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ABSTRACT

Tully, Melissa A. Ph.D., Purdue University, May 2015. The Pathological Role of 
Acrolein in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. 
Major Professor: Riyi Shi. 
 
 
 
Multiple sclerosis (MS) is an autoimmune demyelinating neuropathy that affects 

nearly 2.5 million people worldwide. Despite substantial efforts, few treatments are 

currently available largely due to limited knowledge of pathogenic mechanisms 

underlying the disease. The immune-inflammatory nature of the pathology has 

prompted investigation of the role of oxidative stress in disease development and 

progression; however targeting reactive oxygen species for neutralization has had 

marginal success therapeutically, suggesting that an alternate oxidative stress-

related target would prove beneficial. Recently, our lab has implicated acrolein, a 

highly reactive aldehyde that is both a byproduct and catalyst of lipid peroxidation, 

as a potential therapeutic target and biomarker for MS diagnosis and symptom 

monitoring. We have shown that acrolein is elevated in clinical MS cases and 

experimental autoimmune encephalomyelitis (EAE), a murine model of MS. 

Furthermore, pharmacological sequestering of acrolein afforded a neuroprotective 

effect by suppressing tissue acrolein level, slowing disease progression, and 

decreasing symptom severity. Acrolein can also be produced exogenously as a 

pollutant from combustion engine exhaust, industrial processing, burning of 
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tobacco and overheated cooking oil vapors. The pathogenic role of endogenous 

acrolein in MS raises the possibility that environmental exposure to acrolein could 

potentially increase MS risk or exacerbate MS symptoms.  Using a respiratory 

exposure model in combination with urinary detection of an acrolein metabolite and 

immunoblotting assessment of tissue acrolein-lysine adducts, we have 

ascertained that inhalation of acrolein can cause accumulation of acrolein in mice 

systemically and locally within the CNS. Additionally clinical acrolein assessment 

using urine and serum samples revealed that MS patients who self-reported as 

smokers demonstrated higher systemic acrolein levels and demonstrated greater 

motor deficit compared to MS patients that did not smoke. These observations 

indicate that acrolein is likely contributing to the mechanisms underlying symptom 

development in EAE and MS and may serve as a therapeutic target and biomarker 

for diagnosis, guiding treatment regimens and monitoring relapses. 
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CHAPTER 1. INTRODUCTION

1.1 Clinical Features of Multiple Sclerosis 

Multiple sclerosis (MS) is an immune-mediated demyelinating disorder of 

the central nervous system (CNS) that affects 1 of 1,000 people in the United 

States and approximately 2.5 million globally. Two of three MS patients is female 

and on average exhibit an onset of symptoms five years earlier than their male 

counterparts [1, 2]. Along with differing risk associated with gender, MS incidence 

and prevalence also appear to be related to geography, most commonly 

presenting in Caucasians living in the cooler climates of the Northern hemisphere. 

With an average onset of 23.5 years, MS patients have a mean life expectancy of 

50 years and often require assistance with daily activities 10 years following 

diagnosis due to severe disability [2, 3].  Additionally, patients were 3 times more 

likely to experience premature mortality than the unaffected population by 38 years 

following symptom onset [4]. With an annual patient cost of care of 47,000 dollars 

and as a disease that presents relatively early in life, MS poses a substantial 

financial burden on patients, their families, and society [5]. Furthermore, MS 

patients are at greater risk of presenting with concomitant autoimmune diseases 

such as autoimmune thyroid disease, type I diabetes mellitus, and inflammatory 

bowel disease, perpetuating financial stress associated with increased healthcare 

cost [6-9]. 
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 Due to a global assault of CNS white matter tracts, MS presents clinically 

as a collection of neurological sequelae that can often be mistaken as unrelated 

[10]. Table 1.1 outlines patient-reported symptoms and/or those observed upon 

physical examination for which an MS diagnosis should be considered. 

 

Table 1.1 Clinical signs and symptoms of multiple sclerosis; adapted from [11] 

Symptoms Description % Affected  % Presenting 
Sensory 
Disturbances 

Intense itching, 
numbness, 
tingling, pins and 
needles, 
tightness, 
coldness, 
imparitment of 
joint position 
sense, swelling 

100 30.7 

Pain Trigeminal 
neuralgia, 
Lhermitte’s sign, 
dysesthesia, 
back/visceral pain, 
tonic spasms 

40.3 0.5 

Balance/ Gait 
Disturbances, 
Ataxia 

Observed 
deviation in 
walking pattern, 
limb 
discoordination 

30-50 8.9 

Vertigo Severe dizziness, 
specifically a 
movement 
hallucination 

45 
 

1.7 
 

Visual Deficits Complete/parital 
loss, optic neuritis, 
internuclear 
opthalmoplegia, 
diplopia 

15-75 15.9 
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Bowel/Bladder 
Dysfunction 

Urgency, 
incontinence, 
constipation 

-- 1 

Sexual 
Dysfunction 

Complete; 
Impaired 

50;20 -- 

 

1.2 Multiple Sclerosis Subtypes and Diagnostic Criteria 

MS presentation can differ in average age of onset, time course, and rate 

of symptom progression, which resulted in the establishment of two main subtypes: 

relapsing remitting (RR) and primary progressive (PP) [12].  RR MS accounts for 

approximately 85% of cases, tends to present in younger patients between 25 and 

33 years old and is characterized by transient CNS attacks with either partial or 

complete symptomatic resolution, occurring one to two times per year. However, 

RR MS patients generally transition into a phase deemed secondary progressive 

(SP) at 40-44 years old in which they exhibit attacks without recovery. Absence of 

recovery following an attack and the resulting slow, steady deterioration of the 

patient is believed to correspond to permanent neurological impairment attributed 

to axonal degeneration and loss of neuroplasticity [13]. PP MS is responsible for 

the other 15% of cases and presents in older patients averaging from 35 to 39 

years old [14]. PP MS shares many characteristics with SP MS, except that it is 

not preceded by RR MS; PP MS patients, even in early stages of the disease, do 

not experience physical recovery following an attack. 

 The diagnostic criteria for MS are explicitly described in the McDonald 

Criteria which was first created in 2001 and outlines combinations of physical 

examination findings and laboratory testing to afford sufficient evidence to 
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definitively diagnose MS [15]. Since its inception, the Criteria have been revised 

twice, once in 2005 and again in 2010, to incorporate further knowledge gained 

pertaining to the disease as well as to account for advances in technology [16-19]. 

These revisions preserved both sensitivity and specificity of the Criteria as a 

diagnostic tool and also the classification of symptoms as either disseminated in 

space or in time (Table 1.2) [20]. Complete demonstration of any of the 

combinations of parameters outlined in the criteria justifies a definitive MS 

diagnosis (Table 1.3). The diagnosis of “possible MS” can be made if an MS 

diagnosis is suspected, but some pieces of the criteria are absent. If the 

requirements of the criteria are not met, other disorders should be considered. 

 

Table 1.2 Defintions of McDonald Criteria Terms; adapted from [20] 

 

Dissemination in Space (DIS) 

MRI shows: ≥ 1 T2 lesion in ≥ 2 of the 
following areas: 

 Periventricular 
 Juxtacortical 
 Infratentorial 
 Spinal cord 

 

Dissemination in Time (DIT) 
 

A new T2 or Gd-enhancing lesion on 
follow-up MRI  

(not dependent on timing of first scan) 
OR 

Gd-enhancing lesion(s) and non-
enhancing lesion(s) present at the 

same time 
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Table 1.3 McDonald Criteria for diagnosis of multiple sclerosis; adapted from [20] 

Clinical Presentation Additional Data Required 
 ≥ 2 attacks 
 Objective clinical evidence of ≥ 2 
lesions 

OR 
Objective clinical evidence of 1 lesion 

with evidence of prior attack 

 

None 

 ≥ 2 attacks 
 Objective clinical evidence of 1 
lesion 

DIS 
 

OR 

Await further clinical attack suggestive 
of a different site in the CNS 

 1 attack 
 Objective clinical evidence of ≥ 2 
lesions 

DIT 

OR  

Await second clinical attack 
 1 attack 
 Objective clinical evidence of 1 
lesion 

DIS + DIT 
OR 

Await further clinical attack 

Suggestive of PP MS 
 1 year of disease progression 

 2 of the following: 
a. DIS in brain: ≥ 1 T2 lesion in MS 

regions 
b. DIS in spinal cord: ≥ 2 T2 cord 

lesions 
c. Positive CSF 

d. Isoelectric focusing evidence of 
oligoclonal bands 

AND/OR Elevated IgG index 
 

1.3 Pathogenesis of Multiple Sclerosis 

Although the exact mechanisms remain to be elucidated, the clinical 

features of MS can be attributed to a triad of neural tissue injury processes: 

inflammation, demyelination, and axonal degeneration [2, 13]. Auto-reactive 

myelin-specific T-lymphocytes appear to be the main culprits eliciting 



6 

 

demyelination. Activated by molecular mimicry, these lymphocytes initiate a 

cascade of subsequent events such as blood-brain-barrier disruption, microglial 

activation, excitotoxicity, plaque development, and ultimately neurodegeneration 

and microglial scarring [13, 21-23]. Evidence of inflammation can be seen in 

biopsied plaques, which contain lymphocytes and macrophages, and additionally 

myelin reactive T-cells are observed in the blood and CSF of MS patients [24-26]. 

Microglia contribute to the inflammatory atmosphere, instigated by the T-cells, by 

releasing proteolytic enzymes, cytokines, oxidative products, and free radicals 

creating an environment that is toxic to oligodendrocytes and myelin [27, 28]. 

Inflammation elicits demyelination and axonal damage, the process likely 

underlying permanent neurological impairment and conduction failure. Axonal 

injury has been recently recognized as playing a critical role in the symptomatic 

development in MS patients [29-32]. Ultimately, compromise of axons is believed 

to lead to the neuronal degeneration, cerebral atrophy, and permanent loss of 

function, all of which are characteristic of late stage MS. 

 Despite the inflammatory and autoimmune nature of the disease, traditional 

anti-inflammatory therapies have so far demonstrated marginal effect in 

lengthening time between relapses, alleviating symptoms long-term, and slowing 

disease progression [13, 33]. Development of a novel treatment strategy 

necessitates additional study of pathogenic mechanisms. Establishment of well-

defined links between the observed inflammatory reactions, demyelination, and 

axonal damage will enable identification of more suitable pharmacologic targets. 
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1.4 Oxidative Stress-Induced Damage to Axolemma and Mylein 

Many recent studies suggest that oxidative stress underlies damaging 

pathological processes of CNS diseases and trauma [34-37]. In part, this can be 

explained by the inherent vulnerability of the CNS to oxidative stress due to low 

levels of intrinsic anti-oxidants (catalase and GSH-peroxidase), high composition 

of polyunsaturated lipids (membrane and myelin), and high quantities of ROS 

produced by essential neurochemical processes in healthy CNS cells, relative to 

other organ systems [34-39]. Consequently, in disease states, the CNS is 

especially susceptible to oxidative insult by reactive oxygen species (ROS) and 

lipid peroxidation (LPO) byproducts. Until recently, studies have predominantly 

attempted to reduce oxidative damage in the CNS by pharmacologically targeting 

ROS to alleviate neurotoxic effects [38, 40-42]. However, this therapeutic approach 

has yielded inconsistent results in achieving symptomatic improvement in animal 

models of CNS disease and trauma, leading researchers to target LPO products 

therapeutically. 

1.5 The Neurotoxic Nature of Acrolein 

Acrolein, an α,β-unsaturated aldehyde and LPO byproduct, appears to have 

a crucial role in mediating and perpetuating oxidative stress. Acrolein, produced 

endogenously by lipid peroxidation and exogenously by burning tobacco, frying in 

oils and petrol, and combustion of wood and plastic, has been implicated in various 

diseases such as ischemia, spinal cord injury, respiratory diseases, traumatic 

injury, chronic pain and neurodegenerative diseases by perpetuating oxidative 

stress [34, 41, 43-47]. Of LPO aldehydes, acrolein is the most abundant and 
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reactive. In fact, it has been reported to exceed concentrations of other aldehydes, 

such as 4-hydroxynonenal, by 40 times and is highly reactive with crucial cell 

components including phospholipids, proteins, and DNA [48-50]. Additonally, the 

half-life of acrolein is considerably greater compared to ROS (days as opposed to 

fractions of a second) [48].  Furthermore, acrolein can act as a catalyst to produce 

more acrolein and ROS intitiating a detrimental cycle of oxidative stress.  Taken 

together, evidence indicates that acrolein is capable of instigating and perpetuating 

oxidative stress.  

