
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1986

Availability Driven Multiple Access Network Architecture Availability Driven Multiple Access Network Architecture

Dan Cristian Marinescu

Vernon J. Rego
Purdue University, rego@cs.purdue.edu

Wojciech Szpankowski
Purdue University, spa@cs.purdue.edu

Report Number:
86-645

Marinescu, Dan Cristian; Rego, Vernon J.; and Szpankowski, Wojciech, "Availability Driven Multiple Access
Network Architecture" (1986). Department of Computer Science Technical Reports. Paper 561.
https://docs.lib.purdue.edu/cstech/561

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

AVAILABILITY DRIVEN MULTIPLE
ACCESS NETWORK ARClITTECTIJRE

Dan CrisLian Marinescu
VemonRego

Wojciech Szpankowski

CSD-1R-645
December 1986

AVAILABILITY DRIVEN MULTIPLE ACCESS NETWORK ARClUTECTURE

Dan Cristian Marinescu, Vernon Rego, Wojciech Szpankowski

Department ofComputer Sciences

Purdue University

West Lofayette, IN, 47907

Abstract. An architecture for a non-homogeneous local network connecting a large number of

users (worksLalions) 10 a number of servers is proposed in this paper. A connectionless

communication model and a high speed broadcast channel are assumed to provide an

interconnection network between the servers and the users. The Availability Driven Multiple

Access Architecture is based upon the correlation of the channel allocation strategy with server

availability by means of scheduling protocols. A scheduling protocol defines a communication

discipline in which servers capable of providing services compete for control of the

communication channel by using a multiple access algorithm in one of the following classes:

random, limited contention or contention free multi-access. When in control of the channel, a

server performs a sequence of different activities, including a broadcast message of its

willingness to provide certain types of services, thus inviting all users to send their service

requests. A multi-access algorithm is then used to give each user a chance to send its request to

the remote server. In addition to an inherent dynamic load balance, the system enjoys a number

of other desirable properties such as fairness, robustness, stability. etc.

- 2-

1. OVERVIEW

This paper presents an alternative architecture for a local network connecting a number of

workstations with a set of processors. The Availability Driven Multiple Access Architecture

described in the following is designed for scientific or knowledge processing environments in

which each user has a dedicated workstation which may require frequent access to the set of

servers connected to the network:.

DPA (DoD Protocol Architecture) is a very successful computer communication architec­

ture that has positively influenced the theoretical and practical developments in this field. The

definition of communication sockets at Berkeley, the development ofRemote Procedure Call Pro·

tocols and of the Network File System at SUN, are all significant contributions to DPA.

Nevertheless there arc few open questions related to the integration of communication functions

into the computer architecture.

An important question is related to the efficiency of perfonning remote operations. cer­

tainly, an architecmre which splits the networking functions into a large number of layers, in

order to provide a general interface for different types of applications and which attempts to treat

different types of networks unifonnly cannot lead to an efficient implementation. Long haul net­

works and local area networks differ drastically from one another and it is at least questionable

whether a computer communication architecture which treats them unifonnly is adequate. The

two types of networks have speeds which differ by 2-3 orders of magnitude, different error rates,

and different topology. In addition, local networks are generally one hop networks while the long

haul networks are the store and forward kind, with a list of differences iliat is far from being

exhausted. On the other hand, while a long haul network is primarily used to move different

types of data from one location to anomer, in a local network it is becoming increasingly impor­

tant to move computations from one location to another in order to achieve a distributed process­

ing environment.

- 3 -

FWlclional communication is defined as communication occuring only in connection with

the need to serve or to request a service [10J. If functional communication is feasible from the

implemcntational point of view, it can lead to a simpler communication architecture since the

only communication primitives are remote procedure call (RPC) like operations. In addition. by

raising the semantic level of communication. improved system performance as well as increased

system perforrnability can be expected.

In case of functional communication a system can be viewed as consisting of two groups of

nodes, a large group of user nodes and a much smaller group of servers. The most frequent type

of communication is the one across group boWldaries. Nevertheless communication between

users can be performed using a communication server. Such a server is also necessary La perform

internetwork communication functions like routing, address resolution (conversion from local

addresses to internetwork addresses and vice-versa), to run internetwork protocols as well as stan­

dard transport protocols. SelVers can pretend that they are users and request services from other

users.

Functional communication is based upon functional addressing, namely each request for

service is identified by a service type, unique system-wide. Each server is characterized by the

dynamical list of services it provides at a given moment of time.

Communication can be initiated either by a user (client) requesting selVice or by a server

offering a certain assortment of services. The Availability Driven Multiple Access architecture

utilizes functional communication based upon a client-selVer paradigm in which the server ini­

tiates communication. Moreover the allocation of the communication channel (Le., the central

server of the system) is done under the control of the various servers.

The paper first presents some measurements which show that even in a DPA environment,

the processor overhead associated with data or computation movement is considerable. It limits

the actual transfer rates available at the user level. This explains why the communication channel

-4-

is rarely the bottleneck of present systems. Based on the measurements performed we argue that

a simpler architecture is necessary and we propose ADMA. Next the basic concepts behind the

ADMA are presented. We next introduce scheduling protocols and present a taxonomy of

scheduling protocols. Finally, we discuss performance issues. Two kinds of scheduling protocols

have already been presented in [7] and [8J. The models of the ADMA systems discussed in these

two papers can be used together with Kuhen's approximations [5] for a delay analysis. The

behaviour of the system is sufficiently complex to suggest that an exact analysis appears not to be

tractable at this point in time. Hence we use qualitative rather than quantitative arguments in our

effort to show that ADMA is feasible and exhibits good performance. The results of a modeling

effort based upon simulation are then presenLed.

