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Abstract

We present techniques which result in improved parallel algorithms for a number of

problems whose efficient sequential algorithms use the plane-sweeping paradigm. The

problems for which we give improved algorithms include intersection detection, trape­

zoidal decomposition, triangulation, and planar point location. Our technique can be

used to improve on the previous time bound while keeping the space and processor

bounds the same, or improve on the previous space bound while keeping the time and

processor bounds the same. We also give efficient parallel algorithms for 3-dimensional

maxima, multiple range-counting, rectilinear segment intersection counting. and visibil­

ity from a point. In addition to being asymptotically better than previous solutions, our

algorithms do not use the AKS sorting network, thus avoiding the large multiplicative

constant found in the time bounds of the previous solutions.

~Thi8 research was supported by the Office of Naval Research under Grants NOO0l4-84-K-0502 and NOOO14-86-K­

0689, and the National Science Foundation under Grant DCR-8451393, with matching funds from AT&T.
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1 Introduction

The plane-sweeping technique has proven effective for developing efficient sequential algorithms for

a. variety of geometric problems. This technique, in two dimensions, involves sweeping a line through

a. set of geometric objects (such as line segments), updating global data structures at critical points

(sometimes called event points, e.g. segment endpoints). It has been used to find efficient sequential

algorithms for a host of computational geometry problems (see Lee and Preparata (1984)). It also

seems to be a very sequential technique.

Most of the sequential algorithms which use plane-sweeping are already optimal to within a

multiplicative constant. There is already a small but growing body of work on finding efficient

parallel algorithms for computational geometry problems (e.g., Aggarwal et al. (1985), Atallah and

Goodrich (1985, 1986), Chow (1980L and EIGindy (1986)), addressing the question of what kinds of

speed-ups can be achieved through parallelism. In this paper we present efficient parallel algorithms

for a number of problems whose efficient sequential. algorithms use the plane-sweeping paradigm.

We list the problems addressed in this paper below, and summarize our results in Table 1.

1. Trapezoidal Decomposition: Given a simple n-vertex polygon P, determine the trape­

zoidal edge(s) for each vertex. A trapezoidal edge for a vertex Vi is an edge 8 of P which is

directly above or below Vi and such that the vertical line segment from Vi to 8 is interior to

P.

2. Polygon Triangulation: Given a simple n-vertex polygon P, augment P with diagonal

edges so that each interior face is a triangle.

3. Arbitrary Triangulation: Given a set S of n points in the plane, connect pairs of points

by edges so that each interior face of the convex hull of S is a triangle.

4. Planar Point Location: Given a planar subdivision consisting of n edges, construct in

parallel a data structure which, once built, enables one processor to quickly determine for

any query point p the face containing p. We let Q(n) denote the time for performing such a

query.

5. Intersection Detection: Given n line segments in the plane, determine if any two intersect.

6. 3-Dimensional Maxima: Given a set S of n points in 3-dimensional space, determine which

points are maxima. A maximum in S is any point p such that no other point of S has X, y,

and z coordinates that simultaneously exceed the corresponding coordinates of p.

7. Two-Set Dominance Counting: Given a set V = {Pl,P2,'" .pd and a set U = {qll Q2.···, qm}

of points in the plane, compute for each point qi in U the number of points in V which are
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2-dominated by qi. The problem size is n = 1+ m.

8. Multiple Range-Counting: Given I points in the plane and m isothetic rectangles (ranges)

determine the number of points interior to each rectangle. The problem size is n = 1+ m.

9. Rectilinear Segment Intersection Counting: Given n horizontal and vertical line seg­

ments in the plane, determine for each segment the number of other segments which intersect

it.

10. Visibility from a Point: Given n line segments such that no two intersect (except possibly

at endpoints) and a point p, determine that part of the plane visible from p.

As in references (Aggarwal et al., 1985) and (Atallah and Goodrich, 1985), our framework is one

in which we have a linear number of processors and wish to achieve the best time bound possible.

It may also be desirable in this context to try to achieve the best space performance possible as

well. Unless otherwise stated, our algorithms will be for the CREW PRAM parallel model. Recall

that this is the synchronous parallel model in which processors share a conunon memory where

concurrent reads are allowed, but not concurrent writes.

Aggarwal et al. (1985) show that several problems whose efficient sequential algorithms use

the plane-sweeping paradigm can be solved in parallel in 0(log2n) time and O(nlogn) space

using O(n) processors in the CREW PRAM model. The problems addressed by Aggarwal et al.

include intersection detection, trapezoidal decomposition, polygon triangulation, and planar point

location, among others. We reduce the time bound from O(log2 n) to O(logn log logn) for each of

these problems (keeping the space bound at O(n logn)) by using a special data structure, which we

call the plane-sweep tree, which is similar to a data structure used by Aggarwal et 41., but differs

from it in some important ways. We build this data structure by using parallel merging and a

technique similar to the sequential "fractional cascading" technique of Chazelle and Guibas (1986).

If space is important, then our technique can be modified to achieve O(n) apace and O(log2 n) time.

We manage to achieve O(n) space performance, even though this data structure takea 8(nlogn)

space, by never completely building it. Instead, we use it as we are constructing parts of it and

destroying other parts of it. Also, the previous algorithms use the sorting network of Ajtai, Koml6s,

and Szemeredi (1983) (sometimes refered to as the AKS sorting network), which introduces a large

multiplicative constant into the time complexity. We never use the AKS network.

We also present a technique which we Use to efficiently solve other problems as well: namely,

3-dimensional maxima, multiple range-counting, rectilinear segment intersection counting, and vis­

ibility from a point. This technique is based on the divide-and-conquer paradigm and for each of

these problems it achieves O(lognloglogn) time and O(n) space bounds using O(n) processors.

Instead of dividing and merging in the usual way, we divide based on how sequential plane-sweeping
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stores objects during the sweep, and we "marry" subproblem solutions by merging lists of critical

points and computing labels associated with each critical point. The key to this technique is in

finding critical-point labels which can be computed quickly in parallel and which can be used to

solve the problem at hand once we have completed the divide-and-conquer procedure.

In the next section we give some preliminary definitions and observations. In Section 3 we

present the plane-sweep tree technique, and in Section 4 we present our second technique.

2 Preliminaries

In this section we introduce some notation and review some known results which we will use later

in the paper. For any point p in the plane we use x(p) and y(p) to denote, respectively, the x and

y coordinates of p. If p E m: s, then we use z(P) to denote the z-coordinate of p. Given a set S

of non-intersecting line segments in the plane, we define a partial order on the elements of S such

that two segments in S are comparable iff there is a vertical line which intersects both segments.

The segment with the lower intersection is said to be the smaller of the two. Note that if there is

a vertical line which intersects all the segments in S, then this partial order is actually total.

Given a sorted (nondecreasing) list B = (bI, b2 , • •• ,bm ) and an element a taken from the same

total order as the b/s, the predecessor of a in B is the greatest element in B which is less than

or equal to B. H B < bl' then we say that the predecessor of B is ¢ (¢ is a special symbol such

that ¢ < b for every element b in the total order). Clearly, we can use binary search to locate the

predecessor in B of any such a. The next easy lemma states that if we have two sorted lists A and

B whose elements are taken from the same total order, we can find the predecessor in B of every

element in A efficiently in parallel.

Lemma 2.1: GitJen two sorted arrays A and B whose elements are taken from the same total

order, the predecessor in B of each element in A can be determined in O(loglogn) time using O(n)

processors on a CREW PRAM, where n = IAI + IBI.

Proof: The parallel merging algorithm of Valiant (1975) (which Borodin and Hoprocoft (1985)

have shown to be implementable in the CREW PRAM model) first finds predecessors and then does

the merge. Thus, the lemma. follows directly from the work of Valiant and Borodin and Hopcroft.

•
Parallel merging is a powerful tool in designing efficient parallel algorithms, and we make

repeated use of it in this paper. Another powerful parallel technique is the parallel prefix technique.

