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The valley splittingsenergy difference between the states of the lowest doubletd in strained silicon
quantum wells with a V-shaped potential is calculated variationally using a two-band tight-binding
model. The approximation is valid for a moderately longsapproximately 5.5–13.5 nmd quantum
well with a V-shaped potential which can be produced by a realistic delta-doping on the order of
nd<1012 cm−2. The splitting versus applied fieldssteepness of the V-shaped potentiald curves show
interesting behavior: a single minimum and for some doublets, a parity reversal as the field is
increased. These characteristics are explained through an analysis of the variational wave function
and energy functional. ©2005 American Institute of Physics. fDOI: 10.1063/1.1913798g

I. INTRODUCTION

The electronic structure of conduction-band silicon
quantum wells is profoundly affected by the bulk band struc-
ture of silicon. In bulk, theX valleys are six-fold degenerate
when strained alongf001g the degeneracy of interest is for
the two valleys lying alongz. Because the minima of these
valleys occur somewhat inward from the respective
Brillouin-zone faces, there are four propagating statesswith z
wave vectors ±k1, ±k2d at each energy within the valleys. As
a result, the bound states of a quantum well occur in dou-
blets; the splitting between the states comprising the lowest
doublet is referred to as the valley splitting.

This valley splitting in flatband silicon quantum wells
has been studied both experimentally1 and theoretically using
the two-band effective-mass model2 and tight-binding
approaches.3–6 Direct comparison of the two-band tight-
binding model employed here with a much more complete
sp3d5s* model has shown both good agreement for the valley
splitting in flatband quantum wells and that neither thed
orbitals nor the spin-orbit coupling in thesp3d5s* model is
necessary to explain the essential physics.3,4 This essential
physics is the broken translational symmetry in one dimen-
sion and resultant coupling of the four bulk states to produce
two bound states which split in energy. From this coupling
come interesting properties in flatband quantum wells includ-
ing the oscillation of the valley splitting with quantum well
width and the alternating parity of the ground state. These
features have been predicted earlier6 but have only recently
been explained in detail.3,4

Increasingly, quantum wells, wires, and dots with poten-
tial profiles which are not flat have been investigated.
Delta-doping7 produces an approximate V-shaped potential

well in one-dimensional structures. In two-dimensional ar-
rays of quantum dots, a V-like potential can be achieved by
using lateral gates, such as in the Si–SiGe heterostructure for
spin qbits proposed by Friesenet al.8 V-shaped or V-like
potential wells are thus becoming an increasingly important
part of nanoelectronic devices and structures.

In addition to the experimental and device interest, a
V-shaped potential well is helpful theoretically since it pre-
serves symmetry. This symmetry can be exploited to give
simpler approximations for the wave function and energy
functional than would be the case with a nonsymmetric po-
tential, thereby yielding more insight into the behavior of the
eigenstates and energies of the potential well. The interesting
physics of valley splitting in flatband devices, together with
the increasing use of V-shaped potential profiles, demands an
investigation of the valley splitting in silicon conduction-
band quantum wells subjected to a V-shaped potential.

This paper presents a calculation of the valley splitting
in silicon conduction-band quantum wells under confinement
by a V-shaped potential using a two-band tight-binding
model3,4 and a variational wave function. The variational re-
sults compare favorably with numerical calculations and fur-
thermore explain the physics of the valley splitting in these
structures with clarity and detail unobtainable using numeri-
cal methods alone. The paper is organized as follows. Sec-
tion II presents the method, Sec. III the results, and Sec. IV
the conclusions.

II. METHOD

The calculation of the valley splitting in quantum wells
subjected to a V-shaped potential is based on our earlier re-
sults for flatband structures, so much of the notation is taken
from Refs. 3 and 4. The model is one dimensionalsa chain
along the z directiond with second-near-neighbor interac-adElectronic mail: boykin@eng.uah.edu
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tions; we adopt the atom-indexed notation for simplicity as
in Ref. 4.sAppendix I of Ref. 4 shows that this is equivalent
to describing the two-band model as a one-band model with
a unit cell half as large.d On each atom there is a singlepz

orbital and there are two identical atoms per unit cell; the
quantum well has 2N atoms sN cellsd, indexed as j
=1,2, . . . ,2N. The wave function is written as