2. PERFORMANCEISSUESINDPA

DPA seems to be a more suitable model for a computer communication architecture than

OSI as far as efficiency of implementation is concerned. It has a simpler Sb"ucture, with only four

layers (network interface, intemetworking, transport and application), gives a legitimate status to

connectionless communication, allows direct communication between non-adjacent layers and

provides a hierarchical approach to communication.

Given a high speed communication channel and an environment where the ratio between

communication related activities and computational ones is considerably higher than in most

present local networks, an interesting question is whether DPA is still suitable from the perfor­

mance point of view. To provide an answer to this question we have perfOITIled several measure­

ments in the local network of our department.

At the time when the measurements reported here were perfoITIled, our 10 Mbps Ethernet

connected several VAX 780s, a VAX 785, a file selYer, less than a dozen SUN workstations

(model 2 and 3), a multiprocessor system, FLEX 32, some graphical workstations and several

olher processors, all running Berkeley UNIX (TM), 4.2 BSD. The traffic carried by our Ethernet

- 5 -

was relatively low and most of the time the channel load was considerably lower than 5% of its

capacity, averaged over sixty seconds. The file server was responsible for 10-30% of the total

network traffic. The packet size distribution was: 20 to 30% of the packets were 970 - 1150 bytes

long, and 60 to 70% of the packets were 60 - 241 bytes long. Since then a VAX 8600 as well as

several new SUNs and a new file server have been added. Now the traffic has increased and is

often above 5% of the channel's capacity, and the packet length distribution is evenly divided

between small and large packets.

In this environment we have perfonncd some rather crude measurements in order to esti­

mate lhe processor overhead related 10 file transfer protocols and to remote procedure call execu­

tion.

2.1. Measurements Related to the File Transfer Protocol

The measurements reponed here were perfonned while transferring files between a VAX.

785 running in a single user mode and a VAX 780 with a relatively light load. The goal of our

measurements were to establish upper bounds for the actual data transfer rates available at the

user level and to determine to which extent the implementation of DPA is a limiting factor in

achieving higher data transfer rates. Clearly, the actual data rates between machines with a nor­

mal load would be considerably lower than those reported here.

-6-

Put FIle (Send) Get File (Receive)

ASCII BINARY ASCII BINARY

31.24 86.38 13.12 44.79

Table 1. F.T.P. data transfer ratcs (kbyte/sec)

Table 1 shows the measured transfer rates which vary from 13 Kbps La 87 Kbps depending

upon the type of data being transferred and the actual type of transfer. send or receive. A

significant difference can be noticed depending upon the direction of the data transfer. The

receiving data ratc is 50 % or less of the sending data rate. No sensible explanation can be pro­

vided; the study of FTP code could provide some light. As expected. the transfer rates depend

upon the type of data being transferred, it is at least twice as high for binary data than for ASCII.

The load on the Ethernet due to other types of traffic, unrelated to our experiment. was very low,

less than 2% of its capacity. The number of collisions observed was less than UP for 106 packets

transmitted. Consequently we are confident that the packet transmission time, the propagation

delays. the queuing delays for the communication channel and packet retransmissions delays are

very small and consequently do not influence the actual transmission ratcs.

-7-

Protocol Layer
Put File (Send) Get File (Receive)

ASCII BINARY ASCII BINARY

Socket 0.44 0.48 0.66 0.62

TCP 1.29 1.16 1.30 1.06

IP 0.53 0.51 0.66 0.58

Device Driver 1.22 1.40 0.89 0.96

Total 3.48 3.55 3.51 3.28

Table 2. The kernel CPU time (seconds) for networking functions when transferring 1 Mbyte of
data with FrP from/to a VAX 785 in single user mode.

Table 2 shows total time spent in the layers of lhe communication architecture implemented

in the kernel, for the transfer of 1 Mbyte of data in each of the four cases examined. The actual

measurements were performed by profiling both the kernel and the FIP code on the machine

working in a single user mode, where the FI'P was initiated. The following observations are in

order.

-a. The total kernel CPU time for networking functions is approximately equal in the four cases

examined (the difference is less than 10% of the maximum value measured), and a careful

implementation of FI'P can probably improve its overall performance to some extent,

-b. TCP uses less than 33% of this time and between 5% and 15% of the tolaI processor time

(the total processor time ranges from 6.59 seconds per Mbyte for get-binary to 23.53

seconds per Mbyte of data for put-ASCII)

-c. The processor overhead related to ex.ecution of networking functions limits de facto the

traru;fer rate between two VAX 7858 both working in single user mode.

From our data it seems very unlikely that the use of a connectionless transport protocol,

UOP, can speed up the transfer rates considerably. The window size in TCP seems to be adequate

- 8 -

and the total overhead of TCP is not excessive. The data presented here seems La contradict the

results of Meister et al [12]. Their results indicate that file transfer protocols based upon connec­

tionless communications is about 50% more efficient than the ones based upon connection

oriented transfer protocols. In OUf case even ifUDP involves less overhead than TCP it is hard to

believe that a 50% improvement in performance can be achieved. Unfortunately, no reasonable

file transfer protocol based upon UDP was available in order to provide the definitive conclusion

that in DPA, file transfer protocols based upon connectionless transport protocols are not consid­

erably more efficient than protocols based upon connection oriented transport protocols.