Stated in its simplest form, given 8 sequence of integers A = (aI, 42, ... ,an). it allows us to compute

all the partial sums cJ: = L:1=1 Uj in O(logn) time using O(n/logn) processors (see KruskaI,
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Rudolph, and Snir (1985) for 8 more in-depth study of this technique). Parallel prefix is used as a

subroutine in many of our algorithms.

3 The Plane-Sweep Tree Technique

In this section we present the plane-sweep tree technique. We present it for the case when the

objects under consideration are line segments in the plane, but essentially the same technique

applies for other planar objects as well. We describe the technique in a very general settin~, and

in the subsequent subsections we show how it can be applied to solve specific problems.

3.1 Definitions and Observations

Let S = {Bl1 82, ••• , 8 n} be a set of non-intersecting line segments in the plane. To simplify the

exposition we assume that no two endpoints have the same x-coordinate.

,,, , ,

L----+-:', ,, ,, , ,
I t- !, ,, ,

, ,, ,, ,
I 8i I

:~:: ~r-;,-~~=~=:~_:
I I I ! I , ......
I I I I r I
I I I 1 I I I

:.-.....:
, '", ,, ,, ,

Figure 1: The skeleton of the plane sweep tree. The circled nodes are the nodes of T covered by

The idea of using a tree to parallelize plane-sweeping is due to Aggarwal et at. (1985). We

review some of the definitions and observations from their work as it relates to ours. Let T be the

complete binary tree with its leaves corresponding to the 2n + 1 intervals formed by projecting the

segments' endpoints onto the x-axis. Associated with each node tJ E T is an interval [au, bul on the

x-axis which is the union of the intervals associated with the descendants of tJ. Let II u denote the

vertical strip (aU) bul X(-00,00). A segment Si covers a node tJ E T if it spans Ilu but not II.&", where

z is the parent of tI (See Figure 1). Clearly, no segment covers more than 2 nodes of any level of

Tj bence, every segment covers at most O(logn) nodes of T.
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A3 in (Aggarwal et al., 1985) we define H(v) and W(v) for each node vET as follows:

H(v) {Si lSi covers V},

W(v) {Si I Si has at least one endpoint in IIv}.

However, here we also define two other sets, L(v) and R(v). L(v) (resp. R(v)) is the set of

segments with one endpoint in rIu and another left (right) ofIIu. More formally, if we let left(II u)

(right(JIu)) denote the left (right) vertical boundary of JIu, then

L(v) {s, I s, E W(v) and 8, nleft(II.) '" 0},

R(v) is, I 8, E W(v) and s, n right(II.) '" 0}.

We study the relationships between H, L, and R in the following lemma. The observations

made in this lemma are needed in the construction presented in the next subsection.

z

w

v,

Figure 2: A configuration of nodes in T.

Lemma 3.1: Let v he a node in T w£th ch£ldren VI and V2J s£hUng W, and parent z (F£gure 2

£llustrates the case when w is to the left olv). Let A + B denote the un£on 0/ two d£sjo£nt sets A

and B, and let A - B denote set d£fference where B ~ A. Then we have the follow£ng:

(1) L(v) = L(v1) + H(v,);

(2) R(v) = R(v,) + H(v,);

(3) H(v) = R(w) - (R(w) n L(v)) if v is the righ' cbild of z (as is the case in Figure 2);

H(v) = L(w) - (L(w) n R(v)), if v is the left child of z.

Proof: We first prove Equation (1). Since JIul and IIu have the same left vertical boundary,

L(VI) ~ L(v). Also, from the definition of H we know that all segments in H(Vl) intersect v's

left vertical boundarYi that is, H(Vl) ~ L(v). Noting that H(VI) n L(Vl) = 0, we have that

L(v) = H(v,) + L(v,).
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The proof of (2) is similar.

So we have yet to justify Equation (3). First note that by definition all segments in H(v) must

have an endpoint in IIw. If v is the right child of z, then they must intersect Ilw's right vertical

boundary (which is also IIv's len vertical boundary). So, if we remove from R(w) all those segments

which have and endpoint in IIv, then we will have all those segments which span IIv but do not

span ITJ:' that is, the set H(v). Therefore, H(v) = R(w) - (R(w) n L(v». The argument that

H(v) = L(w) - (L(w) n R(v» for the case that v is the left child of z is analogous. •

Lemma. 3.1 essentially states that the sets L, R, and H associated with a node in the tree T can

be defined in terms of sets associated with nodes one level below it in T. An important property of

the set, L(v). R(v). and H(v) is that for any vET the segment, in L(v) UH(v) (resp., R(v)U H(v))

can be linearly ordered. We use this fact, and Lemma 3.1, in the next subsection to show how to

efficiently construct H(v) for every node v in T.

3.2 Constructing the Plane-Sweep Tree

In this subsection we show how to efficiently construe!; and traverse the plane-sweep tree T. The

next lemma states that the set operations + and - of Lemma 3.1 can both be performed in

O(loglogn) time.

Lemma 3.2: Let A and B be two sets represented as sorted arrays. If An B = 0, then A+ B can

he computed in O(loglog n) time using O(n) processors. If B ~ A, then A - B can he computed in

O(loglogn) time using O(n) processors.

Proof: If A n B = 0, then the set A + B can be constructed by simply merging A and B into

one sorted list. This can clearly be done in O(log logn) time and O(n) processors (Borodin and

Hopcroft, 1985; Valient, 1975). If B ~ A, we construct A - B by first determining the predecessor

in B of each 0i E A (Which can be done in O(loglogn) time by Lemma 2.1). Then, by assigning a

processor to each element in A, we compress A by moving each element in A and not in B over by

the rank of its predecessor. Since this compressing operation can be done in constant time, the set

A - B can be constructed in O(1og log n) total time.•

From Lemma 3.1 we know that the sets L, R, and H for any level 1ofT can be defined in terms of

sets on the level below I. We have yet to see how these sets can be constructed in O(log logn) time

using a linear number of processors. From Lemma 3.2 we know that the constructions implicit

in Equations (1) and (2) of Lemma 3.1 can be performed in O(1oglogn) time. Equation (3),

however, also uses set intersection, so we cannot perform the construction implicit in Equation (3)

by using Lemma. 3.2. To get around this problem we exploit a regularity property of the segments

in the intersection (R(w) n L(v» of Equation (3) in order to compute all these intersections as a
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preprocessing step, storing them away for future use. The details of this and other preprocessing

steps follow.

Preprocessing steps:

Input: A set S = {Sl,S2, ... ,Sn} of non-intersecting segments.

Output: The skeleton of T, the plane-sweep tree for S, with a set I(v) constructed for each node

vET, where I(v) is the Bet of all segments with one endpoint in II'~hi'd(u) and the other in IIr~hild(u).

(We do not yet compute L(v)' R(v)l or H(v) for any vET.)

Step 1. Sort the set of endpoints of SI, •.. , Sn by increasing x-coordinate, and build the skeleton

of the tree T on top the the 2n + 1 intervals determined by these endpoints.

Comment: Since we only perform this step once, we can use parallel merging to sort the endpoints

in O(Iogn log log n) time using O(n) processors, instead of using the sorting network

of Ajtai, Koml6s, and Szemeredi (1983), which would introduce a large multiplicative

constant. (Our algorithms take O(Iog n log log n) anyway, so there is no point in using

the AKS network to perform this step in O(log n) time.)

Step 2. Let J be the set of all (v, Si) pairs such that v is the lowest node in T such that Si C IIu

(that is, v is the least common ancestor of the II's containing Si'S two endpoints). ClearlYl

J can be constructed in O(logn) time using O(n) processors.

Step 3. Sort J lexicographically and use a straight-forward parallel prefix type of computation,

to compute the set I(v) = lSi I (V,Si) E J} for each vET.

Comment: Observe that EUET II(v)1 = n.

Step 4. Sort each I(v) by the y-coordinates of the intersections of the s /s in I(v) with the vertical

boundary separating the vertical strips ITlehild(u) and rrr~hild(u).

End of Preprocessing Steps.