In addition to endogenous oxidative processes, exposure to acrolein can 

also occur by way of an exogenous environmental pollutant such as emissions 

from petrol combustion, cigarette smoking, manufacturing processes, and frying 

food [51-55]. This raises the possibility of an additive effect when considering 

acrolein exposure, potentially rendering individuals with pathologically high levels 

of endogenous acrolein more susceptible to environmental acrolein, since 

acrolein, regardless of its source, can exacerbate oxidative stress.  

Due to its extended half-life compared to ROS, targeting endogenous 

acrolein has promising applications in diagnosing, monitoring and treating MS. 

Many current treatments of MS are geared towards preserving functional loss, 

suppressing inflammation, and reducing immune response associated with the 

disease such as 4-aminopyridine (Ampyra), Interferons, Glatiramer acetate 

(Copaxone), Natalizumab (Tysabri), and Fingolimod (Gilenya). Unfortunately, 

these drugs are very expensive, especially for uninsured patients. Some acrolein 

scavenging drugs currently being examined, such as hydralazine, are substantially 
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less expensive, already FDA approved and have been shown to be effective at 

both delaying onset and decreasing the severity of symptoms in in vitro and in vivo 

studies [56]. 

1.5.1 Acrolein-Mediated Demyelination 

Demyelination within the CNS, a main feature of MS development and 

progression, manifests as a transient functional loss characteristic of RRMS [13, 

33]. Loss of myelin structural integrity hinders neuron function by increasing the 

energy needed for action potential propagation. If myelin is not repaired, adenosine 

triphosphate (ATP) stores will eventually be depleted and action potential 

conduction will cease. Acrolein is not only capable of directly damaging myelin but 

also anchoring proteins that secure myelin to the axon. In the event of damage to 

an anchoring protein, myelin will split and separate from the axon; a process known 

as decompaction. In instances where myelin damage is severe and myelin 

decompaction occurs, voltage-gated potassium (VGK) channels are no longer 

localized to the juxtaparanodal region but instead aberrantly expressed along the 

length of the axon. Abberant expression of VGK channels also leads to impairment 

of action potential propagation due to the unregulated outward current of 

potassium ions and loss of ionic gradient essential for action potential generation 

[57-59]. In one ex vivo study, myelin retraction from the nodes of Ranvier and 

myelin decompaction were observed following isolated spinal cord incubation in 

acrolein [58]. Furthermore, exposure of juxtaparanodal VGK, absent action 

potential propagation, and aberrant VGK expression were reported [58, 60].  
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 Previously thought to be separate aspects of the MS pathology, 

demyelination and axolemma damage now appear to be more related than 

previously thought; damage to axons and/or myelin can affect ionic gradients and 

localization of channels along the axon, essential processes in signal conduction 

[61-64]. Acrolein is capable of affecting both of these neuronal components and 

therefore is likely a contributor to detrimental processes underlying function 

deterioration in MS patients. 

1.5.2 Acrolein-Induced Axonal Injury in Multiple Sclerosis 

Clinical ex vivo studies assessing markers of myelin disruption and axonal 

damage in MS patient brain tissue were the first to implicate the axonal 

degeneration as an important mechanism underlying symptoms of MS. The 

studies revealed a large quantity of transected axons, which could explain 

permanent neurological impairment seen in late stages of MS [32, 65]. In another 

study, inflammatory damage to axons led to conduction deficits and emergence of 

symptoms in animal models and clinical MS cases [32, 66]. Evidence of the critical 

role of axonal injury in MS, has prompted some to hypothesize that axonal injury 

resulting in degeneration would elicit a permanent functional deficit like that seen 

in SP- and PP MS [32, 65].  

 As stated previously, acrolein can directly injure axolemma, likely due to the 

phospholipid component. Additionally, demyelination, aside from previously 

mentioned detrimental effects, renders the axonal membrane vulnerable to the 

harsh extracellular environment of inflammatory mediators, acrolein and other 
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highly reactive molecules. In this way, acrolein is capable of inflicting membrane 

damage both directly and indirectly.   

 We have shown acrolein exposure compromises the structural integrity of 

cell membrane and prolonged exposure results in an increase in axon permeability 

and a halt of compound action potential propagation [41, 67, 68]. Application of 

acrolein scavenger, hydralazine, proved to be neuroprotective to axons in both in 

vivo and in vitro spinal cord trauma models.  Taken together, there is extensive 

evidence implicating acrolein as an instigator of axonal damage and ultimately, 

axonal degeneration [59]. 

1.5.3 Direct and Indirect Impairment of Mitochondrial Processes by Acrolein 

Mitochondrial dysfunction is another mechanism believed to underlie 

symptoms characteristic of MS compromising energy output and ultimately, if left 

unchecked, initiating cell death pathways. Damage to myelin and axolemma 

results in an inward calcium current, subsequently triggering cell death pathways 

and release of mediators that can directly injure mitochondria [33]. In fact, 

mitochondria may even be more susceptible to acrolein and ROS than other 

cellular structures. 

Mitochondria generate ATP to support cell survival, growth and function; 

however the electron transport chain causes the non-pathological generation of 

ROS. In this way, mitochondrial dysfunction not only affects the amount if ATP 

supplied to the cell but also directly exacerbates oxidative stress through the 

release of additional ROS. Thus, in a pathological state, mitochondria are 
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inherently vulnerable to the inflammatory environment and upon death further 

promote an oxidative stress and CNS damage [69, 70]. 

Mitochondrial dysfunction has been elicited by acrolein in cardiac tissue, 

brain and spinal cord [71-73].  In one study, upon exposure to acrolein, isolated 

mitochondria depleted glutathione (GSH) and increased ROS levels [71].  The 

brain relies almost exclusively on GSH as an antioxidant due to intrinsically low 

levels of catalase, further establishing acrolein as a potent neurotoxin [71]. 

Furthermore, acrolein is known to directly inhibit function of adenine nucleotide 

translocase through the binding of cysteine residues, an essential component of 

the electron transport chain. In this way acrolein is capable of directly injuring 

mitochondria, halting cellular respiration and perpetuating oxidative stress [71, 74, 

75]. 

.
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CHAPTER 2. NEUROPROTECTIVE ROLE OF ACROLEIN SCAVENGERS IN 

EAE

2.1 Introduction 

The therapeutic utility of scavenging acrolein in EAE was first studied in the 

Shi laboratory. The study employed the FDA-approved antihypertensive 

hydralazine, which had been previously demonstrated to effectively scavenge 

acrolein in vitro at concentrations well below those currently approved for the 

treatment of hypertension. EAE was induced in female C57BL/6 mice by the 

subcutaneous injection of myelin oligodendrocyte/complete freunds adjuvant at 

caudal and rostral ends of the mouse spinal cord to elicit an autoimmune response 

to myelin (Figure 2.1). Deconjugated pertussis toxin was administered 

intraperitoneally at the time of myelin oligodendrocyte glycoprotein (MOG) 

application and again 24 hours later to increase blood brain barrier permeability 

and facilitate immune cell infiltration into the CNS. Hydralazine (1mg/kg) was 

administered I.P. daily to the treatment group beginning on day of model induction. 

Behavioral scores were monitored through the conclusion of the study, at which 

point animals were euthanized and immunoblotting and immunohistochemical 

techniques were performed to quantify acrolein-lysine adduct level within the spinal 

cord and myelin integrity, respectively. Acrolein was found at significantly greater 
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levels in EAE spinal cords when compared to both control and hydralazine-treated 

groups. Additionally, application of an acrolein scavenger in EAE mice provided a 

neuroprotective effect, significantly attenuating behavioral deficit and reducing 

demyelination relative to untreated EAE counterparts. These results demonstrate 

the potential of acrolein scavenging as an effective therapeutic strategy in 

combating the detrimental effects of the EAE model and potentially even in the 

treatment of clinical cases of MS. 

 

Figure 2.1 Induction of EAE model. C57BL/6 mice were injected subcutaneously 
with MOG emulsion at rostral and caudal ends of the spinal column. An 

intraperitoneal injection of deconjugated pertussis toxin was administered at time 
of MOG injection and, again, 24-36 hours later. 
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Figure 2.2 Acrolein Scavenging by Hydralazine. Schematic of mechanism by 
which hydralazine neutralizes acrolein. Acrolein binds to hydrazine group of 
hydralazine. 

2.2  Acrolein-Lysine Adducts Increased in EAE Spinal Cord Tissue 

Acrolein-lysine adduct level in the spinal cord was quantified using 

immunoblotting in three groups: saline-treated control mice (n=3), EAE mice (n=3) 

and hydralazine-treated EAE mice (n=3). Untreated EAE mice exhibited 

significantly increased levels of acrolein-lysine adducts (20.27 ± 3.0 a.u.) 

compared to saline treated control mice (12.30 ± 1.3 a.u., p<0.05, Fig 2.2 B). 

Hydralazine-treated EAE mice (15.4 ± 1.6 a.u.) also demonstrated a decrease in 

acrolein-lysine adduct level relative to control, although this difference was not 

found to be significant. 



16 

 

 

Figure 2.3 Dot Immunoblotting Quantification of Acrolein-Lysine Adducts in 
Spinal Cord. Immunoblotting demonstrated an increase in acrolein-lysine adduct 
level in EAE mouse spinal cord. Band intensities were quantified using ImageJ 

and expressed in arbitrary units. (A) Representative blot for each group. (B) 
Acrolein-lysine adduct level was significantly increased in untreated EAE mice 

(20.27 ± 3.0 a.u.) relative to sham-treated control mice (12.30 ± 1.3 a.u., p<0.05). 
Hydralazine-treated EAE mice exhibited an acrolein lysine adduct level of 15.14 
± 1.6 a.u. Statistical analysis was performed using a one-way ANOVA and post-

hoc tests. All data are expressed as mean ± SEM.   

 

2.3 Hydralazine Attenuated Behavioral Deficit and Myelin Damage in EAE 

mice 

Behavioral assessments of hydralazine-treated and saline-treated EAE 

mice were preformed daily throughout the course of the study using a 5-point 

behavioral scale (Figure 2.2 A). The average onset of symptoms in the 

hydralazine-treated group (21.73 ± 2.1 days post-induction) was significantly 
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prolonged compared to their saline-treated counterparts (15.42 ± 0.4 days post-

induction, p<0.01, Figure 2.2 B). Additionally, symptom severity was quantified by 

averaging the highest scores for individual animals within each group starting. 

Hydralazine-treated EAE mice (1.72 ± 0.4) demonstrated significantly lower 

behavioral scores than the saline-treated EAE mice (3.33 ± 0.3, p<0.05, Figure 2.2 

C). For myelin quantification, thoracic spinal cord segments were extracted from 

saline-treated EAE, hydralazine-treated EAE, and controls, sectioned and stained 

with fluoromyelin. Control sections did not exhibit signs of demyelination. There 

was a statistically significant difference in demyelination area between saline-

treated (25.58 ± 3.8%, n=3) and hydralazine-treated (5.10 ± 4.2%, n=3, p<0.05) 

EAE groups (Figure 2.3). 
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Figure 2.4 Hydralazine Therapy Ameliorated Motor Deficits. (A) Behavioral 
assessment of saline-treated EAE and hydralazine-treated EAE mice (p<0.01 

when groups compared after day 17). (B) Hydralazine treatment delayed 
symptomatic onset of EAE relative to saline-treated EAE (p<0.01). (C) Mean 

peak behavioral score was averaged for each group. Hydralazine-treated EAE 
mice exhibited a significantly lower peak behavioral score (p<0.05). 
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Figure 2.5 Attenuation of Acrolein-Lysine Adducts by Hydralazine Treatment. 
Immunohistochemical analysis of myelin, using a myelin basic protein (MBP) 

stain. Quantification was carried out using ImageJ. Spinal cords from the saline-
treated EAE group experienced significantly increased demyelination compared 

to their hydralazine-treated counterparts (p<0.05). 
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2.4 Application of Hydralazine at Time of Symptom Emergence 

Although acrolein scavenging using hydralazine was shown to be an 

effective neuroprotective strategy in EAE, it is important to note that treatment with 

hydralazine began at the time of model induction. However in a clinical scenario, 

a patient would not be treated for a disorder until they present with obvious, 

diagnosable symptoms. To address this fundamental issue and ascertain the 

clinical utility of acrolein scavenging, we conducted a study in which mice were not 

treated with hydralazine until behavioral deficit emerged (score of 1-tail paralysis). 

