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The valley splitting(energy difference between the states of the lowest dgublstrained silicon
guantum wells with a V-shaped potential is calculated variationally using a two-band tight-binding
model. The approximation is valid for a moderately lo@gpproximately 5.5—13.5 nrguantum

well with a V-shaped potential which can be produced by a realistic delta-doping on the order of
ng= 102 cm. The splitting versus applied fieldteepness of the V-shaped potent@alrves show
interesting behavior: a single minimum and for some doublets, a parity reversal as the field is
increased. These characteristics are explained through an analysis of the variational wave function
and energy functional. @005 American Institute of PhysidOI: 10.1063/1.1913798

I. INTRODUCTION well in one-dimensional structures. In two-dimensional ar-
rays of quantum dots, a V-like potential can be achieved by
using lateral gates, such as in the Si—SiGe heterostructure for
"spin gbits proposed by Friesest al® V-shaped or V-like
potential wells are thus becoming an increasingly important
part of nanoelectronic devices and structures.

The electronic structure of conduction-band silicon
quantum wells is profoundly affected by the bulk band struc
ture of silicon. In bulk, theX valleys are six-fold degenerate
when strained alon§001] the degeneracy of interest is for

the two valleys lying along. Because the minima of these In addition to the experimental and device interest, a

valleys occur somewhat inward from the respective\, shaned potential well is helpful theoretically since it pre-
Brillouin-zone faces, there are four propagatlng stawes z serves symmetry. This symmetry can be exploited to give
wave vectors ¥, ko) at each energy within the valleys. AS gimpjer approximations for the wave function and energy
a result, the bound states of a quantum well occur in dougnctional than would be the case with a nonsymmetric po-
blets; the splitting between the states comprising the loweskia|, thereby yielding more insight into the behavior of the
doublet is referred to as the valley splitting. eigenstates and energies of the potential well. The interesting

This valley splitting in flgtbart}: silicon quantum wells v sics of valley splitting in flatband devices, together with
has been studied both experimentaliyd theoretically using ¢ jncreasing use of V-shaped potential profiles, demands an

the two-band effective-mass modeknd tight-binding i estigation of the valley splitting in silicon conduction-
appr_oache§. Direct comparison of the two-band tight- pang quantum wells subjected to a V-shaped potential.
bmdén*g model employed here with a much more complete  1his paner presents a calculation of the valley splitting
sp'd®s” model has shown both good agreement for the valleyy gjjicon conduction-band quantum wells under confinement
splitting in flatband quantum wells and theg neither the 5 \.shaped potential using a two-band tight-binding
orbitals nor the spin-orbit coupling in trgd s modelis  nogef4 and a variational wave function. The variational re-
necessary to explain the essential physicghis essential gjt5 compare favorably with numerical calculations and fur-
physics is the broken translational symmetry in one dimenhermore explain the physics of the valley splitting in these

sion and resultant coupling of the four bulk states to producgyycyres with clarity and detail unobtainable using numeri-
two bound states which split in energy. From this couplinge,| methods alone. The paper is organized as follows. Sec-

come interesting properties in flatband quantum wells includsg, | presents the method, Sec. Il the results, and Sec. IV
ing the oscillation of the valley splitting with quantum well 1o onclusions.

width and the alternating parity of the ground state. These
features have been predicted eaflieut have only recently
been explained in detaif’

Increasingly, quantum wells, wires, and dots with poten-  The calculation of the valley splitting in quantum wells
tial profiles_which are not flat have been investigated.gpjected to a V-shaped potential is based on our earlier re-
Delta-doping produces an approximate V-shaped potentialsits for flatband structures, so much of the notation is taken
from Refs. 3 and 4. The model is one dimensiofzakthain
dElectronic mail: boykin@eng.uah.edu along thez direction with second-near-neighbor interac-

II. METHOD
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tions; we adopt the atom-indexed notation for simplicity asefficients correspond to an even wave function. The eigen-
in Ref. 4.(Appendix | of Ref. 4 shows that this is equivalent states of Eq(3) are found by two method<1) numerical

to describing the two-band model as a one-band model witlliagonalization(i.e., exact and (2) variational. The varia-

a unit cell half as large.On each atom there is a singbe  tional results will be shown to agree well with the numerical

orbital and there are two identical atoms per unit cell; thecalculations and provide valuable physical insight not avail-
guantum well has ® atoms (N celly, indexed asj able from the numerical results alone.

