JDETS

with two different labeling costs, (L,M) and (5L,2M), where L=1k and M=30 for

image datasets and L=1k andM=10 for text datasets. From these comparison results

we can see that AH-JDETS achieves much better performance than the unsupervised

method STH, while it also obtains comparable results with SHTTM (especially on

(5L, 2M) setting) but requiring much less labeling cost. For example, the labeling cost

for SHTTM is about 1100 times more than our AH-JDETS with 1k data examples and

30 tags on Flickr1m, which is impractical. Therefore, our AH-JDETS approach can
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be viewed as a good trade-off between unsupervised hashing and passive supervised

hashing methods, which achieves good performance but saving much labeling efforts

and thus overcomes the limitation of passive hashing methods.

Varying set size L and M

In this set of experiments, we evaluate the performance of AH-JDETS and AdRt

methods by varying the set size L and M . It is obvious that we would gain more

information by selecting more data examples and tags simultaneously. An interesting

question would be: given the same labeling effort, how should we choose L and M

to achieve best performance? Therefore, to answer this question, we fix the labeling

cost LM = 30k for image datasets and LM = 10k for text datasets, and vary both

L and M in the experiments. The code length is set to be 32 in all experiments.

The precision results of top 200 retrieved examples with respect to data example

size on all datasets are shown in Fig.6.4. We can observe that the performances of

both two methods are not satisfactory when selecting either very few data examples

or tags (correspond to two end points in the figure). For example, in Flickr1m

dataset, the right most red point corresponds to the combination of selecting 15000

data examples with 2 tags, while the left most red point represents the choice of 10

data examples with all 3000 tags. Although these two configurations have the same

labeling cost 30k, the performance is the worst among all possible combinations. It

can be seen that the optimal combination is around 1200 data examples with 25 tags

for our method on Flickr1m, which is roughly proportional to the total number of

data examples and tags. Therefore, it is important to choose a good combination of

L and M to achieve the best performance.

Consider a more realistic labeling cost measure scenario, where users are assigning

M possible tags to a document or an image. Usually people first read through the

content of the document or view the content of an image, which takes a reading cost

r (may vary for documents and images), and then assign M labels to it. In this
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Figure 6.4. Precision results of varying batch sizes while fixing the
labeling cost. Hashing bits are set to be 32 for all datasets.

case, the labeling cost for a data example is r +M and the total labeling cost for L

examples is (r +M)L. Using this cost measure, we conduct another experiment on

Flickr1m by fixing r=5 and have found similar pattern as in Fig.6.4(a). However, we

observe that the optimal combination drifts toward smaller number of data examples

with more tags (around 940 data examples with 27 tags), which is consistent with

our expectation due to the reading cost associated with each data example.
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Varying number of iterations

Figure 6.5. Precision results of increasing number of iterations on four
datasets with 32 hashing bits.

In our AH-JDETS approach, after obtaining the label information on the active

set, we will update the labeled tags TTT to retrain the supervised hashing model as

shown in Figure 6.1. The alternative process of learning hashing function and actively

selecting data can be repeated for several iterations. In this set of experiments, we
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evaluate the performance of AH-JDETS by varying the number of iterations from 1

to 15 on all datasets. Note that the labeling cost grows linearly with the number of

iterations since during each iteration the labeling cost is identical, i.e., LM .

Figure 6.6. Parameter Sensitivity for β and λ. Results of precision of
the top 200 examples with 32 hashing bits.

Precisions for the top 200 examples with 32 hashing bits are reported in Fig.6.5.

Not surprisingly, we can observe that the precision increases with the increasing

number of iterations. However, we have found that the performance of AH-JDETS

does not increase much after the first few iterations. Our hypothesis is that we have

gained sufficient knowledge to learn a good hashing function within the first few

iterations. In other words, the labeled data from the later iterations contains more

and more redundant information, which does not contribute much for retraining a

better hashing function. Therefore, the proposed AH-JDETS approach can obtain

good performance in a few iterations, which also saves the labeling cost.
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Parameter Sensitivity

There are four trade-off parameters in AH-JDETS, α and γ in supervised hashing

component, and β and λ in the joint data example and tag selection method. To

prove the robustness of the proposed joint selection method, we conduct parameter

sensitivity experiments of β and λ on all datasets. In each experiment, we tune the

parameter from {0.5, 1, 2, 4, 8, 16, 32, 128}. We report the results on Flickr1m and