Observation 3.3: The preprocessing steps take O(log n log log n) time and O(n) space using O(n)

processors on a CREW PRAM. For each vET the set I(v) consists of all segments with one

endpoint in rrl~hild(u) and the other in IIr~hild(u).

Proof: Immediate.•

Note that the set R(w) n L(v), as well as L(w) n R(v), of Equation (3) in Lemma 3.1 is exactly

the set of all segments with one endpoint in II w and the other in Ilu. Thus, by Observation 3.3,

we can rewrite Equation (3) of Lemma 3.1 as H(v) = R(w) - I(z) if 11 is a right child, and

H(v) = L(w) - I(z) otherwi.se. Having observed thisl we are now ready to describe how to

construct the plane-sweep tree T.

The Build-Up Algorithm (BUILDUP):

Input: The skeleton of the plane-sweep tree T built in the preprocessing steps (including the sets

I(v) for each vET).
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Output: The plane-sweep tree T with the set H(v) constructed for every node vET. The contents

of each H(v) are sorted by the "above" relationship defined in Section 2.

Step O. Initialize T by constructing L(v), R(v), and H(v) for each leaf v in T. Note that each of

these sets will have at most 1 entry.

Step 1. For I = lowest level of T until 1= 0 repeat Steps 2-4 below, in parallel for each vertex

vat levell in T.

Step 2. Use equations (1) and (2) of Lemma 3.1 and Lemma 3.2 to build the sets L(v) and R(v)

from the sets for v's children.

Step 3. Use the modified equation (3) of Lemma 3.1 (that is, H(v) = R(w) - I(z) if v is a right

child, and H(v) = L(w)-I(z), otherwise) and Lemma 3.2 to huild H(v) fmm I(z) (which

was precomputed) and the appropriate R(w) or L(w) constructed in Step 2.

Step 4. Discard the sets Land R for the nodes on levell + 1 (the level below I), as they are no

longer needed.

End of Algorithm BUILDUP.

Theorem 3.4: The BUILDUP algorithm correctly builds the set H(tJ) for every node v in T in

O(lognloglogn) time and O(nlogn) space using O(n) processors on a CREW PRAM.

Proof: The correctness of BUILDUP follows from Lenuna 3.1, the fact that the segments in

L(v) (resp., R(v) or H(v)) are linearly ordered, and the fact that the segments in L(tJ) U H(v)

(resp., R(v) U H(v)) are totally ordered. Steps 1 and 2 are performed by using Lemma 3.2 and

therefore take O(loglogn) time. Also, Step 3 clearly takes 0(1) time. For any node v the number

of processors necessary to perform Steps 1-3 for v is proportional to the number of descendants of

v. Since Steps 1-3 are performed for nodes which are all on the same level of T in parallel, we use

O(n) processors. The fact that we use at most O(n log n) space follows from the fact that a segment

can cover at most 210gn nodes ofT. Thus, the BUILDUP algorithm runs in O(logn loglogn) time

and O(n log n) space using O(n) processors.•

We are now ready to show how to traverse the plane-sweep tree. In all the problems we solve

using this technique, an essential computation done while traversing the plane-sweep tree is that

we want to locate for each input point p the segment in H(v) which is directly above (or below)

p, for all tJ E T such that p E nil' We call this computation the multilocation of pinT. The

specific set of multilocations we will perform will vary from problem to problem, and will become

apparent in the subsections on applications. We augment T with sets and pointers in a manner

similar to the sequential "fractional cascading" technique of Chazelle and Guibas (1986) so that

the multilocation of any query point p can be performed in O(logn) serial time. To perform the

multilocation of a point p we first find the leaf vET such that x(p) E [av, bvJ. Then, for every

node z on the path from v to the root, we search in H(z) to find the segments in H(z) which are
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directly above or below p (note that this leaf-to-root path consists of all nodes z E T such that

p E IIu). The main idea of the augmenting technique is tha.t we want the search done at a node

t1 to allow us to perform the search at parent(u) in constant time (rather than in O(logn) time) .

.AJJ in (Chazelle and Guibas, 1986) we make the following definition: given a sorted sequence A the

k-sample of A, denoted SAMP,I;(A), is a sequence consisting of every k-th element of A.

The Algoritlun AUGMENT:

Input: A set S of non-inte:rsecting line segments in the plane, and the plane-sweep tree T built for

S, with the sets H(u) constructed for every node u E T (as produced by the BUILDUP algorithm).

Output: An augmented plane-sweep tree 1", which allows a multilocate of any query point p to be

done in O(1ogn) serial time.

Method: The idea is to construct an augmented list A(u) for every node u E T such that H(u) ~

A(u), and associate pointers with the elements of A(u) so that, given the position of an element in

A(u), we caD locate that element in both H(u) and A(parent(u)) in 0(1) additional time.

Step 1. Let A(r) = H(r), where r is the root of the plane-sweep tree T.

Step 2. For I = 1 (the level just below the root) untill = lowest level repeat Steps 3-5 below in

para.llel for each vertex u E T on level I.

Step 3. Merge H(u) and SAMP4,(A(z)) into one sorted list and store this list as A(tJ), where

z =parent(u).

Step 4. Use Lerruna 2.1 to determine for each 8, E A(u) its predecessor in A(z). For each s, E A(u)

let up(sd be a. pointer to the predecessor of s, in A(z).

Step 5. Use Lerruna 2.1 to determine for each s, E A(u) its predecessor in H(tJ). For each s, E A(u)

let ouer(s;) be a pointer to the predecessor of s, in H(u).

End of AUGMENT.

Theorem 3.5: AUGMENT runs in O(lognloglogn) time and O(nlogn) space using O(n) pro­

cessors on a CREW PRAM. The augmented tree T' it produces allows us to multilocate any query

point pin O(log n) serial time.

Proof: We first prove that the space complexity of T' is the same as that of T, namely, O(n log n).

We prove this by examining the extent to which any set H(u) contributes to the space of T'. For

any tJ E T, on levell, AUGMENT copies IH(u)I/2 elements to nodes on level I + 1, IH(u)I/4 to

level I +2, and so on. Thus, any set H(u) contributes at most IH(u)1 extra space to T'. Therefore,

the space required by T' is at most 2 times the space used by T. Hence, the space complexity

of AUGMENT is O(n logn). That the number of processors used is O(n) follows by a similar

argument. In order to do the parallel merges we need to know ahead of time how many elements

will be involved, for all u E T. This is not a problem, however, because we can calculate the number

of processors needed to compute A(u) for each tJ ETas a preprocessing step. The time complexity
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of AUG:MENT is clearly O(lognloglogn), since Steps 3-5 are aU done using parallel merging or

Lemma. 2.1.

A multilocate of a point P proceeds as follows (WLOG, we describe the version which finds

the segments directly below P in the appropriate H(v)'s, the version for finding segments above P

being similar). Locate the leaf v in T corresponding to the interval [av,blll such that x(p) E [au, bll)'

We begin the sequence of searches by using binary search to locate the segment in A(v) which

is directly below p; this is the predecessor of pin A(v). Let cu(p) denote this segment. We can

then follow the pointer Qver(cu(p)) to find the segment in H(v) which is directly below p. Now, by

following the pointer up(cu(p» to the list A(z) , where z = parentev), we can use a sequential search

from up(cv(p» to locate the segment cz(p) in A(z) which is directly below p in 0(1) time. This

is because c.t:(p) can be no more than 4 storage locations away from up(cu(p)) in the array A(z).

From this point on every search will take 0(1) time to complete. Since there are O(logn) nodes

which must be searched, the sequence of searches can be performed in O(log n) total time.•

We show in the following subsections how to apply BUILDUP and AUG1\1ENT to solve specific

geometric problems. Before doing so, however, we describe how to perform a collection of m

multilocations using only O(n) space, at the expense of more time. Let V = {Pt, fJ2, ... ,Pm} be a

set of points we wish to multilocate in T, where m = O(n). The method is similar to the BUILDUP

procedure, but differs from it in two respects. First, after constructing the set H(v) for all von

a levell (in Step 2), we perform a binary search in H(v) for all points Pi such that Pi E IIII to

find the segments in H(v) directly above and below Pi (this is one of the searches needed for the

multilocation of pd. Next, after we have completed the searches of nodes on levell for all points

Pi E V, we can discard the sets L, R, and H for all nodes on level I + 1 (this of course means that

we do not output any H(v)'s as BUILDUP does). Since we never construct sets for more than 2

levels in the tree at a time, we never use more than O(n) space. Also, recall that the space used by

all the I(v) 's is O(n). The time taken for this is clearly O(log n) for each level of T, or O(log 2n)

overall. We summarize the above discussion in the following theorem.