2.2. The Performance of Programs with Remote Procedures

In order to measure the response time in case of client-server communication we have

implemented a very simple Remote Procedure Call protocol based upon UDP (User Datagram

Protocol) and we have activated several server processes located at different distances from the

client process. In our measurements four server processes were active, one on the same machine

(machine A) wiLh the client (zero distance), one on machine B, on the same Ethernet (distance I),

the third on machine C located in another local subnet connected to the Ethernet through a 10

Mbps token passing system, (distance 2) and one on machine D accessible through INTERNET

and located in California. A large number of measurement points were collected and the results

of these measurements have been used to model the behavior of a program with remote pro­

cedures. The measurements were performed at different loads of the server machines and at dif­

ferent levels of traffic over a period of one month.

The measurements and the conclusions of our modeling are reported in [6]. These results

will be summarized in the following. We have defined eight types of remote procedures (RP),

classified according to:

- 9 -

the size of the input (arguments) to the remote procedure,

the amount of computations performed remotely,

the size of the output (returned value) produced as a result of remote procedure execu-

tion.

Each of these parameters can be s (small) or I Oarge). For example an <s, s. I> type means:

small input, small computation and large output. Large argument/returned value means 1 kbyte

of data, and large computing is an empty loop executed laS times. Small argument/returned

value means 100 bytes or less and small computations are few dozen machine instructions. For

the <s, S, s> RP type, the 95% confidence intervals of the response time are: (11,11), (24,24),

(26,28) and (866.898). All times are given in milliseconds and they represent the response time of

machines A, B, C, and D respectively. The corresponding values for the <1, i, [> RP are:

(375,389), (933,989), (458,464) and (3816,3876).

Based upon this data we have been able to model the behavior of a program which uses a

certain mix of the basic eight Davors or RP's. For example we have modeled paging activity as

an equal mix of <s, i, l> and <i, i,l> RP '5, the first case corresponds to pages which have not

been changed and the second case to updated pagcs. The results are shown in Figure 1. We have

planed the relationship between the so called gamma faCLOr and the paging rate. The gamma fac­

tor is defined as the ratio between the execution time with remote paging and to the time taken

when paging is done using a local disk with a fixed paging time of 25 msec/page. In case of

machine D, the performance degradation is considerable even for low paging rates:127.65 for

0.31 pages/sec, 26.43 for 0.30 pages/sec, 4.10 for 0.23 pageS/sec and reaches 1.31 for 0.075

pageS/sec. These results arc only to be expected, since paging over a long haul network docs not

seem a reasonable approach.

33

31

29-

27 -

25-

23-

21·

19

Gamma
17Factor

15

13-

11-

9-

7-

5-

3

1-

,,,
J

),,
/,,,,,,

-'

I I J I J I I I
o ~ M M M 1 12 lA l~ I~ 2 U U U

Frequency ofRemole Page, in page/sec

Figure 1 The gamma factor for machines B (solid) and CCdashed) function of the paging rate in pagesfsec

-10 -

2.3. Observations related to the measurements

The level of the traffic in most local networks very rarely exceeds 10% of the channel capa­

city, when averaged over a period of sixty seconds or more. There are several explanations for

this level of traffic: first of all, in case of multi-user systems the networking software limits the

rate at which a given host can transfer data. In addition many local networks connect only a few

multi-user hosts. Another reason is that there are only a few applications with a non~neglectable

ratio of communication to local computational activities. A possible explanation could be the

relative unfriendliness of the communication software which does not encourage the design of

dislributed applications.

We have observed a bimodal distribution of packers carried over the network. Typically, we

have short packers (smaller than 240 bytes), and large packers with size closed to 1000 bytes.

The data transfer rates available at application protocol level are rather modest. In case of

the file transfer protocol the processing overhead at each end is considerable. For example when

sending a binary file, the kernel processing time at each end amoWlts to 30% of the total delay. A

null procedure call requires about 25 msec.

Even for relatively low load of a remote server and low traffic tluough the network, frequent

execution of remote operations can be very costly. For example in case of remole paging, the

degradation in performance is tolerable only for rates no larger than I page/sec. Qearly these

values depend upon the speed of the remOle server, its load. as well as the nelwork traffic load.

But significant performance degradation may occur for relatively small variations in the execu­

tion rale of the remote operation.

3. ADMA ARCHITECTURE

- 11 -

3.1. Heterogeneous systems interconnected by a broadcast channel

A tendency toward computing based upon powerful user dedicated workstations can be

observed. Cost/perfonnance considerations as well as the convenience of a distributed environ­

ment arc the driving force behind this tendency. Different types of servers are integrated in such

environments. File servers are the most popular ones now, but printing servers and computational

servers will be likely to emerge. A computational server could be a machine with a special archi­

tecture needed. say, in scientific or knowledge processing.

The need for remote services is increasing in such systems. It has already triggered the

development of convenient user interface through Remote Procedure Call protocols. Once the

networking software becomes friendlier an increased number of applications will use it

FWlctional communication becomes an intriguing approach to communication in such sys­

tems. It docs eliminate the lowest levels of present communication architectures and leads to

potentially simpler systems. At the same time the basic communication mechanisms like flow

control and error control need to he exercised only at the remote computation level and hence

hener performance could he expected.

A detailed description of the communication primitives as well as the mechanisms to estab­

lish a functional connection are beyond the scope of this paper. We focus only on the communi­

cation aspects ofdistributed systems.

An important observation is: the communication channel becomes the central server of such

a system and hence the algorithms to allocate this resource are now very important. The transmis­

sion of each data unit requires the execution of the channel access algorithm.