uCl =
1

ÎN o
n=−1

2N+2

xnuz;nl, s1d

whereuz;nl is the orbital on atomn andN is the normaliza-
tion. As before, hardwall boundary conditions are applied at
both ends of the well, requiring that

x−1 = x0 = x2N+1 = x2N+2 = 0. s2d

The Hamiltonian operator for the wellsincluding the applied

V-shaped potentiald, Ĥ, is represented by the 2N32N matrix

HI = HI 2N + VI 2N, s3d

whereHI 2N is the Hamiltonian matrix for the flatband quan-
tum well,4

HI 2Ns«,n,ud = 3
« n u 0 ¯ ¯ 0

n « n u 0 ]

u n « n u � ]

0 � � � � � 0

] � u n « n u

] � 0 u n « n

0 ¯ ¯ 0 u n «

4 s4d

and the V-potential matrix is diagonal, with elements

fVI 2Ngi,j = Fu j − sN + 1/2dudi,j, F ù 0. s5d

Note from Eq.s5d that the units on the “field”F are actually
eV/at., in order to simplify the notation. As in Ref. 4,« is the
on-site parameter,n the nearest-neighbor parameter, andu
the second-near-neighbor parameter; the values given there
are also used here.

We remark that the potential in Eq.s5d is a good varia-
tionally solvable model for delta-doping since it is the poten-
tial of an infinite sheet of charge centered between the two
middle atoms.sAn even number of atoms is chosen for con-
venience; the physics is the same for an odd number.d By
way of comparison, typical field values studied here are
about 1 meV/at., which corresponds to an electric field,E
<74 kV/cm, assuming the interatomic spacing is about
0.135 nm sone-half monolayerd. The corresponding sheet
doping densitynd can be estimated using the infinite sheet
charge model of elementary electrostatics:nd=2«r«0E /q,
where q is the magnitude of electronic charge, and for Si
«r =11.9. UsingE<74 kV/cm givesnd<1012 cm−2, which
is readily achievable.

From Eqs.s4d and s5d it is clear that the Hamiltonian is
symmetric about the well centersat “index” N+1/2d. Hence,
its eigenstates may also be chosen as simultaneous parity
eigenstates, just as in the flatband treatment.3,4 Note that
since the underlying basis orbitals arepz like, even coeffi-
cientsx correspond to an odd wave function, while odd co-

efficients correspond to an even wave function. The eigen-
states of Eq.s3d are found by two methods:s1d numerical
diagonalizationsi.e., exactd and s2d variational. The varia-
tional results will be shown to agree well with the numerical
calculations and provide valuable physical insight not avail-
able from the numerical results alone.

In the variational calculation, the coefficients are taken
to be

x j
srd = f1 + asrdu j − sN + 1/2dug

3expf− asrdu j − sN + 1/2dugCj
srd, r P he,oj, s6d

whereasrd is the variational parameter for ther coefficients
andCj

srd are the exact solutions found for the flatband quan-
tum well in Ref. 4,

Cj
sed = a1

sed cosfw1
seds j − N − 1/2dg + a2

sed cosfw2
seds j − N − 1/2dg,

s7d

Cj
sod = a1

sod sinfw1
sods j − N − 1/2dg + a2

sod sinfw2
sods j − N − 1/2dg.

s8d

That is, the phasesw j
srd and expansion coefficientsaj

srd are
fixed, being those already found for the flatband quantum
well of 2N atoms. Note that the form of Eq.s6d sabsolute
value bars in both the argument of the exponential and pref-
actord precludes a cusp in the coefficientsx j

srd if j is treated
as a continuous variable. Note also from Eq.s6d that since
the Cj

srd already satisfy the hardwall boundary conditions, so
too do thex j

srd. In Eq.s1d, the wave function with coefficients
x j

srd is denoteduCsrdl, the superscript indicates the parity of
the coefficients, which, as discussed above, isoppositethat
of the total wave function.