Even with delayed application of hydralazine, a neuroprotective effect was still 

observed, in which rate of symptom progression and behavioral scores were 

significantly decreased in hydralazine-treated EAE mice relative to their saline-

treated counterparts. 

 

Figure 2.6 Hydralazine Application at Symptom Onset. (Left) Behavioral score of 
saline-treated EAE mice and EAE mice when treated with hydralazine at 

symptom onset. Treated mice displayed significantly lower EAE scores than the 
sham treated group  
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2.5 Summary and Significance 

This study further demonstrated the neurotoxic nature of acrolein and 

implicated it as a relevant pathologic factor in EAE and likely in MS as well. 

Acrolein-lysine adducts were detected at significantly increased levels in EAE mice 

in concordance with emergence of motor deficit. Furthermore, daily administration 

acrolein scavenger hydralazine conferred a neuroprotective effect, attenuating, 

reducing severity and delaying onset of motor deficit in EAE mice when applied at 

time of model induction through the end of the study. Ex vivo analysis of myelin 

using immunohistochemistry demonstrated that hydralazine treatment also 

resulted in a significant reduction in demyelination within thoracic white matter. 

Additionally, when hydralazine was administered when EAE animals first 

presented with tail paralysis, the earliest sign of EAE motor impairment, significant 

reduction in behavioral score was observed in the treatment group. In light of this 

finding, it is reasonable to suggest the potential of acrolein scavenging for 

treatment of clinical cases of MS. Treatment application at emergence of 

symptoms is a more clinically relevant, due to treatment in clinical scenarios 

beginning when patients present to their physician with a problematic symptoms.  

Hydralazine is an effective scavenger for both acrolein and acrolein-protein 

adducts and attenuated neurotoxic effects in the EAE model when applied at time 

of model induction or at emergence of motor deficit. Since hydralazine is already 

an FDA-approved compound and doses used in this study are safe in humans, 

therapeutic acrolein scavenging could potentially be employed in the future as a 

treatment for MS patients with relative ease. 
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CHAPTER 3. ALLEVIATION OF BEHAVIORAL IN EAE USING ALTERNATIVE 
ACROLEIN SCAVENGERS

3.1 Introduction 

Due to the demonstrated neuroprotective effects of hydralazine treatment 

in the EAE model, acrolein scavenging has proven to be an effective treatment to 

improve motor function and delay symptom onset.  In order to further establish the 

therapeutic benefit of scavenging acrolein, it is crucial to demonstrate that the 

acrolein scavenging capability of hydralazine underlies its therapeutic utility in the 

EAE model, rather than its currently approved usage as an antihypertensive.    As 

such, two alternative acrolein scavengers, phenelzine, an MAO-I antidepressant, 

and EGCG, a green tea catechin, were identified as other compounds containing 

hydrazine groups, the functional group of acrolein scavengers, and evaluated in 

the same manner as hydralazine. 

3.2 Materials and methods 

3.2.1 Experimental Autoimmune Encephalomyelitis (EAE) mice 

Female C57BL/6 mice were injected with 0.1 mL MOG/complete Freunds 

adjuvant emulsion (MOG) (Hooke Laboraties, Lawrence, MA) subcutaneously 

over the caudal and rostral ends of the spinal cord.  This mixture mimics 

endogenous proteins and creates an immune response to myelin in the central 

nervous system.  Immediately following the emulsion injection, 0.1 mL of 
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deconjugated pertussis toxin, (Hooke Laboratories) which is believed to create a 

more permeable blood brain barrier and hasten the onset of symptoms, was given 

intraperitoneally and again 24 hours later. 

3.2.2 Behavioral Assessment 

Behavioral assessment was performed using a 5-point scale for 

quantification.  Animals were placed on a grate to observe walking ability and 

motor function.  The scale is as follows:  0 – no deficit; 1 – limp tail only; 2 – hind 

limb paresis without frank leg dragging; 3 – partial hind limb weakness with one or 

both legs dragging; 4 – complete hind limb paralysis; 5 – moribund, paralysis in 

hind limbs and forelimbs.  The animals were monitored three times for the first 

week and then daily until the end of the study. 

3.2.3 In vivo phenelzine treatment 

Phenelzine sulfate salt (Sigma Aldrich) was dissolved in phosphate buffered 

saline (1x) and then sterilized through a vacuum filter.  Intraperitoneal phenelzine 

treatment (15 mg/kg, 0.1 mL) was intiated at three different time points: day of 

induction, at behavioral symptom onset (score=1), and at symptom peak 

(score=3).  Control animals received intraperitoneal injections of saline rather than 

phenelzine. 

3.2.4 In vivo EGCG treatment 

PBS was bubbled with nitrogen for five minutes before epigallocatechin 

gallate (Sigma Aldrich, St. Louis, MO) was dissolved at a concentration of 4 

mg/mL. Following dissolution, the solution was bubbled further to prevent auto-

oxidation. After bubbling, the solution was sterilized using a 0.2 um syringe filter 
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under nitrogen. Daily treatments of EGCG (20 mg/kg) were administered I.P. at a 

volume of 0.1 mL, starting on day of induction through the conclusion of study. 

Control animals received 0.1 mL saline as a sham treatment. 

3.2.5 Spinal cord tissue preparation 

Animals were anesthetized with a Ketamine (90 mg/kg) and Xylazine (10 

mg/kg) and then perfused with cold Krebs solution (124 mM NaCl, 2 mM KCl, 1.2 

mM KH2PO4, 1.3 mM MgSO4, 2 mM CaCl2, 10 mM dextrose, 26 mM NaHCO3, 

10 mM sodium ascorbate) to both lower the body temperature and drain the blood.   

For immunoblotting, the spinal column was then quickly removed and a complete 

laminectomy performed. The spinal cord was then excised from the vertebrae and 

placed in cold oxygenated Krebs solution. 

For immunohistochemical analyses, following perfusion with Krebs solution, 

animals were subsequently perfused with 4% paraformaldehyde. The spinal 

column was then removed and incubated in 4% PFA for 1 hr. The spinal cords 

were then extracted from the spinal column and cut into three 2 cm sections: 

cervical, thoracic and caudal. Spinal cord segments were then incubated in 15% 

sucrose for 24 hrs and then in 30% sucrose for 24 hrs. Tissue was then embedded 

and frozen in OCT compound until slicing.  

3.3 Phenelzine 

Phenelzine is an FDA-approved MAO-I antidepressant that has acrolein 

scavenging capabilities. In order to further establish acrolein scavenging as a novel 

therapeutic strategy in EAE and MS, it was critical to demonstrate that two 

structurally distinct drugs apart from acrolein scavenging groups, were both able 
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to lower acrolein levels within the spinal cord and provide a neuroprotective effect. 

When administered on the day of model induction, in the same manner as in 2.4, 

phenelzine treatment, like hydralazine, resulted in delayed onset of symptoms, 

reduced symptom severity, and slowed disease progression (Fig 3.1). These 

findings further support the pathologic role of acrolein in EAE and the potential of 

scavenging acrolein as a novel therapeutic strategy to improve quality of life for 

MS patients.  

 

Figure 3.1 Acrolein Scavenging by Phenelzine. Schematic of mechanism by 
which phenelzine neutralizes acrolein. Acrolein binds to hydrazine group of 

phenelzine. 
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Figure 3.2 Behavioral Assessment of Sham-Treated (n=8) and Phenelzine-
Treated EAE Mice (n=8). Phenelzine-treated mice demonstrated a delayed onset 

of symptoms, decreased symptom severity, and slowed symptom progression 
relative to sham-treated controls (p<0.1). 

 

Figure 3.3 Phenelzine Attenuated Behavioral Deficit in EAE Mice. Treatment with 
phenelzine significantly decreased mean behavioral score (1.3±0.7; n=6) relative 

to control sham-saline treated mice (3.3±0.25; n=12; p<0.005). 
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Figure 3.4 Phenelzine delayed Symptomatic Onset in EAE Mice. Phenelzine-
treated animals exhibited a significantly delayed onset (23.5 ±7.2; n=6) when 

compared to controls (15.4±2.9; n=12; p<0.001) 

3.4 Epigallocatechin Gallate (EGCG) 

EGCG is an antioxidant naturally present in green tea and has been shown 

to have therapeutic utility in other diseases such as cancer, HIV, and other 

neurodegenerative diseases. In fact, EGCG has already demonstrated potential 

as a treatment for MS; however mechanisms through which it exerts its 

neuroprotective effects have yet to be fully characterized. However, as an anti-

oxidant and acrolein scavenger, EGCG holds great promise as an effective natural 

compound to combat oxidative stress. In this regard, the current study aims to 

evaluate the effectiveness of EGCG in alleviating oxidative stress, particularly its 

ability to mitigate neurodegenerative processes by sequestering acrolein in vivo in 
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a murine model of MS. Two groups of EAE mice, one sham-treated with 0.1mL 

PBS and the other treated with 0.1mL of EGCG (20 mg/kg), were subjected to daily 

behavioral assessment for 28 days. After which mice were euthanized and spinal 

cords removed for morphological assessment. This study is ongoing, however 

preliminary behavioral data is presented below. Preliminary results indicate that 

EGCG has the potential to ease behavioral deficit in EAE mice (Fig 3.2). 

 

 

 

Figure 3.5 Behavioral assessment of sham-treated and EGCG-treated EAE mice. 
EGCG treatment demonstrates positive preliminary results as an acrolein 

scavenger, particularly in decelerating disease progression.  
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3.5 Discussion 

In order to further establish acrolein scavenging as a therapeutic approach 

for the treatment of MS, identification of alternative acrolein scavengers is 

imperative. The two alternative scavengers identified above, phenelzine and 

EGCG, performed similarly to hydralazine when applied to improve behavioral 

outcomes in the EAE model. The commonality of these three compounds lies in 

the fact that they each contain a hydrazine group(s), which is the component 

responsible for the binding and neutralization of acrolein.  As such, this evidence 

indicates that the therapeutic benefit of hydralazine in the initial study can indeed 

be attributed to its acrolein scavenging properties. 

 



30 

 

CHAPTER 4. APPLICATION OF POLYETHYLENE GLYCOL (PEG) AS A 
MEMBRANE REPAIR AGENT

4.1 Introduction 

It is widely accepted that inflammation is the primary component of the MS 

pathology, however the exact mechanisms which instigate CNS damage remain 

incompletely characterized [13, 33]].  Although demyelination is considered the 

prominent pathologic feature underlying symptom development in MS patients, 

recent studies indicate that axonal injury and subsequent degeneration also 

contribute to loss of conduction [2, 76]. These observations indicate that injury to 

either myelin or axon could potentially manifest as neurological deficits 

characteristic of MS.  Furthermore, axonal degeneration has been suggested as 

the underlying cause for the transition from RR MS to SP MS due to the fact that 

this type of damage is irreversible, preventing complete remission following a 

relapse [77]. This theory is supported by marginal success of therapies directed 

solely at myelin preservation, particularly in more advanced stages of the disease 

[13].  

