8-1-1960

The Scattering of a Plane Electromagnetic Wave by a Finite Cone

C. C. Rogers
Purdue University

F. V. Schultz
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

https://docs.lib.purdue.edu/ecetr/495

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
The Scattering of a Plane Electromagnetic Wave by a Finite Cone

C. C. Rogers and F. V. Schultz

AUGUST 1960

PREPARED FOR
ELECTRONICS RESEARCH DIRECTORATE
AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
AIR FORCE RESEARCH DIVISION
AIR RESEARCH AND DEVELOPMENT COMMAND
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

BY
PURDUE RESEARCH FOUNDATION, LAFAYETTE, INDIANA
THE SCATTERING OF A PLANE ELECTROMAGNETIC WAVE
BY A FINITE CONE

C. C. Rogers and F. V. Schultz

Purdue Research Foundation
Lafayette, Indiana

Scientific Report No. 1
AF 19(604)4051

August 1, 1960

Prepared
for

ELECTRONICS RESEARCH DIRECTORATE
AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
AIR FORCE RESEARCH DIVISION
AIR RESEARCH AND DEVELOPMENT COMMAND
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS
Requests for additional copies by Agencies of the Department of Defense, their contractors, and other Government agencies should be directed to the:

ARmed SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

Department of Defense contractors must be established for ASTIA services or have their 'need-to-know' certified by the cognizant military agency of their project or contract.

All other persons and organizations should apply to the:

U. S. DEPARTMENT OF COMMERCE
OFFICE OF TECHNICAL SERVICES
WASHINGTON 25, D.C.
ACKNOWLEDGMENT

The authors are indebted to Prof. I. Marx of the Department of Mathematics and Mr. M. R. Halsey of the School of Electrical Engineering for their assistance in making this report possible.

The experimental data and prepublication manuscripts furnished by Mr. R. E. Hiatt of the Radiation Laboratory at the University of Michigan are also sincerely appreciated.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Illustrations and Tables</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Glossary of Symbols</td>
<td>vi</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Preliminary Discussion of the Problem</td>
<td>3</td>
</tr>
<tr>
<td>Field Expansions</td>
<td>9</td>
</tr>
<tr>
<td>The Problem Solution</td>
<td>11</td>
</tr>
<tr>
<td>Numerical Investigation of Singularities at the Edge</td>
<td>24</td>
</tr>
<tr>
<td>Radar Cross Section</td>
<td>39</td>
</tr>
<tr>
<td>Summary of Results and Conclusions</td>
<td>44</td>
</tr>
<tr>
<td>List of References</td>
<td>45</td>
</tr>
<tr>
<td>Appendix A, Selection of Orthogonal Functions</td>
<td>48</td>
</tr>
<tr>
<td>Appendix B, Field Singularities</td>
<td>52</td>
</tr>
<tr>
<td>Appendix C, A Note on the Computation of the Associated Legendre Functions</td>
<td>61</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

Physical Configuration (Figure 1) .. 4
Space Sectionalizing (Figures 2-3) .. 8
Components of the Scattered Electric Field ..

Near the Edge of a Finite Cone (Figure 4) 36
Order of Edge Singularities (Figure 5) ... 37
Experimental Measurement of the Radar Cross

Section of a Finite Cone (Figure 6) .. 42
Sharp Edge (Figure 7) ... 53
Sharp Tip (Figure 8) ... 53
Surface Currents at a Conical Tip (Figure 9) 58
The Associated Legendre Function, \(P_{\nu}^{1}(\cos \theta) \) (Figure 10) 59
The First Derivative of the Associated Legendre

Function, \(\frac{dP_{\nu}^{1}}{d\theta} \) (Figure 11) ... 60

LIST OF TABLES

Bessel and Hankel Function Approximations (Table I) 25
Date Used in Computation of Field Expansion Coefficients (Table II) 27
Matrix Form of Expansion Coefficient Equations (Table III) 31
Computed Matrix Coefficients (Table IV) 32
Expansion Coefficients of the Electromagnetic Field (Table V) 34
Electric Field Components Near the Edge (Table VI) 38
ABSTRACT

This paper treats the solution of the vector Helmholtz equation for the case of a plane electromagnetic wave at 'nose-on' incidence on a perfectly-conducting cone of finite size. The solution presented is exact and in the form of an infinite series of spherical harmonics. The expansion coefficients of the series are determined by a set of an infinite number of equations involving an infinite number of unknowns. A discussion and numerical investigation of the field singularities at the tip and edge of the cone are included, as well as graphs of the associated Legendre functions of non-integral degree, $P_v^l(\cos \theta)$, and their first derivatives.
GLOSSARY OF SYMBOLS

\(z_v(x) \) Any spherical Bessel function of order \(v \) and argument \(x \),
\[Z^\frac{1}{2}_\nu (x) \]

\(j_v(x) \) Spherical Bessel function of the first kind of order \(v \) and argument \(x \)

\(h_v(x) \) Spherical Hankel function of the second kind of order \(v \) and argument \(x \), \(j_v(x) - ik_v(x) \).

\(n_v(x) \) Spherical Neumann function (Bessel function of the second kind) of order \(v \) and argument \(x \)

\(Z_v(x) \) Cylindrical Bessel function of any kind

\(z'_v(x) \)
\[\frac{1}{x} \frac{d}{dx} [xz_v(x)] \]

\(P_v^m(\cos \theta) \) Associated Legendre function of order \(m \) and degree \(v \).

\(\Gamma(x) \) Gamma function of argument \(x \). If \(x = n \), an integer, \(\Gamma(n) = (n-1)! \)

\(\gamma_n \) Expansion coefficient in the vector expansion of
the negative travelling plane wave, \(\bar{a}_x \hat{e}^{-i(\omega t + k z)} \)
\[\gamma_n = i^n \frac{2n+1}{n(n+1)} \]

\(\delta_{m,n} \) Kronecker delta \[\begin{array}{c} 1, \ m=n \\ 0, \ m \neq n \end{array} \]

\(e(\theta) \) Error functions

\(f_n \) Expansion coefficient in the vector expansion of
the negative travelling plane wave, \(\bar{a}_x \hat{e}^{-i(\omega t + k z)} \)
\[f_n = d \gamma_n \]

\(\varepsilon_0 \) Permittivity of free space, \[\frac{1}{30\pi} \times 10^{-9} \text{ farad/meter} \]
Table of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta)</td>
<td>Intrinsic impedance of free space, (\sqrt{\mu / \varepsilon_0})</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Angular variable in spherical coordinates measured from the positive z axis</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Wavelength</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Non-integral degree of the associated Legendre function and a root of the equation (\mu(\cos \theta) = 0).</td>
</tr>
<tr>
<td>(\nu)</td>
<td>Non-integral degree of the associated Legendre function and a root of the equation (\frac{d\mu}{d\theta} \bigg</td>
</tr>
<tr>
<td>(\mu_0)</td>
<td>Permeability of free space, (4\pi \times 10^{-7}) henry/meter</td>
</tr>
<tr>
<td>(\rho)</td>
<td>Radial coordinate in cylindrical coordinates, or kr, where r is the radial spherical coordinate</td>
</tr>
<tr>
<td>(\mathcal{J} = \infty)</td>
<td>Infinite conductivity</td>
</tr>
<tr>
<td>(\phi)</td>
<td>Total back-scattering radar cross section</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Any general degree of the associated Legendre function, (P^\tau_m(\cos \theta))</td>
</tr>
<tr>
<td>(\phi)</td>
<td>Angular variable in spherical coordinates measured from the x axis.</td>
</tr>
<tr>
<td>(\omega)</td>
<td>Angular frequency</td>
</tr>
<tr>
<td>(\phi)</td>
<td>A solution of the scalar wave equation</td>
</tr>
<tr>
<td>(m, n)</td>
<td>Positive integer or zero</td>
</tr>
<tr>
<td>(\mathbf{A})</td>
<td>A vector</td>
</tr>
<tr>
<td>(\mathbf{E})</td>
<td>Electric field</td>
</tr>
<tr>
<td>(\mathbf{H})</td>
<td>Magnetic field</td>
</tr>
<tr>
<td>(\mathbf{S})</td>
<td>The average Poynting vector, (\frac{1}{2} \text{Re}(\mathbf{E} \times \mathbf{H}^*))</td>
</tr>
<tr>
<td>(\mathbf{a}_i)</td>
<td>Unit vector in the (i^{th}) direction</td>
</tr>
<tr>
<td>(k)</td>
<td>Propagation constant, (2\pi / \lambda)</td>
</tr>
<tr>
<td>Page</td>
<td>Line</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>iv</td>
<td>16</td>
</tr>
<tr>
<td>iv</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>41</td>
<td>23</td>
</tr>
<tr>
<td>43</td>
<td>6</td>
</tr>
<tr>
<td>44</td>
<td>8</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td>54</td>
<td>6</td>
</tr>
</tbody>
</table>
THE SCATTERING OF A PLANE ELECTROMAGNETIC WAVE
BY A FINITE CONE

Introduction

The scattering and/or diffraction of electromagnetic waves by various objects has long been of considerable interest to scientists and engineers from both a practical and a theoretical viewpoint. Since, however, the exact determination of the scattering of electromagnetic waves by bodies other than those having very simple shapes involves considerable difficulty, a number of approximate theories have been developed which may generally be classed according to the range of wavelength to dimension-of-object ratio. Among these are the Rayleigh\(^1\) theory, Fock\(^2\) theory, Franz\(^3\) (creeping wave) theory, and the theories of physical and geometrical optics. An excellent summary and application of these methods appears in a paper by K. M. Siegel\(^4\).

Approximate theories cannot be applied, however, when the dimensions of the scattering object are in the neighborhood of a wavelength. For this so-called "resonance" region, only exact theory (i.e., a solution of Maxwell's equations) applies.

Due to the difficulty of obtaining exact solutions, the problems which have been solved using exact theory are notably few. Of bodies which are infinite in extent, solutions have been obtained for the cylinder by both Seitz\(^5\) and Ignatowsky\(^6\), the semi-infinite plane by Sommerfeld\(^7\), the wedge by Oberhettinger\(^8\), the cone by Hansen and Schiff\(^9\), and the paraboloid by Horton and Karal\(^10\). Finite bodies for which solutions exist are the sphere (by Mie\(^11\)), the prolate spheroid (by Schultz\(^12\)), and the disk (by Moglich\(^13\), Spence\(^14\), and Meixner\(^15\)). The works of Siegel\(^16\) are also particularly
notable for the reduction of some of the above solutions to useful numerical results.

One of the outstanding features of nearly all of these problems is the fact that the surface of the scattering object may be described by fixing one coordinate of a coordinate system in which the wave equation is separable. Here, indeed, lies one of the prime difficulties in obtaining exact solutions: the fact that one is persistently restricted to the use of a separable scalar wave equation, and consequently to the eleven coordinate systems in which this equation is separable. Furthermore, only a fraction of these systems involve well-known functions for which information is readily available.

It was with the foregoing thoughts in mind that a project was undertaken to attempt to develop a method for the exact determination of the fields scattered from irregularly shaped objects.

As with all electromagnetic boundary-value problems, an exact solution to Maxwell's equations consists of finding a solution subject to (1) the boundary conditions at the surface of the object, (2) the radiation condition at infinity, and (3) the finite energy condition. For general irregular scattering objects, the first two conditions introduce an additional difficulty since the radiation condition is always of a spherical nature (for finite-sized objects), and the surface of the scatterer will not in general be such. The third condition is usually implied when singular functions are discarded from use in the field expansions about smooth objects, and becomes of much greater concern when dealing with bodies with sharp edges and tips.
Preliminary Discussion of the Problem

As a first step in the treatment of irregularly shaped objects, the problem undertaken herein is concerned with the exact solution for the scattering of a plane electromagnetic wave by a finite-sized perfectly conducting cone. Papers by Siegel4,17 and Keller18 have previously treated the finite cone using the approximate theories of Rayleigh and physical optics, and geometrical optics, respectively. We consider here only "nose-on" incidence (see fig. 1), and, in order to retain a spherical system throughout, the end-cap of the cone will be assumed to be a spherical sector.

We seek a solution of the vector Helmholtz equation,

$$\nabla \vec{C} + k^2 \vec{C} = 0,$$

(1)

where $k = 2\pi/\lambda$ and \vec{C} may be either the electric or the magnetic field vector, \vec{E} or \vec{H}. It is commonly known that if Φ is a solution of the scalar wave equation,

$$\nabla^2 \Phi + k^2 \Phi = 0,$$

(2)

then the functions, $\vec{1}$, \vec{m}, and \vec{n}, defined by

$$\vec{1} = \text{grad } \Phi,$$

$$\vec{m} = \text{curl } \Phi \vec{a}_r,$$

$$\vec{n} = \frac{1}{k} \text{curl } \vec{m},$$

(3)

are solutions of (1) and form the basis for the most general solution of (1) (Ref. 25, p. 1766). Here, \vec{a}_r is the unit radial vector in spherical coordinates. Since, for the case under consideration, $\text{div } \vec{E} = \text{div } \vec{H} = 0$, and since $\text{div } \vec{1} \neq 0$, only \vec{m} and \vec{n} need to be used in the expansions.
PHYSICAL CONFIGURATION

Figure 1
of the field quantities.

In spherical coordinates, equation (2) becomes

\[
\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2} + k^2 \Phi = 0, \tag{4}
\]

which, when letting \(\Phi(r, \theta, \phi) = f_1(r)f_2(\theta)f_3(\phi) \), separates into

\[
\frac{1}{r} \frac{d^2(rf_1)}{dr^2} + \left[k^2 - \frac{v(v + 1)}{r^2} \right] f_1 = 0, \tag{5}
\]

\[
\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{df_2}{d\theta} \right) + \left[v(v + 1) - \frac{m^2}{\sin^2 \theta} \right] f_2 = 0, \tag{6}
\]

\[
\frac{d^2f_3}{d\phi^2} + m^2f_3 = 0, \tag{7}
\]

where \(v(v + 1) \) and \(m^2 \) are separation constants. The solutions of these equations are, respectively,

\[
f_1(r) = z_v(kr) = \sqrt{\pi/2kr} \ Z_v + 1/2(kr), \tag{8}
\]

\[
f_2(\theta) = P_v^m(\cos \theta), \tag{9}
\]

\[
f_3(\phi) = \begin{bmatrix} \cos m\phi \\ \sin m\phi \end{bmatrix}, \tag{10}
\]

where \(z_v(kr) \) is a spherical Bessel or Hankel function of order \(v \), \(Z_v + 1/2(kr) \) the corresponding cylindrical function, and \(P_v^m(\cos \theta) \) is the associated Legendre function of degree \(v \) and order \(m \). For physical fields in the complete \(\phi \) domain, \(m \) must be zero or an integer. Consequently,

\[
\phi^{n}_{vnm}(r, \theta, \phi) = f_1f_2f_3 = z_v^n(kr) P_v^m(\cos \theta) \begin{bmatrix} \cos m\phi \\ \sin m\phi \end{bmatrix} \tag{11}
\]

where we let "e" (even) or "o" (odd) indicate \(\cos m\phi \) or \(\sin m\phi \), respectively, and \(n \) may take on the values 1, 2, 3, or 4, where these numbers represent Bessel functions of the first and second kind, and
Hankel functions of the first and second kind, respectively; that is

\[z_0^1(\eta r) = j_0(\eta r), \quad z_0^2(\eta r) = n_0(\eta r), \]
\[z_0^3(\eta r) = h_0^1(\eta r), \quad z_0^4(\eta r) = h_0^2(\eta r). \]

From (11) and (3), we obtain

\[\frac{m}{8\mu} \frac{\partial}{\partial \theta} z_0^n(\eta r) F_\psi^m(\cos \theta) \sin m \phi \overline{e_\theta} \]
\[- \frac{z_0^n(\eta r)}{\eta r} \frac{\partial F_\psi^m}{\partial \theta} \cos m \phi \overline{e_\phi} \]
\[+ \frac{z_0^n(\eta r)}{\eta r} \frac{\partial F_\psi^m}{\partial \phi} \sin m \phi \overline{e_\theta} \]
\[\frac{m}{8\mu} \frac{\partial}{\partial \phi} z_0^n(\eta r) F_\psi^m(\cos \theta) \cos m \phi \overline{e_\phi}, \]

where \(z_0^n(\eta r) = \frac{1}{\eta r} \frac{d}{dr} [r z_0^n(\eta r)] \), and \(\overline{e_r}, \overline{e_\theta}, \) and \(\overline{e_\phi} \) are unit vectors.