ReutersV 1 in Fig.6.6. It is clear from these experimental results that the performance

of AH-JDETS is relatively stable with respect to β and λ. We have also observed

similar results of the proposed method in the other two datasets. On the other side,

it has already been shown in SHTTM that the supervised hashing method is robust

with respect to a wide range of α and γ.
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7 CONCLUSIONS

The past few years have witnessed tremendous interest in learning compact codes

for efficient large scale similarity search. One major challenge in these methods is

that it is often difficult to incorporate different types of supervision from multiple

sources in training. This dissertation analyzes five problems of learning to hash

based on different objectives from multiple information sources: 1. learning from

semantic tags; 2. learning with partial multi-modal data; 3. learning from

structured data; 4. learning ranking preserving hashing codes; 5. active hashing

for insufficient supervision. This chapter concludes the dissertation by summarizing

the contributions in Chapters 2, 3, 4, 5 and 6, providing some further discussions

based on that, and pointing out future directions.

7.1 Main Contributions

Hashing methods generate promising results in large scale similarity search.

However, the problem of leveraging supervised information from multiple sources

has not been fully explored. The major contribution of this dissertation is to

leverage different types of supervised knowledge from multi-sources into learning

effective hashing codes. In particular, we propose a unified framework that learns

effective hashing codes by simultaneously ensuring the data consistency to the

supervised knowledge (e.g., semantic tags, structure graph, relevance feedback) and

preserving the data similarity. In addition, we explicitly dealing with the missing data

problem from multiple sources. Furthermore, we also handle the situation where the
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supervision is insufficient or even not available. The unified learning framework is

formulated as follows:

min
Y

C(Y, S) + α D(Y,X) + β R(Y )

s.t. constraints on Y

(7.1)

where Y is the hashing codes we are trying to learn. C() is the consistency term

which ensures the consistency between hashing codes and the supervised information.

D() is the data similarity preservation term and R() is the regularization term. The

optimization problem in Eqn.7.1 is then solved by relaxation and efficient coordinated

gradient descent method, which scales linearly with the number of data examples.

Therefore, our framework is suitable and can be applied to large scale data. We

summarize our contributions in details.

Semantic tags or labels are usually associated with data examples and have been

popularly utilized in many applications, which provide useful supervised knowledge

for users to better categorize or search desired data. This dissertation presents a novel

semi-supervised tag hashing approach to incorporate the semantic tags into hashing

codes learning. The proposed method fully exploits tag information by modeling

the semantic correlation between tags and hashing bits. The hashing function is

learned in a unified learning framework by simultaneously ensuring the tag consistency

and preserving the similarities between data examples. Moreover, the effectiveness

of hashing function is further improved through orthogonal transformation by

minimizing the quantization error. Furthermore, we extend this framework by

preserving the topic level similarity between data examples to obtain more effective

codes when original feature distances do not reflect the similarity between data

examples. The experimental results on several image and text datasets demonstrate

the advantages of the proposed method.

In many applications, data examples are usually represented by multiple

modalities captured from different sources, such as tags, texts, etc. However,

in real world tasks, it is often the case that every modality suffers from some

missing information, which results in many partial examples. This dissertation
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describes a novel partial multi-modal hashing approach to deal with such partial

data. A unified learning framework is developed to learn the binary codes, which

simultaneously ensures the data consistency among different modalities via latent

subspace learning, and preserves data similarity within the same modality through

graph Laplacian. A block gradient descent algorithm is applied as the optimization

procedure. Experiments on two datasets show the superior performance of the

proposed approach over several state-of-the-art multi-modal hashing methods.

The dependencies between data examples naturally exist and if incorporated in

models, they can potentially improve the hashing code performance significantly. In

this dissertation, a novel approach of hashing on structured data (HSD) is proposed,

which incorporates the structure information associated with data. The hashing

function is learned in via ensuring the structural consistency and preserving the

similarities between data examples jointly. We also develop an iterative gradient

descent algorithm as the optimization procedure. Experimental results on two

datasets demonstrate that structure information is indeed useful in hashing codes

learning.

In many real world search systems, it is more realistic and desirable that the

most relevant examples to a query can be presented in front of less relevant ones.

In other words, users prefer the retrieval results with better ranking performance.