 In light of these findings, it is critical to further elucidate the role of axonal 

damage in MS and to explore therapeutic strategies aimed at neuronal protection 

or repair.  Specifically, the cellular processes that are responsible for initiating 

axonal degeneration remain insufficiently characterized.  Previously, our lab 

demonstrated that traumatic insult to axonal membrane is capable of prompting 
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axonal degeneration in a spinal cord injury model [78-80].  Interestingly, acrolein, 

known to play a role in myelin degradation observed in EAE, is also capable of 

reacting with lipid in the axonal membrane, eliciting damage, and disrupting the 

structural integrity of the axolemma [41, 46, 68, 81].  As such, we postulate that 

acrolein could be a pathological factor underlying axonal membrane damage, 

ultimately leading to axon degeneration and functional loss in MS.  

 To rescue axons with damaged axolemma, PEG, a hydrophilic bioinert 

polymer capable of sealing membrane and promoting cell survival, was 

administered intraperitoneally [82-84].  In another study, PEG effectively restored 

axolemmal integrity in an animal model of spinal cord injury [84-86].  Despite its 

promise in treatment of traumatic CNS injuries, PEG has yet to be investigated as 

a therapy in other disease in which axolemma damage is indicated, such as MS. 

PEG has the potential to rescue damaged axons within the CNS and consequently 

prevent neurodegeneration.  In order to evaluate the therapeutic potential of PEG 

in EAE, first it is crucial to establish that axon damage occurs in EAE and 

corresponds with functional deficit. Once this is confirmed we will proceed to 

evaluate the therapeutic benefit of PEG by evaluating motor function in EAE mice 

and assessing membrane permeability following spinal cord extraction. If 

successful, this study could provide a whole new avenue in the treatment of MS 

and other diseases in which axonal injury and degeneration are implicated. 
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4.2 Materials and methods 

4.2.1 Experimental Autoimmune Encephalomyelitis Mice 

See 3.2.1 

4.2.2 Horseradish Peroxidase Exclusion Test 

Mice were divided into 4 groups:  healthy control mice, PEG-treated EAE 

mice EAE mice prior to onset of symptoms, and EAE mice exhibiting peak 

symptoms.  Behavior was monitored daily as previously described and at the study 

conclusion animals were anesthetized with Ketamine (90 mg/kg) and Xylazine (10 

mg/kg) and perfused with oxygenated Kreb’s solution [56]. The spinal columns 

were removed and the spinal cords were excised by performing a complete 

laminectomy. The excised spinal cord was then incubated in a solution of cold, 

oxygenated Krebs solution and 0.015% horseradish peroxidase (Sigma Type IV, 

Sigma Aldrich) for two hours.  The spinal cords were then fixed at room 

temperature in 2.5% glutaraldehyde and phosphate buffer for four hours.  Post-

fixation, 30 µm sections of the tissue were cut using a Vibratome (Electron 

Microscopy Science, Hatfield, PA, USA). Then the tissue was incubated in a 

diaminobenzidene solution to visualize HRP uptake through injured axolemma. 

Using a microscope and computer, images of the stained spinal cord sections were 

acquired. With the use of ImageJ analysis stained axons were tallied and conveyed 

as density (axons/mm2) [78, 79, 81, 86]. 

4.2.3 Polyethylene Glycol Treatment and Preparation 

A 30% solution of polyethylene glycol (295906, Sigma Aldrich, St. Louis, 

MO, USA) in phosphate buffered saline was made and subsequently filtered for 
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sterilization.  A volume of 0.1 mL was administered intraperitoneally daily starting 

from the day of model induction.  Control animals received a sham saline injection 

in lieu of PEG. 

 

4.3 Results 

4.3.1 Axonal Membrane Damage and Its Alleviation by PEG in EAE Mice 

Using the HRP-exclusion assay, we first assessed the degree of axonal 

membrane damage in the spinal cords of EAE mice: control mice, EAE mice before 

symptom onset, EAE mice at peak bahvioral deficit, and PEG-treated EAE mice. 

The average HRP labeling for these conditions was 867 ± 172 axons/mm2, 3337 

± 719 axons/mm2, 6510 ± 957 axons/mm2 and 1602 ± 357 axons/mm2, 

respectively (Fig 4.1).  Both pre-symptom and peak-symptom mice exhibited 

significantly increased HRP uptake relative to healthy controls (P<0.05; P<0.05).   

In order to ascertain whether PEG can effectively repair the injured axolemma, 

EAE mice were treated daily with 0.1 mL 30% PEG and treatment was initiated on 

day of model induction. Interestingly, we have determined that PEG treated 

animals demonstrated significantly lower HRP uptake than the peak deficit EAE 

group. 
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Figure 4.1 Axonal Membrane Damage in EAE and its Alleviation by PEG. 
Horseradish peroxidase (HRP)-exclusion test determined amount of axonal 

membrane damage in healthy control mice (n=3), pre-symptom EAE mice (n=5), 
peak symptom EAE mice (n=4), and PEG-treated mice (n=5).  A-D) The images 
represent HRP-stained sections of spinal cord tissue from the four groups.  Solid 

arrows denote areas in which HRP did not penetrate the cell while the open 
arrows point to areas depicting HRP penetration revealing increased axonal 

membrane permeability.  E) The bar graph quantifies HRP uptake in each group.  
The value for control group is 867±172 axons/mm2.  The peak symptom group 

had the highest levels of axonal damage (6510 ± 957 axons/mm2 , P < 0.05 
compared to control) while the pre-symptom group exhibited increased levels 
compared to the control group (3337 ± 719 axons/mm2, P < 0.05 compared to 

control).  The HRP labeling in the EAE/PEG-treated group (1602 ± 357 
axons/mm2) is significantly lower than EAE group (p<0.05). 
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4.3.2 PEG Treatment Significantly Reduced Symptom Severity and Delayed 

Disease Onset in EAE mice 

In order to ascertain the effectiveness of PEG treatment, behavioral scores 

from two experimental groups EAE and PEG-treated EAE were compared.  

Behavioral scores for each animal were recorded daily for 4 weeks as previously 

described [56].  Figure 4.2 demonstrates the relationship between average 

behavioral score over time for the two groups. The EAE mice that received PEG 

treatment demonstrated significantly lower behavioral score when compared to 

their untreated counterparts during days 16 to 25. The mean of the peak scores 

for each animal were then calculated and PEG-treated EAE mice demonstrated 

significantly lower mean peak score (1.91 ± 0.4)  than the EAE mice (3.33 ± 0.3, P 

< 0.005) (Fig 4.2 inset).   

Furthermore, PEG application also delayed the onset of EAE symptoms 

(Figure 4.3 inset).  Sham treated EAE mice, experienced symptomatic onset as 

expected, between days 13 and 18, while the PEG-treated EAE mice tended to 

develop initial symptoms at a later time point, as indicated by a delayed mean time 

of symptom onset. Specifically, five PEG-treated animals developed between days 

13 and 18 (similar to sham treated group), three experienced an onset between 

days 20 and 26, and three mice did not develop symptoms during the entire four 

week observation period (for averaging purposes day of onset for these animals 

was recorded as day 28).  The mean day of symptomatic onset in PEG-treated 

EAE mice was 20.63 ± 1.8 days, which was delayed significantly relative to sham-

treated EAE mice (15.42 ± 0.4 days, P < 0.05) (Fig 4.2). 
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Figure 4.2 Evaluation of PEG as a Therapy for EAE Axonal Damage. 
Comparison of behavioral assessment each day between EAE (n =12) and PEG-
treated (n=11) groups.  The graph represents the average score for each group 
of animals throughout the study.  The inset demonstrates that administration of 
PEG significantly decreased the severity of symptoms in EAE mice (P < 0.005).  
The highest score of each animal was recorded and averaged within each group 

to quantify the mean score of severity to be used for the inset. 
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Figure 4.3 PEG Delayed Symptom Onset in EAE Mice. Comparison of onset of 

symptoms between EAE (n=12) and PEG-treated (n=11) groups.  The graph 
represents the temporal distribution and the day of onset of symptoms between 

EAE and PEG-treated mice.  On the first day symptoms appeared, the number of 
mice in each group was recorded.  The EAE mice were tightly clustered together 
earlier in the study while the PEG-treated mice were more dispersed.  The inset 

graph represents the average day of onset for EAE and PEG-treated groups.  
PEG-treated animals developed symptoms significantly later in the study 

compared to EAE mice (P < 0.01).  Three mice in the PEG-treated group never 
developed symptoms and were counted as day 28 for both graphs. 

 

4.4 Discussion 

Using the HRP-exclusion assay to quantify axolemma permeability, we 

have verified axonal membrane damage is greatest when symptoms are at their 

peak severity [78, 79, 86]. Also, although not as robust, axonal membrane 

permeability was significantly increased even in pre-symptomatic EAE mice, 

indicating that axonal membrane damage is indeed a critical component underlying 

the development of EAE (Fig 4.1).    
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 Furthermore, the daily application of the membrane sealing agent PEG, 

elicited a significant reduction in axolemma injury as indicated by decreased 

membrane permeability following the HRP assay relative to the sham-treated 

group (Fig 4.1) [84, 85, 87].  Along with the neuroprotective effect afforded to 

axons, PEG treatment also delayed symptomatic onset and reduced severity of 

behavioral deficit (Fig 4.2, 4.3).  In light of these findings, it is evident that 

axolemma injury is a critical component of the EAE pathology and partly underlies 

functional impairment. Additionally, we have identified a way to repair damaged 

axons using PEG to facilitate membrane resealing, prevent neuronal loss and 

ameliorate behavioral deficit characteristic of EAE.  

These results suggest that administration of PEG to EAE mice is 

neuroprotective due to its ability to repair axolemma in vivo, effectively promoting 

cell survival and reducing the risk of axon degeneration [2, 76, 88]. Membrane 

integrity is critical to the maintenance of ionic gradients necessary for generating 

action potentials and to prevent the influx of calcium into the cell [79, 89, 90].  It is 

hypothesized that membrane repairing agents also have the potential to curtail 

mitochondrial dysfunction seen in MS by way of preventing noxious compounds 

from entering the cells, disrupting the electron transport chain and perpetuating 

oxidative stress. In this way PEG is neuroprotective in EAE mice through both 

direct and indirect mechanisms [41, 46, 82, 87, 91, 92].   

We also observed a significant degree of increased membrane permeability 

in pre-symptomatic mice that were subjected to HRP analysis seven days before 

the emergence of symptoms. Therefore, axonal membrane injury processes 
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precede the onset of motor deficit by at least seven days. The preservation of 

motor function despite evidence of significant axonal membrane damage in EAE 

mice can be attributed to the plasticity of the nervous system. Since there appears 

to be a certain degree of axon loss associated with symptomatic onset, there is 

potential to use axonal membrane damage markers to determine when symptoms 

will emerge.  

 Since application of PEG promotes axonal membrane resealing, it is 

feasible to suggest its synergistic use with other therapeutic approaches such as 

immunosuppression and alleviation of oxidative stress. Due to the link between 

myelin, axolemma and mitochondrial damage underlying this pathology, it may 

prove beneficial in employing therapeutic strategies to address both demyelination 

and axonal membrane damage, both of which will indirectly protect CNS 

mitochondria from insult by extracellular compounds. The potential success of 

using PEG in combination with an immunosuppressant or acrolein scavenger can 

be attributed to PEG’s ability to repair existing damage coupled with another 

compound aimed at removing key mediators of inflammation and oxidative stress. 
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CHAPTER 5. ESTABLISHMENT OF ACROLEIN DETECTION METHODS

5.1 Introduction 

Given the aforementioned evidence of the neurotoxicity and pathological 

role of acrolein in MS, development of new methods of monitoring acrolein in vivo 

is crucial if acrolein research is to be translated to a clinical setting. Success in this 

endeavor could also potentially facilitate the establishment of acrolein as a 

biomarker for diagnosis, guiding treatment regimens and monitoring relapses by 

elucidating dynamics of acrolein levels in different phases of MS. Recent 

advancements have been made in acrolein detection enabling quantification of 

systemic acrolein levels through the evaluation of a urine or serum sample.  The 

following sections serve as a brief overview of currently available acrolein detection 

techniques. 