Theorem 3.6: Given a set S oJn non-intersecting segments and a set V o/O(n) query points, we

can perform the multilocation 0/ all the points in V in O(log n log log n) time and O(n log n) space

(or, alternatively, in 0(log2 n) time and O(n) space) using O(n) processors on a CREW PRAM.•

We are now ready to show how the plane-sweep tree technique is used to solve a number of

geometric problems. The first application we present is for trapezoidal decomposition.

3.3 Trapezoidal Decomposition

Let P = {Vt, V2, . • " vn} be a simple polygon, where the tli's denote the vertices of P and are listed

so that the interior of P is to the left of the walk tlttl2'" Vn' For any vertex Vi of P a trapezoidal
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edge for Vi is an edge of P which is directly above or below 'Vi and such that the vertical line

segment from 'Vi to this edge is interior to P. Note that a vertex can have 0, 1 or 2 trapezoidal

edges. The trapezoidal decomposition problem is to find the trapezoidal edge(s) for each vertex of

P (see Figure 3).

Figure 3: A trapezoidal decomposition of a simple polygon.

Theorem 3.7: A trapezoidal decomposition 01 P can be constructed in O(lognloglogn) time and

O(n logn) space (or, alternativelYI in O(Iog2 n) time and O(n) space) using O(n) processors on a

GREW PRAM.

Proof: We first prove the O(lognloglogn) time result. Let S = {Sl,82, ... ,8n } be the set of

edges of P, i.e., 8i = ('Vi, 'Vi+l) , for i = 1,2, ... ,n - 1, and Sn = (Vn, VI). We find the trapezoidal

edge (if any) below each vertex as follows. First, use algorithms BUILDUP and AUG1.1ENT to

construct an augmented plane-sweep tree T' for S. As in (Aggarwal et al., 1985), we solve the

problem by performing a multilocation of each Vi E P. In our case we use Theorem 3.5 to perform

aU O(n) multilocates in O(log n) time using O(n) processors. During the multilocation, for each

vertex Vi, we keep track of the segment below Vi and with minimum vertical distance from 'Vi (call

this segment trap(vj)). When we complete all the multilocations, for each Vi, trap(Vj) will store

the segment which is directly below 'Vi in the totally ordered set of segments that are cut by the

12



vertical line through Vi (i.e.) the union of all H(v) such that Vi E IIu). By a similar procedure we

can find for each Vi the segment in S which is directly above Vi. We can then test in constant

time if these segments are trapezoidal edges or not by checking if the line segment from Vi to the

segment trap(vd is interior to P or not.

Since the necessary multilocations can alternatively be performed in O{log2 n) time and O(n)

space using O(n) processors (by Theorem 3.6). we can construct a trapezoidal decomposition of P

in these same bounds.•

It is easy to see that roughly the same technique can be used to find the trapezoidal decompo­

sition of a arbitrary set of non-intersecting line segments, with the same complexity bounds. We

chose to describe the solution for simple polygons because in the next subsection we show how to

use trapezoidal decomposition in solving the polygon triangulation problem.

3.4 Triangulation

Let P = {VI.V2, ...• Vn} be a simple polygon, where the Vi'S denote the vertices of P and are

listed so that the interior of P is to the left of the walk VI v2 ... vn' We wish to augment P with

diagonal edges so that each interior face of the resulting planar subdivision is a triangle. Our

method consists of two phases. The first is to use trapezoidal decomposition to decompose Pinto

one-sided monotone polygons PI, P2, ••• , PI;. We say that a polygon P is one-sided if there is a

distinguished edge on P such that the vertices of P are all above (or aU below) that edge (except

for the endpoints of the edge). In the second phase we triangulate each Pi in O{logn) time and

O(n) space using O(n) processors. The algorithm DECOMP which follows is the first phase in our

triangulation procedure.

Algoritlun DECOMP:

Input: A simple polygon P = {VI.V2 •...• vn}.

Output: A decomposition of P into one-sided monotone polygons.

Step 1. Construct a trapezoidal decomposition for P.

Step 2. For every Si construct Vi. the set of vertices of P for which Sj is a trapezoidal edge. This

can be done by sorting lexicographically the set of(si, Vj) pairs such that Sj is a trapezoidal

edge for 1)j, and then using a. parallel prefix computation to construct the set Vi for each

Si·

Step 3.

Step 4.

Sort the vertices in every Vi by x-coordinate. in parallel.

For each edge Sj = (Vio.Vn;+l). suppose Vi = {ViuViH ...• Vi.. ,}. Augment P by adding
•

edges (VijlViiH) for j = 0,1,2•... ,ni, if they a.re not already in P. Let Pi be the polygon

consisting of 8i and of the edges (Vii' 'ViiH ). for j = 0, 1•...• n i (see Figure 4).

End of algoritlun DECOMP.
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Vi

Figure 4: The polygon Pi for Si = (Vio,Vio) and Vi = {Vi1lVi:zl •.•• t1ia}. The edges in Pi but Dot

in P are shown dotted. Note that the sequence tlio' vii' tli:al" ., 'ViII is monotone in the x-diredion.

Theorem 3.8: The algorithm DECOMP correctly decomposes a simple polygon Pinto one.sided

monotone polygons in O(Iog n log lag n) time and O(n logn) space (or, alternatively, in O(log 2 n)

time and O(n) space) using O(n) processors on a CREW PRAM.

Proof: First, note that the Pi'S form a. decomposition. That is, an edge added to construct some

Pi may coincide with an edge added to construct some Pi, but it cannot cut across any other edge.

This is because edges are only added between vertices which are both vertically visible from the

same segment. Second, the vertices of Vi are all on the same side of Si, because the vertical line

from any point in Vi to the segment 8j must be interior to P, and the interior of P can only be on

one side of 8i. Thus, each H is one-sided. Finally, each Pi is monotone because we sorted the points

in Vi by x-coordinate in Step 3. The complexity bounds for DECOMP follow from observations

made in Section 3.3.•

After decomposing P into polygons PI, P2 , ••• , Pk., we now triangulate each Pi in parallel. So

let us concentrate on the problem of triangulating a one-sided monotone polygon. WLOG, we are

given a one-sided monotone polygon which is monotone in the x-direction and the vertices not on

the distinguished edge 8 are all above s. Let a one-sided monotone polygon P :::;:: (VI, V2, ..• , Vn, vd
be given, where VIVn is the distinguished edge. We triangulate P by using the following algorithm
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to triangulate the underside of the monotone polygonal chain V = (VI, V2, .•. , V n ) in O(log n) time

and O(n) space using O(n) processors.

Algoritlnn CHAIN-TRIANGULATE(V):

Input: A monotone polygonal chain V = {VI, v2, •.. , V n }. WLOG, we assume that the indices of V

are listed by increasing x-coordinate.

Output: A listing LH(V) of the vertices belonging to the lower convex hull of V , sorted by increasing

x~coordinate, and a triangulation of the under side of V (i.e., the region bounded from above by V

and from below by LH(V)). (By symmetry, we could alternatively output a triangulation of the

upper side of V. and a listing of the upper hull vertices.)

Method: One of the ideas in our algorithm is the use of the Vii parallel divide-and-conquer technique

of Aggarwal et at. (1985) and Atallah and Goodrich (1985). We divide the vertices of V into vn
subsets VI. V2 , ••• , V....m containing Vii vertices each, and recursively solve the problem for each Vi in

parallel. The main ideas behind our method for merging the subproblem solutions are the following.