To analyze the transmission delays for a data unit one has to take into account processing

and waiting times at both ends, the transmission time and the propagation delay as well as the

overhead and the waiting time associated with the execution of the channel multiple access algo­

rithm. The objectives of any communication architecture are to reduce as much as possible the

- 12 -

components listed above. Increased processor speed and faster communication channel help

decrease the total communication delay of every data unit But we advocate an approach based

upon qualitative changes in the way entities communicate rather than on quantitative ones.

3.2. Motivation for ADMA

The overhead associated with switching the communication channel is implied by the

transmission of every data unit. For multiple access algorilhms this overhead depends upon: the

channel load and the propagation delay. As we have argued earlier, the channel load is likely to

increase in systems like the ODes described here. There is little hope of decreasing

propagation delay. So we have to investigate new methods of sharing the communication chan­

nel.

On the olher hand, faster channels will allow larger data transmission units. But unless we

improve the communication paradigm it is questionable whether one could effectively usc larger

transmission dala units. The bimodal packet distribution discussed earlier indicates that the net~

work carries a considerable amount of control and status information delivered as short packets.

We conjecture that functional communication could make better use of larger transmission data

units.

Another crucial observation is that a user-server community is highly nonhomogeneous as

far as the traffic is concerned. Server nodes are considerably more active than user nodes. At the

same time there are much fewer server nodes than user nodes. Hence it does make sense to con­

sider the possibility of giving priority to servers in controlling !.he channel. In this case only one

execution of the channel access algorithm will be required to send an entire queue of processed

results. when a server is in control of the channel. At this point we should observe that grouping

of nodes in a broadcast system other than user and server nodes is possible, and other methods of

sharing the channel may also be possible.

-13 -

3.3. Functional description of an ADMA system

Each server in the system provides a set of services. The mechanisms to start a server pm­

cess on a server machine are part of the establishment of a functional connection. They can be

implemented as a service request sent to a known port available on each server machine. and

based upon a system-wide known set of semantics.

When a server is in control of the charmel it broadcasts the list of services it is capable of

and willing to perform. Then it empties its output queue containing the results of previous com­

putations during a duty period. When the duty period is tenninated a service period begins. Any

client which needs any of the services advertised sends its request using a multi-access algorithm.

If a certain service is offered by multiple servers, each of them will receive Lhe request and treat

it according to its individual scheduling policy. The heavily loaded servers may even ignore it If

the client does not request multiple instances of execution of its request, all servers in the same

functional group will have the option to discharge the requeSt in whatever phase of processing it

is as soon as they observe another server's reply.

A functional group consists of a set of servers capable of performing a certain servicc.

When a service period is terminated, the server relinquishes control of the channel. and depend­

ing upon the scheduling algorithm, another server will obtain control of the channel. A large

number ofvariations of the scheme described above can be imagined.

An ADMA system seems to enjoy a number of desirable properties as far as performability

is concerned. By communicating with a functional group rather than with a particular server, the

client is no longer concerned with the name or the location of the server(s). The system seems

more robust, and more reliable. Stateless servers can be easily implemented.

An interesting observation is that communication is essentially carried out by parallel

RPC's. The implementation of parallel RPC's is rather tricky in other systems. The client has to

dynamically update the multicast list of target servers. Further, the servers tend to respond at the

- 14 -

same time. In the case of collision based multiple access methods this leads to an excessive level

of collisions. Additionally, an ADMA system can dynamically balance the the load on its

servers. The drawback of an ADMA system is probably an increased response time, especially

for services bound to service groups with low population.

3.4. Scheduling protocols

The concept of a scheduling protocol introduced in this paper refteclS the need for a coordi­

nated access to a communication channel and to a number of resources connected to lheir users

through a shared communication channel.

Multiaccess protocols provide an answer only to the problem of sharing a communication

channel [IJ. [41. [11J. without any concern for why the need for communication occurs. In OUf

communication model we consider the problem of causality, by recognizing that communication

occurs only in connection with a request to use a remote resource. Hence. independently of pro­

cessor and communication channel scheduling strategies, we can identify in each use of a remote

server a cycle consisting of the following sequence of events:

a user node needs to use a remote resource; as a result of this need a request packet is

created at the user's site.

the request packet joins a queue of local requests, RQ (Request Queue), waiting to gain

access to the communication channel,

when the channel becomes available the request is transmitted 10 the server, and joins a

queue of system wide requests waiting to be processed by that seTVer, IQ (Input Queue),

the request is processed and results are obtained,

the output packets containing the results are added to an OQ (Output Queue), at the server's

site, waiting to be transmitted to the node which has originated the request.

- 15 -

the result packets are transmitted; when received by the user node they join the queue of

partial results of processed requests, PR (Processed Queue). There, they might wait for

other partial results from other servers or may be interpreted independently.

A scheduling protocol correlates channel allocation with resource allocation based upon the

sequence of events described above. Scheduling protocols are based upon a two level approach

to the problem of multi-access. First of all, they enforce a communication discipline allowing

only the servers to control the communication channel.

To allow the servers to share the communication channel various strategies may be used.

ranging from random, to limited contention [11] and to contention-free server multi-access. Ran­

dom multi-access schemes. though easier to implement, will probably lead to a longer channel

acquisition period for higher input rate and consequently to a lower channel utilization. In the

case of random multiple access, instability problems arc likely to occur. The resulting system

will be less fair but more robust than systems based upon other multi-access methods. On the

other hand, when contention-free multi-access protocols are used, such as when servers fOIm a

logical token passing ring, the system will have additional desired properties. Not only will it bc

fair in giving each server a chance to usc the channel, but it also gives higher throughput.