For the particular representation of our field quantities, it will later become evident that it is convenient to split the space surrounding the cone into various regions; however, there exist two logical choices for such a division: one corresponding to the physical regions and the other to a coordinate surface (see fig. 2). The division of the surrounding space corresponding to the physical regions has been used by Sommerfeld in the treatment of the semi-infinite plane and by others in the treatment of semi-infinite bodies. Since we will be using spherical harmonic expansions, however, there are numerous reasons for choosing the division utilizing the coordinate surface.

Since the radiation condition must be satisfied for the scattered
fields, the use of Hankel functions is immediately suggested since they possess the desired behavior as $r \to \infty$. The Hankel functions possess a logarithmic singularity at $r = 0$, however, which is too large for satisfaction of the finite energy condition at the tip of the cone. Thus near the tip, the use of Bessel functions is essential. As a result, the behavior of the radial functions suggest a division at some finite value of r.

If one further considers the behavior of the associated Legendre functions, the problem suggests using functions of integral degree (i.e. polynomials) for all $r > b$, since in this region the fields exist and are finite throughout the complete θ domain, and any Legendre function of non-integral degree becomes infinite at either $\theta = 0$ or π. For $r \leq b$, $\theta = \pi$ is not in the domain of interest, and consequently non-integral degree Legendre functions may be used. In addition, as may be seen later, the proper selection of the degree may be used for the satisfaction of the boundary conditions at the surface of the cone.

Thus the θ functions also suggest a division of the exterior region at a finite value of r, namely $r = b$. We thus choose this coordinate division of the exterior space for the solution of our problem. The selection of the functions in the interior region, $r \leq b$, is very similar to that used by Hansen and Schiff in their treatment of the semi-infinite cone. Also, the division of the exterior space by the coordinate surface $r = b$ is analogous to the choice of Schelkunoff in treating the bi-conical antenna.

One may then raise the question as to whether or not a division of the exterior region into three sub-regions as shown in figure 3 would be more advantageous. In such a case, the associated Legendre functions of
SPACE SECTIONALIZING

Figure 2

Figure 3
non-integral degree and a positive argument (i.e., $P_m^0(\cos \theta)$) could be used in region II, and similar functions with a negative argument, $P_m^0(-\cos \theta)$, could be used in region III, thus maintaining finite functions throughout all space. The primary advantage in such a choice ultimately leads to the use of functions orthogonal in both r and θ, and the resulting finiteness of the expansion coefficients: certainly, this would be a most desirable feature. Although such a choice may be possible (see Appendix A), the resulting equation for the determination of ν in (11) becomes so involved that it is believed to be less adaptable to numerical computation than the non-finiteness of the coefficients that is ultimately obtained in the present solution.

We proceed, therefore, with a regional sectionalizing as indicated in figure 2b.

Field Expansions

We begin by considering the expansions for the electric fields. A time variation of $e^{+i\omega t}$ is assumed throughout.

In region II, the incident electric field may be expressed (ref. 3, p. 419)

\[
\frac{1}{E_{II}} = \bar{a}_x e^{ikx} = \bar{a}_x e^{ikr \cos \theta} = \sum_n \left(\gamma_n \bar{m}_{\text{o}ln} + \Upsilon_n \bar{n}_{\text{el}n} \right),
\]

(15)

where

\[
\gamma_n = i^n \frac{2n + 1}{n(n+1)}, \quad \Upsilon_n = -i^{n+1} \frac{2n + 1}{n(n+1)},
\]

and \bar{a}_x is a unit vector in the x direction.

In this case, the summation is over all of the integers, n, from one to infinity. Consideration of the ϕ variation of the incident field led to the choice of the even \bar{m} and odd \bar{n} functions for the expansion,
and the \(\phi \) variation also limits us to \(m = 1 \). As a result, we will use even \(m \) and odd \(n \) functions with \(m = 1 \) for all expansions of the electric fields.

In region I we are not necessarily interested in the separate incident and scattered fields, and will thus assume an expansion of the total field only. Consideration of the previous arguments about the radial functions and Legendre functions leads us to choose an expansion of the form

\[
E_I = \sum a^m_n \ell m + \sum b^m_n \ell n \mu ,
\]

(16)

where \(a^m_n \) and \(b^m_n \) are expansion coefficients to be determined by the boundary conditions of the problem, and \(\mu \) and \(\nu \) are the non-integral degrees of the associated Legendre functions which are also yet to be determined.

For the scattered field in the exterior region, the prior arguments lead to the choice

\[
E_{II} = \sum (c^m_n \ell m \ell n + d^m_n \ell n),
\]

(17)

where \(c^m_n \) and \(d^m_n \) are constants to be determined. Here we have selected \(z^s_n(kr) = h^2_n(kr) \), the Hankel function of the second kind, since it possesses an asymptotic form

\[
h^2_n(kr) \rightarrow \frac{1}{kr} i^{(n+1)} e^{-ikr}
\]

(18)

\(kr \rightarrow \infty \)

and will thus represent an outward traveling wave at infinity and satisfy the radiation condition. Hereafter, since we will use only the Hankel function of the second kind, the superscript will be omitted and assumed to be understood.
The Problem Solution

The equations (16) and (17) thus contain six unknown sets of constants which must be determined; namely, μ, v, a, b, c, d.

Through the judicious choice of functions, we have already insured the satisfaction of the finite energy condition at the tip of the cone and the radiation condition at infinity. There remain, then, the following boundary conditions:

(1) $[\mathcal{E}]_r, \phi = 0$ at $\theta = \theta_0$, $r \leq b$;

(2) $[\mathcal{E} + \mathcal{H}]_{\theta, \phi} = 0$ at $r = b$, $0 \leq \theta \leq \pi$;

(3) $[\mathcal{E} + \mathcal{H}]_{\theta, \phi} = [\mathcal{E}]_{\theta, \phi}$

(4) $[\mathcal{E} + \mathcal{H}]_{\theta, \phi} = [\mathcal{H}]_{\theta, \phi}$

(5) The finite energy condition at the edge of the cone,

$r \to b$, $\theta \to \theta_0$,

where b is the radius of the spherical end cap and θ_0 is half of the exterior apex angle.

The third condition insures the continuity of the field components across the imaginary spherical boundary.

For further reference, we state the Maxwell equations,

\[\text{curl} \; \mathcal{E} = -\mathcal{H}, \quad \text{curl} \; \mathcal{H} = \mathcal{E} \]

and the relations,

\[\text{curl} \; \mathcal{m} = k\mathcal{m}, \quad \text{curl} \; \mathcal{n} = k\mathcal{n}. \]

From equations (15) thru (17), (20) and (21), and noting also that

$k = \omega\sqrt{\mu_0 \varepsilon_0}$, one easily obtains the expressions for the magnetic fields:
\[
\begin{align*}
\underline{H_{II}}^t &= \frac{i}{\eta} \left[\sum_n \gamma_n \underline{m}_{\text{oln}}^{(1)} + J_n^{(1)} \right], \\
\underline{H_I}^{\text{t}} &= \frac{i}{\eta} \left[\sum_n \gamma_n \underline{m}_{\text{oln}}^{(1)} + J_n^{(1)} \right], \\
\underline{H_{II}}^s &= \frac{i}{\eta} \left[\sum_n \gamma_n \underline{m}_{\text{oln}}^{(4)} + J_n^{(4)} \right],
\end{align*}
\]

where \(\eta \) is the intrinsic impedance of free space, \(\sqrt{\mu_0/\varepsilon_0} \).

Again for future reference, the field quantities are expanded in their entirety below.

\[
\begin{align*}
\underline{E}_I^t &= \left[\sum_n \frac{\mu_n \mu (\mu^2 + 1)}{kr} \mathbf{j}_n (kr) \mathbf{p}_n (\cos \theta) \right] \cos \phi \underline{a}_r \\
&+ \left[\sum_n \frac{\mu_n \mu (\mu^2 + 1)}{kr} \mathbf{j}_n (kr) \frac{d\mathbf{p}_n}{d\theta} \right] \cos \phi \underline{a}_\theta, \\
&- \left[\sum_n \frac{\mu_n \mu (\mu^2 + 1)}{kr} \mathbf{j}_n (kr) \frac{d\mathbf{p}_n}{d\theta} \right] \sin \phi \underline{a}_\phi, \\
\underline{E}_{\text{II}}^t &= \sum_n \left\{ \left[J_n \frac{n(n+1)}{kr} \mathbf{j}_n (kr) \mathbf{p}_n (\cos \theta) \right] \cos \phi \underline{a}_r \\
&+ \left[J_n \frac{n(n+1)}{kr} \mathbf{j}_n (kr) \frac{d\mathbf{p}_n}{d\theta} \right] \cos \phi \underline{a}_\theta, \\
&- \left[J_n \frac{n(n+1)}{kr} \mathbf{j}_n (kr) \frac{d\mathbf{p}_n}{d\theta} \right] \sin \phi \underline{a}_\phi \right\}, \\
\underline{E}_{\text{II}}^s &= \sum_n \left\{ \left[d_n \frac{n(n+1)}{kr} \mathbf{h}_n (kr) \mathbf{p}_n (\cos \theta) \right] \cos \phi \underline{a}_r \\
&+ \left[d_n \frac{n(n+1)}{kr} \mathbf{h}_n (kr) \frac{d\mathbf{p}_n}{d\theta} \right] \cos \phi \underline{a}_\theta, \\
&- \left[d_n \frac{n(n+1)}{kr} \mathbf{h}_n (kr) \frac{d\mathbf{p}_n}{d\theta} \right] \sin \phi \underline{a}_\phi \right\}.
\end{align*}
\]
\[
\begin{align*}
\vec{H}_{1}^{t} = & \frac{1}{\eta} \left[\sum_{\alpha} \frac{\nu(v+1)}{kr} \cdot j_{\nu}(kr) P_{\nu}^{1}(\cos \theta) \sin \phi \cdot \vec{a}_{r} \\
& + \sum_{\mu} a_{\mu} j_{\mu}(kr) \frac{dp_{\mu}}{d\theta} \cdot \sum_{\nu} b_{\mu} j_{\mu}(kr) \frac{P_{\mu}^{1}(\cos \theta)}{\sin \theta} \sin \phi \cdot \vec{a}_{\theta} \\
& + \sum_{\mu} a_{\mu} j_{\mu}(kr) \frac{P_{\mu}^{1}(\cos \theta)}{\sin \theta} \right. \\
& \quad \left. - \sum_{\nu} b_{\mu} j_{\mu}(kr) \frac{dp_{\mu}}{d\theta} \cos \phi \cdot \vec{a}_{\phi} \right] \\
\end{align*}
\]

\[
\begin{align*}
\vec{H}_{11}^{1} = & \frac{1}{\eta} \sum_{\nu} \left[\gamma_{\nu} \frac{n(n+1)}{kr} \cdot j_{\nu}(kr) P_{n}^{1}(\cos \theta) \right] \sin \phi \cdot \vec{a}_{r} \\
& + \left[\gamma_{\nu} j_{\nu}(kr) \frac{dp_{\nu}}{d\theta} - \int n_{\nu}(kr) \frac{P_{\nu}^{1}(\cos \theta)}{\sin \theta} \right] \sin \phi \cdot \vec{a}_{\theta} \\
& + \left[\gamma_{\nu} j_{\nu}(kr) \frac{P_{\nu}^{1}(\cos \theta)}{\sin \theta} - \int n_{\nu}(kr) \frac{dp_{\nu}}{d\theta} \right] \cos \phi \cdot \vec{a}_{\phi} \\
\end{align*}
\]

\[
\begin{align*}
\vec{H}_{11}^{2} = & \frac{1}{\eta} \sum_{\nu} \left[c_{\nu} \frac{n(n+1)}{kr} \cdot h_{\nu}(kr) P_{n}^{1}(\cos \theta) \right] \sin \phi \cdot \vec{a}_{r} \\
& + \left[c_{\nu} h_{\nu}(kr) \frac{dp_{\nu}}{d\theta} - \int h_{\nu}(kr) \frac{P_{\nu}^{1}(\cos \theta)}{\sin \theta} \right] \sin \phi \cdot \vec{a}_{\theta} \\
& + \left[c_{\nu} h_{\nu}(kr) \frac{P_{\nu}^{1}(\cos \theta)}{\sin \theta} - \int h_{\nu}(kr) \frac{dp_{\nu}}{d\theta} \right] \cos \phi \cdot \vec{a}_{\phi} \\
\end{align*}
\]

We now begin by applying the boundary conditions at the surface of the cone.

To satisfy (19a), we equate the r-component of \(\vec{H}_{1}^{t} \) to zero at \(\theta = \theta_{o} \),

\[
\sum_{\mu} b_{\mu} \frac{\mu(\mu+1)}{kr} \cdot j_{\mu}(kr) P_{\mu}^{1}(\cos \theta_{o}) = 0, \\
\]

and thus set

\[
P_{\mu}^{1}(\cos \theta_{o}) = 0.
\]
This equation thus determines the values of μ. Equating the θ-component of \mathbf{E}_I to zero gives

$$\sum_{n} a_{n} j_{n}(kr) \frac{dP_{\mu}}{d\theta} \bigg|_{\theta=\theta_o} + \sum_{n} b_{n} j_{n}^r(kr) \frac{P_{\mu}(\cos \theta)}{\sin \theta} = 0.$$ \hspace{1cm} (33)

Since $P_{\mu}(\cos \theta_o) = 0$, we set

$$\frac{dP_{\mu}}{d\theta} \bigg|_{\theta=\theta_o} = 0.$$ \hspace{1cm} (34)

and thus determine values of v_o.

From (19b), (26), and (27), we have for $r = b$, $\theta_o \leq \theta \leq \pi$,

$$\sum_{n} \left\{ \left[\gamma_n j_n(kb) + c_n h_n(kb) \right] \frac{P_n(\cos \theta)}{\sin \theta}
ight. \\
+ \left. \left[\gamma_n j_n(kb) + c_n h_n(kb) \right] - \frac{dF_n}{d\theta} \right\} = 0,$$ \hspace{1cm} (35)

for the θ-component, and, for the ϕ component,

$$\sum_{n} \left\{ \left[\gamma_n j_n(kb) + c_n h_n(kb) \right] \frac{dP_n}{d\theta} \\
+ \left[\gamma_n j_n(kb) + c_n h_n(kb) \right] \frac{P_n(\cos \theta)}{\sin \theta} \right\} = 0.$$ \hspace{1cm} (36)

These two equations contain the unknowns c_n and d_n and apply over a portion of the θ domain. In order to obtain equations involving only one set of coefficients, we first multiply (35) by $\sin \theta$ and then differentiate with respect to θ; there results

$$\sum_{n} \left\{ \left[\gamma_n j_n(kb) + c_n h_n(kb) \right] \frac{dP_n}{d\theta} \\
+ \left[\gamma_n j_n(kb) + c_n h_n(kb) \right] \frac{dP_n}{d\theta} (\sin \theta \frac{d\theta}{d\theta}) \right\} = 0.$$ \hspace{1cm} (37)
The subtraction of (37) from (37) yields

$$
\sum_n \left[Y_{n} j_n' (kb) + \alpha_n h_n' (kb) \right] \left\{ - \frac{d}{d\theta} \left(\sin \theta \frac{dP_n^l}{d\theta} \right) + \frac{P_n^l (\cos \theta)}{\sin \theta} \right\} = 0. \quad (38)
$$

Furthermore, since the Legendre equation may be expressed as

$$
\frac{d^2}{d\theta^2} (\sin \theta \frac{dP_n^m}{d\theta}) - \frac{m^2}{\sin \theta} P_n^m (\cos \theta) = - \nu (\nu + 1) \sin \theta P_n^m (\cos \theta); \quad (39)
$$

and noting that in this particular case, \(\nu = n, m = 1 \), (38) may be written

$$
\sum_n (n + 1) \left[Y_{n} j_n' (kb) + \alpha_n h_n' (kb) \right] \sin \theta \frac{P_n^l (\cos \theta)}{\sin \theta} = 0. \quad (40)
$$