Even though there is only one variational parameter,
asrd, for each wave function, the normalizations and total-
energy functionals turn out to be rather complicated. Conse-
quently, the minimization of the the energy functionals

EfCsrdg =
kCsrduĤuCsrdl
kCsrduCsrdl

s9d

with respect to theasrd is carried out numerically. The com-
plications arise from the presence of sums such as9

o
k=1

n−1

pk sinskxd =
p sinsxd − pn sinsnxd + pn+1 sinfsn − 1dxg

1 − 2p cossxd + p2 ,

s10d

o
k=0

n−1

pk cosskxd

=
1 − p cossxd − pn cossnxd + pn+1 cosfsn − 1dxg

1 − 2p cossxd + p2 s11d

and their derivatives with respect top. The value ofasrd

which minimizesEfCsrdg is denotedamin
srd , while the mini-

mum of EfCsrdg itself is Emin
srd . In practice, for fields of inter-

est and wells of around 20–60 cellss40–120 at.d, the mini-
mizing valuesamin

sed andamin
sod tend to be close, and it is often
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a good approximation to use the average of the two

āmin = famin
sed + amin

sod g /2 s12d

to calculate the energy functionalsEfCsrdg and even the dif-
ferenceDE=Emin

sed −Emin
sod . Our primary interest is the field de-

pendence ofDE.
Fortunately, an explicit expression for theamin

srd is not
necessary for a qualitative understanding of the splitting as a
function of field. Indeed, much insight can be gained simply
by comparing analytic expressions extracted from the energy
functionals for the cases of even and odd coefficients. Since
it is the field dependence of thesplitting between the two
states of the doublet, not the energies themselves, which is of
interest, only two parts of Eq.s9d for each of the two states
generally need to be computed for detailed study. These are,
first, the two normalizations, in order to confirm that they are
similar; and second, the two field terms, since they generally
have the strongestF dependence.sIn the matrix representa-
tion, “field term” refers to the expectation value ofVI 2N.d
Since the field dependence enters the expectation value of
HI 2N only via the variational parameterasrd, this expectation
value is usually less important for determining theF depen-
dence of the splitting.

These expressions are computed in the customary man-
ner, making use of sums such as Eqs.s10d and s11d and the
familiar geometric series. The expressions are conveniently
recast by introducing the shorthand notation,

Ssk,b,Nd = o
j=1

N

e−ks j−1/2d cosfbs j − 1/2dg, s13d

Gsk,Nd = o
j=1

N

e−ks j−1/2d =
1 − e−kN

2 sinhsk/2d
, s14d

Ss2a,2w,Nd = Ss2a,2w,Nd − aF ]

]a
Ss2a,2w,NdG

+
a2

4
F ]2

]a2Ss2a,2w,NdG , s15d

Gs2a,Nd = Gs2a,Nd − aF ]

]a
Gs2a,NdG

+
a2

4
F ]2

]a2Gs2a,NdG . s16d

S8s2a,2w,Nd = −
1

2
F ]

]a
Ss2a,2w,NdG

+
a

2
F ]2

]a2Ss2a,2w,NdG
−

a2

8
F ]3

]a3Ss2a,2w,NdG , s17d

G8s2a,Nd = −
1

2
F ]

]a
Gs2a,NdG +

a

2
F ]2

]a2Gs2a,NdG
−

a2

8
F ]3

]a3Gs2a,NdG . s18d

Note thatS8 andG8 are related to, but are not exactly, partial
derivatives ofS andG, respectively. After manipulating the
sums to exploit symmetry and remove the absolute value
bars, and using trigonometric relations to convert expres-
sions in terms of sines to those in terms of cosines, the nor-
malizations are

Nsed = hfa1
sedg2 + fa2

sedg2jGf2ased,Ng + fa1
sedg2Sf2ased,2w1

sed,Ng

+ fa2
sedg2Sf2ased,2w2

sed,Ng + 2a1
seda2

sedhSf2ased,2dsed,Ng

+ Sf2ased,2w̄sed,Ngj, s19d

Nsod = hfa1
sodg2 + fa2

sodg2jGf2asod,Ng − fa1
sodg2Sf2asod,2w1

sod,Ng

− fa2
sodg2Sf2asod,2w2

sod,Ng + 2a1
soda2

sodhSf2asod,2dsod,Ng

− Sf2asod,2w̄sod,Ngj, s20d

where, as in Ref. 4,

dsrd = fw1
srd − w2

srdg /2, w̄srd = fw1
srd + w2

srdg /2, r P he,oj.

s21d

As discussed in Ref. 4, the wave functions for the lowest
doublet of a flatband quantum well consist of a cosinelike
envelope characterized by thedsrd with underlying fast oscil-
lations characterized by thew̄srd; in most quantum wells, all
of the w j

srd are approximately equal towmin, the phase-space
location of the SiX-valley minimum. Also, for most quantum
wells fthose with dsrd!1g at reasonable fieldsffor which
roughlyasrdø0.2g, the dominant terms in the normalizations
are those involvingGf2asrd ,Ng andSf2asrd ,2dsrd ,Ng.