This dissertation proposes a ranking preserving hashing model that directly optimizes

the popular ranking accuracy measure, Normalized Discounted Cumulative Gain

(NDCG), to learn effective hashing codes that not only preserves the ranking order

but also models the relevance values of data examples to the queries in the training

data. We handle the difficulty of non-convex non-smooth optimization by using

the expectation of NDCG measure calculated based on the linear hashing function

and then solve the relaxed smooth optimization problem with a gradient descent

method. Extensive sets of experiments on two large scale datasets demonstrate

the superior search accuracy of the proposed approach over several state-of-the-art

hashing methods.
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When the supervised information is insufficient or even not available, it is

important to design effective methods to actively identify only a small set of the

most informative data examples for users to label. In this dissertation, we proposes a

novel active hashing approach to actively select the most informative data examples

and tags in a joint manner for hashing function learning. The selection principle is

to identify data examples and tags that are both uncertain and dissimilar with each

other. The labeled information is utilized together with unlabeled data to generate

an effective hashing function. Extensive experiments on four different datasets

demonstrate the advantage of the proposed approach for learning a more effective

hashing function with small labeling costs than the baseline passive supervised

learning and some other active learning methods.

7.2 Future Directions

In this section, several possible future topics are discussed to extend the research

in this dissertation.

First of all, in this dissertation, we propose several models to incorporate

the supervised tag information into the hashing codes learning. In some certain

applications, tags may be very sparse or even do not exists in the data, resulting

in insufficient supervision for training effective hashing function. In Chapter 6, we

trying to solve this issue by actively select a few number of data examples for user

to label. However, with a limit amount of resource, still a very few labels could

be acquired. On the other side, tags or semantic labels commonly exist in many

well known applications/domains. Therefore, it will be interesting if we can apply

transfer learning techniques to propagate or transfer the tag/label knowledge from

source domains to the target domain, such that the performance of the learned hashing

codes on the target domain could be boosted by leverage the supervised information

from other source domains. Several very recent work are aiming at learning hashing

codes for different domains jointly by extract some common structure from the data



139

in different domains. However, how to transfer knowledge from source domains to

target domain still remails an open problem.

Secondly, in Chapter 5, we discuss the learning of ranking preserving hashing

codes. In our experiments, we found that to achieve a reasonable performance, it

usually requires large number of bits to represent the data examples. The reason

is that with very few hashing bits, the number of possible Hamming distance to a

query code is small (equal to the number of hashing bits). Therefore, many candidate

examples will have equal Hamming distance from the query, which make it difficult

to rank these equal-distance examples. One possible solution to this problem is to

assign different weights to different hashing bits and then re-rank the data examples

based on the weighted Hamming distances. Actually, some recent work have been

proposed to learning weighted hashing codes. But there still exist some challenges: 1)

how to determine the weights and how to adjust them according to the query? 2) how

to retrieve or rank the examples efficiently since computing the weighted Hamming

distance will involve real value operations rather than bit operations.

Thirdly, in this dissertation, we mainly focus on learning effective hashing codes

given all the training data available. However, in many real world applications, data

comes as a stream and it is difficult to have all the training data available. Therefore, it

is a very important research problem to design hashing method that can dealing with

data examples that are gathered in an online manner. A naive and straightforward

way would be learning hashing functions periodically, which means we train the model

once after we obtain a certain amount of new data. However, there are several main

drawbacks: 1) it will be very computational intensive to re-train the whole model

frequently; 2) it is difficult to determine when to re-train the model. Thus, it remains

an open research area to develop an online learning method that can efficiently adjust

the hashing function based on the newly arriving data without training the whole

model again.

Fourthly, traditional hashing methods usually learn the hashing codes based on

the global features of the data examples. However, in image and text retrieval tasks,
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the semantic similarity between two examples is often determined by certain local

features. More specifically, the concept of an image may come from a certain area or

region of the image instead of the whole image. Similarly, the most important part of

a document can only comes from a certain paragraph. In this case, it is possible

to explore multiple instance learning techniques to design more effective hashing

codes based on local features. In multiple instance learning, each data example is

represented by multiple instances. For example, each image can be divided/segmented

into several regions (instances). Each documents can be separated into different

paragraphs (instances). Therefore, how to combine the multiple instance learning

method into learning hashing codes will be an interesting research direction.

Last but not least, as discussed in this dissertation, when dealing with large scale

data, the scalability is an very important and realistic problem especially for real world

applications. Although we apply stochastic optimization method during our training

process to accelerate the convergence speed, there are still a lot of opportunities to

improve the learning speed. For example, some sequential learning approaches might

be able to make the convergence faster. Moreover, if we can derive a way to learn

the hashing bits independently during each iteration, then the whole learning process

can be simply paralleled and thus terminated much faster. We will closely look at

this direction.
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