Since \(\sin \theta \) does not depend on the summation index \(n \), it may be removed from the summation and canceled from the equation. Let us signify the first \(N \) terms of the resulting series as \(S_N(\theta) \), i.e.,

$$
S_N(\theta) = \sum_{n=1}^{N} n(n + 1) \left[Y_{n} j_n' (kb) + \alpha_n h_n' (kb) \right] \frac{P_n^l (\cos \theta)}{\sin \theta}, \quad (41)
$$

$$
S_N(\theta) = 0; \quad \theta_0 \leq \theta \leq \pi.
$$

In a similar manner, we may multiply (36) by \(\sin \theta \), then differentiate with respect to \(\theta \), and subtract the resulting equation from (35). There results

$$
T_N(\theta) = \sum_{n=1}^{N} n(n + 1) \left[Y_{n} j_n' (kb) + \alpha_n h_n' (kb) \right] \frac{P_n^l (\cos \theta)}{\sin \theta}, \quad (42)
$$

$$
T_N(\theta) = 0; \quad \theta_0 \leq \theta \leq \pi.
$$

We have thus obtained two equations involving the unknown coefficients \(c_n \) and \(d_n \) for a portion of the range of \(\theta \).
Next, we will apply (19c). From (25) through (27), we have for the θ-component, where $r = \mu$, $0 \leq \theta < \theta_0$:

\[\sum_{\nu} a_{\nu} j_{\nu}(k \beta) \frac{P_{\nu}^{1}(\cos \theta)}{\sin \theta} + \sum_{\mu} b_{\mu} j_{\mu}^{1}(k \beta) \frac{dP_{\mu}^{1}}{d\theta} \]

\[= \sum_{n} \left[\gamma j_n(k \beta) + c h_n(k \beta) \right] \frac{P_{n}^{1}(\cos \theta)}{\sin \theta} + \left[\mu j_{n}^{1}(k \beta) + \mu h_{n}^{1}(k \beta) \right] \frac{dP_{n}^{1}}{d\theta} \]

(43)

and for the ϕ-component,

\[\sum_{\nu} a_{\nu} j_{\nu}(k \beta) \frac{dP_{\nu}^{1}}{d\theta} + \sum_{\mu} b_{\mu} j_{\mu}^{1}(k \beta) \frac{P_{\mu}^{1}(\cos \theta)}{\sin \theta} \]

\[= \sum_{n} \left[\gamma j_n(k \beta) + c h_n(k \beta) \right] \frac{dP_{n}^{1}}{d\theta} + \left[\mu j_{n}^{1}(k \beta) + \mu h_{n}^{1}(k \beta) \right] \frac{P_{n}^{1}(\cos \theta)}{\sin \theta} \]

(44)

In a manner exactly analogous to that used in obtaining equation (40), we may first multiply (44) by $\sin \theta$, differentiate with respect to θ, and subtract the resulting equation from (43). There then results

\[\sum_{\nu} a_{\nu} j_{\nu}(k \beta) v(n + 1) \sin \theta \frac{P_{\nu}^{1}(\cos \theta)}{\sin \theta} \]

\[= \sum_{n} \left[\gamma j_n(k \beta) + c h_n(k \beta) \right] n(n + 1) \sin \theta \frac{P_{n}^{1}(\cos \theta)}{\sin \theta} \]

\[= \sum_{n} \left[\gamma j_n(k \beta) + c h_n(k \beta) \right] n(n + 1) \sin \theta \frac{P_{n}^{1}(\cos \theta)}{\sin \theta} \]

(45)

Performing the same operations on (43) and subtracting the results from (44) yields

\[\sum_{\mu} b_{\mu} j_{\mu}^{1}(k \beta) \mu(n + 1) \sin \theta \frac{P_{\mu}^{1}(\cos \theta)}{\sin \theta} \]

\[= \sum_{n} \left[\mu j_{n}^{1}(k \beta) + \mu h_{n}^{1}(k \beta) \right] n(n + 1) \sin \theta \frac{P_{n}^{1}(\cos \theta)}{\sin \theta} \]

(46)

Considering (40) and (46), let us define a function $f(\theta)$ as follows:

\[f(\theta) = \begin{cases}
\sum_{\mu} b_{\mu} j_{\mu}^{1}(k \beta) \mu(n + 1) \frac{P_{\mu}^{1}(\cos \theta)}{\sin \theta}, & 0 \leq \theta < \theta_0, \\
0, & \theta_0 \leq \theta \leq \pi.
\end{cases} \]

(47)
We may now think of \(f(\theta) \) as a defined function which we would like to represent as accurately as possible by a finite series, \(S_N(\theta) \), and then minimize a weighted mean square error to find the coefficients \(d_n \) in terms of the \(b_n \) coefficients (Ref. 21, p. 1ff).

Let \(e(\theta) = f(\theta) - S_N(\theta) \) represent the error, and then form the mean square error weighted by an amount \(\sin \theta \), thus:

\[
M = \frac{1}{\pi} \int_0^{\pi} e^2(\theta) \sin \theta \, d\theta.
\]

(48)

Since this weighting factor is always positive in the range of integration, \(0 - \pi \), it does not destroy the primary significance of \(M \), but only causes the error in the center of the range to be weighted more heavily than that at the end points (Ref. 21, p. 26).

In order to minimize the mean square error with respect to a particular coefficient \(d_m \), we form

\[
- \frac{\partial M}{\partial d_m} = \frac{1}{\pi} \int_0^{\pi} 2[f(\theta) - S_N(\theta)] h_m'(kb)m(m + 1)P_m^1(\cos \theta)\sin \theta \, d\theta = 0. \tag{49}
\]

If we now insert the expression for \(S_N(\theta) \) into the equation and move the portion containing that series to the right-hand side, the orthogonality of the associated Legendre functions produces

\[
\int_0^{\pi} f(\theta)P_m^1(\cos \theta)\sin \theta \, d\theta
\]

\[
= \left[\gamma_m^1 + \frac{1}{m} \right] m(m + 1) \int_0^{\pi} \sin \theta \, [P_m^1(\cos \theta)]^2 \, d\theta,
\]

after canceling \(\frac{2}{\pi} m(m + 1) h_m'(kb) \). Inserting the expression for \(f(\theta) \) and evaluating the integral on the right side, one obtains
\[\sum_{\mu} \sum_{j} b_{\mu j}^{l}(kb) \mu(\mu + 1) \int_{0}^{\theta_{0}} \sin \theta P_{\mu}^{l}(\cos \theta) P_{m}^{l}(\cos \theta) d\theta \]

\[= [J_{m}^{l}(kb) + \delta_{m} h_{m}(kb)] \frac{2[m(m + 1)]^{2}}{2m + 1}. \quad (51) \]

One may evaluate the integral on the left (Ref. 22, p. 431):

\[\int_{0}^{\theta_{0}} P_{\mu}^{l}(\cos \theta) P_{m}^{l}(\cos \theta) \sin \theta d\theta \]

\[= \frac{\sin \theta_{0}}{m(m+1) - \mu(\mu+1)} \left[P_{m}^{l}(\cos \theta) \frac{dP_{\mu}^{l}}{d\theta} - P_{\mu}^{l}(\cos \theta) \frac{dP_{m}^{l}}{d\theta} \right] \bigg|_{0}^{\theta_{0}}. \quad (52) \]

After replacing the integral in (51) by (52) and then solving for the coefficient \(\delta_{m} \), one obtains

\[\delta_{m} = \frac{2m+1}{m(m+1)} \frac{j_{m}^{l}(kb)}{h_{m}^{l}(kb)} \left[\frac{1}{2} \sin \theta_{0} P_{m}^{l}(\cos \theta_{0}) \right. \]

\[\left. \times \sum_{\mu} b_{\mu j}^{l}(kb) \frac{\mu(\mu+1)}{m(m+1)} \frac{1}{m(m+1) - \mu(\mu+1)} \frac{dP_{m}^{l}}{d\theta} \right|_{\theta = \theta_{0}}. \quad (53) \]

In a similar manner, we may define a function \(g(\theta) \) over the range \(0 - \pi \) by considering equations (42) and (45):

\[g(\theta) = \begin{cases} \sum_{0} a_{0} j_{0}^{l}(kb) v(v + 1) P_{0}^{l}(\cos \theta), & 0 < \theta < \theta_{0}, \\ 0, & \theta_{0} \leq \theta \leq \pi. \end{cases} \quad (54) \]

We thus wish to represent \(g(\theta) \) by the series \(T_{N}(\theta) \), and will, in an analogous manner to that used before, form an error, \(\delta(\theta) = g(\theta) - T_{N}(\theta) \), and then minimize the mean square error,

\[M = \frac{1}{\pi} \int_{0}^{\pi} \delta^{2}(\theta) \sin \theta d\theta, \quad (55) \]
with respect to a particular coefficient, c_m: there results

$$- \frac{\partial M}{\partial c_m} = \frac{1}{\pi} \int_0^\pi 2[g(\theta) - T_N(\theta)] h_m(kb) m(m+1) P^l_m(\cos \theta) \sin \theta \, d\theta = 0.$$ \hspace{1cm} (56)

Evaluating the integrals yields

$$\sin \theta \frac{dP^l_m}{d\theta} \bigg|_{\theta = \theta_o} = \sum_{l'} a_{l'} j_{l'}(kb) V(l'+1) \frac{P^l_{l'}(\cos \theta)}{V(l'+1)-m(m+1)} = \left[\gamma m''_m(kb) + c m''_m(kb) \right] \frac{2(m(m+1))^2}{2m + 1}$$ \hspace{1cm} (57)

and upon solving for c_m, one obtains

$$c_m = \frac{2m+1}{m(m+1)} \frac{j_m(kb)}{h_m(kb)} \left\{ \frac{1}{2} \sin \theta \frac{dP^l_m}{d\theta} \bigg|_{\theta = \theta_o} \sum_{l' = 0}^l a_{l'} j_{l'}(kb) V(l'+1) \frac{P^l_{l'}(\cos \theta)}{V(l'+1)-m(m+1)} - i_m \right\}. \hspace{1cm} (58)$$

Let us now apply the same technique to the tangential magnetic fields over the imaginary spherical boundary. By minimizing the errors with respect to a_μ and b_μ, one may obtain expressions for these coefficients in terms of the coefficients c_n and d_n, which upon substitution into equations (53) and (58), will yield an infinite set of equations for the coefficients c_n and d_n. The reverse substitution will also produce a similar set of equations for the coefficients a_μ and b_μ. To this end, we have from (19d) and (22) thru (24) for the θ-component in the region $0 \leq \theta < \theta_o$,

$$\sum_{l = 0}^l a_{l'} j_{l'}(kb) \frac{dP^l_{l'}(\cos \theta)}{d\theta} - \sum_{l = 0}^l b_{l'} j_{l'}(kb) \frac{P^l_{l'}(\cos \theta)}{\sin \theta} = \left\{ \gamma m''_n(kb) + c m''_n(kb) \right\} \frac{P^l_{l'}(\cos \theta)}{\sin \theta}.$$ \hspace{1cm} (59)

and for the ϕ-component

$$\sum_{l = 0}^l a_{l'} j_{l'}(kb) \frac{P^l_{l'}(\cos \theta)}{\sin \theta} - \sum_{l = 0}^l b_{l'} j_{l'}(kb) \frac{dP^l_{l'}(\cos \theta)}{d\theta} = \left\{ \gamma m''_n(kb) + c m''_n(kb) \right\} \frac{P^l_{l'}(\cos \theta)}{\sin \theta}.$$ \hspace{1cm} (60)
Multiplying (59) by \(\sin \theta \), differentiating with respect to \(\theta \), subtracting the resulting equation from (60) and utilizing the Legendre equation (39) produces

\[
\sum_{n} a_{\nu} j'_{n}(kb) \nu(n+1)P_{n}^{1}(\cos \theta) = \sum_{n} [\gamma_{n} j'_{n}(kb) + c_{n} h'_{n}(kb)] n(n+1)P_{n}^{1}(\cos \theta).
\]

(61)

In a like manner, after performing the same operations on equation (60) and subtracting the result from (59), one obtains

\[
\sum_{n} b_{\mu} j'_{n}(kb) \mu(n+1)P_{n}^{1}(\cos \theta) = \sum_{n} [\gamma_{n} j'_{n}(kb) + c_{n} h'_{n}(kb)] n(n+1)P_{n}^{1}(\cos \theta).
\]

(62)

We now set

\[
\tilde{f}(\theta) = \sum_{n} [\gamma_{n} j'_{n}(kb) + c_{n} h'_{n}(kb)] n(n+1)P_{n}^{1}(\cos \theta),
\]

(63a)

\[
S_{U}(\theta) = \sum_{\mu} b_{\mu} j'_{\mu}(kb) \mu(n+1)P_{\mu}^{1}(\cos \theta),
\]

(63b)

\[
\xi(\theta) = \tilde{f}(\theta) - S_{U}(\theta);
\]

(63c)

\[
\tilde{g}(\theta) = \sum_{n} [\gamma_{n} j'_{n}(kb) + c_{n} h'_{n}(kb)] n(n+1)P_{n}^{1}(\cos \theta),
\]

(64a)

\[
\tau_{V}(\theta) = \sum_{\nu=V} a_{\nu} j'_{\nu}(kb) \nu(n+1)P_{\nu}^{1}(\cos \theta),
\]

(64b)

\[
\tilde{h}(\theta) = \tilde{g}(\theta) - \tau_{V}(\theta).
\]

(64c)

Forming the mean square errors over the range \(0 - \theta_{0} \),

\[
M = \frac{1}{\theta_{0}} \int_{0}^{\theta_{0}} \xi^{2}(\theta) \sin \theta \, d\theta, \quad M' = \frac{1}{\theta_{0}} \int_{0}^{\theta_{0}} \tilde{h}^{2}(\theta) \sin \theta \, d\theta,
\]

(65)

and minimizing these with respect to \(b_{\mu} \) and \(a_{\nu} \), respectively, where \(\beta \) is a particular \(\mu \) and \(\alpha \) is a particular \(\nu \), leads to the equations
\[b_\beta = \frac{1}{J_\beta(kb) B_\beta} \sum_n \left[\sum_n [j_n'(kb) + c_n h_n'(kb)] n(n+1) \sin \theta \frac{dP^1_n}{d\theta} \right] \bigg|_{\theta=\theta_0}^{\theta=\theta_0 + \beta(\beta+1) - n(n+1)} \]
\[\Phi_\theta = \frac{P^1_n(\cos \theta_0)}{n(n+1) - \beta(\beta+1)} \]

and

\[\sum_n [j_n'(kb) + c_n h_n'(kb)] n(n+1) \sin \theta \frac{dP^1_n}{d\theta} \bigg|_{\theta=\theta_0}^{\theta=\theta_0 + \beta(\beta+1) - n(n+1)} \]

\[\alpha_\alpha = \frac{1}{J_\alpha(kb) B_\alpha} \sum_n \left[\sum_n [j_n'(kb) + c_n h_n'(kb)] n(n+1) \alpha(\alpha+1) \frac{dP^1_n}{d\theta} \right] \bigg|_{\theta=\theta_0}^{\theta=\theta_0 + \alpha(\alpha+1) - n(n+1)} \]

Solving, we obtain

\[\beta_\beta = \int_0^1 \alpha(\alpha+1) \sin \theta \ [P^1_\alpha(\cos \theta)]^2 \ d\theta. \]

where

\[B_\alpha = \int_0^1 \alpha(\alpha+1) \sin \theta \ [P^1_\alpha(\cos \theta)]^2 \ d\theta. \]