=1,2,...,N. The wave function is written as In the variational calculation, the coefficients are taken
IN+2 to be
V)= — z:ny, 1 () — 0]; —
W) \’anl)d ) (1) X =[1+a?]j - (N+1/2)]

— AP = (p)
where|z;n) is the orbital on atonm and.\ is the normaliza- xexd- a'[j- (N+1/2|IC”, p e {eo0}, (6)
tion. As before, hardwall boundary conditions are applied avhere«'” is the variational parameter for thecoefficients

both ends of the well, requiring that andC" are the exact solutions found for the flatband quan-
X-1= Xo= Xon+1= Xanw2 = 0. (2)  tumwellin Ref. 4,
The Hamiltonian operator for the weincluding the applied  Cj” =ai” cod¢{”(j - N - 1/2]+ a5 cog ¢’ (j N - 1/2)],
V-shaped potential I:|, is represented by the\N2x 2N matrix (7)
H=Hav Van, 3 Cl9=al sin¢(j - N - 1/2)] +af sif ¢ (j - N - 1/2)].
whereH,y is the Hamiltonian matrix for the flatband quan- ®8)
tum well;*
'8 DU O e e 0' That is, the phases!” and expansion coefficienﬁ”) are
fixed, being those already found for the flatband quantum
v.e v 0 well of 2N atoms. Note that the form of E@6) (absolute
u v e v value bars in both the argument of the exponential and pref-
Hon(e,v,u)=| 0 0 (4) acton precludes a cusp in the coefficiel)‘tg) if j is treated
: U v & » U as a continuous variable. Note also from E@). that since
the C\*) already satisfy the hardwall boundary conditions, so
- uovoe v too do they”. In Eq. (1), the wave function with coefficients
00 u v g X}") is denoted W), the superscript indicates the parity of
and the V-potential matrix is diagonal, with elements the coefficients which, as discussed above,appositethat
of the total wave function.
[Vondij=Fli - (N+1/2)|5;, F=0. 5 Even though there is only one variational parameter,

o), for each wave function, the normalizations and total-
energy functionals turn out to be rather complicated. Conse-
qguently, the minimization of the the energy functionals

Note from Eq.(5) that the units on the “fieldF are actually

eV/at., in order to simplify the notation. As in Ref. &js the

on-site parametery the nearest-neighbor parameter, and

the second-near-neighbor parameter; the values given there

are also used here. E[w)] =
We remark that the potential in E¢B) is a good varia-

tionally solvable model for delta-doping since it is the poten- i, respect to thex is carried out numerically. The com-

tial of an infinite sheet of charge centered between the tW?)Iications arise from the presence of sums suéh as

middle atoms(An even number of atoms is chosen for con-

<q;(p)| H |q/(p)>

<q/(p)|\p(p)> (9)

venience; the physics is the same for an odd numisr.

! L _ psin(x) - p"sin(nx) + p™sin (n- 1)x]

way of comparison, typical field values studied here are P*Sin(kx) = 1-o 2

. o k=1 p cogx) + p
about 1 meV/at., which corresponds to an electric fi€ld,
~74 kV/cm, assuming the interatomic spacing is about (10)
0.135 nm (one-half monolaygr The corresponding sheet
doping densityny can be estimated using the infinite sheet o
charge model of elementary electrostaticg=2¢c,£0,5/0, 2. pcogkx)
where g is the magnitude of electronic charge, and for STha
£,=11.9. Using€~74 kV/cm givesng=~ 102 cm 2, which _ 1-pcogx) - p" cognx) + p™* cog(n - 1)x]
is readily achievable. - 1 - 2p cogx) + p