The server's multi-access strategy strongly depends upon the characteristics of the set of

servers, namely, their numbcr, their relative processing speeds and their relative usefulness to the

set of users. In a network with a few servers, of comparable characteristics, providing similar

functions, a contention-free strategy such as a token passing scheme is more reasonable since it

gives each server an equal, orderly chance to use the channel and there is no need to allocate

more channel time to a heavily used selVer. On the other hand, when the number of selVers is

large and their processing speeds and functions differ widely, limited contention or even random

multi-access schemes arc advantageous provided that the total level of traffic is relatively low.

- 16 -

Let us now examine the second important aspect of a scheduling protocol, namely, how the

channel is shared among all users in need of the service provided by a certain server. Assuming

that the server which currently has control of the channel decides that its present status allows it

to acquire more work. it broadcasts a control packet informing all users of its availability and a

description of the type(s) of services it is willing to perform. At that moment a multi-access algo­

rithm for the set of users needs to be employed. Random multiple access, limited contention or

contention-free algorithms can then be used to provide each user (in need of the particular type of

service being offered) a chance to use the channel.

The arguments discussed in connection with the servers' multi-access method are also valid

in case of users' multi-access method. Random multi-access is more adequate for systems with a

large number of users which spread their requests evenly onto the set of servers, and for which at

any given moment of time the average number of requests waiting to be sent to the remote

servers is relatively low. The channel acquisition period can become large and performance

degradation can be significant when the average length of the Request Queues is large. Another

factor which must be taken into consideration is whether a given server should accept all service

requests or only one request, in response of its willingness to perform a cenain type of service. In

case all requests have to be accepted, a good solution is to use limited~contentionmulti-access

channel acquisition algorithms.

3.5. A Taxonomy of Scheduling Protocols and ADMA Systems

A scheduling protocol is characterized by the pair consisting of the server multi-access

algorithm and the user's multi-access algorithm, denoted by the pair: (S, U). Each of these algo­

rithms could be: random (R), collision resolution (CRA), carrier sense multiple access with colli­

sion detection (CSMA-CD), or contention-free (CF).

- 17-

The architecture described in this paper can be implemented for different topologies of the

interconnection network. We will first investigate the case of a bus network topology, and

conflict-free scheduling protocol among servers and each of the above protocols for users. Our

choice is motivated by the fact lhat this environment is probably e'asier to understand and to

analyze than other pairs <topology I scheduling protocol>.

The philosophy governing the ADMA is that the servers must have priority over the users

for the use of the communication channel, since this is considered to be the chief resource in the

system. A user may send a request for service only when a server capable of processing that

request has broadcasted its willingness to perfonn such a service. In the systems considered here

the servers pass channel control to one another in a cyclic manner, through the use of a control

packet called a CAP, or Channel Allocation Packet. An important measure of the system perfor-

mance is the CAP-cycle-time, which is the time needed by the CAP to cycle through all the

servern.

The servers may certainly use other multiple access methods such as collision resolution

with reservations or CSMA-CD with reservations, in which case they would compete for !.he con-

trol of the communication channel rather than share it peaceably. In such a case as soon as the

server obtains control of the communication channel, all competition stops until the server in

control terminates its own reservation period by explicitly broadcasting the CAP to another

server.

Each server maintains two queues: an input queue (IQ) for gathering requests from users,

and an output queue (OQ) for storing requests already processed, awaiting transmission via the,

channel to respective users. When a given server has received the CAP (and consequently is in

channel control), it performs two types of tasks. It first empties its output queues by returning

results of already processed requests to the respective request-originating users. Next:, it anempts

to solicit more work (ifit is able) from users.

- 18 -

A server will announce its willingness to acquire more service requests by broadcasting a

control packet called the SAP (Service Availability PlUket), if its current workload permits. If a

server is heavily loaded it will bypass the broadcasting of its SAP, for one or more CAP cycles

until its worldoad reaches an oplima11evel. This characteristic of ADMA systems makes !:hem

ideal for implementation of load balancing strategies with a minimum level of traffic dedicated to

status and control information. As soon as a server has broadcasted its SAP which contains a

descriptor identifying all services its owner is willing to perfOITn. the system enters the user's

phase. In this phase all users which have requests for service. matching the ones offered by the

SAP, attempt to send these requests.

The first type of system modeled is a token passing system, [8], [13]. In this case all users

are arranged in a logical ring, and each knows its predecessor and successor in the ring. The SAP

contains the address of the first user allowed to send a request. In order to ensure fairness the first

user 10 receive the SAP is the successor of the last user which has received service in a previous

CAP cycle. When a user receives the SAP, it sends its request(s) for service if it has any, and

then it passes the SAP to its successor. This procedure continues until the SAP has made a full

cycle through the ring ofusers. After a SAP cycle, the server which has originally broadcasted the

SAP, passes the control of the communication channel to its successor by sending the CAP. It

should be noted that when a user has multiple requests for service, different strategies can be

used, e.g., all requests can be sent (exhaustive service), only already waiting requests (gated ser­

vice), at most a fixed number of requests (nonexhauslive service), or at most one request (single

request strategy). A request for service may consist of one or more data packets sent through the

channel.