After the appropriate substitutions, we finally obtain

\[\sum_n a_\alpha \left(\frac{\Phi^1_n}{a_\alpha} + a_\alpha \delta_{\alpha \alpha} \right) = \sum_n a_\alpha \Phi^1_n, \]

where

\[\delta_{\alpha \alpha} = \frac{2n+1}{\alpha(\alpha+1)} \frac{\sin \theta}{a_\alpha(\alpha+1) - n(n+1)} \frac{dP^1_n}{d\theta} \bigg|_{\theta=\theta_0}^{\theta=\theta_0 + \alpha(\alpha+1) - n(n+1)} \]

\[a_\alpha = \frac{1}{J_\alpha(kb) B_\alpha} \sum_n \left[\sum_n [j_n'(kb) + c_n h_n'(kb)] n(n+1) \alpha(\alpha+1) \frac{dP^1_n}{d\theta} \right] \bigg|_{\theta=\theta_0}^{\theta=\theta_0 + \alpha(\alpha+1) - n(n+1)} \]

\[a_\alpha = J_\alpha(kb) B_\alpha, \]

\[\delta_{\alpha \alpha} = \Theta_{\alpha \alpha}, \]

\[1, v = \alpha. \]
\[\sum \sum b_n^\mu \left(A_n^\mu \mu - B_n^\mu \mu \right) = \sum \sum \psi_n^\mu, \]

where

\[\xi_n^\mu \beta = \frac{1}{n(n+1)} \frac{\mu(\mu+1)}{\beta(\beta+1)} \frac{j_{\mu}(kb)}{h_n^\mu(kb)} h_n^\mu(kb) \frac{\sin^2 \theta \left[p_n^\mu(\cos \theta) \right]^2}{\left(\ln(n+1) - \mu(\mu+1) \ln(n+1) - \beta(\beta+1) \right)} \frac{dp_n^\mu}{dp_n^\mu} \frac{dp_n^\mu}{dp_n^\mu} \theta = \theta_o, \]

\[\chi_n^\mu = \frac{1}{n(n+1)} \frac{2n+1}{\beta(\beta+1)} \frac{\sin \theta p_n^\mu(\cos \theta)}{\left(\ln(n+1) - \mu(\mu+1) \ln(n+1) - \beta(\beta+1) \right)} \frac{dp_n^\mu}{dp_n^\mu} \theta = \theta_o, \]

\[b_n^\mu = \int \int \int \left[j_n(kb) \right] h_n^\mu(kb) - j_n^\mu(kb), \]

\[b_n^\mu = j_{\mu}(kb) B_\mu; \]

\[\xi_n^\nu = \sum \sum c_n^\nu \left(\xi_n^{nm} - K_n^\delta \delta_{mn} \right) - \sum \sum \left(\psi_n^{nm} - \chi_n^{nm} \right), \]

where

\[\xi_n^{nm} = \frac{1}{2j_n(kb) \beta_m(m+1) h_n^m(kb) h_n^m(kb)} \frac{\sin^2 \theta \left[p_n^m(\cos \theta) \right]^2}{\left(\ln(m+1) - \mu(\mu+1) \ln(m+1) - \beta(\beta+1) \right)} \frac{dp_n^m}{dp_n^m} \frac{dp_n^m}{dp_n^m} \theta = \theta_o, \]

\[\psi_n^{nm} = \int \int \int \left[j_n(kb) \right] h_n^m(kb) - j_n^m(kb), \]

\[\chi_n^{nm} = \int \int \int \left[j_n(kb) \right] h_n^m(kb) - j_n^m(kb), \]

\[\sum \sum d_n^\mu \left(\xi_n^{nm} - K_n^\delta \delta_{mn} \right) = \sum \sum \left(\psi_n^{nm} - \chi_n^{nm} \right), \]

where

\[\xi_n^{nm} = \frac{1}{2j_n^m(kb) \beta_n(m+1) h_m^m(kb) h_m^m(kb)} \frac{\sin^2 \theta \left[p_n^m(\cos \theta) \right]^2}{\left(\ln(m+1) - \mu(\mu+1) \ln(m+1) - \beta(\beta+1) \right)} \frac{dp_n^m}{dp_n^m} \frac{dp_n^m}{dp_n^m} \theta = \theta_o, \]

\[\psi_n^{nm} = \int \int \int \left[j_n^m(kb) \right] h_n^m(kb) - j_n^m(kb), \]

\[\chi_n^{nm} = \int \int \int \left[j_n^m(kb) \right] h_n^m(kb) - j_n^m(kb), \]

\[K_n^\mu = \frac{n(n+1)}{(2n+1)}. \]
Each of the expressions (70) through (73) constitutes an infinite set of equations in an infinite number of unknowns for the particular coefficients involved, and the four expressions constitute the formal solution to the problem.

A few points about the solution are worthy of note. One may observe that in minimizing the mean square error in equation (49), the differentiation could have been carried out with respect to b instead of \(\delta_m \). This procedure, however, would result in a non-orthogonal integral over the range \(0 - \theta_0 \); furthermore, it would have necessitated the integration of the equations obtained from the magnetic field components over the range \(0 - \pi \), and there exists no expansion for these components over the range \(\theta_0 - \pi \), thus making the integration impossible.

Also, although the finite energy condition at the tip was employed in the original selection of the functional expansion, the entire solution was obtained without the employment of the finite energy condition at the edge of the cone. The approximate treatments of Siegel\(^4\,17\) and Keller\(^18\) predict that the major contribution to the scattered field arises from the singularity at the edge, and this viewpoint has been supported experimentally by the work of Keys and Primich\(^23\), who found that the radar cross-sections of 60° and 120° degree finite cones correspond within 4 decibels (\(\text{db} = 10 \log \frac{\sigma}{\lambda^2} \), \(\sigma \) = radar cross-section) to that of an annular wire ring of the same base diameter over a range of 0.5 - 3 wavelengths.

Since we know of no proof that the series of spherical harmonic functions used in this problem will properly display such an expected
singularity, the following section contains a numerical investigation of the field components in the vicinity of the edge for an interior apex angle of 30° (i.e., \(\theta_0 = 165^\circ \)).

Consideration of the arguments presented in Appendix B reveals that a singularity of permissible order occurs in all components of the magnetic field at the tip of the cone. No singularity occurs in the electric field at the tip.

Numerical Investigation of Singularities at the Edge

Since the edge singularities may easily be investigated by approaching the edge along a line in region II, only the expansion coefficients, \(c_n \) and \(d_n \), of the scattered field in that region have been computed. Knowing these coefficients also enables one to compute the radar cross section and hence make a comparison with experimentally measured values. For convenience, the edge was approached along the line \(\theta = \theta_0 \), and since the \(\phi \)-variation is easily removed from all series summations, the actual computation was made for a particular field component divided by \(\sin \phi \) or \(\cos \phi \), whichever was applicable. Consequently, any desired value of \(\phi \) may be inserted in the results.

Before proceeding with the numerical work, one must first choose particular values of cone angle and radius with which to work. In this case, our choices were primarily dictated by the information which is available.

To the best of the authors' knowledge, the most information available on the roots, \(\mu \) and \(\nu \), of equations (32) and (34) is contained in part IV of the University of Michigan reports "Studies in Radar Cross
Sections" by Siegel, et.al. This report evaluates the radar cross section for a semi-infinite cone and lists the first seven roots of each of the equations (32) and (34) for a cone angle $\theta_\circ = 165^\circ$. Consequently, this angle was used in the following computations.

In addition to the data listed in the aforementioned report, the values of $P_\nu^m(\cos \theta_\circ)$ and $\frac{dP_\nu^m}{d\theta}\bigg|_{\theta=\theta_\circ}$ were needed and have been computed (See Appendix C). For this computation, and throughout the analysis, the definition used for the associated Legendre function is

$$P_\nu^m(\cos \theta) = (-1)^m \frac{I_1(1+\nu+m)}{2^m I(1+\nu-m)} F_1(m-\nu,m+\nu+1;m+1;\frac{1-\cos \theta}{2})$$

where F_1 is the ordinary hypergeometric function

$$F_1(\alpha,\beta;\gamma;z) = F(\alpha,\beta;\gamma;z) = 1 + \frac{\alpha \beta}{1!} z + \frac{\alpha(\alpha+1)\beta(\beta+1)}{\gamma(\gamma+1) 2!} z^2 + \ldots;$$

and for the purposes of computing the derivative, the relation

$$\sin \theta \frac{dP_\nu^m}{d\theta} = (\nu-m+1)P_\nu^{m+1}(\cos \theta) - (\nu+1) \cos \theta P_\nu^m(\cos \theta)$$

was used. The roots given by Siegel and the computed values of the functions are listed in Table II.

At the present time, even less information seems to be available on the spherical Bessel and Hankel functions of non-integral order. As a result, a value of radius $k_b = 0.1$ was chosen to facilitate approximation of the Bessel and Hankel functions by the first term in their series expansions. The approximations of the ratios of the Bessel functions listed in Table I are accurate to at least four significant figures for the value $\rho = k_b = 0.1$. Though this value places our
TABLE II

DATA USED IN COMPUTATION OF FIELD EXPANSION COEFFICIENTS

\[(\theta_0 = 165^\circ)\]

| \(n\) | \(P_n^1(\cos \theta_0)\) | \(\frac{dP_n^1}{d\theta}|_{\theta=\theta_0}\) | \(\nu\) | \(P_\nu^1(\cos \theta_0)\) | \(B_\nu\) | \(\mu\) | \(\frac{dP_\mu^1}{d\theta}|_{\theta=\theta_0}\) | \(B_\mu\) |
|------|-----------------|-----------------|------|-----------------|-------|------|-----------------|-------|
| 1 | -0.25881924 | +0.96592579 | 0.9673 | -0.52217 | 1.35806 | 1.03163 | +1.88762 | 1.31078 |
| 2 | +0.75000000 | -2.5980742 | 1.9198 | +1.40862 | 2.42491 | 2.08443 | -5.17961 | 2.34637 |
| 5 | -3.0177961 | +5.1518426 | 4.9180 | -3.50544 | 5.18033 | 5.30108 | +20.49366 | 5.33248 |
| 7 | -4.3581639 | -2.5566144 | 7.0264 | -4.27745 | 7.03236 | 7.46557 | +34.15185 | 7.31653 |

\[
B_\mu = \int_0^{\theta_0} [P_\mu^1(\cos \theta)]^2 \sin \theta \, d\theta; \quad B_\nu = \int_0^{\theta_0} [P_\nu^1(\cos \theta)]^2 \sin \theta \, d\theta.
\]

NOTE: Values of \(\mu\) and \(B_\mu\) given by Ref. 16, Part IV, and computed by the Institute of Numerical Analysis, University of California.
Values of \(\nu\) and \(B_\nu\) given by Ref. 16, Part IV, and computed by Willow Run Research Center, University of Michigan.
Values of \(P_\nu^1(\cos \theta_0)\) and \(\frac{dP_\mu^1}{d\theta}|_{\theta=\theta_0}\) computed by School of Electrical Engineering, Purdue University.
computations well into the Rayleigh region (i.e., $b \approx \lambda/60$), it is satisfactory for investigation of the edge fields.

Using these approximations, the equations for the coefficients c_n and d_n, (72) and (73), may conveniently be broken into component parts and expressed as

$$\sum_n \left(s_n^m - a_{mn} \right) c_n = B_m + K_m,$$

(77)

where

$$a_{mn} = \frac{F(m)G(n)}{\partial} H(m,n,v),$$

$$F(m) = \frac{(2m+1)}{[m(m+1)]^{\frac{3}{2}}} \frac{2^{2m-1}m!}{(2m)!} \left(\frac{\partial}{2} \right)^m,$$

$$G(n) = -\frac{n(n+1)}{2^{2n}} \frac{(2n)!}{(n-1)!} \left(\frac{\partial}{2} \right)^{-n},$$

$$H(m,n,v) = \frac{1}{(v+1)B_v} \frac{[\sin \theta_o p^1 \cos \theta_o]^2}{[v(v+1)-m(m+1)][(v+1)-n(n+1)]} \left[\frac{dp^1_m}{d\theta} \frac{dp^1_n}{d\theta} \right]_{\theta=\theta_o},$$

$$= \int_0^{\theta_o} p^1_m \sin \theta \ d\theta \int_0^{\theta_o} p^1_n \sin \theta \ d\theta$$

for equation (72), and for (73),

$$B_m = \sum_n \left(s_n^m - a_{mn} \right) b_{mn},$$

$$b_{mn} = -2^{4m+1} \left[\frac{(n-1)!}{(2n)!} \right]^2 \left(\frac{\partial}{2} \right)^{2n+1} a_{mn},$$

$$K_m = \frac{i^{m+1}2^{4m+1}(m-1)!m!}{[(2m)!]^2} \left(\frac{\partial}{2} \right)^{2m+1};$$
\[\sum (c_m^n - f_{mn}) d_n = G_m + K'_m, \quad (78) \]

where

\[I(m) = \frac{(2m+1)}{(m(m+1))]^2 \frac{2^{2m-1}(m-1)!}{(2m)!} \left(\frac{P}{2} \right)^m, \]

\[J(n) = - \frac{n(n+1)}{2^n} \frac{(2n)!}{n!} \left(\frac{P}{2} \right)^{-n}, \]

\[K(m,n,p) = \frac{(\mu+1)}{B_\mu} \frac{\sin^2 \theta p^l_n (\cos \theta) p^l_m (\cos \theta)}{(2n)!!} \left[\frac{d}{d\theta} \right]_\theta = \theta_0 \]

\[= (\mu+1) \int_0^{\theta_0} \frac{p^l_n \sin \theta d\theta}{\mu^l_m} \int_0^{\theta_0} \frac{p^l_m \sin \theta d\theta}{\mu^l_n}; \]

and

\[\int_0^{\theta_0} (\mu^l) \sin \theta d\theta \]

\[Q_m = \sum_{n} g_{mn} \]

\[g_{mn} = - 2^{4m+1} \frac{n! (n-1)!}{(2n+1)} \left(\frac{P}{2} \right)^{2n+1} f_{mn}, \]

\[K'_m = - i^{m+1} \left(\frac{(m-1)!}{(2m)!} \right) \left(\frac{P}{2} \right)^{2m+1}. \]

Equations (77) and (78) each represent one equation; however, by letting \(m \) assume successive integral values, one obtains a set of equations for each representation. Let \(x_{mn} \) represent the element of a matrix in the \(m^{\text{th}} \) row and the \(n^{\text{th}} \) column, and let \([x_{mn}] \) represent the matrix formed by these elements. Then the set of equations represented by (77) and (78) may be represented in matrix form as

\[[\delta^m_n - c_{mn}] [c_n] = [B_m + K_m], \quad (79) \]

\[[\delta^m_n - f_{mn}] [d_n] = [G_m + K'_m], \quad (80) \]
Throughout the computations, summations over seven terms were used. The expanded 7×7 matrices are shown in Table III, and the computed matrix coefficients are listed in Table IV.

Utilizing these matrix coefficients, the electromagnetic field expansion coefficients, c_n and d_n, were repeatedly computed using sets of seven, six, five, four, and three equations by successively eliminating the last row and column of the matrices. Thus, by comparing the solutions listed in Table V, an estimate of the degree of accuracy may be obtained. In every case the magnitudes of the coefficients computed using three equations lie within two per-cent of the magnitudes of those computed using seven equations. Also, an examination of $|c_1/c_2|$ and $|d_1/d_2|$ yields factors of 200 and 140, respectively, indicating very rapid convergence of the series, as may be expected for such a small value of k_b.