From Egs.(4) and(5) it is clear that the Hamiltonian is

symmetric about the well centéat “index” N+1/2). Hence, ~and their derivatives with respect { The value ofa®
its eigenstates may also be chosen as simultaneous parighich minimizesE[¥] is denoteda(’), while the mini-
eigenstates, just as in the flatband treatniéniote that ~mum of E[¥?] itself is E¥) . In practice, for fields of inter-
since the underlying basis orbitals goglike, even coeffi- est and wells of around 20-60 ce(0—-120 aj, the mini-
cients y correspond to an odd wave function, while odd co-mizing valuesa'® and ' tend to be close, and it is often

min min

n-1

(11
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a good approximation to use the average of the two 1 P
G'(2a,N) = - 513 G(2a N) + —G(2a,N)
Jar
amm [a(n?n agr??n]/z (12 2[ 3
- —{ —G(2a, N)} (18
to calculate the energy functiond¥ )] and even the dif- 8

ferenceAE=E® ~E\% . Our primary interest is the field de- Note thatS’ andg’ are related to, but are not exactly, partial

pendence ofAE. derivatives ofS and G, respectively. After manipulating the
Fortunately, an explicit expression for the? is not  sums to exploit symmetry and remove the absolute value

necessary for a qualitative understanding of the splitting as Bars, and using trigonometric relations to convert expres-

function of field. Indeed, much insight can be gained simplysjons in terms of sines to those in terms of cosines, the nor-
by comparing analytic expressions extracted from the energyalizations are

functionals for the cases of even and odd coefficients. Since O — T o(E2 (@2 © (@2 © .
it is the field dependence of theplitting between the two V' ={[a + [af 139209 N] + [a? °S[2a'®, 2, N]
states of the doublet, not the energies themselves, which is of [a9125[24'©, 26 N] + 2aPa®{S[24@, 25® N]
interest, only two parts of Eq9) for each of the two states
generally need to be computed for detailed study. These are,  +S[2a'®,2¢® NJ}, (19
first, the two normalizations, in order to confirm that they are
similar; and second, the two field terms, since they generallp\© = {[a{”1? + [a®]2}G[2a'¥,N] - [a{”]2S[ 22/, 2¢!”,N]
have the strongedt dependence(ln the matrix representa- (2 © 0. ©.0) © 250
tion, “field term” refers to the expectation value Wfy.) - [af S22 N] + 282 {S[2a?, 26 N]
Since the field dependence enters the expectation value of  _ (2,0 750 NJ}, (20)
H,y only via the variational parameter”), this expectation
value is usually less important for determining fhelepen-  where, as in Ref. 4,
dence of the splitting.

These expressions are computed in the customary marﬁs( V= [(P(p - ‘p(p)]/ 2, ¢V= [‘P(p) * (P(p)]/ 2, pefeok
ner, making use of sums such as EG€) and(11) and the (21

familiar geometric series. The expressions are convementlxs discussed in Ref. 4, the wave functions for the lowest

recast by introducing the shorthand notation, doublet of a flatband quantum well consist of a cosinelike

envelope characterized by tid® with underlying fast oscil-

. ‘ ) lations characterized by thg”; in most quantum wells, all
S(k,B.N) = %e <2 cod () - 1/2)], (13) of the (p(p) are approximately equal te,,, the phase-space
" location of the SX-valley minimum. Also, for most quantum
wells [those with 6’ <1] at reasonable fieldgfor which
N . 1—g <N roughly «'” <0.2], the dominant terms in the normalizations
G(k,N) =D eri-td= — — (14)  are those involving[2a'?,N] and S[2a”, 25 N].
=1 2 sinh(x/2) The field terms for the states with even and odd coeffi-
cients are computed in a similar manner, giving
S(2a,2¢,N) = S22, 2¢,N) - a{(%S(Za,Z(p,N)] FO= ME> —s ([P +[a?12G'[2a'9,N]
2 2
* %[%S(za,ch.w} : (15 + (a5 1207, 267 N]

+[a2S'[2a'9, 265, N] + 2aPay?