We first build a. binary tree "on top" of the collection of subproblem solutions so that each leaf

corresponds to a. subproblem. (We use Vi to denote both the set and the leaf associated with it; the

context will make clear which one is meant.) For any node w in this tree let lchild(w) (rchild(w))

denote the left (right) child of w, let parent(w) denote the parent node of w, and let Desc(w) =

{Vi I Vi E Vi and Vj is a descendent of w}. In parallel for each node w in the tree, we construct the

polygon PV/ whose boundary consists of the following: the vertices in LH(Desc(Ichild(w))) not in

LH(Desc(w)), followed by the edge of V between Desc(lchild(w)) and Desc(rchild(w)), followed by

the vertices in LH(Desc(rchild(w))) not in LH(Desc(w)), and finally followed by the supporting

lower common tangent of LH(Dese{lehild(w))) and LH(Dese('ehild(w))) (See Fig",e 7). We

then use the special structure of the PV/'s to triangulate each PV/ in O(Iogn) time using O(WV/I)

processors. Since the Pw's form a decomposition of the untriangulated region below V and above

LH(V) , this completes the triangulation of the underside of V. Incidentally, the lower convex hull

LH(V) is computed as a by-product of the step which constructs all the PV/ 'so The details of this

algorithm follow.

Step 1. Divide V into Vii subsets VI, V2,·· ., V....m of size Vii each using vertical dividing lines.

Time: 0(1); Space: O(n); Processors: O(n).

Step 2. Recursively call CHAIN-TRIANGULATE(Vi) in parallel for all Vi'S.

Time: T(-/fi); Space: y"nS(y'n); Processors: ynP(.;n), where T(n) (S(n)) is the

time (space) complexity of CHAIN-TRIANGULATE, and Pen) is the number of

processors used.

Step 3. Build a complete binary tree B "on top" of the subsets Vi such that each leaf corre­

sponds to a. Vi (see Figure 5). For each wEB find the common tangent tw supporting
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Figure 5: The binary tree B and the Vii lower hulls LH('V;-) associated with the leaves of B.

LH{Desc(lch;[d(w))) and LH(Desc(rch;[d{w))) by performing Steps 3.1-3.2 below, where

Desc(w) = {Vi [Vi E Vi and Vj is a descendent of w}. Note: we don't actually compute

LH(Desc(w)) , just the conunon tangent two

Time: O(logn); Space: D(n)j Processors: D{n).

Step 3.1. For each pair (i,i), i,j = 1,2, ... , v'ii, compute the common tangent line ti,i sup­

porting LH{V;) and LH(V;) in parallel.

Comment: The common tangent line supporting two lower hulls can be computed in O(logn)

time by a single processor using a binary search technique developed by Overmars

and Van Leeuwen (1981). Thus, this step can be done in O(logn) time by assigning

one processor to each of the D(n) pairs oflower hulls.

Step 3.2. For each wEB let Tw be the set of tangent lines ti,j such that Vi is a descendant

of /chi/d(w) and Vj is a descendant of rchild(w). In parallel for each Tw , find the

minimum tangent line t w , where comparisons are based on the y-coordinate of the

intersection of each tangent line with a vertical line L w separating the descendants

of lchild(w) and rch£ld(w), respectively (see Figure 6). This can be done in O(1og n)

time using ITwl processors per Tw , or n processors overall.
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Ich;[d(w)

.,,::::::: .

w

rcMld(w)

....... ... . .......

......... ...• . .t"

",:: ::..of·········································
,

Figure 6: The tangent lines in TllI , supporting the descendents of lchild(w) and rchild(w). The

tangent t w is shown as a solid line, and the others are shown dotted.
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Comment: The common tangent supporting LH(Desc(lchild(w))) and LH(Desc(rchild(w)))

must be a member of Tw , and it cannot intersect L w above tw's intersection with

L'W. Thus, t w is, in fact, the lower common tangent supporting the vertices of

LH(Desc(lchild(w))) and LH(Desc("hild(w))).

1
B:

4

2

5

3

P,

P,

Figure 7: The polygons Pw for each internal node wEB. Note that the polygon Pa is simply a

triangle and the polygon P7 is just a line segment.

Step 4. In this step we construct LH(V) and for each wEB we construct the polgyon Pw , where

P(w) is the polygon whose boundary consists of the vertices of LH(Desc(lchild(w)))

not in LH(Desc(w)), the edge of V between Desc(lchild(w)) and Desc(rchild(w)), the

vertices of LH(Desc(rchild(w))) not in LH(Desc(w)), and t w (see Figure 7). This is done

by performing the computation below.

Time: O(log n); Space: O(n)j Processors: O(n).
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w

Ichild(w) 'child(w)

v21 ""
.,,-

,
v"

v"
Hlehild(w) ""

Hrchild(w)

"19

", "32
"15

V18

vi = 1}16 'w Vi = tlS1

Figure 8: Constructing P w and H w from Hiehild(w), Hrchild(w). and two In this case

H w = (V12, VIS, VI5, VIEi, tl31, V,s2, V,sS, tl3S) and P w = (V16, VI8, tl19, V20, tl21, tin. V30, vsr).

For each leaf node w let Hw = LH(Vi), where Vi is the monotone

chain associated with w in Bj

For I = the penultimate level of B to the top level of B do

For each node w on level 1 pardo

Let tv) = 1)i1)i be the corrunon tangent

joining LH(Desc(lchild(w))) and LH(Desc(..hild(w)));

Split HEchild(w) at tli, so that Hiehildew) = H1,khild(w) + (Vi) + H2,lchild(w)i

{We use + to denote the concatenation of vertex lists}

Split Hrchild(w) at Vi. so that Hrchild(w) = H1,rchild(w) + (Vi) + H 2,rchild(w)i

Set Pw := (Vi) + H2,lchild(w) + H 1,rchild(1I1) + (V;);

Set H w := Hl,l~hi'd(w)+ (lIi,lIi) + H2,r~hild(1U)i

Discard HI~hild(1U)' Hr~hild(1U)1 Hl,l~hild(1U)' H2,I~hild(1U)' Hl,r~hild(1U)' and H2,r~hild(1U);

{ P1U is the polygon associated with w, and L(w) is the lower

convex hull of Desc(w) (see Figure 8) }

EndPaxFor

EndFor {H,oo' = LH(V)}
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Comment: For any wEB each of the splitting and concatenating steps of the inner (parallel) for­

loop can be performed in 0(1) time using O(IDesc(w)j) processors. Thus, Step 4 runs

in O(logn) time using O(n) processors. That the space complexity is O(n) follows

from Euler's theorem (the Pw's, tw's, and LH(Desc(w»'s from a planar graph having

vertex set V).
Step 5. Triangulate each Pw in parallel by performing Steps 5.1-5.2 below.

Time: O(Iogn), Space: O(n), Processors: O(n).

Step 5.1. For each Vi E Pw find the edge in Pw which is intersected by the line containing Vi

and parallel to two Let ej denote the edge chosen for Vi (e.g., in Figure 9 en is the

edge v8v9). This can be done in O(logn) time and O(IPwl) processors by doing a

binary search for each Vi E P10 in parallel.

Comment: Note that this implies that the vertex Vi is visible from the lower of the two endpoints

of ei.

Step 5.2. Augment Pw by adding an edge from each Vi to the lower of the two endpoints of ei

(see Figure 9). This can clearly be done in 0(1) time using O(IPwl) processors.

Comment: We show below that in adding an edge from each Vi to the lower endpoint of the

corresponding ej we triangulate Pw. Since the Pw's form a partition of the region

between V and LH(V) , this completes the triangulation of the underside of V.

End of CHAIN-TRIANGULATE.

Theorem 3.9: Given a monotone polygonal chain V the algorithm CHAIN-TRIANGULATE cor­

rectly triangulates the under side of VI as well as computing the lower convex hull LH(V)j In

O(logn) time and O(n) space using O(n) processors on a CREW PRAM.