5.1.1 Gas Chromatography (GC) and Liquid Chromatographay/Mass 

Spectrometry (LC/MS) 

Acrolein detection research began with studies conducted in the 1960s 

which primarily consisted of studies of environmental pollution and exposure to 

pollutants [93].  Acrolein exposure by way of pollutants such as car exhaust, 

industrial processes and cigarette smoke occurs on a much larger scale than 

endogenous exposure following disease or trauma, allowing for the direct 

quantification of acrolein with gas chromatography (GC) or liquid chromatography 
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followed by mass spectrometry (LC/MS) and subsequent derivatization steps [94-

96]. While suitable for exogenous exposure studies, GC and LC/MS-based 

techniques are not the preferred method for endogenous acrolein detection, 

primarily due to the highly reactive nature and substantially lower concentrations 

of acrolein [49]. 

5.1.2 Antibody Detection of Acrolein-Protein Adducts 

Considerable developments in endogenous acrolein detection were made 

by Uchida and colleagues, who introduced acrolein-protein adduct antibodies and 

enabled quantification of small changes in endogenous acrolein levels [97].  When 

used in conjunction with Western blotting, these antibodies afford insight into the 

interactions of acrolein with different proteins. However this method is not preferred 

when endogenous acrolein is present extremely low concentrations; in this 

situation dot immunoblotting is employed [44, 98].  

 The advantage of dot immunoblotting lies in the ability to enhance signal 

strength by combining all detected acrolein-protein adducts into one focus [56, 98]. 

The increased sensitivity afforded by this technique, renders it ideal for 

quantification of acrolein produced by endogenous processes. Additionally, 

accuracy is also improved in this technique due to simultaneous analysis of 

artificial acrolein standards and samples. In relation to the current study dot 

immunblotting is the preferred method for the assessment of CNS acrolein levels 

in animal studies.   

 It is important to note that although these techniques are useful in a 

preclinical research setting, their clinical applicability is not feasible. This can 
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primarily be attributed to the highly invasive nature of antibody-based techniques 

since a biopsied sample of the tissue of interest is required. 

5.1.3 3-Hydroxypropyl Mercapturic Acid (3-HPMA) detection with LC/MS/MS 

The pursuit of new acrolein detection techniques is vital if acrolein research 

is to be translated to a clinical setting, as there is a need for minimally invasive 

techniques to conduct a thorough investigation of the role of acrolein in clinical 

cases of MS. One of the most promising emerging acrolein detection strategies is 

the 3-hydroxypropylmercapturic acid (3-HPMA)-based method [99, 100].  This 

approach is contingent upon the quantification of an acrolein metabolite in either a 

urine or serum sample of a patient. Level of 3-HPMA, a unique acrolein-GSH 

metabolite, is indicative of systemic acrolein levels [101]. The main advantage of 

this approach centers around noninvasive nature, when using a urine sample or 

its minimally invasive nature, for serum samples [100]. Furthermore, 3-HPMA 

quantification techniques utilize LC/MS/MS, presenting the possibility for 

automation and miniaturization for ease of use in clinical acrolein detection [102].   

 The main disadvantage of this technique is that it does not offer insight as 

to the cause of an increase in acrolein levels since it is a systemic quantification. 

Also when GSH is inadequate, as it is in many instances of CNS disease and 

trauma, 3-HPMA may not reflect the true acrolein level since there is not a sufficient 

amount of glutathione for acrolein to react with to yield 3-HPMA.   This notion is 

supported by a study conducted by Shi and colleagues in which as higher dosages 

of acrolein were administered to SCI rats, GSH was consumed and a decline in 3-

HPMA level was observed [56, 100]. Additionally, since acrolein can react with a 
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wide variety of biomolecules, not only GSH, 3-HPMA quantification strategies 

could potentially underestimate actual systemic acrolein levels. 

5.1.4 Translational Nature of Acrolein Research 

Due to recent advances in acrolein detection techniques, minimally invasive 

quantification of systemic acrolein levels can be achieved through the 

measurement of 3-HPMA, a specific acrolein-glutathione metabolite, in urine and 

serum using LC/MS/MS. In contrast to previous methods utilized exclusively in 

animal studies, which required animal euthanization to harvest fresh CNS tissue, 

this approach allows for the longitudinal assessment of acrolein levels and thus 

facilitates the translation of acrolein research to clinical scenarios. Collectively, this 

evidence suggests the potential of acrolein as not only a therapeutic target for MS 

patients, but also as a biomolecule that could potentially be monitored to aid in 

diagnosis, predict disease course, and guide treatment regimens on a patient-by-

patient basis. 

5.2 Materials and methods 

5.2.1 Animal Preparation 

Rodent studies were conducted in accordance with guidelines mandated by 

the Purdue Animal Care and Use Committee at Purdue University, West Lafayette, 

IN, USA. Eight-week-old C57BL/6 female mice (Harlan Laboratories, Indianapolis, 

IN, USA) were maintained in laboratory animal housing facilities for two weeks 

prior to EAE induction to minimize potential effects of stress. 

5.2.2 EAE Model Induction and Behavioral Assessment 

See 3.2.1 and 3.2.2 
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5.2.3 Dot Immunoblotting 

Spinal cords were harvested from mice following exsanguination and 

perfusion of oxygenated Kreb’s solution as described in prior publications. The 

fresh tissues were incubated with 1% Triton solution and Protease Inhibitor 

Cocktails, (Sigma-Aldrich, Product #: P8340) homogenized (Kontes Glass Co.) 

and incubated on ice for at least 1 hour. Samples were then centrifuged at 13,500 

g and 4 °C for a minimum of 30 minutes.  

BCA protein assay was performed to ensure equal loading for all samples. 

Samples were transferred to a nitrocellulose membrane using a Bio-Dot SF 

Microfiltration Apparatus (Bio-Rad, Hercules, CA, USA). The membrane was 

blocked for 1 h in blocking buffer (0.2% Casein and 0.1% Tween 20 in PBS) and 

transferred to a solution where polyclonal rabbit anti-acrolein antibody (Novus 

Biologicals) was dissolved, with a ratio of 1:1000, in blocking buffer with 2% goat 

serum and 0.025% sodium azide, for 18 h at 4 °C. The membrane was then 

washed blocking buffer and incubated for 1 hr in a solution of 1:10,000 alkaline 

phosphatase conjugated goat anti-rabbit IgG (VECTASTAIN ABC-AmP Kit). Final 

washes of the blocking buffer followed by 0.1% Tween 20 in Tris-buffered saline 

were performed before the membrane was exposed to substrate of the ABC-AMP 

kit and visualized by chemilluminescence. Band density was quantified using 

Image J (NIH) and expressed as arbitrary unit. 
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5.2.4 Animal Urine Collection 

Mice were housed in metabolic cages, designed to obtain urine samples, 

for 12-24 hours. Regular food and water were supplied during the sample 

collection period. Samples of approximately 500 ml were obtained from each 

animal at peak behavioral deficit between days 21-23. Samples were then 

transferred to 1 ml centrifuge tubes and frozen at -80 °C until biochemical analyses 

were performed. 

5.2.5 Subject Enrollment 

All human specimens were collected at the Department of Neurology, 

Indiana University School of Medicine, Indianapolis, IN, USA by Dr. David Mattson 

and colleagues. Criteria for subject selection consisted of an MS diagnosis 

provided that the patient was not be receiving corticosteroids at the time of the 

sample collection. In this regard, it is important to note that many patients were on 

various FDA-approved MS immunotherapies at the time of sample collection.  This 

study was carried out in accordance with guidelines set forth in the protocol 

approved by the Indiana University Human Subjects Institutional Review Board. 

5.2.6 Clinical Urine Collection 

Subjects were provided with a specimen cup, without preservative, for urine 

sample collection. Urine samples were then pipetted into labeled cyrovials and 

immediately stored at -70 °C prior to being transported to Purdue University on dry 

ice. Upon arrival, samples were immediately stored at -80 °C until analysis. 
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5.2.7 Clinical Serum Collection 

Venous blood samples were then obtained (BD Vacutainer® Safety-Lok™ 

Blood Collection Set 23, Gauge 3/4 Inch Safety Needle, 12 Inch Tubing Sterile) 

and directly placed into a BD Vacutainer® Plus Venous Blood Collection Tube 

Serum Tube Clot Activator 13 X 100 mm 6 mL BD Hemogard™ Closure Plastic 

Tube. Following collection, samples were incubated for 15 minutes at room 

temperature to facilitate clotting. The samples were then centrifuged at 2800 rpm 

for 15 minutes (Beckman GS-6R) and transferred to a labeled cyrovial and stored 

at Thermo Scientific -70 °C. Samples were then transported to Purdue University 

on dry ice and stored at -80 °C until analysis. 

5.2.8 3-HPMA Quantification Using LC/MS/MS and standard preparation 

3-HPMA was quantified in urine according to Eckert et al (Eckert, Drexler et 

al. 2010).  Solid phase extraction with Isolute ENV+ cartridges (Biotage, Charlotte, 

NC) was used to prepare each sample before LC/MS/MS analysis. Cartridges 

were conditioned with 1mL of methanol, 1mL of water, and 1mL of 0.1% formic 

acid in water in succession. Urine or serum sample aliquots of 500 µL were 

combined with 200 ng of deuterated 3-HPMA (d3-3-HPMA) (Toronto Research 

Chemicals Inc., New York, Ontario), 500 µL of 50 mM ammonium formate and 10 

µL of undiluted formic acid and pipetted into the prepared ENV+ cartridges.  The 

cartridges were then washed twice with 1 mL of 0.1% formic acid and 1 mL of 10% 

methanol/90% 0.1% formic acid in water in succession.  The cartridges were dried 

with nitrogen gas and subsequently eluted with three volumes of 600 µL methanol 

+ 2% formic acid which were combined and dried in a rotary evaporation device.  
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Samples were reconstituted in 100 µL of 0.1% formic acid prior to LC/MS/MS 

analysis. 

Quantification of 3-HPMA in the samples was determined using an Agilent 

1200 Rapid Resolution liquid chromatography (LC) system coupled to an Agilent 

6460 series QQQ mass spectrometer (MS) and a Waters Atlantis T3 2.1mm x 

150mm, 3 µm column for LC separation.  Water + 0.1 % formic acid and acetonitrile 

+ 0.1% formic acid were used as buffers. The peak retention time of 3-HPMA/d3-

3-HPMA was 6.8 minutes. Multiple reaction monitoring was used for MS analysis. 

A more detailed procedure is outlined in previous publication (Zheng 2013). 

Creatinine quantification was performed to provide an internal standard 

normalize urine 3-HPMA measurements. Sample creatinine concentrations were 

determined through the use of a urinary creatinine assay kit (Cayman Chemical 

Company, Item No. 500701). Urine samples were diluted for 12x and 24x prior to 

measurement and alkaline picrate solution was prepared following the procedure 

delineated in the assay manual. The diluted samples and creatinine standards 

were then loaded into a 96 well plate and incubated with the alkaline picrate 

solution at room temperature for 20 minutes. Absorbance at 490-500 nm was 

determined using a standard spectrophotometer and the results were recorded as 

the initial reading. Following the initial reading, 5ul of acid solution was added to 

each sample and incubated on a shaker at room temperature for an additional 20 

minutes. A spectophotometer (absorbance at 490-500 nm) was used again to 

determine the final reading following addition of the acid. The differences between 

the initial and final absorbance measurements were used for quantitative analysis. 
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 BCA assessment was used as a normalization factor for the serum 3-HPMA 

measurements. Protein concentrations using bovine serum albumin were 

quantified using the Bicinochoninic Acid protein assay kit (Pierce, Rockford, IL, 

USA). Serum samples were prepared in a 1:100 dilution and loaded into a 96 well 

plate along with BCA standards in triplicates. BCA reagent was then added to all 

wells and the samples were incubated at 37 C for 30 minutes. Following incubation 

the absorbance of the samples at 560-570 nm was determined using 

SPECTRAMAX (Molecular Devices, Sunnyvale, CA, USA). 