The second type of system modeled is one using a Collision Resolution Algorithm (CRA)

[11], [14]. In this case all users with ready service requests attempt to transmit them when they

hear a SAP. If more than one user attempts to send its requests, a collision occurs and a splitting

- 19 -

algorithm is used in order to assign to each contender its own transmission slot The algorilhm

described in [7] and attributed by Massey [11] to Gallager is used. Each user involved in a colli­

sion flips a binary coin. All those who flipped a 0 transmit in the next slot while those who

flipped a 1 transmit only after those who flipped a 0 resolve their potential collisions. The pro­

cedure continues until all the users who have initially collided in the first slot of the CRI (Colli~

sian Resolution Interval) have transmitted successfully. We use a blocking algorithm, and any

user with a new request has to wait until the completion of the CRI,

The third system modeled is based upon CSMA-CD. The Carrier Sense Multiple Access

with Collision Detection [15] requires that prior to the usc of the charmel, a user listens to the

channel in order to determine if it is idle and if not, politely delays its attempt to transmit. If a

user is involved in a collision (there is still a vulnerability period when two or more users could

get the impression that the channel is idle) then the user has to wait a random amount of time

before attempting to retransmit again. More precisely a user will transmit with probability ~ in

one of the next L slots. We have considered two policies concerning retransmission which can be

best explained in terms of a slotted channel. The first policy is the truncated binary exponential

backoff [16] which starts with L = 2 and doubles the value ofL each time the user experiences a

new collision. The second policy one we call a a fixed CSMNCD and utilizes a fixed value of L.

namely L = 5.

4. MODELLING AN ADMA SYSTEM

In this section we describe the queueing model of the ADMA based upon which we built a

simulation model of the ADMA. Some preliminary simulation results are discussed.

- 20-

4.1. Queuing Model of an ADMA System

The ADMA system consists of lhree components: a set of users, a set of servers and the

broadcast channel. The channel is characterized by scheduling protocols as described earlier. In

this subsection we present a queuing model for a server and a user. This model is used in simula­

tion to obtain global performance measures of the system.

Let us start with a user description. We assume lhat an external source of infonnation (81)

generates requests to the system (to users) according to a Poisson distribution with a rate of A.

requests per slot. Henceforth, we refer to).. as the generated request arrival rate. Requests from

81 are routed to the i -th user with branching probability Pi I i = I, 2 , ... , M. Each user con­

tains K queues for K different type of services. as described in Sec. 2.2. The input ratc to the k­

th queue at the i -th user is A. Pi q". where q" is branching probability for the k -th type of service.

The queues at users are finite, and throughout lhe simulation we assume that the capacity of a

user's queue is equal to five messages. The real input rate introduced into a user's queue is called

the effeclive a"ival rale. The message length (in packets) is geometrically distributed. We

assume that only eight types of generic services are provided by servers, Le., K = 8. Moreover,

each user's service discipline is exhaustive (up to the limit specified by the capacity of the user's

queue). We also assume that each user's request has some pre-processing time, which is set to be

constant

According to the scheduling protocols described earlier, users have access to the channel

only ajler receiving an SAP from the server currently soliCiting service from users. When an

SAP is received, a user checks lo determine if there is a match between services provided by lhe

SAP and the actual user request. If a match occurs, the appropriate user's queue is served in an

exhaustive manner. The request is transmitted through the channello the active server, i.e., to the

server which possesses the CAP packet. Note that the user's queue may be modeled as MIGII

system with server vacation.

- 21 -

SERVER k

IQ,

c
H
A r
N ,

OQ, ,
N ,
E ,
L ,,

--1 SAP, I...:

Figure 2: Queueing model of a server in ADMA Adopted for simulation.

In Figure 2 a model of the k-th server is presented. The server contains two queues: the

input queue IQk.. and the output queue, OQ*.. In addition, an SAP block is shown in the figure. A

server may access the communication channel only when in possession of the system's CAP.

TIlls is represented in the figure by 'gates' labeled CAP. When a server is active. it exhaustively

serves the output queue, OQ. and then based on information regarding the utilization of CPU

and other resources in the server, transmits the SAP packet. After sending the SAP, the server

waits for request input from users. These requests are queued in the input queue. lQk of the

server. The active phase of a server is terminated when the seNer transmits the CAP to its

(server) successor in the sClVers' logical ring. Both queues, i.e., IQ and OQ, are assumed to have

an infinite capacity. Note that the input queue may be modelled as a GIlX]IMIl queue (batch

arrivals), and the output queue as a GIMll queue with server vacation.

Whcn a server is not in possession of the CAP it processes the jobs from the input queue.

The length of a job is assumed to be geometrically distributed. The average job length is either

"small" or "large" as described above. The queuing discipline for fQ is FIFO. The simulation

model is used to estimate some characteristics of the system. In partiCUlar, we are interested in

total delay in the system and the average value of !he CAP cycle time. The results and discussion

- 22-

of the simulation are presented in the next section.

4.2. Simulation Experiments

The simulation model has lhe following parameters:

(a) The number of users is is fixed at M = 10. The branching probabilities of generated requests

are unifonnly dislributed into the set of users so that all users generate service requests at

approximately the same rate, this making the user subsystem symmeuic.

Each user has as many request queues as service types offered in the network. in our case

K = 8 and we assume that the branching probability of a service request of being of type i is

qj = ~ for i = 1•...K. Each request queue has limited buffer space where a maximum of5

requests can be queued. If the request queue is full all incoming requests arc rejected.