The field terms for the states with even and odd coeffi-
cients are computed in a similar manner, giving

Fsed =
F

Nsed shfa1
sedg2 + fa2

sedg2jG8f2ased,Ng

+ fa1
sedg2S8f2ased,2w1

sed,Ng

+ fa2
sedg2S8f2ased,2w2

sed,Ng + 2a1
seda2

sed

3hS8f2ased,2dsed,Ng + S8f2ased,2w̄sed,Ngjd, s22d

Fsod =
F

Nsod shfa1
sodg2 + fa2

sodg2jG8f2asod,Ng

− fa1
sodg2S8f2asod,2w1

sod,Ng

− fa2
sodg2S8f2asod,2w2

sod,Ng + 2a1
soda2

sod

3hS8f2asod,2dsod,Ng − S8f2asod,2w̄sod,Ngjd. s23d

Observe that the terms inw1
srd, w2

srd, andw̄srd in Eqs.s22d and
s23d differ in sign. In Sec. III this difference will be seen to
account for much of the behavior of the splitting, especially
at higher-field values. Here, a rough analysis of these two
equations shows what to expect from the splitting.
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For the lowest doublet in reasonably long structures at
field values in the range of interest, it is generally a good
approximation to ignore terms ofSf2asrd ,2wsrd ,Ng involving
expf−2asrdNg and to take

amin
sed < amin

sod < āmin, s24d

w1
srd < w2

srd < w̄srd < wmin, r P he,oj, s25d

a1
srd < a2

srd, a1
srd,a2

srd . 0, r P he,oj. s26d

Under these approximations,

Ss2āmin,2wmin,Nd <
āmin cosswmind

1 − coss2wmind + 2āmin
2 , s27d

−
]S

]a
< − cosswmind

1 − coss2wmind − 2āmin
2

f1 − coss2wmind + 2āmin
2 g2 . 0, s28d

where the inequality on the right-hand side of Eq.s28d holds
for small āmin, cosswmind,0, and coss2wmind,0, with latter
inequalities being appropriate for Si.3,4 From Eq. s17d, the
leading term inS8 is −s1/2d]S/]a.0; taking dsed<dsod in
Eqs.s22d and s23d it therefore follows that

DF = Fsed − Fsod <
8F

N fasrdg2S8s2āmin,2wmin,Nd . 0

s29d

to leading orders0thd in āmin. Equations29d shows that for
sufficiently high field, the even-coefficient state should have
the higher energy, so that the odd-coefficient state becomes
the ground state. Since, as noted above, the wave-function
parity is opposite that of the coefficients, Eq.s29d indicates
that at higher fields the even wave function should be the
ground state, as one might intuitively expect for quantum
wells made of direct-band-gap materials. Note the contrast
with the flatband quantum well case, where the parity of the
ground state varies as a function of well width.3,4

III. RESULTS

Figure 1 plots the valley splitting,DE=Esed−Esod, as a
function of field,F, for a 50-cells100 at.d quantum well as
calculated with the two-band model. The variational results
agree well with those of exact diagonalization. Since the
splitting is positive throughout the range of field considered
the ground state remains the odd-coefficientseven wave
functiond state. There are two notable features of the graph:
the minimum atF<0.7 meV/at. and the increase following
it. These are explored further in Fig. 2, which plots the exact
and approximate difference field term,DF=Fsed−Fsod, as
well as the bulk minimum difference, defined asDB=Bsed

−Bsod, where the bulk termsBsrd are simply the parts of the
field termsFsrd involving phases 2w j

srd and 2w̄srd,

Bsed =
F

Nsed hfa1
sedg2S8f2āmin,2w1

sed,Ng

+ fa2
sedg2S8f2āmin,2w2

sed,Ng

+ 2a1
seda2

sedS8f2āmin,2w̄sed,Ngj, s30d

Bsod = −
F

Nsod hfa1
sodg2S8f2āmin,2w1

sod,Ng

+ fa2
sodg2S8f2āmin,2w2

sod,Ng

+ 2a1
soda2

sodS8f2āmin,2w̄sod,Ngj. s31d

Note that the difference field termDF=Fsed−Fsod shows a
minimum similar to that of the full splitting, and that, indi-