5.3 Results 

5.3.1 CNS and Systemic Elevation of Acrolein in EAE Mice 

Urine was collected from EAE mice (n=9) and controls (n=9) when peak 

deficit occurred at days 21-23 (Fig 5.1). 



49 

 

Systemic acrolein levels were determined through the quantification of 3-

HPMA in urine samples using LC/MS/MS. EAE mice demonstrated significantly 

elevated urine 3-HPMA levels relative to their healthy counterparts (Fig 5.2). Both 

groups were sacrificed at day 28 and spinal cord tissue was harvested to assess 

local acrolein concentrations within the CNS using an immunoblotting assay. 

Measurements of acrolein in the CNS corresponded to the results obtained from 

3-HPMA analysis of the urine, in which EAE mice exhibited significantly elevated 

intrinsic levels of acrolein-lysine adducts relative to the control group (Fig 5.3). 

Figure 5.1 Behavioral Deficits Following MOG EAE Induction. The motor 
deficits typical of EAE were scored daily for 4 weeks.  The average value 
(and SEM) is plotted against time post induction.  The shaded area 
indicates the time period when urine 3-HPMA were collected and assessed 
using LS/MS and acrolein-lysine adduct of spinal cord tissue were used 
through dot blot, both assessing acrolein levels.  Note the steady rises of 
EAE score beginning at around 11-12 days and reaches peak around 21-
22 days post induction.  Data expressed as average ± SEM. 
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Figure 5.2 Determination of Acrolein Concentration Through Urine 3-HPMA 
Measurement in EAE Mice. . (A). Chemical reaction of acrolein with glutathione 
(GSH) and production of subsequent metabolites OPMA and 3-HPMA. (B). Bar 
graph depicts the ratio of 3-HPMA and creatinine measured in urine of control 

and EAE mouse.  Urine samples were collected approximately 21-23 days after 
MOG injection in EAE mouse when the behavior deficits peak. Each urine 

sample represents an accumulative volume of a 24 hr period.  Age matched mice 
served as controls.  Note the increase of 3-HPMA in urine in EAE.  (P < 0.05 

when compared to control, t-test).  N = 5 in each group of 3-HPMA measurement 
in urine. Data expressed as average ± SEM. 
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5.3.2 Multiple Sclerosis Patients Exhibited Increased 3-HPMA in Urine and 

Serum 

Urine and serum samples were collected from diagnosed MS patients 

(urine: n=40; serum: n=41) and volunteer controls consisting of mainly office staff 

and family members of patients (urine: n=23; serum n=23). Acrolein content within 

the specimens was reflected through the assessment of 3-HPMA using 

LC/MS/MS. Figure 5.4 depicts 3-HPMA measurements as both an mean value and 

Figure 5.3 Elevations of CNS Acrolein Concentrations in EAE Mice. The 
acrolein-lysine adducts in control and in EAE were detected using Bio-Dot 
SF microfiltration apparatus.  Band intensity were analyzed using image J 
(NIH) are expressed in arbitrary units.  Note the Bar graph demonstrated 

the increase of acrolein-lysine adducts in EAE.  (P < 0.05 when compared 
to control, t-test).  N = 4 in each group of acrolein measurement in tissue. 
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as a scatter plot to show distribution of urinary 3-HPMA levels within the group. 

Mean 3-HPMA levels detected in the urine of MS patients were significantly 

elevated relative to healthy controls. Furthermore, multiple patients exhibited 

urinary 3-HPMA levels that exceeded the maximum 3-HPMA level detected in the 

control group. Results obtained following quantification of 3-HPMA in patient 

serum specimens corresponded with the values obtained from urine analysis for 

both the MS group and the control group, in which MS patients demonstrated a 

significant elevation compared to control (Fig 5.5). The scatter plot also shows a 

similar distribution of the data in which a number of MS patients exceeded the 

maximum serum 3-HPMA value obtained from the control group. Interestingly, a 

correlation analysis between 3-HPMA measurements in MS patient urine and 

serum samples, revealed a significant positive relationship (Fig 5.6). 
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Figure 5.4 Determination of Acrolein Concentration Through Urine 3-HPMA 
Measurement in MS Patients and Healthy Individuals. The MS patient group 
including relapsing-remitting (RR), primary progressive (PP), and secondary 

progressive (SP) types of MS. (A). Bar graph demonstrate the average value of 
urine 3-HPMA. Specifically, the average concentration of 3-HPMA is 1.094±0.212 
μg/mg creatinine for MS patients (N = 40) and 0.570±0.082 μg/mg creatinine for 

healthy individuals (N = 23).   Note the increase of 3-HPMA in urine in MS 
patients.  (: P < 0.05 when compared to control, t-test). Data expressed as 

average ± SEM. (B). A scatter plot of the same data used in (A), including all the 
data points to reveal the range and distribution of measured values. Solid lines 

indicate the average of 3-HPMA in both MS and healthy control individuals.  Note 
that while many data points of MS patients were distributed in the same range as 

that of control, there were still multiple points of MS were greater than that in 
control, some by multiple folds 
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Figure 5.5 Determination of Acrolein Concentration Through Serum 3-HPMA 
Measurement in MS Patients and Healthy Individuals. The MS patient group 

including RR, PP, and SP types of MS.  (A). Bar graph demonstrate the average 
value of serum 3-HPMA. Specifically, the average concentration of 3-HPMA is 

0.065±0.009 μg/g protein for MS patients (N = 41) and 0.036±0.004 μg/g protein 
for healthy individuals (N = 23). Note the increase of 3-HPMA in serum among 

MS patients.  (�: P < 0.01 when compared to control, t-test). Data expressed as 
average ± SEM.  (B). A scatter plot of the same data used in (A), including all the 
data points to reveal the range and distribution of measured values. Solid lines 

indicate the average level of acrolein in both MS patients and control individuals.  
Note that while many data points of MS patients were distributed in the same 

range as that of control, there were still multiple points of MS were greater than 
that of control, some by multiple folds. 
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Figure 5.6 Correlation of 3-HPMA Levels in Urine and Serum in MS patients. The 
urine 3-HPMA is plotted against serum 3-HPMA for 39 MS patients showing the 
relation between these two parameters. Urine and serum were collected at the 

same time for all patients.  As indicates, the increase of urine 3-HPMA seems to 
accompanied by the elevation of serum 3-HPMA.  Statistical analysis of 

correlation revealed A Pearson correlation coefficient r-value of 0.75, (p<0.0001, 
two tailed). 

 

5.4 Concluding summary 

The 3-HPMA detection method is a significant advancement in the field of 

acrolein research and allows investigators to quantify endogenous acrolein levels 

in clinical scenarios. Furthermore, since 3-HPMA is a specific adduct for acrolein 

and GSH, 3-HPMA elevations can only be attributed to an increase in endogenous 

acrolein concentration. Prior to the establishment of this method, endogenous 

acrolein research in the CNS was largely limited to animal studies due to the 

invasive nature of other acrolein quantification methods, which require a fresh 

tissue sample. In a prior study, we reported acrolein elevations in the spinal cord 

tissue of EAE mice and that the application of an acrolein-scavenger, hydralazine, 
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effectively reduced acrolein levels, delayed symptom onset and reduced severity 

of motor deficits (Leung 2011). However, to our knowledge, urine 3-HPMA 

quantification has not been previously employed in the EAE model to assess 

systemic acrolein levels.  

 In the current study, when EAE mice exhibited peak deficit (days 21-23), 

urine samples were collected from both EAE and control groups. At the study 

conclusion (day 28) mice were euthanized and spinal cords were harvested for 

assessment of acrolein-lysine adducts to verify the 3-HPMA method. 

Concordantly, EAE mice exhibited elevated 3-HPMA and acrolein levels relative 

to control mice. The success of non-invasive acrolein detection in urine permits 

longitudinal in vivo studies of acrolein dynamics, evaluation of anti-acrolein 

therapies and, most notably, detection of acrolein in human patients. As acrolein 

has already been established as a novel therapeutic target in EAE, the current 

study was primarily intended at investigating the pathological role of acrolein in 

clinical cases of MS. 

 The clinical component of this study exclusively relied on 3-HPMA 

quantification as an acrolein detection method, however 3-HPMA was 

independently quantified in both urine and serum samples to ensure the reliability 

of the measurements. In both urine and serum, mean 3-HPMA was significantly 

elevated in MS patients relative to controls indicating that acrolein may play a 

similar role in EAE and MS and the acrolein-scavenging in MS patients could 

potentially have therapeutic benefit. Interestingly, 3-HPMA concentration in urine 

was an order of magnitude greater than that detected in serum samples. This 
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discrepancy can potentially be attributed to a larger total volume of serum than 

urine and also that as acrolein is removed from circulation by the renal system, 

excreted waste is more concentrated.  

Clinical detection of increased acrolein levels in MS not only implicates acrolein 

as a pathological target, but also prompts further investigation of the utility of 

acrolein as a biomarker for diagnosis, disease monitoring and guiding therapeutic 

regimens. As previously discussed, acrolein is primarily a clinical diagnosis 

supplemented by neuroimaging and other laboratory tests. However, the presence 

of MS symptoms accompanied by an elevated acrolein level may potentially allow 

a physician to establish an MS diagnosis in the future from a thorough history, 

physical exam and a collection of a urine sample. Additionally, acrolein may also 

have clinical applicability as a biomarker to predict relapses or clinical progression 

in later stages of the disease in which remission no longer occurs. To investigate 

acrolein as a potential biomarker for disease monitoring, additional clinical studies 

are needed to examine acrolein at multiple time points in the same patient, 

particularly shortly prior to and during relapses when MS is in an active stage.  

If 3-HPMA elevations are observed prior to development of new symptoms, 

then there is potential for acrolein scavengers to be administered in an effort to 

decrease severity or latency of the relapse. Acrolein detection would also enable 

a more personalized approach to the treatment of MS. As can be observed in the 

scatter plots (Figure 5.4, 5.5), some MS patients exhibited 3-HPMA values that did 

not appear to be significantly elevated relative to controls. While it is possible that 

these patients were not exhibiting acrolein elevations due to remission, it raises 
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the plausibility that some MS patients may not benefit from anti-acrolein therapy. 

Non-invasive acrolein detection also allows for dosage of acrolein scavengers to 

be tailored to a specific patient. In summary, the noninvasive 3-HPMA detection 

method and availability of FDA-approved compounds capable of scavenging 

acrolein, hydralazine and phenelzine, underscores the translational nature of 

acrolein research which could potentially revolutionize current therapeutic 

approaches to the treatment and management of MS. 
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CHAPTER 6. RESPIRATORY EXPOSURE TO ACROLEIN

6.1 Introduction 

Acrolein is exogenously present as a pollutant generated by the incomplete 

combustion of wood, petrol and plastic, industrial processes, smoking of tobacco 

products and frying of foods in oil [48]. Similarly to acrolein produced 

endogenously, environmental sources of acrolein have the potential to be 

systemically absorbed by the body and thus can react with biomolecules and inflict 

damage to virtually every organ system [103]. In fact, environmental acrolein 

exposure, particularly in the case of cigarette smoking, can elicit 3-HPMA 

elevations in urine that are two times greater than the level seen in non-smokers 

and upon cessation of smoking, 3-HPMA levels declined by approximately 78% 

[104]. The amount of acrolein generated by burning cigarettes is highly dependent 

on the glycerin content, which varies from brand to brand, however acrolein is 

estimated to be present in concentrations of 56-69 μg in one cigarette [105].  

Detrimental effects of cigarette smoking are well characterized and vast, as 

tobacco use has been linked to many pathologies spanning all the major organ 

systems. In fact, clinical cohort studies have reported that exposure to cigarette 

smoke directly, indirectly, and even in early life seems to be exacerbating the 

development and progression of MS functional loss [7, 10, 106-109]. However, the 
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pathophysiological mechanisms underlying this relationship remain elusive and 

the individual compound(s) within cigarette smoke that are contributing have yet 

to be ascertained.  In a previous study aimed at assessing the impact of tobacco 

use through both inhalation and oral routes, have found no apparent association 

between oral tobacco use and MS, indicating that nicotine does not play a role. 