The maximum number ofusers allowed to send during a SAP cycle is 10. On the other hand

only one queue per user is serviced during the SAP cycle so that each of the 10 users has the

opportunity to send requests. An exhaustive service policy is implemented, so that all

requests in the queue selected by the user are sent. Consequently the maximum number of

service requests collected by a server during a SAP cycle is 5xlO = 50.

(b) The number of servers is fixed at N =4. All servers are identical in terms of processing

speed and other resources (buffer space). Each server provides two diffeccnt types of ser­

vices. one computationally intensive, the other involving a light computation. Service times

are geometrically distributed with means of 20 for computationally intensive services and 1

for the light ones. Input and output queues at the server have a large capacity, and they can

be assumed to be infinite buffer queues, so that no rejection takes place at these queues.

Whenever a server is in control of the channel it exhausts its output queue in returning pro­

cessed requests to users. Here we assume a faUlt-free routing of results to correct users.

- 23-

(e) The channel is assumed to be slotted with slot duration .equal to a packet transmission time.

Transmission times are geometrically distributed with means 1 for s • small. and 3 for i ,

large. Propagation delays are considered very small and are neglected.

The investigation of the different types of ADMA systems presented as a function of vary-

iog input request rate is a central issue of this report. The objectives of OUf simulation study are:

delay analysis. the determination of critical cycle times, for the CAP and for the SAP I as well as

the estimation of the inherent overhead related to system control. In order to make use of the

simulation results in analytical modeling, we have considered a totally symmetric system in which

the behavior ofall users is identical, and all servers are symmerric.

If we denote by n/ the average number of packets required to transmit a service request

from a user to a server, then in such a symmetric system each user (there are M such users) gen-

erates communication requests at the rate:

nr x /..,~!
/..,c.w = M

Here the effective request arrival rate is defined as:

'A~f = (l - P7lj) x 'A
with Pr~j the probability of rejection and Athe generated service request arrival rate.

If we denote by no the average number of packets required to transmit the results of pro-

cessing one request from the server to the user, and if the server subsystem is synunetric then

each server generates communication requests at the rate:

no x Ae!
).",= N

The overall commWIication load on the channel is:

Ac =M X"-c,1ol +N xA..c,3'=(n/+no)Al !

In our case nr = 2 and no = 2, hence:

Ac =4XAl!

The systems under investigation were subject to service request rates in the range 0.1 to 0.4

requests/packet time. A simple reasoning has indicated that our system is communication bound.

- 24-

Hence the system will saturate when Ac = 1. It follows that the maximum service request rate for

which the system is capable of processing all incoming service requests is: Amax = 0.25. More

precisely I if the users buffer were made infinite in capacity, then the maximum throughput would

be about 0.25. Below this rate the effective request arrival rate is "almost" equal to the generated

one since rejections are small enough to be negligible. Above this rate this system will start

rejecting incoming service requests through the rejection mechanism built at the user level.

Clearly, the system will begin to saturate carlier since this rough estimate has not taken into

account the communication overhead related to the distributed control of each multiple access

method considered. In fact the difference between this value and the actual arrival rate at which

the system starts rejecting input requests is a rough measure of control overhead.

We have performed steady state simulation experiments. To guarantee steady state the

experiments were conducted for a large number of service requests arrivals namely 20,000 for

A~0.2, 10,000 for A~0.16 and 7,500 for lower values of the service request arrival rate. The

simulation time had varied in the range 75,000 for low arrival rates to 50,000 for large values of

A, all times being expressed in packet's time.

The simulation was performed using ASPOL. ASPOL is a very compact simulation system

developed by Control Data and available on CDC mainframes and on the Cyber205. It is suitable

for simulation of computer systems. ASPOL is a process oriented simulation system based on

FORTRAN. Four similar simulation environments, one for each type of ADMA system, have

been conslructed.

4.3. Discussion of Results

In this section we present the results of a set of intensive simulation experiments. Addition­

ally, we attempt 10 justify, as best as we can, some of the trends that result from the experiments.

We stress that lhe study is not concluded and is only a preliminary effort intended to yield some

- 25-

insight into the complex interactions of a client-server based ADMA network. More detailed dis­

cussion is offered in [9].

To begin with, consider the relationship between effective and real arrival rates for service

requests under each of the four protocol operating modes. By definition, the effective service

request arrival rate is the number of requests that have not been rejected per slot. Oearly, for a

probability of rejection equal to zero (Le.• buffers of infinite capacity) the best lhat a system can

do is offer an effective ratc equal to the real rate. Observe that the collision-free ADMA protocol

lays claim to this behavior for real loads A. such that A::; 0.25. It appears that Amax = 0.25

causes all ADMA protocols to begin rejecting incoming requests. A heuristic explanation of why

Amax = 0.25 approximates the maximum throughput was given in Sec.4.2.

Figure 3 presents the total delay in the ADMA versus the effective service rate. As

expected, the <CF, CF> scheduling protocol exhibits the largest delay for small values of the

effective service rate. The reason for this is best explained in terms of the token ring protocol In

the latter, message delay is higher than for the CSMA/CD protocol for (comparable) low loads

simply because of the relatively high token-passing overhead at low loads. In contrast, lhe

CSMA/CD protocols exhibit little or no channel overhead at low loads. In the ADMA system,

lhe effect is basically the same. Note that lhe trend for request delays is the same, with the largest

contribution to delay (coming from a queue) varying with lhe A range. It is of considerable

interest to detennine the value of Afor which the collision-free ADMA protocol saturates.