Having obtained the field expansion coefficients, we were thus finally prepared to return to equations (17) and (27) for computation of the field components. For this purpose, each field component was separated into its real and imaginary parts. Since

$$h_n(\rho) = j_n(\rho) - i n_n(\rho), \quad (81)$$

and

$$n_n(\rho) = (-1)^{n+1} j_{-n}(\rho); \quad (82)$$

if we let

$$k_n(\rho) = (-1)^n j_{-n}(\rho), \quad (83)$$
| TABLE III
| MATRIX FORM OF EXPANSION COEFFICIENT EQUATIONS |
| \[
\begin{bmatrix}
(l-a_{11}) & -a_{12} & -a_{13} & -a_{14} & -a_{15} & -a_{16} & -a_{17} \\
-a_{21} & (1-a_{22}) & -a_{23} & -a_{24} & -a_{25} & -a_{26} & -a_{27} \\
-a_{31} & -a_{32} & (1-a_{33}) & -a_{34} & -a_{35} & -a_{36} & -a_{37} \\
-a_{41} & -a_{42} & -a_{43} & (1-a_{44}) & -a_{45} & -a_{46} & -a_{47} \\
-a_{51} & -a_{52} & -a_{53} & -a_{54} & (1-a_{55}) & -a_{56} & -a_{57} \\
-a_{61} & -a_{62} & -a_{63} & -a_{64} & -a_{65} & (1-a_{66}) & -a_{67} \\
-a_{71} & -a_{72} & -a_{73} & -a_{74} & -a_{75} & -a_{76} & (1-a_{77})
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2 \\
c_3 \\
c_4 = \\
c_5 \\
c_6 \\
c_7
\end{bmatrix}
=
\begin{bmatrix}
B_1+K_1 \\
B_2+K_2 \\
B_3+K_3 \\
B_4+K_4 \\
B_5+K_5 \\
B_6+K_6 \\
B_7+K_7
\end{bmatrix}
|
TABLE IV

COMPUTED MATRIX COEFFICIENTS

<table>
<thead>
<tr>
<th>n=0, m=n</th>
<th>(s_{nm})</th>
<th>(s_{nm} - a_{nm}) = (A \times 10^p)</th>
<th>(s_{nm} - f_{nm}) = (F \times 10^q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m = 1)</td>
<td>(n = 1)</td>
<td>(0.15094515)</td>
<td>(+1)</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(-0.16057902)</td>
<td>(+1)</td>
</tr>
<tr>
<td>(1)</td>
<td>(3)</td>
<td>(0.22875915)</td>
<td>(+3)</td>
</tr>
<tr>
<td>(1)</td>
<td>(4)</td>
<td>(-0.27892641)</td>
<td>(+5)</td>
</tr>
<tr>
<td>(1)</td>
<td>(5)</td>
<td>(0.25126402)</td>
<td>(+7)</td>
</tr>
<tr>
<td>(1)</td>
<td>(6)</td>
<td>(-0.43997134)</td>
<td>(+7)</td>
</tr>
<tr>
<td>(1)</td>
<td>(7)</td>
<td>(-0.98911438)</td>
<td>(+11)</td>
</tr>
<tr>
<td>(2)</td>
<td>(1)</td>
<td>(-0.5517124)</td>
<td>(-4)</td>
</tr>
<tr>
<td>(2)</td>
<td>(2)</td>
<td>(0.1684330)</td>
<td>(+1)</td>
</tr>
<tr>
<td>(2)</td>
<td>(3)</td>
<td>(-1.8685502)</td>
<td>(+1)</td>
</tr>
<tr>
<td>(2)</td>
<td>(4)</td>
<td>(0.20854942)</td>
<td>(+3)</td>
</tr>
<tr>
<td>(2)</td>
<td>(5)</td>
<td>(-0.1391131)</td>
<td>(+5)</td>
</tr>
<tr>
<td>(2)</td>
<td>(6)</td>
<td>(-2.1496838)</td>
<td>(+7)</td>
</tr>
<tr>
<td>(2)</td>
<td>(7)</td>
<td>(0.14642109)</td>
<td>(+10)</td>
</tr>
<tr>
<td>(3)</td>
<td>(1)</td>
<td>(0.3609829)</td>
<td>(-6)</td>
</tr>
<tr>
<td>(3)</td>
<td>(2)</td>
<td>(-0.8799009)</td>
<td>(-4)</td>
</tr>
<tr>
<td>(3)</td>
<td>(3)</td>
<td>(0.1783107)</td>
<td>(+1)</td>
</tr>
<tr>
<td>(3)</td>
<td>(4)</td>
<td>(-1.0617997)</td>
<td>(+1)</td>
</tr>
<tr>
<td>(3)</td>
<td>(5)</td>
<td>(-1.0066070)</td>
<td>(+2)</td>
</tr>
<tr>
<td>(3)</td>
<td>(6)</td>
<td>(0.43676561)</td>
<td>(+5)</td>
</tr>
<tr>
<td>(3)</td>
<td>(7)</td>
<td>(-0.7739392)</td>
<td>(+8)</td>
</tr>
<tr>
<td>(4)</td>
<td>(1)</td>
<td>(-0.18566424)</td>
<td>(-8)</td>
</tr>
<tr>
<td>(4)</td>
<td>(2)</td>
<td>(0.41369394)</td>
<td>(-6)</td>
</tr>
<tr>
<td>(4)</td>
<td>(3)</td>
<td>(-0.45132954)</td>
<td>(-4)</td>
</tr>
<tr>
<td>(4)</td>
<td>(4)</td>
<td>(0.18190171)</td>
<td>(+1)</td>
</tr>
<tr>
<td>(4)</td>
<td>(5)</td>
<td>(0.2758369)</td>
<td>(+1)</td>
</tr>
<tr>
<td>(4)</td>
<td>(6)</td>
<td>(-0.3395336)</td>
<td>(+3)</td>
</tr>
<tr>
<td>(4)</td>
<td>(7)</td>
<td>(0.1744397)</td>
<td>(+6)</td>
</tr>
<tr>
<td>(5)</td>
<td>(1)</td>
<td>(0.3113526)</td>
<td>(-11)</td>
</tr>
<tr>
<td>(5)</td>
<td>(2)</td>
<td>(-0.9502126)</td>
<td>(-9)</td>
</tr>
<tr>
<td>(5)</td>
<td>(3)</td>
<td>(0.15303994)</td>
<td>(-7)</td>
</tr>
<tr>
<td>(5)</td>
<td>(4)</td>
<td>(0.45672737)</td>
<td>(-4)</td>
</tr>
<tr>
<td>(5)</td>
<td>(5)</td>
<td>(0.8278685)</td>
<td>(+1)</td>
</tr>
<tr>
<td>(5)</td>
<td>(6)</td>
<td>(0.5059947)</td>
<td>(+1)</td>
</tr>
<tr>
<td>(5)</td>
<td>(7)</td>
<td>(-0.1279264)</td>
<td>(+4)</td>
</tr>
<tr>
<td>(6)</td>
<td>(1)</td>
<td>(-0.31536749)</td>
<td>(-15)</td>
</tr>
<tr>
<td>(6)</td>
<td>(2)</td>
<td>(0.45240369)</td>
<td>(-11)</td>
</tr>
<tr>
<td>(6)</td>
<td>(3)</td>
<td>(-0.1912484)</td>
<td>(-8)</td>
</tr>
<tr>
<td>(6)</td>
<td>(4)</td>
<td>(-0.57273732)</td>
<td>(-6)</td>
</tr>
<tr>
<td>(6)</td>
<td>(5)</td>
<td>(0.14997075)</td>
<td>(-3)</td>
</tr>
<tr>
<td>(6)</td>
<td>(6)</td>
<td>(-0.1823708)</td>
<td>(+1)</td>
</tr>
<tr>
<td>(6)</td>
<td>(7)</td>
<td>(0.99545654)</td>
<td>(+1)</td>
</tr>
</tbody>
</table>
TABLE IV

\[\delta_n = 0, m \leq n \quad (\delta_n - a_{nm}) = A \times 10^p \quad (\delta_n - f_{nm}) = F \times 10^q \]

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>A</th>
<th>p</th>
<th>F</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>-1.1762417</td>
<td>-15</td>
<td>-60838668</td>
<td>-15</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0.76076983</td>
<td>-13</td>
<td>2.30737779</td>
<td>-12</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>-1.9743535</td>
<td>-10</td>
<td>-59216661</td>
<td>-10</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>0.45688357</td>
<td>-8</td>
<td>1.3950367</td>
<td>-7</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>-0.10456922</td>
<td>-5</td>
<td>-33006392</td>
<td>-5</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0.2457652</td>
<td>-3</td>
<td>0.1625573</td>
<td>-3</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.18467407</td>
<td>+1</td>
<td>0.1925582</td>
<td>+1</td>
</tr>
</tbody>
</table>

\[m \]

<table>
<thead>
<tr>
<th>m</th>
<th>(G_m + K^0_m)</th>
<th>(B_m + K_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.12102484[-5] + 1.18445300[-4]</td>
<td>0.94402300[-5] - 1.44673140[-6]</td>
</tr>
<tr>
<td>2</td>
<td>-0.7968000[-8] - 1.1190013[-6]</td>
<td>-0.55078856[-7] + 1.57672100[-8]</td>
</tr>
<tr>
<td>3</td>
<td>0.404720693[-10] + 1.68959550[-9]</td>
<td>0.36470023[-9] - 1.23215924[-10]</td>
</tr>
<tr>
<td>5</td>
<td>0.5437416[-15] + 1.12065140[-13]</td>
<td>0.61143160[-14] - 1.7443110[-15]</td>
</tr>
<tr>
<td>6</td>
<td>0.2225242[-17] - 1.81212522[-17]</td>
<td>0.41165708[-18] - 1.12534308[-17]</td>
</tr>
<tr>
<td>7</td>
<td>-0.42665968[-19] - 1.30200151[-18]</td>
<td>-0.17526716[-18] + 1.21106598[-19]</td>
</tr>
</tbody>
</table>
Table V

Expansion Coefficients of the Electromagnetic Field

\[c_n = (x)[-p] = x \times 10^{-p} \]

<table>
<thead>
<tr>
<th>*</th>
<th>(c_1)</th>
<th>(c_2)</th>
<th>(c_3)</th>
<th>(c_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6x6</td>
<td>((6.166-10.289))</td>
<td>((-3.207+10.338))</td>
<td>((2.017-10.133))</td>
<td>((-10.04+10.616))</td>
</tr>
<tr>
<td>5x5</td>
<td>((6.166-10.289))</td>
<td>((-3.206+10.338))</td>
<td>((2.017-10.134))</td>
<td>((-10.03+10.618))</td>
</tr>
<tr>
<td>3x3</td>
<td>((6.189-10.290))</td>
<td>((-3.211+10.339))</td>
<td>((2.022-10.134))</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>*</th>
<th>(c_5)</th>
<th>(c_6)</th>
<th>(c_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7x7</td>
<td>((3.266-10.136)[-15])</td>
<td>((-6.281-16.994)[-19])</td>
<td>((-8.646+11.099)[-20])</td>
</tr>
<tr>
<td>6x6</td>
<td>((3.335-10.147))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5x5</td>
<td>((3.332-10.149))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>*</th>
<th>(d_1)</th>
<th>(d_2)</th>
<th>(d_3)</th>
<th>(d_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7x7</td>
<td>((0.381+15.823)[-6])</td>
<td>((-0.299-14.226)[-8])</td>
<td>((0.188+12.796)[-10])</td>
<td>((-0.087-11.466)[-12])</td>
</tr>
<tr>
<td>6x6</td>
<td>((0.383+15.833))</td>
<td>((-0.303-14.245))</td>
<td>((0.193+12.823))</td>
<td>((-0.093-11.496))</td>
</tr>
<tr>
<td>5x5</td>
<td>((0.382+15.834))</td>
<td>((-0.303-14.244))</td>
<td>((0.193+12.819))</td>
<td>((-0.093-11.491))</td>
</tr>
<tr>
<td>4x4</td>
<td>((0.383+15.852))</td>
<td>((-0.303-14.253))</td>
<td>((0.193+12.818))</td>
<td>((-0.093-11.481))</td>
</tr>
<tr>
<td>3x3</td>
<td>((0.386+15.901))</td>
<td>((-0.306-14.287))</td>
<td>((0.194+12.834))</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>*</th>
<th>(d_5)</th>
<th>(d_6)</th>
<th>(d_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7x7</td>
<td>((0.201+15.368)[-15])</td>
<td>((1.239-15.340)[-18])</td>
<td>((-0.206-11.193)[-19])</td>
</tr>
<tr>
<td>6x6</td>
<td>((0.246+15.633))</td>
<td>((0.891-17.353))</td>
<td></td>
</tr>
<tr>
<td>5x5</td>
<td>((0.253+15.582))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Size of Matrix
the Hankel function becomes
\[h_n(\rho) = j_n(\rho) + ik_n(\rho). \] (84)

Using this notation, one obtains from (27)
\[\text{Re}(E_r) = \cos \phi \sum_n \frac{n(n+1)}{\rho} \left[\frac{1}{2} j_n(\rho) - \frac{1}{2} k_n(\rho) \right] P_n^1(\cos \theta) \] (85)
\[\text{Im}(E_r) = \cos \phi \sum_n \frac{n(n+1)}{\rho} \left[\frac{1}{2} j_n(\rho) + \frac{1}{2} k_n(\rho) \right] P_n^1(\cos \theta) \] (86)
\[\text{Re}(E_\theta) = \cos \phi \sum_n \left\{ \left[c_{n+1}^r j_n(\rho) - c_{n+1}^r k_n(\rho) \right] \frac{P_n^1(\cos \theta)}{\sin \theta} + \left[d_{n+1}^r j_n(\rho) - d_{n+1}^r k_n(\rho) \right] \frac{\partial P_n^1}{\partial \theta} \right\} \] (87)
\[\text{Im}(E_\theta) = \cos \phi \sum_n \left\{ \left[c_{n+1}^r j_n(\rho) + c_{n+1}^r k_n(\rho) \right] \frac{P_n^1(\cos \theta)}{\sin \theta} + \left[d_{n+1}^r j_n(\rho) + d_{n+1}^r k_n(\rho) \right] \frac{\partial P_n^1}{\partial \theta} \right\} \] (88)
\[\text{Re}(E_\phi) = -\sin \phi \sum_n \left\{ \left[c_{n+1}^r j_n(\rho) - c_{n+1}^r k_n(\rho) \right] \frac{\partial P_n^1}{\partial \theta} + \left[d_{n+1}^r j_n(\rho) - d_{n+1}^r k_n(\rho) \right] \frac{P_n^1(\cos \theta)}{\sin \theta} \right\} \] (89)
\[\text{Im}(E_\phi) = -\sin \phi \sum_n \left\{ \left[c_{n+1}^r j_n(\rho) + c_{n+1}^r k_n(\rho) \right] \frac{\partial P_n^1}{\partial \theta} + \left[d_{n+1}^r j_n(\rho) + d_{n+1}^r k_n(\rho) \right] \frac{P_n^1(\cos \theta)}{\sin \theta} \right\} \] (90)

where \(\rho = kr, c_n = c_n^r + ic_n^i \) and \(d_n = d_n^r + id_n^i \); the superscripts 'r' and 'i' representing the real and imaginary parts, respectively. For the computation of the field components, only spherical Bessel functions of integral order were needed, and for these functions, data are readily available (Ref. 27).

The results of these computations are listed in Table VI and are illustrated in figures 4 and 5. Although one could not expect to obtain a true singularity at the edge of the cone by using only a finite number of terms, figure 4 clearly indicates that the spherical harmonic functions used in the field expansions do represent the edge singularity. Furthermore, not only does the singularity lie well within the \((kR)^{-1}\) limit imposed
TABLE VI

ELECTRIC FIELD COMPONENTS NEAR THE EDGE OF A FINITE CONE

| kR | \(E_{r0}\) | \(|E_{r0}|\) | \(E_{\theta 0}\) | \(|E_{\theta 0}|\) | \(E_{\phi 0}\) | \(|E_{\phi 0}|\) |
|-----|---------|---------|----------------|----------------|--------------|--------------|
| 0.00| (2.42-10.07) | 2.43 | 2.26-10.26 | 2.28 | -2.68+10.24 | 2.69 |
| 0.01| (1.56-10.07) | 1.56 | 1.48-10.19 | 1.49 | -1.75+10.18 | 1.76 |
| 0.02| (1.03-10.05) | 1.04 | 1.01-10.14 | 1.02 | -1.20+10.14 | 1.20 |
| 0.03| (0.72-10.04) | 0.72 | 0.72-10.11 | 0.73 | -0.85+10.10 | 0.85 |
| 0.04| (0.51-10.03) | 0.51 | 0.53-10.08 | 0.54 | -0.62+10.08 | 0.62 |
| 0.05| (0.38-10.02) | 0.38 | 0.40-10.07 | 0.41 | -0.47+10.07 | 0.47 |
| 0.06| (0.28-10.02) | 0.28 | 0.31-10.06 | 0.32 | -0.36+10.06 | 0.36 |
| 0.07| (0.22-10.01) | 0.22 | 0.24-10.05 | 0.25 | -0.28+10.05 | 0.28 |
| 0.08| (0.17-10.01) | 0.17 | 0.20-10.04 | 0.20 | -0.22+10.04 | 0.23 |
| 0.09| (0.14-10.01) | 0.14 | 0.16-10.03 | 0.16 | -0.18+10.03 | 0.18 |
| 0.10| (0.11-10.01) | 0.11 | 0.13-10.03 | 0.14 | -0.15+10.03 | 0.15 |

kR = distance from edge at \(\theta = \theta_0 = 165^\circ\)

\[
E_r = E_{r0} \cos \phi \times 10^{-2}
\]

\[
E_\theta = E_{\theta 0} \cos \phi \times 10^{-2}
\]

\[
E_\phi = E_{\phi 0} \sin \phi \times 10^{-2}
\]
by the finite energy condition, but it closely approximates the \((kr)^{-1/3}\) singularity which would be predicted from the considerations presented in Appendix B for a 90° edge. It is interesting to note that in a check computation using a desk calculator, six of the first seven terms in the expansion of \(\text{Re}(E_x)\) added up in phase, and that each of the terms was of the same order of magnitude, indicating that the series was diverging at that point.