Therefore a compound in tobacco, other than nicotine, that is present in greater 

concentrations upon burning appears to be the culprit [110]. Due to the established 

connection between MS and endogenous acrolein levels, the association between 

MS and exogenous acrolein exposure, specifically through inhalation when 

smoking or in close proximity to smokers, warrants further investigation. 

6.1.1 Cigarette Smoking in Humans 

As the single most preventable cause of death, cigarette smoke is a 

universally known environmental pollutant, producing a array of harmful chemicals 

that are detrimental to human health leading to various illnesses or death [111]. 

Exposure occurs through primary and secondary sources that few can avoid in our 

modern society given that one in five adults in the US are current cigarette smokers 

[21, 111]. Specifically relating to our interests, cigarette smoke is suspected of 

exacerbating multiple sclerosis and other neuropathologies as evidenced by 

recent clinical and laboratory observations [7, 10, 106-109]. This concern is further 

fueled by taking into consideration that patients with neurological disabilities tend 

to be more avid, heavier smokers, who are less likely to quit compared to general 

population [111].  
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Acrolein is endogenously elevated in animal models and clinical cases of 

MS and also is an emission component of tobacco smoke [56, 105]. It has been 

demonstrated that systemic and CNS acrolein levels increase following respiratory 

exposure to acrolein [104, 112]. Due to its neurotoxic nature, its commonality 

between MS and tobacco emissions, and epidemiological studies linking MS and 

cigarette smoking, it is possible that acrolein is capable of accumulating from 

environmental exposure and worsening clinical course for MS patients who smoke 

tobacco. In order to further study this relationship, an animal model for acrolein 

inhalation was established and preliminary animal studies were conducted to 

ascertain the relationship between respiratory acrolein exposure and accumulation 

both systemically and locally within the CNS. 

6.1.2 Acrolein Inhalation in Mice 

To further investigate the effect of respiratory acrolein exposure in the CNS, 

it is imperative to determine if inhalation of exogenous acrolein can affect 

endogenous systemic 3-HPMA levels detected by LC/MS/MS in a controlled 

animal study. The current study was preformed to examine the hypothesis that 

acute respiratory exposure to acrolein can evoke an increase in endogenous 

acrolein levels.  More specifically, since MS is a disease of the CNS, the ability of 

acrolein to accumulate in the brain and spinal cord following respiratory exposure 

could have serious implications in the understanding clinically reported links 

between cigarette smoking and MS.  Following respiratory exposure to acrolein at 

a concentration relevant to that in cigarette smoke for three weeks, urinary 3-

HPMA and acrolein-lysine adducts in the spinal cord were both increased relative 
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to the sham and control groups.  This data is indicative that acrolein is capable of 

systemic absorption through the pulmonary circulation and, furthermore, can cross 

the blood brain barrier to infiltrate the CNS. 

6.2 Materials and methods 

6.2.1 Respiratory Exposure to exogenous acrolein 
 

An air-tight chamber made of plexiglass (10 in. x 14 in. x 6 in.) was made in 

our laboratory and placed in a ventilation hood (Fig. 6.1). A compressed gas 

cylinder containing an acrolein air mixture of ~350ppm (Praxair, Geismar, LA, 

USA) was adjusted by delivering controlled volumes of ambient air from a 

compressed gas cylinder (Indiana Oxygen, IN, USA) using two flowmeters 

(Aalborg, Orangeburg, NY, USA). The diluted acrolein:air mixture was then forced 

into the chamber through an input valve. Exhaust from the chamber was expelled 

through an output valve and passed through an activated charcoal filter (VetEquip, 

Pleasanton, CA, USA) within the ventilation hood.  Final delivered concentration in 

the current study was 1.5 ppm acrolein in air, a concentration verified using 

GC/MS. Gas samples from the chamber were obtained using a vacutainer (BD, 

Franklin Lakes, NJ, USA) and GC/MS analysis was carried out as outlined below. 

Mice were divided into three groups: control, sham, and acrolein.  The 

control group were not exposed to the inhalation chamber. Animals from the sham 

group were placed in the chamber and received a controlled volume of ambient 

air, while the acrolein group was exposed to 1.5 ppm acrolein in air. Exposure 

paradigm for the sham and acrolein mice was 30 minute sessions, twice a day, for 

an observation period of three weeks. 
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6.2.2 Gas chromatography/Mass Spectrometry 
 

A Pegasus 4D gas chromatography/gas chromatography time-of-flight 

mass spectrometer (GCxGC/TOF-MS, LECO Corporation, St. Joseph, MI), with a 

CTC CombiPAL autosampler (LEAP Technologies, Carrboro, NC) was used for 

sample analysis.  Prior to injection, samples (0.5 mL) were agitated for 5 minutes 

at 80°C and 500RPM. An Rtx-65 capillary column (Restek, 30 m x 0.25 mm x 0.25 

um) and high purity helium (carrier gas, 1.0 ml/min, 10:1 split ratio) were selected.  

Temperature program was set to begin at 40°C (3 minute hold time) and then 

increased to 140°C at a rate of 20°C/min.  Temperature for the injection inlet 

temperature and the mass spectrometer transfer line were set to 130°C and 200°C, 

respectively. The electron impact ion source was maintained at 200 °C and 

filament bias was -70 V.  Mass spectra were obntained from 23 to 200 m/z at 30 

spectra/sec.  Acrolein standards ranging from 33 and 3300 ppm were prepared 

and mass peaks of 55 and 56 were used for acrolein quantification.  Acrolein 

retention time was 107 sec. 

6.2.3 Detection of Acrolein-Iysine Adducts Dot Immubloting 

See 5.2.3 

6.2.4. 3-Hydroxypropl Mercapturic Acid (3-HPMA) Quantification 

See 5.2.8 

6.2.5 Subject Recuritment\ 

See 5.2.5 

6.2.6. Clinical Urine Collection 

See 5.2.6 
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6.3 Results 

6.3.1 Urine 3-HPMA/Creatinine Levels Increased Following Acrolein Inhalation 
in Mice 

 
Urine samples were obtained at 0 (before inhalation), 1, 2, and 3 weeks 

post inhalation to determine the ability of acrolein to accumulate systemically and 

locally following respiratory exposure. Using LC/MS/MS urinary 3-HPMA levels 

were measured and the current data suggests a direct relationship between urine 

3-HPMA concentration and duration of acrolein exposure. In other words, 3-HPMA 

levels were observed to steadily increase over the three week observation period 

(Fig 6.1 C). A significant elevation was observed from baseline (11.46 ± .05 µg/mg) 

in measurements taken at both week 2 (14.43 ± 0.84 µg/mg, p<0.05) and 3 (17.82 

± 0.33 µg/mg, p<0.01). A significant increase was also detected between week 1 

(12.41 ± 1.85 µg/mg, p<0.05) and week 3.  Mice from the sham group did not 

demonstrate significant changes in urine 3-HPMA for the duration of the study. 

6.3.2 Respiratory Acrolein Exposure Increases Acrolein-Lysine in Mouse Spinal 

Cord Tissue 

At the study conclusion, fresh spinal cords were harvested for quantification 

of acrolein-lysine adducts to assess acrolein accumulation in the CNS. A dot 

immunoblotting assay was conducted using the spinal cord samples from the three 

experimental groups: acrolein, sham, and control (Fig 6.1 D). Acrolein-lysine 

adduct level in the spinal cords of mice following acrolein respiratory exposure for 

three weeks (10.56 ± 0.59 a.u.) was significantly increased compared to the sham 

group (3.71 ± 0.58 a.u., p<0.05), or control group (4.52 ± 1.97 a.u., p<0.05). 
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Figure 6.1 Preclinical Assessment of the Effects of Respiratory Acrolein 
Exposure in Mice. .(A) Acrolein reaction with glutathione and production of 

subsequent metabolites OPMA and 3-HPMA. Bottom: Mass spectra outputs of 
d3-3-HPMA (Standard) and 3-HPMA measurements obtained from mouse urine. 
(B) Metabolic cage used for urine collection.  (C) Bar graph displaying the ratio of 

3-HPMA and creatinine measured in urine of acrolein-inhaled mouse at day 0 
(11.46±0.50), day 7 (12.41±1.85), day 14 (14.43±0.84), and day 21(17.82±0.33) 

of acrolein exposure (acrolein group: Filled bars).  3-HPMA concentrations for the 
sham group were at day 0 (11.80±1.57), day 7 (11.29±1.17), day 14 

(11.09±1.34), and day 21(12.02±2.02) (sham group: open bars). ANOVA 
comparisons among acrolein group yielded p < 0.05 between days 0 and 14, and 
days 7 and 21; p<0.01 between days 0 and 21. No significance were found within 

sham group.  Values are expressed as mean  SEM.  N = 5-10 in all conditions.  
(D)Dot immunoblotting results comparing levels of acrolein-lysine adducts in the 
spinal cord tissue of animals from each of the three groups. Bar graph displays 

that the acrolein-lysine levels in acrolein group (10.56 ± 0.59 a.u.) is significantly 
higher than those in sham group (3.71 ± 0.58 a.u.), and control group (4.52 ±1.97 

a.u.,) (n=4 in all groups, ± P < 0.05, ANOVA). Values are expressed mean ± 
SEM.  (E)Diagram of inhalation setup.  
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6.3.3 Systematic 3-HPMA Elevation in MS Patients Who Are Self-Reported 

Cigarette Smokers 

MS patients who identified as tobacco smokers, exhibited drastically 

increased 3-HPMA levels (7.1±2.9; n=6) relative to non-smoker MS patients 

(1.094±0.212; n=40; P<0.05) (Fig 6.2). Furthermore, MS smokers exhibited 

significantly elevated EDSS scores (4.25+/- 1.03; n=6) compared to MS 

nonsmokers (1.55+/- 0.39; n=40; P<0.05) (Figure 6.3). We hypothesize that the 

drastic increase is the result of an additive effect of respiratory exposure to 

acrolein, as a result of tobacco smoking, combined with pathologically elevated 

levels of acrolein resulting from oxidative stress. These clinical findings support 

data obtained in preclinical studies and provide further evidence that acrolein 

research is translational and data currently being obtained using the EAE model 

has high potential to be clinically applicable in MS patients. 
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Figure 6.2 Smoking in MS Patients is Associated with Higher Urine 3-HPMA 

 

Figure 6.3 Smoking Cigarettes is Associated with Higher EDSS Scores in 
Multiple Sclerosis Patients.  
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6.4 Discussion 

The current study concludes that exposure to acrolein in the respiratory 

system results in systemic absorption of acrolein and infiltration of acrolein into the 

CNS across the blood brain barrier. Specifically, an increase in the acrolein-GSH 

metabolite, 3-HPMA, can be elicited in a controlled animal model following acrolein 

respiratory exposure at a concentration relevant to that in cigarette smoke.  

Furthermore, local concentrations of acrolein in the CNS were found to be elevated 

in mice as indicated by acrolein-lysine adduct levels within the spinal cords of 

animals that inhaled acrolein. These findings are consistent with previous clinical 

observations, which reported that human cigarette smokers exhibited higher levels 

of urine 3-HPMA by 5-10 times when compared to nonsmokers [104, 113].  

However, subject smoking histories were significantly longer than the three week 

period modeled in this study, with most patients reporting regular cigarette 

consumption over a period of years.  Due to the constraints of clinical studies, 

primarily limited to retrospective cohort investigations, an adequate quantification 

study correlating aerosolized acrolein dosage and urine 3-HPMA level has not 

been conducted.  The main advantage in the current study is the use of an animal 

model permits control of experimental conditions, such as the concentration, 

duration and paradigm of acrolein exposure.      