FIG. 1. Valley splittingDE=Esed−Esod as a function of field,F, for a 50-cell
s100 at.d quantum well subjected to a V-shaped potential as calculated with
the two-band model. The crosses plot the results of numerical diagonaliza-
tion of the Hamiltonian matrix and the open circles the variational calcula-
tion sevaluated at the average variational parameterāmind.

FIG. 2. The difference field term,DF=Fsed−Fsod, as calculated via numeri-
cal diagonalizationscrossesd and variationally, usings Eqs.s22d ands23d and
average variational parameterāmin sopen circlesd for the 50-cell well of Fig.
1. Note that these two curves are almost identical. The bulk minimum dif-
ference,DB=Bsed−Bsod, which carries little of the phase information, is plot-
ted with the open diamonds. The curve labeledDE−DB plots the exact, full
splitting, minus the bulk minimum difference. Note that the bulk minimum
difference accounts for much of the behavior of the full splitting at higher
fields, as indicated by the relative flatness of the curveDE−DB.
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cated in Eq.s29d, the increases in bothDF and the full split-
ting are largely accounted for by the bulk minimum differ-
ence,DB. This last point is underscored by the plot labeled
DE−DB sthe exact, full splitting, minus the bulk minimum
differenced, which becomes much flatter at higher fields.

Two observations show the important physics contained
in DB. First, the phases involved are all close to 2wmin, twice
the X-valley minimum phase. Because the average differ-
encesdsrd, which are of critical importance in determining
the zero-field valley splitting, are much smaller thanwmin,
they cannot affect the bulk minimum terms, Eqs.s30d and
s31d, much. Second, since very roughly,Bsod<−Bsed, the
contributions of thedsrd to DB are of little importance.
Hence, the bulk difference carries little of the exquisitely
sensitive phase information which determines the zero-field
splitting, and when it becomes sufficiently large, dominates
the splitting behavior.

These characteristics are again seen in Fig. 3, which
plots the valley splitting for a 46-cells92 at.d quantum well.
Again note the close agreement between the variational and
exact diagonalization results. Unlike the 50-cell case of Figs.
1 and 2, the parity of the ground state changes here, as indi-
cated by the change in sign ofDE=Esed−Esod at a field F
<1 meV/at.. At low fields the even-coefficientsodd wave
functiond state has the lower energy, while at higher fields,
the odd-coefficientseven wave functiond state becomes the
ground state. Figure 4, which plots the difference field term
as well as the difference bulk minimum for this well, shows
that much of the behavior of the splitting is attributable to the
difference field term, just as in the 50-cell case of Figs. 1 and
2. Likewise, DB becomes increasingly important at higher
fields, as shown in the plot labeledDE−DB, which is fairly
flat at higher fields. Indeed, from roughly the transition at
F<1 meV/at. onward the behavior of the splitting is largely

determined by the bulk minimum difference. The two ex-
amples considered here show that while the bulk minimum
difference is relatively unimportant at lower fields, it helps to
ensure that at higher fields the odd-coefficientseven wave
functiond state becomes the ground state.

IV. CONCLUSIONS

Silicon X-valley quantum wells display interesting be-
havior when subjected to a V-shaped potential. As the field
sslope of the V potentiald increases, the valley splitting typi-
cally displays a single minimum. The parity of the ground
state in flatband wells is a sensitive function of the well
width3,4 and here, too, displays an unusual behavior. An odd-
parity ground-state wave function at zero field typically un-
dergoes a parity change at some finite field, so that as suffi-
ciently large fields the ground-state wave function is even.
The energy functionals, calculated with variational wave
functions for the lowest doublet, explain this behavior. The
parity change occurs because of the terms in the energy func-
tional which depend very strongly on the location of the Si
X-valley minimum and only weakly on the small phase dif-
ferences which account for the zero-field splitting. These re-
sults therefore provide a much improved understanding of
the valley splitting in Si conduction-band quantum wells
subjected to a V-shaped potential.
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