Consideration of the results of appendix B reveals that similar singularities will also occur in the magnetic field components.

Radar Cross Section

Within recent years, a few experimental measurements of the radar cross section of finite cones have been made, thus providing an experimental check on our theoretical results. The radar cross section, \(\sigma_r\), is defined to be

\[
\sigma_r = 4\pi r^2 \lim_{r \to \infty} \frac{\bar{S}^S}{\bar{S}^I},
\]

where \(\bar{S} = \frac{1}{2} \text{Re}(\bar{E} \times \bar{H}^*)\), the average Poynting vector (\(\bar{H}^*\) represents the complex conjugate of \(\bar{H}\)). For the coordinate system with which we have been concerned (figure 1), the radar cross section, when evaluated for \(\theta = 0\), is more precisely termed the back-scattering radar cross section. Herein, we have concerned ourselves with only this case, although the fact will not be explicitly mentioned with each reference to the cross section.

From equations (74) and (75), it may be seen that
and the limiting form of the Hankel function and its derivative are

\[h_n(\rho) \rightarrow \frac{i^{n+1}}{\rho} e^{-i\rho}, \quad \rho \to \infty \]

(93)

\[h_n'(\rho) = \frac{1}{\rho} \frac{d}{d\rho} \rho h_n(\rho) \rightarrow \frac{i^n}{\rho} e^{-i\rho}. \quad \rho \to \infty \quad \rho \to \infty \]

(94)

Noticing that the present case, \(\theta = \frac{1}{2} \phi \), and utilizing the above relations in equations (17) and (24), the radar cross section may be expressed (after some algebra),

\[\sigma = \frac{\lambda^2}{4\pi} \left| \sum_{n} (-1)^n (n+1) (c_n - id_n) \right|^2. \quad (95) \]

Utilizing the coefficients listed in table V, one obtains

\[\sigma = 0.459 \times 10^{-10} \lambda^2. \]

Siegel² has postulated that the cross section of any body of revolution in the Rayleigh region may be expressed as

\[\sigma = \frac{\lambda^2}{\pi} k^4 V^2 \left(1 + \frac{e^{-V}}{\pi y} \right)^2, \quad (96) \]

where \(k = 2\pi/\lambda, \ V = \) volume of the body, and for a finite cone, \(y = h/4r \) (\(h = \) height of cone, \(r = \) radius of base). For a 30° cone with \(kb = 0.1 \) (\(b = h/\cos 15° \)), this result yields

\[\sigma = 1.875 \times 10^{-10} \lambda^2, \]

which is greater than our results by a factor of 4.1.

The authors know of no measurements which have been made on finite
cones of such small cross section, however, Brysk, Hiatt, Weston, and Siegel28 have approached the Rayleigh region with a finite cone of 24°.

Their results are shown in figure 6. The Rayleigh line shown is approximately

\[\frac{\sigma}{\pi r^2} = 12 (2\pi n)^4 \]

(97)

where \(n = r/\lambda \), \(r \) = radius of the base. Using (96) to predict the ratio between a 24° and a 30° finite cone of the same base radius, one obtains

\[\frac{\sigma_{12^\circ}}{\sigma_{15^\circ}} = 1.47 \]

(98)

From (97) and (98), one may predict the cross section of the 30° finite cone to be

\[\sigma_{30^\circ} = 1.949 \times 10^{-10} \lambda^2, \]

this value being approximately 4.2 times that obtained by (95).

A comparison with the radar cross section of a sphere, given by

\[\frac{\sigma}{\pi r^2} = 1.403 \left(\frac{r}{\lambda}\right)^4 \times 10^4 \]

(99)

(Ref. 29, p. 452), was also made by finding the ratio of the cross section of a sphere to that of a cone of the same volume for the cases of the 30° cone and the experimental measurements of figure 6. These results also indicate that the cross section computed from (95) using the data listed in table II is low by a factor of approximately four.

Investigation of (95) and (77) reveals that the cross section of the case under consideration is predominantly determined by the coefficient \(c_1 \), which is in turn predominantly determined by the equation

\[(1 - a_{11}) c_1 = (-a_{11} - 0.5) \times 10^{-3}. \]

(100)
EXPERIMENTAL MEASUREMENT OF THE RADAR CROSS SECTION OF A FINITE CONE

FROM BRYSK, HIATT, WESTON, & SIEGEL

"THE NOSE-ON RADAR CROSS SECTIONS OF FINITE CONES"

CANADIAN JOURNAL OF PHYSICS, VOL. 37, 1959

Figure 6

\[\frac{\sigma}{\pi R^2} \text{ vs. Circumference of Cone Base in Wave Lengths} \]

RAYLEIGH THEORY
where \(a_{11} = -0.50945154 \). This equation, as well as all terms of (79) and (80) are very sensitive to the precise value of \(\nu \).

Siegell6 has also noted this sensitivity in the computation of the cross section of a semi-infinite cone from the Hansen and Schiff solution. Although two computations for the values of \(\nu \) are not available for comparison, a comparison of the first four values of \(\mu \) are computed by the University of Michigan and the University of California is as follows:

<table>
<thead>
<tr>
<th>U of M</th>
<th>U of C</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.05158</td>
<td>1.05163</td>
<td>.00005</td>
</tr>
<tr>
<td>2.08631</td>
<td>2.08443</td>
<td>.00192</td>
</tr>
<tr>
<td>3.14588</td>
<td>3.14992</td>
<td>.00404</td>
</tr>
<tr>
<td>4.21990</td>
<td>4.22309</td>
<td>.00319</td>
</tr>
</tbody>
</table>

The authors of Ref. 16 further note that the California results are the more accurate.

Further investigation of (100) reveals that if the first root, \(\nu_1 = 0.9673 \), were larger by an amount 0.0003, the radar cross section would increase by a factor of four. Consequently, knowledge of the roots of (32) and (34) to at least six decimal places seems to be an absolute necessity if one is to accurately compute the radar cross section for such small cone angles. Since the more accurate computations for the first four values of \(\mu \) are in each case higher than the approximate computation, the result predicted using (95) should be somewhat low if accurate values of \(\nu \) are also higher than those used in the computation.

In view of these facts, it is believed that the foregoing results are as accurate as can be reasonably expected with the data that are presently available.
Summary and Conclusions

An exact solution to the scattering of a plane electromagnetic wave by a finite cone has been obtained using a relatively straightforward procedure. It is believed that the techniques used herein may be further applied to aid in obtaining exact solutions for other irregularly-shaped scatterers whose surfaces are not described by fixing only one coordinate. Although the numerical computation of results from the solution is not simple, it is also certainly not prohibitive with modern digital computers, and the ability to obtain numerical results for the "resonance" region is only hindered by the lack of functional data of well-known functions.

The singularities which may occur in electromagnetic fields have also been investigated, and their theoretical existence using vector solutions of the wave equation has been demonstrated.

It is intended that work on other irregularly-shaped objects will continue, as well as the further computation of necessary functional data for use in obtaining more precise and extended results from the present solution.
LIST OF REFERENCES

25. Morse, P. M., and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, (1953).

APPENDIX A

SELECTION OF ORTHOGONAL FUNCTIONS

For mathematical solutions of the type which we are concerned, it is always desirable that the unknown expansion coefficients be finally determined, rather than appearing in a set of an infinite number of equations. In the latter case, the value obtained for an expansion coefficient depends on the number of equations used in the solution, whereas coefficients which possess finality may be determined explicitly and exactly from a single equation without the use of a set of equations involving several unknowns.

For such a finality, however, it becomes necessary to obtain orthogonal expansions for the fields on each side of a matching boundary. For instance, in the case illustrated by figure 3, the expansions in both regions I and II must be orthogonal over the range \(\theta = 0 \rightarrow \theta_0 \) when matching the fields across the imaginary spherical boundary, \(r = b \). Also, the field expansions in regions II and III must be orthogonal over the range \(r = b \rightarrow \infty \) when matching the fields across the imaginary conical boundary, \(\theta = \theta_0 \).

Although such an orthogonalization may still present numerous questions, it seems that the proper selection of the degree, \(\tau \), of the associated Legendre functions will produce functions orthogonal to both \(r \) and \(\theta \) for the configuration shown in figure 3.

To show this, consider the associated Legendre equations of degree \(\tau \) and \(\tau' \), respectively:

\[
\frac{d}{d\theta}(\sin \theta \frac{dP^\tau}{d\theta}) = \left[-\tau(\tau+1)\sin \theta + \frac{m^2}{\sin \theta} P^\tau \right]
\] \hspace{1cm} (A.1)
\[
\frac{d}{d\theta} (\sin \theta \frac{dP^m_m}{d\theta}) = \left[-\tau' (\tau' + 1) \sin \theta + \frac{m^2}{\sin \theta} \right] P^m_{\tau'}. \tag{A-2}
\]

Multiplying (A-1) by \(P^m_{\tau' \cos \theta} \) and (A-2) by \(P^m_{\tau \cos \theta} \) and then subtracting the second from the first, one obtains

\[
[\tau' (\tau' + 1) - \tau (\tau + 1)] \sin \theta \ P^{m \tau}_{\tau', \tau} = \frac{d}{d\theta} \left[\sin \theta \left(P^m_{\tau' \cos \theta} \frac{dP^m_{\tau}}{d\theta} - P^m_{\tau} \frac{dP^m_{\tau'}}{d\theta} \right) \right]. \tag{A-3}
\]

which, after integrating from \(\theta_1 \) to \(\theta_2 \), becomes

\[
[\tau' (\tau' + 1) - \tau (\tau + 1)] \int_{\theta_1}^{\theta_2} \sin \theta \ P^{m \tau}_{\tau', \tau}, d\theta = \sin \theta \left. \left[P^m_{\tau' \cos \theta} \frac{dP^m_{\tau}}{d\theta} - P^m_{\tau} \frac{dP^m_{\tau'}}{d\theta} \right] \right|_{\theta_1}^{\theta_2}. \tag{A-4}
\]

If we now add and subtract \(k' P^m_{\tau' \tau} \), from the right side of this equation, where \(k' \) is a constant, it may be expressed thus:

\[
\sin \theta \left[P^m_{\tau' \cos \theta} \left\{ \frac{dP^m_{\tau}}{d\theta} + k' P^m_{\tau'} \right\} - P^m_{\tau} \left\{ \frac{dP^m_{\tau'}}{d\theta} + k' P^m_{\tau} \right\} \right] \bigg|_{\theta_1}^{\theta_2}. \tag{A-5}
\]

It is thus evident that if the \(\tau' \)'s are distinct roots of the equation,

\[
\frac{dP^m_{\tau}}{d\theta} + k' P^m_{\tau' \cos \theta} = 0, \tag{A-6}
\]

at each of the limits, \(\theta_1 \) and \(\theta_2 \), then the functions are orthogonal.

It may be further noted that the value of \(k' \) may be different at the two limits (Ref. 22, p. 431).

Using an analogous procedure for the equation for the spherical Hankel functions,

\[
\frac{d}{dp} \left[\rho^2 \left(\frac{dh_{\tau}}{dp} \right) \right] = \left[\tau (\tau + 1) - \rho^2 \right] h_{\tau}, \tag{A-7}
\]

one obtains
\[\tau' (\tau' + 1) - \tau (\tau + 1) \right\} \int_e^f h_\tau h_\tau' d\rho = \rho^2 \left[h_\tau \frac{dh_\tau'}{d\rho} - h_\tau' \frac{dh_\tau}{d\rho} \right] \right|_e^f , \quad (A-8) \]

and finds that the Hankel functions will be orthogonal between two arbitrary limits, \(\rho = e, f \), if at each limit the equation,

\[\frac{dh_\tau}{d\rho} + k'' h_\tau = 0, \quad (A-9) \]

is satisfied.

By referring to figure 3, it may be seen that the appropriate limits to use for the finite cone are \(\theta = 0, \theta_0 \), and \(r = b, \infty \) \((\rho = kr) \). For \(\theta = 0 \) and \(r = \infty \), however, the expressions on the right-hand sides of equations (A-4) and (A-8) are zero, and equations (A-6) and (A-9) need to be considered only for \(\theta = \theta_0, \ r = b \), respectively.

Let us further choose \(k' = k'' \), and then let \(k' \) and \(\tau \) be the simultaneous solution of the equations

\[\left. \frac{dP^1_\tau}{d\theta} \right|_{\theta=\theta_0} + k' P^1_\tau (\cos \theta_0) = 0, \quad (A-10) \]

\[\left. \frac{dh_\tau}{d\rho} \right|_{\rho=kb} + k' h_\tau (kb) = 0. \quad (A-11) \]

Then \(\tau \) must be a root of the equation,

\[\left. \frac{dP^1_\tau}{d\theta} \right|_{\theta=\theta_0} = \frac{P^1_\tau (\cos \theta_0)}{h_\tau (kb)} \left. \frac{dh_\tau}{d\rho} \right|_{\rho=kb} = 0, \quad (A-12) \]

and thus the function \(h_\tau (kr) P^m_\tau (\cos \theta) \) would be orthogonal between both sets of limits, \(r = b, \infty ; \ \theta = 0, \theta_0 \). This procedure thus provides orthogonal integrations when matching the fields across the imaginary spherical and conical boundaries indicated in figure 3.
For such an attack on the problem, one could then choose for
the function \(\Phi \) in equation (2),

\[
\begin{align*}
J_1(kr)P_l^0(\cos \theta) & \left[\frac{\sin \Phi}{\cos \Phi} \right] \quad \text{in region I}, \\
K_1(kr)P_l^0(\cos \theta) & \left[\frac{\sin \Phi}{\cos \Phi} \right] \quad \text{in region II}, \\
H_1(kr)P_l^0(-\cos \theta) & \left[\frac{\sin \Phi}{\cos \Phi} \right] \quad \text{in region III}.
\end{align*}
\]

The foregoing method of approach to the solution of the problem,
though perhaps providing the finality of the coefficients, raises
other problems which cause additional difficulty. In each region,
field expansions must be obtained for the incident wave in terms of
the non-integral degree Legendre functions, and since the value of
the degree has been determined, it can no longer be chosen so as to
satisfy the boundary condition at the surface of the cone, as was done
in the present solution. Furthermore, the determination of the roots
of equation (A-12), if they do exist, presents a problem in itself.
In addition, the equation is complex and one may then expect complex
roots, which, in turn, lead to resultant difficulties in determining
the Bessel, Hankel, and associated Legendre functions. For these
reasons, the method used in this paper was that in which the expansion
coefficients do not possess finality, but appear in an infinite
set of equations.
APPENDIX B

FIELD SINGULARITIES

A. Sharp Edges

Consider the electromagnetic fields which may possibly exist in the vicinity of a sharp edge. Since, for the time harmonic case, Maxwell's equations become

\[\text{curl } \bar{E} = -i\omega \mu \bar{H}, \]

\[\text{curl } \bar{H} = +i\omega \varepsilon \bar{E}, \]

and since the vector functions listed in equation (3) are related in this manner:

\[\text{curl } \bar{m} = k \bar{n}, \]

\[\text{curl } \bar{n} = k \bar{m}, \]

where \(k = 2\pi/\lambda \), these vector functions may be used to represent the electromagnetic field quantities. Furthermore, if we assume that they form a complete set of functions, then we may represent any time-harmonic electromagnetic field by an appropriate sum. For the illustration shown in figure 7, these functions become

\[\bar{n}_{\rho,0} = \frac{1}{\rho} \frac{d}{d\rho} Z_0(\xi\rho) \sin \bar{\varphi} \bar{e}_\rho - \frac{1}{\rho} \frac{d}{d\rho} Z_0(\xi\rho) \cos \bar{\varphi} \bar{e}_\rho, \]

\[\bar{n}_{\rho,0} = \frac{ih}{k} \frac{1}{d\rho} Z_0(\xi\rho) \cos \bar{\varphi} \bar{e}_\rho + \frac{ih}{k} \frac{1}{d\rho} Z_0(\xi\rho) \sin \bar{\varphi} \bar{e}_\rho + \frac{\xi^2}{k} Z_0(\xi\rho) \cos \bar{\varphi} \bar{e}_z, \]

where \(h \) is the wave constant for the \(z \)-direction [i.e., \(e^{(\omega t-kz)} \)], \(\xi \) is the wave constant for the radial direction, \(Z_0(\xi\rho) \) is a cylindrical Bessel function of any kind, and \(\bar{e}_\rho, \bar{e}_\varphi, \) and \(\bar{e}_z \) are unit vectors.
SHARP EDGE

$\Theta = 0$

$\sigma^+ = \infty$

$\Theta = \Theta^0$

\[z \]

Figure 7

SHARP TIP

$\Theta = \Theta^0$

$\sigma^- = \infty$

\[z \]

Figure 8
In cylindrical coordinates, the finite energy condition becomes

\[\int (\varepsilon_0 \mathbf{E}^2 + \mu_0 \mathbf{H}^2) dV = \int (\varepsilon_0 \mathbf{E}^2 + \mu_0 \mathbf{H}^2) \rho \, d\rho \, d\theta \, dz \to \text{finite}, \quad (B-5) \]

and thus the fields may possess at most a singularity of order \(\rho^{\mu-1} \) where \(\mu > 0 \). Thus, in using (B-3) or (B-4) to represent the fields, one observes that \(\nu \) must always be positive, since the first term in the series expansions of \(Z_0(\xi \rho) \) and \(dZ_0(\xi \rho) \) vary as \(\rho^{(\nu-1)} \).