 Acrolein was shown to be effectively absorbed upon inhalation for no more 

than two weeks and aggregated in the blood stream, increasing 3-HPMA levels by 

30% after two weeks and 60% after three weeks of exposure (Fig 6.1 C). 
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An acrolein concentration of 1.5 ppm was selected for the current study because 

of its use in previous animal studies, it is significantly lower than reported acrolein 

concentration in tobacco smoke and is well above the concentration of acrolein in 

ambient air, which may render it applicable in future studies examining acrolein 

accumulation following second-hand tobacco smoke exposure [114-121].  The 

exposure paradigm of two 30 minute exposures per day was employed in an 

attempt to mimic smoking a half a pack or 12 cigarettes per day. This rough 

calculation was based on the assumption that a cigarette burns for 5 minutes and 

the total daily 60 minute exposure time was adjusted to be two 30 minute 

exposures to allow animals to recover following acrolein inhalation and minimize 

acute toxicity.   In a 2010 report, the CDC estimated that the average American 

tobacco user smokes 20 cigarettes daily indicating that if this estimation is correct, 

mice were exposed to less acrolein daily than the average smoker.   

 Increase in 3-HPMA level following respiratory acrolein exposure in mice 

was an expected outcome in this study, as it has been previously demonstrated 

clinically [104, 113]. However, the ability of acrolein to accumulate locally in the 

CNS following acute acrolein inhalation was of particular interest given the role of 

acrolein in cases of neurological disease and trauma [44, 58, 95, 98, 100].  The 

increased presence of acrolein-lysine adducts in the spinal cords of mice subjected 

to acrolein inhalation suggests that acrolein is not confined to systemic circulation 

upon absorption through the lungs, but rather is able to disperse into the CNS and 

likely other tissues. Previous data indicating the pathological role of endogenously 

produced acrolein in EAE and MS, raises the hypothesis that environmental 
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exposure to acrolein could impact clinical course, potentially exacerbating 

symptoms or accelerating disease pathogenesis and progression[56].  

 Known relationships between both acrolein and cigarette smoking, acrolein 

and clinical MS and animal models, and clinical observations of adverse effects of 

smoking in MS patients suggest that the relationship between acrolein, smoking 

and MS warrants further study. This is further supported by data from this study, 

indicating that 3-HPMA is significantly higher in MS patients who self-reported as 

cigarette smokers compared to MS patients who did not smoke. Furthermore, MS 

smokers demonstrated significantly higher EDSS scores at the time of sample 

collection, indicating that higher 3-HPMA levels could potentially correspond with 

a more severe clinical course. Given the data indicating that endogenous acrolein 

levels are elevated in MS patients and the successful application of acrolein 

scavengers in EAE mice, clinical application of acrolein scavengers may serve as 

a potential therapeutic approach in MS, especially in MS patients who smoke 

cigarettes.
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CHAPTER 7. ACROLEIN ELEVATION IN BOTH RR MS PATIENTS AND RR 
EAE AND SYMPTOM ALLEVIATION IN RR EAE BY HYDRALAZINE 

7.1 Introduction 

RR MS is the most common subtype of MS, representing nearly 85% of 

current MS cases [13]. However, to date, research of acrolein in MS animal models 

has exclusively been conducted in EAE mice induced with a MOG emulsion, which 

mimics the PP and SP disease subtypes. In order to facilitate the translation of 

acrolein research to the therapeutic tools in the MS patient population, it is crucial 

to investigate the clinically observed acrolein elevations in RR MS patients, by 

conducting an investigation similar to that conducted by Leung and colleagues in 

2011 in an animal model that mimics RR MS disease course. In the current study, 

a PLP emulsion was used to induce RR EAE in mice [56]. Analyses of urine 

samples and CNS tissue samples are ongoing, however materials and methods, 

preliminary findings and a brief discussion are presented in the following sections. 

 

7.2 Materials and methods 

7.2.1 Subject Enrollment 

See 5.2.5 

7.2.2 Clinical Urine Collection 

See 5.2.6 
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7.2.3 Clinical Serum Collection 

See 5.2.7 

7.2.4 RR EAE induction and behavioral assessment 

Female SJL mice were injected with 0.5 mL PLP/Complete Freund’s 

adjuvant emulsion at a total of four sites; two subcutaneously bilaterally to the 

caudal spinal column (shoulders) and two subcutaneously bilaterally to the rostral 

ends of the spinal column (hips) (Hooke Laboraties, Lawrence, MA).  The emulsion 

triggers autoimmune recognition of PLP by T-cells and due to nature of immune 

response most closely mimics clinical MS. Behavioral assessment was carried out 

in accordance with the scale provided by Hooke, briefly described below. 0—no 

deficit; 0.5—limp tip of tail; 1.0—complete tail paralysis; 1.5—limp tail + hindlimb 

inhibition; 2.0—limp tail + hindlimb weakness; 2.5—limp tail + hindlimb dragging; 

3.0—limp tail + complete hindlimb paralysis; 3.5—3.0 score + hunched 

appearance or inability to rollover if placed on its side; 4.0—3.0 score + partial 

forelimb paralysis; 4.5—4.0 score + lethargy and minimal responsiveness to 

sensory stimulation; 5.0—mouse rolling around cage or death/euthanization. 

7.2.5 Hydralazine Preparation and Application 

Hydralazine hydrochloride was prepared for a final delivery concentration 

of 1 mg/kg following dissolution in phosphate buffered saline. The solution was 

then filtered for sterilization. Beginning from the day of model induction, mice 

received daily intraperitoneal injections of hydralazine until study conclusion 45 

days post-induction. 
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7.2.6 Animal Urine Collection 

See 5.2.4 

7.2.7 3-HPMA Anaylsis In Progress 

See 5.2.8 

7.2.8 Dot Immunoblotting In progress 

See 5.2.3 

7.3 Preliminary Results 

7.3.1 Clinical 3-HPMA Elevations in Urine and Serum of RR MS Patients 

A metabolite specific for acrolein following reaction with GSH, 3-HPMA, was 

detected at higher concentrations in the urine and serum of RR MS patients (urine: 

1.123±0.255 μg/mg creatinine; serum: is 0.069±0.013 μg/g protein; n=31) relative 

to healthy controls (urine 0.570±0.082 μg/mg creatinine; serum: and 0.036±0.004 

μg/g protein; p<0.05 and p<0.01, respectively; n=23) (Figure 7.1). Notably, while 

many data points of MS patients were distributed in the same range as that of 

control, there were still multiple points of MS that were greater than that of control, 

some by multiple folds. 

7.3.2 Daily Hydralazine Application Ameliorated Motor Deficit in RR EAE Mice 

Though 3-HPMA quantification and acrolein-lysine adduct assessment in 

spinal cords is not yet completed for this study, preliminary behavioral data 

suggests that acrolein is indeed elevated in RR EAE due to alleviation of motor 

deficit following hydralazine treatment. Furthermore, hydralzine seems to have 

effectively shortened relaspse latency, delayed onset of symptoms and decreased 

severity during relapse, although statistical analyses of the data are also ongoing. 
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Furthermore, a number of MS patients who participated in the study, were found 

to have systemic 3-HPMA concentrations within the range of what is considered 

“normal”. The reason for the observed discrepancy could lie in the relapsing-

remitting nature of the pathology. In other words, MS patients that exhibited 

nonpathological concentrations of acrolein could be in remission and not 

experiencing any symptoms. Longitudinal studies are warranted to pursue this line 

of investigation, to monitor acrolein dynamics in multiple phases of the disease, 

especially acrolein levels immediately preceding and during a relapse. In the event 

that an MS attack is able to be predicted by a rise in systemic acrolien 

concentration, this finding would revolutionize current therapeutic approaches to 

the diagnosis, symptom management and treatment regimens in the 2.5 million 

MS patients. 
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Figure 7.1 Quantification of 3-HPMA in the Urine and Serum of RR MS patients. 
(A). Bar graph demonstrate the average value of urine 3-HPMA. Specifically, the 
average concentration of urine 3-HPMA is 1.123±0.255 μg/mg creatinine for 
RRMS patients (N = 31) and 0.570±0.082 μg/mg creatinine for healthy 
individuals (N = 23). (: P < 0.05 when RRMS were compared to control, t-test).  
(B) Bar graph demonstrate the average value of serum 3-HPMA. Specifically, the 
average concentration of serum 3-HPMA is 0.069±0.013 μg/g protein for MS 
patients (N = 41) and 0.036±0.004 μg/g protein for healthy individuals (N = 23). 
(: P < 0.01 when RRMS were compared to control, t-test). Data in A and B is 
expressed as average±SEM.  (C) and (D). Scatter plot of the same data used in 
(A) and (B), including all the data points to reveal the range and distribution of 
measured values. Solid lines indicate the average level of 3-HPMA in both MS 
patients and control individuals in urine (C) and in serum (D). 
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Figure 7.2 Hydralazine Application in RR EAE Alleviates Motor Deficit.  

 

7.4 Discussion of Preliminary Findings 

In order to determine the clinical applicability of acrolein research it is 

important to investigate its pathological role in each subtype of MS. To our 

knowledge, the current study is the first to focus on detecting and 

pharmacologically targeting acrolein in an RR EAE model, induced using a 

PLP/Complete Freund’s adjuvant emulsion. Although, analyses of data obtained 

from this study is ongoing, clinical acrolein assessment in RR MS patients and 

observed behavioral trends in RR EAE with and without the application of acrolein 

scavenger hydralazine. Our findings strongly suggest that acrolein underlies 

symptomatic development in RR EAE, indicated by therapeutic benefit of acrolein 
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removal and in RR MS indicated by the concordant increase of acrolein in MS 

patient urine and serum samples compared to healthy controls.  

 In light of this evidence, we hypothesize that the 3-HPMA and dot 

immunoblotting analyses scheduled to be performed in this study, will indicate both 

a local and systemic rise in acrolein and that anti-acrolein therapy is 

neuroprotective, preserving CNS structure and alleviating pathological acrolein 

concentrations contributing to symptomatic development in MS patients. 

. 
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CHAPTER 8. FURTURE DIRECTIONS

8.1 Examine the Effects of Exogenous Acrolein Exposure on Development of 

the EAE Model 

Current data indicates that acrolein is potentially an underlying pathological 

factor linking MS and tobacco smoking and could explain the observation in 

epidemiological studies and in clinical data presented above indicating that 

cigarette consumption exacerbates MS symptoms and may accelerate disease 

progression. In order to further explore the relationship between acrolein, MS and 

cigarette smoking, a comprehensive study must be carried out in an EAE model, 

in which animals are subjected to respiratory acrolein exposure in controlled 

experimental setting. We propose a study consisting of three experimental groups: 

EAE mice exposed to respiratory acrolein with sham saline treatment, EAE mice 

exposed to respiratory acrolein with hydralazine treatment and EAE mice with 

sham acrolein inhalation exposure and sham saline treatment. If exposure to 

respiratory acrolein is capable of exacerbating symptoms and/or accelerating 

disease onset/progression in the EAE model, this would indicate acrolein is at least 

partially responsible for symptoms in EAE. Alleviation of these affects and 

attenuation of motor deficits following the application of an acrolein scavenger in 

EAE mice subjected to acrolein inhalation would provide further evidence of the 

validity and the translational nature of this relationship. Furthermore, if the results 
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from the animal model are consistent with observations in clinical MS cases, 

avoidance of exogenous acrolein exposure in cigarettes, fried food, pollution and 

occupational settings could prove to be a useful preventative care strategy to 

establish public health guidelines for people at risk for developing MS.. 

 

8.2 Employment of Minimally Invasive Neuroimaging Techniques with 3-

HPMA Quatification to Determine How Endogenous Acrolein Concentration 

Corresponds with CNS Structural Damage 

In order to establish acrolein as a biomarker in EAE and MS, a study that 

quantifies both degree of CNS structural disruption and endogenous acrolein 

concentration is warranted. Such a study would reveal if there is a positive 

relationship between acrolein levels and disease activity and if, more importantly, 

if increases in acrolein values could potentially be used to predict relapses in 

both the RR EAE model or clinical MS cases. The clinical applicability and 

noninvasive nature of the 3-HPMA detection in combination with MRI (structural 

and Gd-contrast) imaging, ensures the feasibility of this line of questioning in 

both a controlled EAE model and MS patients. Knowledge gained from this line 

of questioning has the potential to revolutionize clinical approaches for diagnosis, 

guiding therapeutic regimens and monitoring disease activity in MS patients..
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