Proof: We first show that CHAIN-TRIANGULATE is correct. The correctness of the algo­

rithm depends on the following facts: (1) tw is the tangent line between LH(Desc(lchild(w)) and

LH(Desc(rchild(w))) for all wEB, (2) the Pw's form a decomposition of the region bounded

from above by V and bounded from below by LH(V), and (3) each Pw is triangulated correctly.

Facts (1) and (2) follow immediately from comments made above, so we have yet to show that

each Pw is triangulated correctly. That is, we need to show that, for any P w , in adding an edge

from each Vi E Pw to the lower endpoint of the edge ej we form a triangulation of P w . Consider

any edge e in Pw , other than t w , with endpoints Vi and Vi' Let Vk (Vj) be the lower endpoint

of ei (ei). It is enough to show that the slice of Pw between VjVk and 11;111 is triangulated cor­

rectly. WLOG, t w is parallel to the x-axis, Y(Vi) < y(tJi)' and the edge e has positive slope. If

Vk = VI, then in adding the edges tJiV,\: and 11i1)1 we construct the triangle 11i11i11k (See Figure 1O.a).

If 11k # VI, then there must be a chain of vertices (11k = 11kl' Vk~, ••• ,1.1k; = 11') C P10 such that

y(v,J < y(v;) < y(v,,) < y(v,,) < ... < y(v,;) < y(v;) (see Figure lO.b). Tbus, in Step 5.2 we
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Figure 9: An example of a triangulated polygon P1/)' The left convex chain lS from

LH(Desc(lchild(w))) and the right convex chain is from LH(Desc(rchild(w))).

add an edge from each vertex VA:~, ••• ,VA:i to Vi. Therefore, the portion of P1/) between ViVA: and

ViVI consists of the triangle VjVjVI and a series of triangles ViVm+!Vm, for m E {k1, ..• ,ki - 1} (See

Figure IO.b). This completes the proof of the correctness of CHAIN-TRIANGULATE. We now

move on to the complexity bounds of the algorithm.

Surruning up all the time complexity bounds from each of the above steps, we get that the time

complexity, T(n), of CHAIN-TRIANGULATE is characterized by the recurrence T(n) = T(vnJ +
O(Iogn), which has solution T(n) = O(Iogn). The space bounds, S(n), can be characterized

by the recurrence Sen) = max{.jnP(y'fi),bn}, for some constant b. Thus, Sen) = O(n). The

processor bounds, pen), can be characterized by the recurrence Pen) = max{.jnP(y'fi), en}, for

some constant c, which implies that Pen) = O(n) .•

Corollary 3.10: Given a simple polygon P with n vertices, P can be triangulated in O(log n log log n)

time and O(n logn) space (or, alternatively, in O(Iog2 n) time and O(n) space) using O(n) proces­

sors on a CREW PRAM.

Proof: Since we can triangulate the underside of a monotone polygonal chain in O(log n) time and

O(n) space using O(n) processors, by Theorem 3.9, the bottle-neck computation in triangulating a
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Figure 10: The two cases for proving that the portion of PlO between 1}it}k and 1Jj1J1 is triangulated.

simple polygon is in computing the trapezoidal decomposition used in partitioning P into one-sided

monotone polygons. The complexity bounds follow, then, from Theorems 3.7 and 3.8.•

We also note, in the corollary which follows, that that the algorithm CHAIN-TRIANGULATE

can also be used in triangulating an arbitrary point set in O(Iog n) time and O(n) space using D(n)

proces90rs, which is optimal.

Corollary 3.11: Given a set S of n points in the plane a triangulation of S can be computed in

O(1ogn) time using O(n) processors on a CREW PRAM, and tMs is optimal.

Proof: The method is to first sort the points of S by x-coordinate. This can be done in O{logn)

time using O(n) processors by using the sorting network of Ajtai, KomlOs, and Szemeredi (1983).

Mter this is done, we can easily form a monotone polygonal chain V with each of the input points as

vertices by joining consecutive vertices in the sorted order with an edge. We then use the algorithm

CHAIN-TRIANGULATE twice: once to triangulate the region between V and its lower hull, and

once to triangulate the region between V and its upper hull. By Theorem 3.9 we can see that the

sorting step clearly dominates the complexity bounds, so we can triangulate an arbitrary point set

in O(logn) time using O(n) processors on a CREW PRAM. Since this problem has an n(nlogn)
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sequential lower bound (by a trivial reduction from sorting) we can do no better than O(logn) time

using O(n) processors on a CREW PRAM.•

Merks (1986) recently established the above corollary using a substantially different method

than the one we describe above. His method is also based on the vn-divide-and-conquer method,

but it does not generalize to the problem of triangulating a simple polygon.

We next point out that the plane-sweep tree technique can be used to efficiently solve the planar

point location problem.

3.5 Planar Point Location

Given a planar subdivision S consisting of n edges, construct a data structure which, once con­

structed, enables one processor to determine for a query point p the face in S containing p.

Theorem 3.12: Given a planar subdivision S consisting 01 n edges, we can construct in parallel

a data structure which, once constructed, enables one processor to determine lor any query point

p the face in S containing pin O(logn) time. The construction takes O(lognloglogn) time and

O(nlogn) space using O(n) processors on a CREW PRAM.

Proof: The solution to this problem is to build the augmented plane-sweep tree for S and associate

with each edge s; the name of the face above and below Si. A planar point location query can

then be solved in O(logn) serial time by performing a multilocate like that used in the proof to

Theorem 3.7.•

It may seem that the usefulness of planar point location data structures is limited to sequential

computational geometry. but this is not the case. For example, doing many planar point locations

in parallel is the bottleneck computation in the parallel Voronoi diagram algorithm of Aggarwal et

al. (1985). An easy consequence of Theorem 3.12 is that the running time of their algorithm can

be improved from O(logS n) to O(log2 n log log n), still using only 0 (n) processors.

In the previous algorithms we assumed that segments did not intersect. In the next subsection

we show that we can use the plane-sweep tree technique to detect if any two of n line segments

intersect.

3.6 Intersection Detection

Given a set S of n line segments in the plane, determine if any two segments in S intersect. We

begin by stating the conditions which we use to test for an intersection.

Lenuna 3.13: (Aggarwal et al., 1985) The segments in S are non-intersecting iff we have the

following for the plane-sweep tree T 01 S:
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(1) For every vET all the segments in H(v) intersect the left vertical boundary of n u in the

same order as they intersect II", 's right vertical boundary.

(2) For every vET no segment in W(v) intersects any segment in H(v).•

We use this lemma by testing for each condition at the appropriate point during the construction

or traversal of the plane-sweep tree for 5. We use these observations in the proof of the following

theorem. We note that one result in the theorem is stated for the CRCW PRAM parallel model in

which we allow for concurrent writes so long as all processors attempting to simultaneously write

in the same memory cell are writing the same value. This is the only point in this paper in which

we use the CRCW model; all other algorithms are for the (weaker) CREW PRAM model.

Theorem 3.14: Given n line segments in the plane it is possible to detect if any two intersect in

O(lognloglogn) time and O(nlogn) space using O(n) processors on a CRCW PRAM (alterna­

tively, in O(log2 n) time and O(n) space using O(n) processors on a CREW PRAM).

Proof: We begin with the proof of the o(log n log log n) time result. We can test for Condition (1)

during the BUILDUP procedure. After building a set B(v) in Step 2 of the BUILDUP procedure

we can test Condition (1) by constructing two other sets LB(v) and RB(v), where LB(v) (RB(v))

is the list of the intersection points of the segments in H(v) with the left (right) vertical boundary of

IIu, listed in the same order as they appear in H(v). If either of these lists is out of order, then there

is an intersection. We can test whether either is out of order by comparing each element in LB(v)

(and RB(v)) with its two neighbors. If a processor detects an inconsistency then it writes a 1 to a

global "intersection detected" flag (this is where we need the power of the CReW model). Only if

this flag is 0 do we proceed to the next level in T and repeat the above test. This will multiply the

amount of work done by the BUILDUP algorithm by a factor of 0(1), so by Theorem 3.5 we can

check Condition (1) in O(log n log log n) time and O(n log n) space using O(n) processors.