If we assume that the wedge is perfectly conducting, then \(E_\rho = E_z = H_\theta = 0 \) at \(\theta = 0, \theta_0 \). If we first let \(\mathbf{E} \) be represented by \(\mathbf{m}_e \) (here we must choose the even function due to the \(\theta \) variation), then \(\mathbf{H} \) will be represented by \(\mathbf{n}_e \). The boundary conditions are then satisfied by

\[\sin \nu \theta_0 = 0, \quad \nu \theta_0 = n\pi, \]

where \(n \) is zero or an integer. Since we are particularly interested in the case for \(\nu < 1 \), this only occurs for \(n = 1 \),

\[\nu = \frac{n}{\theta_0} < 1. \quad (B-6) \]

Referring to (B-3) and (B-4) we see then that \(E_\rho, E_\theta, H_\rho, \) and \(H_\theta \) may be singular of order \(\rho^{(\pi/\theta_0) - 1} \).

Again, if we let \(\mathbf{E} \) be represented by \(\mathbf{n}_0 \) and \(\mathbf{H} \) by \(\mathbf{m}_0 \), we arrive at precisely the same conclusion. These results precisely agree with those of Meixner, who used a power series expansion for the field components.

Furthermore, the above results seem physically reasonable since a series of point charges flowing along the edge constitute a finite current in an infinitesimal volume, or an infinite current density, which is,
of course, integrable.

B. Sharp Tips

Although the conclusions for a conical tip are not as well defined as those for the wedge, a few interesting results may be observed. Let us apply the same reasoning to a conical tip in spherical coordinates. Here the finite energy condition becomes

$$\int (\epsilon_0 E^2 + \mu_0 H^2) \, dV = \int (\epsilon_0 E^2 + \mu_0 H^2) \, r^2 \sin \theta \, dr \, d\theta \, d\phi \rightarrow \text{finite},$$

thus permitting singularities of order $r^{(\mu-3/2)}$ where $\mu > 0$. For convenience, we repeat the m and n functions

$$\bar{m}_{\mu v} = \frac{m}{\sin \theta} z_0(kr) P^m_0(\cos \theta) \frac{\sin m\phi - \sin m\phi_{\theta}}{\sin m\phi_{\theta}} - z_0(kr) \frac{dP^m_0}{d\theta} \frac{\cos m\phi - \cos m\phi_{\theta}}{\sin m\phi_{\theta}}, \quad (B-8)$$

$$\bar{n}_{\mu v} = \frac{v(v+1)}{kr} z_0(kr) P^m_0(\cos \theta) \frac{\cos m\phi - \cos m\phi_{\theta}}{\sin m\phi_{\theta}} + z_0'(kr) \frac{dP^m_0}{d\theta} \frac{\cos m\phi - \cos m\phi_{\theta}}{\sin m\phi_{\theta}}, \quad (B-9)$$

and note that the leading term in $z_0(kr)/r$ and $z_0'(kr)$ is of the order r^{v-1} (See notation after equation 14).

If we let E be represented by \bar{m}, and H by \bar{n}, then the boundary conditions $E_r = E_\phi = H_\theta = 0$ at $\theta = \theta_0$ are satisfied by

$$P^m_0(\cos \theta_0) = 0, \quad (B-10)$$

where m is again integral. Due to the finite energy condition, we are interested in the values $-0.5 < v < 1$. However, equation (B-10) has no roots for $|v| \leq m$ (Ref. 24, p. 386), and consequently has roots in the region of our immediate interest only for $m = 0$. For this case, a glance at (B-8) and (B-9) reveals that singularities occur in all
components of the electric field (\bar{E}) but in none of the components of the magnetic field (\bar{B}), and in the electric field only for ϕ-independent field variations.

The foregoing result also seems physically reasonable, since the presence of a point charge at the tip of the cone would produce singular electric fields with no ϕ variation. One might reasonably expect that if a material were chosen which was assumed to contain point dipoles, a singular electric field with a $[\cos \phi]$ variation would result.

Left to consider, then, is the case for which \bar{E} is represented by \bar{m}, and \bar{H} by \bar{n}. Reference to (B-8) and (B-9) reveals that the boundary conditions $E_r = E_\phi = H_\theta = 0$ at $\theta = \theta_0$ are satisfied by

$$\frac{dP^m_\theta(\cos \theta)}{d\theta} \bigg|_{\theta = \theta_0} = 0. \quad (B-11)$$

Because of the finite energy condition, equation (B-7), and the behavior of the leading radial term, any roots of (B-11) where $-0.5 < \nu < 1$ will produce permissible singularities. For $-0.5 < \nu < 1$, however, $P_\nu(\cos \theta)$ is either a monotonically increasing function (for ν negative) or a monotonically decreasing function (for ν positive), and thus its first derivative possesses no zeros (except $\theta = 0$) in our immediate range of interest.

From $m = 1$, $-0.5 < \nu < 0$, reference to figure 11 reveals that no zeros of the first derivative occur (all values of ν in this range lie between the zero axis and the $\nu = -0.5$ curve plotted in figure 11). One may also observe that zeros do occur for $0.3 < \nu < 1$. Reference again to
(B-9) reveals singularities in all components of the magnetic field.

Since, in this case, the electric field is represented by \(\bar{m} \), which possesses a leading radial term of \(r^\mu \), we should perhaps consider roots of (B-11) as low as \(-1.5\) for only the electric field. Since

\[
P^m_\nu(\cos \theta) = P^m_{-\nu-1}(\cos \theta),
\]

however, the graphs of figure 11 for \(0.5 \leq \nu \leq -0.5 \) may be also interpreted as those for \(-1.5 \leq \nu \leq -0.5\), respectively, and no additional zeros occur.

Here again, singular magnetic field components seem reasonable, since a finite surface current flows over an infinitesimal area at the tip of the cone, producing a singularity of current density. One may further observe from figure 9 that this current would produce a singular magnetic field in the \(y \)-direction, producing the resulting singularities in all of the spherical components.

In summary, we have found that:

(a) at a perfectly conducting sharp edge, singularities of order \(\frac{\lambda}{\theta_0} - 1 \) may occur in all components of the electric and magnetic fields except those tangential to the edge;

(b) at a perfectly conducting sharp tip, a singularity may occur in the electric field for only \(\phi \)-independent fields;

(c) at a perfectly conducting sharp tip, a singularity may occur in the magnetic field if it possesses a \(\begin{bmatrix} \cos \phi \\ \sin \phi \end{bmatrix} \) dependence. A singularity will not occur in the magnetic field if it is \(\phi \) independent.
SURFACE CURRENTS AT A CONICAL TIP

Figure 9
APPENDIX C

A NOTE ON THE COMPUTATION OF THE ASSOCIATED LEGENDRE FUNCTION

In order to compute the associated Legendre functions to a desired degree of accuracy, the hypergeometric series, equation (75), was used:

\[F(\alpha, \beta; \gamma, z) = 1 + \frac{\alpha \beta}{\gamma 1!} z + \frac{\alpha(\alpha+1)\beta(\beta+1)}{\gamma(\gamma+1)2!} z^2 + \cdots . \]

For the associated Legendre function, we have

\[\alpha = m-u \]
\[\beta = m+u+1 \]
\[\gamma = m+1 \]
\[z = \frac{1-\cos \theta}{2}, \]

and since \(z \) is always positive and less than unity, the magnitude of the ratio of the succeeding terms will be less than unity if

\[\frac{(\alpha+N)(\beta+N)}{(\gamma+N)(\gamma+1)} < 1 \]

For \(P_u^m(\cos \theta) \), it may easily be shown that (C-2) is satisfied for any \(N \) if \(u \) is positive, and if \(u \) is negative one must have

\[(N+1)(N+2) > \frac{u(u+1)}{2} \] \hspace{1cm} (C-3)

Thus, if \(N \) satisfies (C-3), an upper limit on the remainder of the series after \(N \) terms may be obtained by assuming each term to have the coefficient of the \(N \)th term. Thus, if

\[F(\alpha, \beta; \gamma, z) = 1 + \frac{\alpha \beta}{\gamma 1!} z + \cdots + \frac{\alpha^{\cdots}(\alpha+N)\beta^{\cdots}(\beta+N)}{\gamma^{\cdots}(\gamma+N)(\gamma+1)\cdots(N+1)} z^N + R(N), \]

where \(R(N) \) is the remainder, then
Thus, by multiplying the last computed term of the series by \(\frac{z}{1-z} \), one may be certain of the accuracy obtained.

Using this procedure, tables were computed, accurate to six decimal places, for the following associated Legendre functions:

\[
P^{\ell}_{0} (\cos \theta) \left[\theta \rightarrow (5^\circ [5^\circ] 165^\circ) \right] \quad \nu \rightarrow (-0.5[0.1]3.0) \\
\frac{dP^{\ell}_{0} (\cos \theta)}{d\theta} \left[\theta \rightarrow (5^\circ [5^\circ] 165^\circ) \right] \quad \nu \rightarrow (-0.5[0.1]2.0)
\]

Utilizing the relation \(P^{\ell}_{\nu-1} = P^{\ell}_{\nu} \), the range of \(\nu \) may be further extended.

All computations included in this report were performed on the Burroughs Datatron 205. Total time required was approximately sixteen hours, including computation of the tables cited above.

It is anticipated that more computations will be made on the determination of the roots of equations (32) and (34), as well as for the corresponding spherical Bessel functions, thus enabling theoretical determination of the radar cross sections of finite cones in the resonance region.
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Code</th>
<th>Organization</th>
<th>*No. of Copies</th>
</tr>
</thead>
</table>
| AF 15 | ARDC (RDSPE-3)
Andrews AFB, Wash 25, D. C. | |
| AF 29 | APGC (PGTRI, Tech Lib)
Eglin AFB, Fla. | |
| AF 69 | Director of Resident Training
3380th Technical Training Group
Keesler AFB, Mississippi
Attn: OA-3011 Course | |
| AF 18 | AUL
Maxwell AFB, Ala. | |
| AF 5 | AF Missile Test Cen
Patrick AFB, Fla.
Attn: AFMTC, Tech Library, MU-135 | |
| AF 91 | AFOSR (SRY, Mr. Otting)
14th Street and Constitution Avenue
Washington, D. C. | |
| AF 166 | Hq USAF (AFOAC-S/E)
Communications-Electronics Directorate
Wash 25, D. C. | |
| AF 63 | WADD (WCLRSA, Mr. Fortune)
Wright-Patterson AFB, Ohio | |
| AF 68 | WADD (WCLRE-5)
Attn: Mr. Paul Springer
Wright-Patterson AFB, Ohio | |
| AF 231 | Director, Electronics Division
Air Technical Intelligence Center
Attn: AFCIN-4E1, Colonel H. K. Gilbert
Wright-Patterson AFB, Ohio | |
| AF 120 | RADC (RCUE)
Attn: Mr. Donald Dakan
Griffiss AFB, N. Y. | |
| AF 139 | AF Missile Dev. Cen. (MDGRT)
Attn: Technical Library
Holloman AFB, New Mexico | |

