Genome Characterization and Annotation of a Cluster S Bacteriophage

Anna-Nikol Georgiev
Purdue University, ageorgie@purdue.edu

Kathryn Myers
Purdue University

Kierra Jammer
Purdue University

Morgan Callin
Purdue University

Taylor Sorrel
Purdue University

See next page for additional authors

Follow this and additional works at: https://docs.lib.purdue.edu/purc

Recommended Citation
Georgiev, Anna-Nikol; Myers, Kathryn; Jammer, Kierra; Callin, Morgan; Sorrel, Taylor; Clase, Kari; and Okekeogbu, Ikenna, "Genome Characterization and Annotation of a Cluster S Bacteriophage" (2019). *Purdue Undergraduate Research Conference*. 55.
https://docs.lib.purdue.edu/purc/2019/Posters/55

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Presenter Information
Anna-Nikol Georgiev, Kathryn Myers, Kierra Jammer, Morgan Callin, Taylor Sorrel, Kari Clase, and Ikenna Okekeogbu

This event is available at Purdue e-Pubs: https://docs.lib.purdue.edu/purc/2019/Posters/55
Introduction

Bacteriophages (phages) are viruses that infect their host and cannot reproduce independently outside of them. The application of bacteriophages in the biotechnology and medical sectors has recently increased, including uses as a potential antibacterial agent and CRISPR technology. In this project, genes 87-98 of the Corazon phage genome were annotated by five student researchers at Purdue University in addition to genes 74-83 of the Krili genome, and genes 89-99 of the Smooch genome. Our goal for this project was to determine the locations and functions of select genes within these phage genomes.

Summary and Conclusion

Genes 87-98 in the Corazon phage, genes 74-83 in Krili, and genes 89-99 in Smooch were annotated. Based on the evidence collected through various bioinformatics softwares, base pair locations of the genes were called by the group. After determining the gene location, gene functions were called based on alignments and comparison with other analogous genes. Many functions were unknown due to lack of evidence, but other functions included endonucleases and DNA Polymerase III subunits.

Results

Comparison of Known vs Unknown Functions

<table>
<thead>
<tr>
<th>Genome</th>
<th>Known Function</th>
<th>No Known Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corazon</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Krili</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Smooch</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

Figure 1: DNAMaster possible start sites for Corazon Gene 88.

Summary and Conclusion

Genes 87-98 in the Corazon phage, genes 74-83 in Krili, and genes 89-99 in Smooch were annotated. Based on the evidence collected through various bioinformatics softwares, base pair locations of the genes were called by the group. After determining the gene location, gene functions were called based on alignments and comparison with other analogous genes. Many functions were unknown due to lack of evidence, but other functions included endonucleases and DNA Polymerase III subunits.

Literature

Acknowledgements

This project was supported by the Howard Hughes Medical Institute’s (HHMI) Science Education Alliance who provided us with the HHMI SEA Phage Bioinformatics Guide. We would also like to acknowledge the Biotechnology Innovation and Regulatory Science Center at Purdue University, Bindley Bioscience Center at Purdue University, the Polytechnic Institute at Purdue University, and the Department of Agricultural and Biological Engineering at Purdue University. Special thanks to Dr. Kari Clase and to the teaching staff of the ABE/IT 227 course.