If we complete the BUILDUP procedure and do not detect an intersection, then we can

test for Condition (2) as follows. First, we execute the AUGMENT algorithm on T. Let V =

{Pl,P2,'.' ,P2n.} be the set of endpoints of segments in 5, and let S(Pi) denote the segment in 5

with endpoint Pi. If Pi E IIu for Borne vET, then clearly S(Pi) E W(v). If a segment S(Pi) E W(v)

intersects a segment in H(v), then it must intersect the segment in H(v) directly below Pi or the

segment in H(v) directly above Pi (this is because we already know that no two segments of H(v)

intersect each other). We can then perform a multiIocation of each Pi, and each time we find

a segment in Hev) directly above or below Pi we check if S(pi) intersects it. Thus, we can test

Condition (2) in O(logn) additional time.

To prove the O(n) space result, we use the alternative method of Theorem 3.6 to perform the

necessary multilocatioDs. We test Condition (1) each time a set H(v) is constructed, vET. We
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also test Condition (2) at this point, after performing the binary search in H(v) for each point Pi

such that Pi E IIu • The CRCW power is not needed in this case, because we are spending O(logn)

time per level of the tree anyway, so we can afford to spend an additional O(log n) time performing

an OR operation for each level of the tree.•

We now move on to the critical-point merging technique and how to use it in conjunction with

parallel divide-and-conquer to efficiently solve problems whose efficient sequential algorithms use

the plane-sweeping technique.

4 Divide-and-Conquer with Critical-Point Merging

Often times when using the plane-sweeping paradigm to solve geometric problems sequentially, one

scans a set of objects by sliding a vertical line along the x-axis, storing the objects in some kind of

binary search tree as one goes. At varioU5 points (critical points) during the plane-sweeping one

performs updates and queries on this tree. Intuitively, the method described in this section is to

turn plane-sweeping on its side and use divide-and-conquer to compute all the critical-point queries.

We begin by dividing the problem into two equally sized subproblems by splitting the set of objects

as they would be split into subtrees in the binary search tree. After solving each subproblem in

parallel we take the set of critical points for each subproblem and merge them into one list. The key

to solving a problem in this manner is in defining labels to be associated with each critical point

such that the labels of the merged list can be computed quickly in parallel, and, more importantly,

such that when we have completed the construction we can use these labels to solve the problem

at hand. Instead of describing the technique in a generic fashion I as we did with the plane-sweep

tree, we describe it by presenting the solutions to four specific problems: 3-dimensional maxima,

multiple range-counting, rectilinear segment intersection counting, and visibility from a point.

4.1 3-Dimensional Maxima

Let V = {PI, Pz, ... ,Pn} be a set of points in m:3. For simplicity, we assume that no two input

points have the same x (resp., y, z) coordinate. We say that a point Pi i-dominates another point

P; if x(pd > x(p;) , £-dominates P; if X(Pi) > x(Pj) and Y(Pi) > y(p;), and $·dominates Pi if

X(pi) > x(p;), Y(Pi) > yep;), and Z(Pi) > z(p;). A point Pi E V is said to be a maximum ifit is not

3-dominated by any other point in V. The 3-dimensional maxima problem, then, is to compute

the set, M, of maxima in V. We show how to solve the 3-dimensional maxima problem efficiently

in parallel in the following algorithm. The labels we use are motivated by the labels used in the

binary search tree used in the plane sweep used in the optimal sequential algorithm for this problem

(Kung, Luccio, and Preparata, 1975). We assume that the input points are given in sorted order,

25



since sorting can be done in O(log n log log n)) time and O(n) space using O(n) processors by using

parallel merging.

Algorithm 3-D MAXIMA:

Input: A list of points V = {Pl,P2, ... ,Pn} in mS. We assume that the Pi'S are given sorted by

y-coordinate (i.e., Y(Pi) < Y(Pi+l))'

Output: A list X = {Ql,q2"",qn} of the points in V sorted by increasing x-coordinate. We

also have two labels ZO and ZT associated with each qi E X, such that ZO(Qi) is the largest

z-coordinate in the set of points which I-dominate qi, and ZT(qi) is the largest z-coordinate in the

set of points which 2-dominate qi.

Step 1. Divide V into two equally sized subsets VI and V2 such that all the points in VI have

smaller y-coordinate than points in V2• Recursively solve the problem for VI and V2 in

parallel. After the parallel recursive call returns we will have lists X I and X 2 of the points

in VI and V2 , respectively, sorted by increasing x-coordinate. We also have labels ZOI

(Z02) and ZTI (ZT2) defined correctly for the points in Xl (X2) (when dominance is

restricted to Xl (X2)).

Step 2. Merge Xl and X 2 into a single list X, basing all comparisons on the x-coordinates of the

points involved. Let X = {ql, q2, .. . , qn} (X is the set of points in V listed by increasing

x-coordinate) .

Step 3. For each qi E X pardo

{Let predj(qj) denote the predecessor of qi in Xj, j E {I, 2}.

If qi has no predecessor in Xj, then predj(q;) = rjJ. Also, let

fir8t(Xj ) denote the first element in Xj. }

ZOI(qI) := ZTI(qI) := max{ZO,(f;"t(XI)),z(f;"t(XI)));

{ this is the maximum z-coordinate in XI}

ZO,(qI) := ZT,(qI) := max{ZO,(f;"t(X,)),z(f;rst(X,)));

If qi E Xl then { qi "came from" Xl }

ZO(q,) := max{ZOI(q,),ZO,(pred,(q,))};

ZT(q,) := maxiZT, (q,), Z0, (pred, (q,)))

Else { qj "came from" X2 }

ZO(q,) := max{ZO, (pred1(q,)), ZO,(q,));

ZT(q,) := ZT,(q,)

Endlf

EndFor
Step 4. (Postprocessing) After we have computed the labels ZO and ZT for all points qi, we know

that qi is a maximum iff z(q;} > ZT(q;}.

End of Algorithm 3-D MAXIMA.

26



x,
•

•

•

•

• •

--------~----------------------------------

•

•
q

•

; pred,(p)

•

•
•

• pred,(q)

---------------------------X,

•

•

•

p

•

•
•

Figure 11: The different predecessor cases for 3-dimensional maxima. The figure is a. projection

of the points of V onto the xy-plane (x being the horizontal axis). Points enclosed in the dashed

lines are the points which affect p (or q's) ZT label, while points to the right of the dotted lines

affect p (or q's) ZO label.
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Theorem 4.1: The algorithm 9-D MAXIMA solves the three-dimensional maXima problem in

O(Iognloglogn) time and O(n) space using O(n) processors on a CREW PRAM.

Proof: We prove the correctness of the algorithm 3-D MAXIMA by induction. Suppose the ZO

and ZT labels for each qj E Xi, i E {1,2}, are computed correctly. Case 1: qi E X comes from Xl

(i.e., qi E Xl). Notice that every point which I-dominates q/s predecessor in X2 also I-dominates

qi, since qi's predecessor in X2 is the point with largest x-coordinate less than x(qj). Also, since

every point in X2 has y-coordinate greater than y(qj), in this case, every point which I~dominates

qj'S predecessor will in fact 2-dominate qj. Thus, in constructing ZO(qi) we need only take the

maximum of the old ZO label for qi and the ZO label for the predecessor of qi in X 2 , and qj'S new

ZT label should be the maximum of its old ZT label and the ZO label of its predecessor in X 2.

Case 2: qi E X comes from X 2• Clearly, in this case, no point in Xl can 2-dominate qi, so the new

ZT label for qj should be the same as the old ZT label of qi. Still, any point which I-dominates

qi's predecessor in Xl also I-dominates qi, 80 in order to update the ZO label for qi we still need

to take the maximum of the old value of ZO and the ZO label of the predecessor of qi in Xl. (See

Figure 11.) Thus, after we have done the updates of Step 3, each qi's ZT label stores the maximum

z-coordinate of all the points which 2-dominate qi. Therefore, using these ZT labels we can use

the test of Step 4 (and a. parallel prefix computation) to construct the set M of maxima in X (in

O(logn) additional time).