; xX{8'[2a'®,289 N] + S'[2a'9,26 N]}), (22
G(2a,N) =G(2a,N) - a[a—aG(Za,N)]

2[ ) } PO = 5 ([ + [P 20N

J
+— —2G(2a, N) |. (16)
4 | dar [a(O)]ZS [za(o) 2<p(0) N]

- [aP2S'[2a!%, 26 N] + 287 af”

S'(2a,2¢,N) = - -{ ——S(2a,2¢, N)} x{8'[2a'9,269 N] - §'[2a'9,269,NT}).  (23)
a Observe that the terms ig”’, ¢\, and¢ in Egs.(22) and
E 5(2“ 2¢,N) (23) differ in sign. In Sec. llI th|s difference will be seen to
account for much of the behavior of the splitting, especially
_ _[ 2820, 2¢ N)] (17) at higher-field values. Here, a rough analysis of these two
8| da® ’ equations shows what to expect from the splitting.
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For the lowest doublet in reasonably long structures at
field values in the range of interest, it is generally a good

approximation to ignore terms &f2a”, 2¢” | N] involving
exd-2a”’N] and to take

aﬁn = ag]?i)n = Emina (24)
qup) ~ gD(Zp) ~ E(p) = Qmins pE {e, O}' (25)
a(lp) ~ a(ZP)’ a(lp),a(zp) >0, pego}. (26)
Under these approximations,
_ Emin COS(QDmin)
2 i 12 i 1N = ’ 27
St2atmin 2¢minN) 1-co2¢m,) + Zaﬁqin 20
oS 1 - co$2¢m) — 2a7,
_> Coi(pmin) $ <Pm|n) _alzr’f‘llr‘l2 > O, (28)
dar [1-cog2¢min) + 20

where the inequality on the right-hand side of E2B) holds
for small apin, O @min) <0, and co&¢,,,) <0, with latter
inequalities being appropriate for &} From Eq.(17), the
leading term inS’ is —(1/2)dS/ da:>0; taking §® = &9 in
Egs.(22) and(293) it therefore follows that
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L —

—>*— Exact

—©— Approx-same @

500 |-

400 |

oo V]

E

300 |

200 |

10'0 | L | L | L
L5 2.5

F [meV/atom]

3.0

FIG. 1. Valley splitingAE=E®-E© as a function of fieldF, for a 50-cell

(100 at) quantum well subjected to a V-shaped potential as calculated with
the two-band model. The crosses plot the results of numerical diagonaliza-
tion of the Hamiltonian matrix and the open circles the variational calcula-

tion (evaluated at the average variational paramefgy).

8F _
AF= 7= FO = “C[aPS (2amin 26minN) > 0 F

M
+ [ 1S [2amin 205, N]
+ 28”2 S' [ 2armin, 20, NT}.

B = - —{[aP12S' [ 2apin, 261 .N]

(29
to leading order(Oth) in ay,,. Equation(29) shows that for
sufficiently high field, the even-coefficient state should have
the higher energy, so that the odd-coefficient state becomes
the ground state. Since, as noted above, the wave-function
parity is opposite that of the coefficients, E89) indicates  Note that the difference field term7=F®-F° shows a
that at higher fields the even wave function should be théninimum similar to that of the full splitting, and that, indi-
ground state, as one might intuitively expect for quantum

(31

wells made of direct-band-gap materials. Note the contrast 6.0 ~————F————F————F—"——F——"—T—
with the flatband_quantum WeII_ case, Where_ the parity of the [ A (exact) o
ground state varies as a function of well width. * o AF (approx) o7
200 F | o & _
K O AR 60'9
¢ |.. .o
IIl. RESULTS LY | AE-AR o

Figure 1 plots the valley spliting\AE=E®-E©, as a
function of field,F, for a 50-cell(100 at) quantum well as
calculated with the two-band model. The variational results g
agree well with those of exact diagonalization. Since the™
splitting is positive throughout the range of field considered
the ground state remains the odd-coefficiéaten wave
function) state. There are two notable features of the graph:
the minimum at-~0.7 meV/at. and the increase following
it. These are explored further in Fig. 2, which plots the exact
and approximate difference field term,F=7®-F9 as
well as the bulk minimum difference, defined A8=8®
-B©, where the bulk term&® are simply the parts of the

field termsF*) involving phases a}p) and 2o,

gy [ueV]

-40‘0-""|""|"‘|‘w-|-‘-.l....

1.5
F [meV/atom]

1.0 2.0 2.5 3.0

FIG. 2. The difference field term F=F© -7, as calculated via numeri-
cal diagonalizatioricrossepand variationally, usings Eq&2) and(23) and
average variational parametey,, (open circleg for the 50-cell well of Fig.