Note: One copy unless otherwise designated.
<table>
<thead>
<tr>
<th>Code</th>
<th>Organization</th>
</tr>
</thead>
</table>
| AF 308 | WADD (WWDRTR, Mr. A. D. Clark)
Directorate of System Engineering
Dyna Soar Engineering Office
Wright-Patterson AFB, Ohio |
| Ar 47 | Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland
Attn: Technical Information Branch |
| Ar 5 | U.S. Army Signal Engineering Laboratories
Evans Signal Laboratory
Belmar, New Jersey
Attn: Technical Document Center |
| Ar 10 | Massachusetts Institute of Technology
Signal Corps Liaison Officer
Cambridge 39, Mass.
Attn: A. D. Bedrosian, Room 26-131 |
| Ar 67 | Commander
Army Rocket & Guided Missile Agency
Redstone Arsenal, Alabama
Attn: Technical Library, ORDXR-OTL |
| Ar 9 | Department of the Army
Office of the Chief Signal Officer
Washington 25, D. C.
Attn: Research & Development Division, OCSigO |
| Ar 41 | Office of Chief Signal Officer
Engineering & Technical Division
Washington 25, D. C.
Attn: SIGNET-5 |
| Ar 48 | Guided Missile Fuze Library
Diamond Ordnance Fuze Laboratories
Washington 25, D. C.
Attn: R. D. Hatcher, Chief Microwave Development Section |
| G 2 | ASTIA
Arlington Hall Station
Arlington 12, Virginia |
<table>
<thead>
<tr>
<th>Code</th>
<th>Organization</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 8</td>
<td>Library Boulder Laboratories National Bureau of Standards Boulder, Colorado</td>
<td></td>
</tr>
<tr>
<td>G 27</td>
<td>National Bureau of Standards U. S. Department of Commerce Washington 25, D. C. Attn: Gustave Shapiro, Chief Engineering Electronics Section Electricity and Electronics Division</td>
<td></td>
</tr>
<tr>
<td>G 6</td>
<td>Office of Technical Services Department of Commerce Washington 25, D. C. Attn: Technical Reports Section</td>
<td>2</td>
</tr>
<tr>
<td>G 103</td>
<td>National Aeronautical Space Agency Langley Aeronautical Research Laboratory Langley, Virginia Attn: Mr. Cliff Nelson</td>
<td></td>
</tr>
<tr>
<td>M 6</td>
<td>AFCRL AFRD (CRREL-4) L. G. Hanscom Field, Bedford, Mass.</td>
<td>10</td>
</tr>
<tr>
<td>M 17</td>
<td>AFCRL AFRD (CRRD) Attn: Carlyle J. Sletten L. G. Hanscom Field, Bedford, Mass.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AFCRL AFRD (CRRD) Attn: Contract Files L. G. Hanscom Field, Bedford, Mass.</td>
<td>2</td>
</tr>
<tr>
<td>N 3</td>
<td>Chief, Bureau of Ships Department of the Navy Washington 25, D. C. Attn: Code 690</td>
<td></td>
</tr>
<tr>
<td>N 23</td>
<td>U. S. Naval Ordnance Laboratory White Oak, Silver Spring 19, Maryland Attn: The Library</td>
<td></td>
</tr>
<tr>
<td>N 27</td>
<td>Librarian U. S. Naval Postgraduate School Monterey, California</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Organization</td>
<td>No. of Copies</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| N 30 | Dr. J. I. Bohnert, Code 5210
U.S. Naval Research Laboratory
Washington 25, D. C. | |
| N 35 | Commanding Officer and Director
U.S. Navy Underwater Sound Laboratory
Fort Trumbull, New London, Connecticut | |
| N 37 | Chief of Naval Research
Department of the Navy
Washington 25, D. C.
Attn: Code 427 | |
| N 139 | Commanding Officer and Director
U.S. Navy Electronics Laboratory
San Diego 52, California
Attn: Code 2420 - 1 copy
Attn: Code 2744 - 1 copy | |
| N 9 | Chief, Bureau of Ordnance
Department of the Navy
Washington 25, D. C.
Attn: Code Ad3 | |
| N 86 | Chief, Bureau of Ordnance
Department of the Navy
Surface Guided Missile Branch
Washington 25, D. C.
Attn: Code RdS1-e | |
| N 88 | Department of the Navy
Bureau of Aeronautics
Technical Data Division, Code 4106
Washington 25, D. C. | |
| N 48 | Commanding Officer
U.S. Naval Air Development Center
Johnsville, Pennsylvania
Attn: NADC library | |
| N 141 | ARDC Regional Office
c/o Department of the Navy
Room 4549, Munitions Building, Wash 25, D. C. | |
<table>
<thead>
<tr>
<th>Code</th>
<th>Organization</th>
</tr>
</thead>
</table>
| N 93 | Commanding Officer
U.S. Naval Ordnance Laboratory
Corona, California
Attn: Documents Librarian |
| I 601 | Aero Geo Astro Corp.
1914 Duke Street
Alexandria, Virginia
Attn: George G. Chadwick |
| I 1 | Airborne Instruments Laboratory, Inc.
Division of Cutler Hammer
Walt Whitman Road, Melville, L. I. New York
Attn: Dr. E. G. Fubine
Director, Res. and Eng. Division |
| I 205 | Battelle Memorial Institute
505 King Avenue
Columbus 1, Ohio
Attn: Wayne E. Rife, Project Leader
Electrical Engineering Division |
| I 8 | Bell Aircraft Corporation
Post Office Box One
Buffalo 5, New York
Attn: Eunice P. Hazelton, Librarian |
| I 13 | Bell Telephone Laboratories, Inc.
Whippany Laboratory
Whippany, New Jersey
Attn: Technical Information Library |
| I 246 | Bendix Aviation Corporation
Pacific Division
11600 Sherman Way
North Hollywood, California
Attn: Engineering Library |
| I 247 | Bendix Radio Division
Bendix Aviation Corporation
E. Joppa Road
Towson 4, Maryland
Attn: Dr. D. M. Allison, Jr.
Director Engineering & Research |
<table>
<thead>
<tr>
<th>Code</th>
<th>Organization</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1469</td>
<td>Bell Telephone Laboratories</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Murray Hill</td>
<td></td>
</tr>
<tr>
<td></td>
<td>New Jersey</td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>Boeing Aircraft Company</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seattle 15, Washington</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Mr. D. Scidmore</td>
<td></td>
</tr>
<tr>
<td>1254</td>
<td>Convair, A Division of General Dynamics Corp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3165 Pacific Highway</td>
<td></td>
</tr>
<tr>
<td></td>
<td>San Diego 12, California</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Mrs. Dora B. Burke, Engineering Librarian</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Cornell Aeronautical Laboratory, Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4455 Genesee Street</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buffalo 21, New York</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Librarian</td>
<td></td>
</tr>
<tr>
<td>1255</td>
<td>Dalmo Victor Company</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A Division of Textron, Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1515 Industrial Way</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Belmont, California</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Mary Ellen Addems, Technical Librarian</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Dorne and Margolin, Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29 New York Avenue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westbury, Long Island, N. Y.</td>
<td></td>
</tr>
<tr>
<td>1257</td>
<td>Douglas Aircraft Co., Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>827 Lapham Street</td>
<td></td>
</tr>
<tr>
<td></td>
<td>El Segundo, California</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Engineering Library</td>
<td></td>
</tr>
<tr>
<td>1258</td>
<td>Douglas Aircraft Company, Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000 Ocean Park Boulevard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Santa Monica, California</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Peter Duyan, Jr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chief, Electrical/Electronics Section</td>
<td></td>
</tr>
<tr>
<td>1259</td>
<td>Douglas Aircraft Company, Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000 North Memorial Drive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tulsa, Oklahoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Engineering Librarian, D-250</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Organization</td>
<td>Address</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>I187</td>
<td>Electromagnetic Research Corporation</td>
<td>711-14th Street, N. W. Washington 5, D. C.</td>
</tr>
<tr>
<td>I415</td>
<td>Electronics Communication</td>
<td>1830 York Road Timonium, Maryland</td>
</tr>
<tr>
<td>I264</td>
<td>Fairchild Aircraft-Missiles Division Fairchild Eng. and Airplane Corp. Hagerstown, Maryland</td>
<td></td>
</tr>
<tr>
<td>I266</td>
<td>Federal Telecommunication Laboratories</td>
<td>500 Washington Avenue Nutley 10, New Jersey</td>
</tr>
<tr>
<td>I269</td>
<td>General Electric Company Electronics Park Syracuse, New York</td>
<td></td>
</tr>
<tr>
<td>I270</td>
<td>General Precision Laboratory, Inc.</td>
<td>63 Bedford Road Pleasantville, New York</td>
</tr>
<tr>
<td>I48</td>
<td>Goodyear Aircraft Corp.</td>
<td>1210 Massillon Road Akron 15, Ohio</td>
</tr>
<tr>
<td>I48</td>
<td>Granger Associates Electronic Systems</td>
<td>974 Commercial Street Palo Alto, California</td>
</tr>
<tr>
<td>I272</td>
<td>Grumman Aircraft Engineering Corporation</td>
<td>Bethpage, Long Island, New York</td>
</tr>
<tr>
<td>Code</td>
<td>Organization</td>
<td>No. of Copies</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| I 793 | General Electric Company
Missile and Space Vehicle Department
3198 Chestnut Street, Philadelphia, Pennsylvania
Attn: Documents Library | |
| I 893 | General Electric Company
3750 D Street
Philadelphia 24, Pa.
Attn: Mr. H. G. Lew
Missile and Space Vehicle Department | |
| I 207 | Hughes Aircraft Company
Antenna Department
Building 12, Mail Station 2617
Culver City, California
Attn: Dr. W. H. Kummer | |
| I 56 | Hughes Aircraft Company
Florence and Teale Streets
Culver City, California
Attn: Dr. L. C. Van Atta, Associate Director
Research Laboratories | |
| I 230 | Jansky and Bailey, Inc.
1339 Wisconsin Avenue, N. W.
Washington 7, D. C.
Attn: Mr. Delmer C. Ports | |
| I 468 | Lockheed Aircraft Corporation
Missile Systems Division Research Library
Box 504, Sunnyvale, California
Attn: Miss Eva Lou Robertson, Chief Librarian | |
| I 136 | The Martin Company
P. O. Box 179
Denver 1, Colorado
Attn: Mr. Jack McCormick | |
| I 280 | The Martin Company
Baltimore 3, Maryland
Attn: Engineering Library
Antenna Design Group | |
| I 63 | Mathematical Reviews
190 Hope Street
Providence 6, Rhode Island | |
<table>
<thead>
<tr>
<th>Code</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 282</td>
<td>McDonnell Aircraft Corporation</td>
</tr>
<tr>
<td></td>
<td>Lambert-Saint-Louis Municipal Airport</td>
</tr>
<tr>
<td></td>
<td>Box 516, St. Louis 3, Missouri</td>
</tr>
<tr>
<td></td>
<td>Attn: R. D. Detrich, Engineering Library</td>
</tr>
<tr>
<td>I 116</td>
<td>Melpar, Inc.</td>
</tr>
<tr>
<td></td>
<td>3000 Arlington Boulevard</td>
</tr>
<tr>
<td></td>
<td>Falls Church, Virginia</td>
</tr>
<tr>
<td></td>
<td>Attn: Engineering Technical Library</td>
</tr>
<tr>
<td>I 641</td>
<td>National Research Council</td>
</tr>
<tr>
<td></td>
<td>Radio & Electrical Engineering Division</td>
</tr>
<tr>
<td></td>
<td>Ottawa, Ontario, Canada</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. G. A. Miller, Head Microwave Section</td>
</tr>
<tr>
<td>I 284</td>
<td>North American Aviation, Inc.</td>
</tr>
<tr>
<td></td>
<td>12214 Lakewood Boulevard</td>
</tr>
<tr>
<td></td>
<td>Downey, California</td>
</tr>
<tr>
<td></td>
<td>Attn: Engineering Library 495-115</td>
</tr>
<tr>
<td>I 285</td>
<td>North American Aviation, Inc.</td>
</tr>
<tr>
<td></td>
<td>Los Angeles International Airport</td>
</tr>
<tr>
<td></td>
<td>Los Angeles 45, California</td>
</tr>
<tr>
<td></td>
<td>Attn: Engineering Technical File</td>
</tr>
<tr>
<td>I 232</td>
<td>Radiation Engineering Laboratory</td>
</tr>
<tr>
<td></td>
<td>Main Street</td>
</tr>
<tr>
<td></td>
<td>Maynard, Mass.</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. John Ruze</td>
</tr>
<tr>
<td>I 289</td>
<td>Radiation, Inc.</td>
</tr>
<tr>
<td></td>
<td>P. O. Drawer 37</td>
</tr>
<tr>
<td></td>
<td>Melbourne, Florida</td>
</tr>
<tr>
<td></td>
<td>Attn: Technical Library, Mr. M. L. Cox</td>
</tr>
<tr>
<td>I 233</td>
<td>Radio Corporation of America</td>
</tr>
<tr>
<td></td>
<td>RCA Laboratories</td>
</tr>
<tr>
<td></td>
<td>Rocky Point, New York</td>
</tr>
<tr>
<td></td>
<td>Attn: P. S. Carter, Lab. Library</td>
</tr>
<tr>
<td>I 290</td>
<td>RCA Laboratories</td>
</tr>
<tr>
<td></td>
<td>David Sarnoff Research Center</td>
</tr>
<tr>
<td></td>
<td>Princeton, New Jersey</td>
</tr>
<tr>
<td></td>
<td>Attn: Miss Fern Cloak, Librarian</td>
</tr>
<tr>
<td>Code</td>
<td>Organization</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| I 291 | Radio Corporation of America
Defense Electronic Products
Building 10, Floor 7
Camden 2, New Jersey
Attn: Mr. Harold J. Schrader, Staff Engineer
Organization of Chief Technical Administrator | |
| I 473 | Radio Corporation of America
Aviation Systems Laboratory
225 Crescent Street
Waltham, Mass. | |
| I 757 | Radio Corporation of America
Surface Communications Systems Laboratory
75 Varick Street, New York 13, N. Y.
Attn: Mr. S. Krevsky | |
| I 789 | Radio Corporation of America
West Coast Missile and Surface Radar Division
Engineering Library, Building 306/2
Attn: L. R. Hund, Librarian
8500 Balboa Boulevard, Van Nuys, California | |
| I 292 | Director USAF Project RAND
via: AF Liaison Office
The Rand Corporation
1700 Main Street
Santa Monica, California | |
| I 294 | Raytheon Company
Wayland Laboratory
Wayland, Mass.
Attn: Miss Alice G. Anderson, Librarian | |
| I 472 | Raytheon Company
Missile Systems Division
Hartwell Road, Bedford, Mass.
Attn: Donald H. Archer | |
| I 96 | Sandia Corporation, Sandia Base
P. O. Box 5800, Albuquerque, New Mexico
Attn: Classified Document Division | |
<table>
<thead>
<tr>
<th>Code</th>
<th>Organization</th>
<th>No. of Copies</th>
</tr>
</thead>
</table>
| I 312| Space Technology Laboratories, Inc.
P. O. Box 95001
Los Angeles 45, California
Attn: Mrs. Margaret C. Whitnah, Chief, Information Services | 2 |
| I 367| Stanford Research Institute
Documents Center
Menlo Park, California
Attn: Acquisitions | |
| I 104| Sylvania Electric Products, Inc.
100 First Avenue, Waltham 54, Mass.
Attn: Charles A. Thornhill, Report Librarian
Waltham Laboratories Library | |
| I 818| Sylvania Reconnaissance Systems Lab.
Box 188, Mountain View, California
Attn: Marvin D. Waldman | |
Electronic Defense Laboratory
P. O. Box 205
Mountain View, California
Attn: Library | |
| U 61 | Brown University
Department of Electrical Engineering
Providence, Rhode Island
Attn: Dr. C. M. Angulo | |
| U 99 | California Institute of Technology
1201 E. California Street
Pasadena, California
Attn: Dr. C. Papas | |
| U 3 | Space Sciences Laboratory
Leuschner Observatory
University of California
Berkeley 4, California
Attn: Dr. Samuel Silver, Professor of Engineering Science and Director, Space Sciences Laboratory | |
| U 100| University of California
Electronics Research Lab.
332 Cory Hall, Berkeley 4, California
Attn: J. R. Whinnery | |
<table>
<thead>
<tr>
<th>Code</th>
<th>Organization</th>
<th>No. of Copies</th>
</tr>
</thead>
</table>
| U 289 | University of Southern California
University Park
Los Angeles, California
Attn: Dr. Raymond L. Chuan
Director, Engineering | |
| U 182 | Case Institute of Technology
10900 Euclid Avenue
Cleveland, Ohio
Attn: Prof. S. Seeley | |
| U 183 | Columbia University
Department of Electrical Engineering
Morningside Heights, New York, N.Y.
Attn: Dr. Schlesinger | |
| U 238 | University of Southern California
University Park
Los Angeles, California
Attn: Z. A. Kaprielian
Associate Professor of Electrical Engineering | |
| U 10 | Cornell University
School of Electrical Engineering
Ithaca, New York
Attn: Prof. G. C. Dalman | |
| U 59 | Library
Georgia Technology Research Institute
Engineering Experiment Station, 722 Cherry Street, N.W.
Atlanta, Georgia
Attn: Mrs. J. H. Crosland, Librarian | |
| U 102 | Harvard University
Technical Reports Collection
Gordon McKay Library
303 Pierce Hall
Attn: Librarian | |
| U 103 | University of Illinois
Documents Division Library
Urbana, Illinois | |
<table>
<thead>
<tr>
<th>Code</th>
<th>Organization</th>
</tr>
</thead>
</table>
| U 240 | Illinois Institute of Technology
Technology Center
Department of Electrical Engineering
Chicago 16, Illinois
Attn: Paul C. Yuen
Electronics Research Laboratory |
| U 22 | The Johns Hopkins University
Homewood Campus
Baltimore 18, Maryland
Attn: Dr. Donald E. Kerr Dept. of Physics |
| U 228 | University of Kansas
Electrical Engineering Department
Lawrence, Kansas
Attn: Dr. H. Unz |
| U 68 | Lowell Technological Institute
Research Foundation
P. O. Box 709, Lowell, Mass.
Attn: Dr. Charles R. Mingins |
| U 32 | Massachusetts Institute of Technology
Research Laboratory of Electronics
Building 26, Room 327
Cambridge 39, Mass.
Attn: John H. Hewitt |
| U 26 | Massachusetts Institute of Technology
Lincoln Laboratory
P. O. Box 73
Lexington 73, Mass.
Attn: Mary A. Granese, Librarian |
| U 34 | McGill University
Montreal, Canada
Attn: Prof. G. A. Woonton
Director, The Eaton Electronics Research Laboratory |
| U 79 | University of Michigan
Engineering Research Institute
Radiation Laboratory
912 N. Main Street, Ann Arbor, Michigan
Attn: Prof. K. M. Siegel |
<table>
<thead>
<tr>
<th>Code</th>
<th>Organization</th>
</tr>
</thead>
</table>
| U 37 | University of Michigan
Engineering Research Institute
Willow Run Laboratories, Willow Run Airport
Ypsilanti, Michigan
Attn: Librarian |
| U 39 | New York University
Institute of Mathematical Sciences
Room 802, 25 Waverly Place
New York 3, New York
Attn: Professor Morris Kline |
| U 96 | Northwestern University
Microwave Laboratories
Evanston, Illinois
Attn: R. E. Beam |
| U 78 | Ohio State University Research Foundation
1314 Kinnear Road
Columbus 8, Ohio
Attn: Dr. T. E. Tice
 Department of Electrical Engineering
 Classified to go thru: Dr. Arthur S. Cosier, Jr. |
| U 45 | The Pennsylvania State University
Department of Electrical Engineering
University Park, Pennsylvania |
| U 185 | University of Pennsylvania
Institute of Cooperative Research
3400 Walnut Street, Philadelphia, Pa.
Attn: Department of Electrical Engineering |
| U 48 | Polytechnic Institute of Brooklyn
Microwave Research Institute
55 Johnson Street, Brooklyn New York
Attn: Dr. Arthur A. Oliner |
| U 176 | Stanford University
W. W. Hansen Laboratory of Physics
Stanford, California
Attn: Microwave Library |