Finally, Fig. 4 demonstrates mean CAP cycle-time for the fOUf protocols on the ADMA sys­

tem. These quantities might be used to build a hybrid-analytical model of ADMA. It turns out

that an analytical model of ADMA is available if one knows the first two moments of Ihe CAP

and SAP cycles times [17]. Unfortunately, an analysis to detennine cycle-time distribution is

certainly very intricate, if at all possible. A possible way out, and one we plan to use, is a moment

approximation approach that utilizes the first two cycle-time moments obtained from simulation

CSMA·CD

• fixed
'" exp-backoff

Collisioo Resolution

Co11i!ioo Fra:

LEGEND:

..

..

,,
,.
};

{ ,
I " t··
J ~
{r, ,
I • !, ~
r : ~, ,
{ ,
"., ,, ,

I :, ,, .,., ,
/ :"

", ., ., ,, ,, ,, ,, ,
/ ,, ,, ,, ,, ,,,, :"

J !,,
..' .0"

J ••'

./ .':..",
.... ,I."

...
.....'1r(, •••

*" -'-

1900

1800

1700

1600

1500

1400

1300

1200

1100

Average Time 1000
in System

(sIOlS) 900

800

700

600

500

400

300

200

100

0

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
Effective Service Request Arrival Rate (requests/sIOL)

Figure 3 Average Time in SY8tem ver8U8 Effective Request Arrival Rate
for Different U8er Multi-Acce88 Strategies in an ADMA System

CSMA·CO
• llxea
... exp·backoff

Collision Free

Collision Resolution

LEGEND:

,

,

.'

,,,
J.
(:, ;
J.. ~.•
f!J: l'

I • •, ,
J.t •
I ..
j -¥ t, ,
,: .
I :, ,
, ;
1 ;, ,, ,, ,,., ., ,, ,, ,

f ;,, ., ,, ,,, ., ,, ., ,, ,
I ;

750

700

650

600

550

500

450

Average CAP 400
CyleTime

(slots) 350

300

250

200

150

100

50

0

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
Effective Service Request Arrival Rate (requesrslslot)

Figure 4 Average CAP Cycle Time versus Effective Request Arrival Rate
for Different User Multi-Access Strategies in an ADMA System

- 26-

in an analytical model of the ADMA.

ACKNOWLEDGMENTS

The authors express their thanks to Paul Albitz and Bavasch Patel who have performed measure­

ments related to file transfer execution.

REFERENCES

1. Gallager Robert G., A Perspective on Multicu:cess Channels, IEEE Transactions on Infor-

malion Theory, vol IT-31, No.2, pp. 124-142, March (1985).

2. Gihr O. and Kuelm P.I., Comparison of Communication Services with Connection­

Oriented and Connectionless Data Transmission, Proceedings of the International Seminar

on Computer Networking and Performance Evaluation, Tokyo, September (1985).

3. Hayes I.F., An Adaptive Technjque for Local Distributions. IEEE Transactions on Com-

munlcalion, vol. COM-26,pp. 1178-1186, August (1978).

4. Kleinrock, L., On QueUing Problems in Random-Access Communication. IEEE Transac­

tions on Information Theory, vol IT-31 , No.2, pp. 166-175. March (1985).

5. KuehnP.J.• Multiqueue Systems With Nonexhaustive Cyclic Service. B.S.T.J., vo158, 3, pp.

671-698, (1979).

6. Marinescu, D.C., On the Behavior of Programs With Remote Procedures,CSD-TR-636,

Computer Sciences, Purdue University, November (1986).

7. Marinescu, D.C, Scheduling Protocols Based Upon Collision Resolution Algorithms, IFIP

Networking Symposium, Toulouse. France, November (1986).

8. Marinescu, D.C., Rego, V. and Szpankowski, W., Heterogeneous Local Networks Support­

ing Scientific and Knowledge Processing Based Upon a Token Passing ADMA System,

IEEE Networking Symposium, Washington DC, November (1986).

-27 -

9. Marinescu. D.C., Rega, V. and Szpankowski, W., Modeling of an Availability Driven Mul­

tiple Access Network Architecture, CSD·TR 626. Computer Sciences, Purdue University,

submitted to SIGMETRICS 87, September (1986).

10. Marinescll, D.C., Functional Communication in Distributed Systems, in preparation.

11. Massey J.L. t Collision Resolution Algorithms and Random-Access Communications.

University of California, Los Angeles, Rep. UCLA-ENG 8016, April (1980).

12. Meister B.W., Phlippe, 1.A. and Svobodova. L., Connection-Oriented Versus Connection­

less Protocols: A Performance Study, IEEE Transactions on Computers. vol C-34, No. 12,

pp lIM-Il73, December (1985).

13. IEEE Standard 802.4, Token Passing Bus Access Method and Physical Layer

Specifications, 1984.

14. Capetanakis, 1.. "Tree algorithms for packet broadcast channels". IEEE Trans. on Informa­

tion Theory, IT-25, 1979, pp.505-515.

15. Tobagi, F., Hunt. V., "Performance analysis of Carier Sense multiple access wilh collision

detection", Computer Networks, 4, 1980, pp. 245-259.

16 Metcalfe, R.. Boggs. D., "Ethernet: Distributed packet switching for local computer net­

works", Commun. of ACM., 19,7,1976, pp. 395-404.

17. Kuenh P., "Approximate analysis of general queueing networks by decomposition", IEEE

Trans. on Communications, vol. COM-27, 1, 1979, pp. 113-126.

	Availability Driven Multiple Access Network Architecture
	Report Number:
	

	tmp.1307986960.pdf.0GZ_7