1. Note that these two curves are almost identical. The bulk minimum dif-
ference AB=B®-B©, which carries little of the phase information, is plot-
ted with the open diamonds. The curve labeddet-A S plots the exact, full
splitting, minus the bulk minimum difference. Note that the bulk minimum
difference accounts for much of the behavior of the full splitting at higher
fields, as indicated by the relative flatness of the cukize-AS.

F _
B = allar’ S [2amin 2617 NI

+[a12S [2amin, 205, N]

+ 2828 ' [2amin, 20 NI}, (30)
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0.0 3 v 00000 ]
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

FIG. 4. The difference field termyF=F® - F©, as calculated via numeri-
cal diagonalizatioricrossepand variationally, usings Eq&2) and(23) and
FIG. 3. Valley splittingAE=E® -E© as a function of fieldF, for a 46-cell average variational parametey,, (open circleg for the 46-cell well of Fig.

(92 at) quantum well subjected to a V-shaped potential as calculated witr3. Note that these two curves are almost identical. The bulk minimum dif-
the two-band model. The crosses plot the results of numerical diagonalizdference AB=5® -5, which carries little of the phase information, is plot-
tion of the Hamiltonian matrix and the open circles the variational calcula-ted with the open diamonds. The curve labeldt-AS plots the exact, full
tion (evaluated at the average variational paramejgy). Unlike the 50-cell splitting, minus the bulk minimum difference. Note that the bulk minimum
well of Fig. 1, there is a parity change t=1 meV/at.. difference accounts for much of the behavior of the full splitting at higher
fields, as indicated by the relative flatness of the cukize-AB.

F [meV/atom]

cated in Eq(29), the increases in bohF and the full split-  getermined by the bulk minimum difference. The two ex-
ting are largely accounted for by the bulk minimum differ- 55165 considered here show that while the bulk minimum
ence,AB. This last point is underscored by the plot labeled yigterence is relatively unimportant at lower fields, it helps to

AE-AB (the exact, full splitting, minus the bulk minimum oqre that at higher fields the odd-coefficiéenen wave
difference, which becomes much flatter at higher fields. function) state becomes the ground state.

Two observations show the important physics contained
in AB. First, the phases involved are all close g2, twice
the X-valley minimum phase. Because the average differV- CONCLUSIONS
ences&”, which are of critical importance in determining
the zero-field valley splitting, are much smaller thag;,,
they cannot affect the bulk minimum terms, E¢30) and

Silicon X-valley quantum wells display interesting be-
havior when subjected to a V-shaped potential. As the field
(slope of the V potentialincreases, the valley splitting typi-
(31), much. Second, since very roughlg®~=-5®, the  cally displays a single minimum. The parity of the ground
contributions of thes” to AB are of litle importance. state in flatband wells is a sensitive function of the well
Hence, the bulk difference carries little of the quUiSitelywidth3'4 and here, too, disp|ays an unusual behavior. An odd-
sensitive phase information which determines the ZerO-ﬁel%arity ground-state wave function at zero field pra”y un-
splitting, and when it becomes sufficiently large, dominatesjergoes a parity change at some finite field, so that as suffi-
the splitting behavior. ciently large fields the ground-state wave function is even.

These characteristics are again seen in Fig. 3, whichthe energy functionals, calculated with variational wave
plots the valley splitting for a 46-ce(B2 at) quantum well.  functions for the lowest doublet, explain this behavior. The
Again note the close agreement between the variational anghrity change occurs because of the terms in the energy func-
exact diagonalization results. Unlike the 50-cell case of Figstional which depend very strongly on the location of the Si
1 and 2, the parity of the ground state changes here, as indk-valley minimum and only weakly on the small phase dif-
cated by the change in sign ofE=E®-E at a fieldF  ferences which account for the zero-field splitting. These re-
~1 meV/at.. At low fields the even-coefficietddd wave sylts therefore provide a much improved understanding of
function state has the lower energy, while at higher fields,the valley splitting in Si conduction-band quantum wells
the odd-coefficienteven wave functionstate becomes the subjected to a V-shaped potential.
ground state. Figure 4, which plots the difference field term
as well as the difference bulk minimum for this well, shows
that much of the behavior of the splitting is attributable to theACK’\IOV\/LEDGMENTS
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