Lemma 2.1 implies that the algorithm's time complexity, T(n), is determined by the recurrence

T(n) = T(n/2) + O(1oglog n), whose solution is T(n) = O(1ognloglogn). The space and number

of processors used are clearly O(n).•

It is worth noting tha.t we can use the method of algorithm 3-D MAXIMA as the basis step of

a recursive procedure for solving the general k-dimensional maxima. problem. The resulting time

and space complexities are given in the following theorem. We state the theorem for k ;:: 3 (the

2-dimensional maxima problem can easily be solved in O(Iogn) time and O(n) space using the

AKS sorting network and a parallel pre6x computation.

Theorem 4.2: Fork;?: 3 the k-dimens'ional maxima problem can be solved l·n O((log n) k- 2 10g logn)

time and O(n) space using O(n) processors on a CREW PRAM.

Proof: The method is a straightforward parallelization of the algorithm by Kung, Luccio, and

Preparata (1975), using a procedure very similar to 3-D MAXIMA as the basis for the recursion.

We omit the details.•

Next, we address the two-set dominance counting problem. We also show how the multiple

range-counting problem and the rectilinear segment intersection counting problem can be reduced

to two-set dominance problems efficiently in parallel.
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4.2 Two-Set Dominance Counting and Related Problems

In the two-set dominance counting problem we are given a set V = {Pl,P2l··· ,PI} and a set

U = {q1' q2, .. " qm} of points in the plane, and wish to know for each point qi in U the number of

points in V which are 2-dorninated by q. In the algorithm which follows we show how to solve this

problem efficiently in parallel.

Algoritlun DOM-COUNT:

Input: A set V = {PllP2, ... ,p!l and a set U = {qbQ2, ... ,qm} of points in the plane. For

simplicity, we assume that the points in V and U are all distinct.

Output: A list X = {V1,V2, ••. ,VI+m} of the points defining this problem (Vi is either a Pi or a

qj) sorted by increasing lexicographical order. We also have labels CO and CT defined for each

Vi E X, where CO (Vi) is the number of points in V I-dominated by the point Vi, and CT(Vi) is the

number of points in V 2-dorninated by Vi·

Step o. (Preprocessing) Combine the points in V and U into one list W, and sort the points in W

by y.coordina.te. Also, we mark each point in W if it came from V. Initially, the CO a.nd

CT label for each point is O.

Comment: For each Vi E W define the function Xv as follows: Xv (Vi) = 1 if Vi E Vj Xv(Vi) = a
otherwise.

Step 1. Divide W into two equally sized subsets Wl and W2 such that all the points in WI have

smaller y-coordinate than points in W 2 • Recursively solve the problem for Wl and W2

in parallel. Alter the parallel recursive call returns we will have lists Xl and X2 of the

points in W1 and W2, respectivelYl sorted by increasing lexicographical order. We also

have labels COl (C02) and CTI (CT2) defined correctly for the points in Xl (X2) (when

dominance is restricted to Xl (X2)).

Step 2. Merge Xl and X2 into a single list X, where all comparisons are done lexicographically.

Let X = {Vb V2,···, un+m}.
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Step 3. For each Iii E X pardo

{ Let predj(vi) denote the predecessor of Vi in X j . If Vi has

no predecessor in Xj, j:= 1,2, then predj(vi) := 4>. }
CO.(,,) := CO,(,,) := CT.(,,) := CT,(,,) := Xv (") := 0;

H Vi E Xl then { Vi "came from" Xl }

CO(v,) := CO. (v,) + CO,(p"d,(v,)) + Xv (p"d, (v,));

CT(v,) := CT.(v,)

Else { Vi "came from" X 2 }

CO(v,) := CO. (p"d. (v,)) + CO,("') + Xv (p"d. (Vi));

CT(v,) := CT.(pred,(v,)) + CT,(Vi) + Xv (pred.(v,))
EndIf

EndFor
End of Algorithm DOM-COUNT.

Theorem 4.3: Given a set V of l points in the plane and a set Q of m points in the plane, the

algorithm DaM-COUNT computes for each qi E Q the number of points in V fl-dominated by qi in

O(1ogn loglogn) time and O(n) space using O(n) processors on a CREW PRAM, where n:= l+m.

Proof: The proof of correctness is by induction. For any point Vi E X the number of points 1­

dominated by Vii CO(v;), is equal to the old CO label for Vi plus the CO label for the predecessor

of Vi plus 1 if the predecessor of Vi is in V, since the predecessor of Vi is I-dominated by Vi. If Vi

came from Xl then the number of points 2-dominated by Vi, CT(Vi) is simply the old CT label

for vi, since Vi cannot 2-dominate any points in X 2• If Vi came from X 2 then the number of points

2-dominated by Vi is the old CT label for Vi plus the CT value for the predecessor of Vi plus 1 if Vi

is in V, since Vi 2-dominates its predecessor in this case. (See Figure 12). By an argument similar

to the one used in the proof of Theorem 4.1 the algorithm DOM-COUNT runs in O(logn log logn)

time and O(n) space using O(n) processors, where n:= 1+ m.•

There are a number of other problems which can be reduced to two-set dominance counting. We

mention two here. We begin with the multiple range-counting problem. Given a set V of 1points

in the plane and a set R of m isothetic rectangles (ranges) the multiple range-counting problem is

to compute the number of points interior to each rectangle.

Corollary 4.4: Given a set V of I points in the plane and a set R of m isothetic rectangles, we can

solve the multiple range-counting problem for V and R in O(Iognloglogn) hOme and O(n) space

using O(n) processors, where n = 1+ m.

Proof: We know from (Edelsbrunner and Overmars, 1982) that counting the number of points

interior to a rectangle can be reduced to dominance counting. That is, if d(p) is the number of
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Figure 12: The different predecessor cases for 2-aet dominance counting. Points enclosed in the

dashed lines are the points which affect p (or g's) CT label, while points to the left of the dotted

lines affect p (or q'a) CO label.
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points in V 2-dominated by a point p, given a rectangle r == (PI,P2,P3,P4) (where vertices are listed

in counter-clockwise order starting with the upper-righthand corner), then the number of points in

V interior to r is d(PI} - d(P2} + d(P3} - d(p4.}. Therefore, it suffices to solve the two-set dominance

counting problem.•

Another problem which reduces to two-set dominance counting is rectilinear segment intersec­

tion counting: given a set S of n rectilinear line segments in the plane, determine for each segment

the number of other segments in S which intersect it.

Corollary 4.5: Given a set S of n rectilinear line segments in the plane, we can determine for

each segment the number of other segments in S which intersect it in O(lognloglogn} time and

O(n} space using O(n} processors on a CREW PRAM.

Proof: Let UI (Uz) be the set of left (right) endpoints of horizontal segments, and let dl(P}

(d2(p)) denote the number of points in UI (U2) 2-dominated by p. For any vertical segment s,

with upper endpoint P and lower endpoint q, the number of horizontal segments which intersect s

i, d,(P) - d,(q) + d,(q) - d,(p). Thi, is hecause d,(p) - d,(q) (d,(P) - d,(q)) counts the numher

of horizontal segments with a left (right) endpoint to the left of sand y-coordinate in the interval

[y(q),y(p)]. Th." d,(P) - d,(q) - (d,(p) - d,(q)) counts the numher of horizontal "gmeuts with

left endpoint to the le£l; of 8, right endpoint to the right of 8, and y-coordinate in the interval

[y(q}, y(p}] (i.e., the set of horizontal segments which intersect s) .•

The final problem we look at is visibility from a point.

4.3 Visibility from a Point

Given a set of line segments S = {SI,S2, •.. ,8 n } which do not intersect, except possibly at end­

points, and a point p, determine the part of the plane which is visible from p when every Si

is opaque. We can use divide-and-conquer with critical-point merging to solve this problem in

O(lognloglogn) time and O(n} space using O(n} processors. WLOG, the point p is at negative

infinity below all the segments. For simplicity, we assume that the x-coordinates of the endpoints

are distinct.

Algorillun VISIBILITY:

Input: A set of non-intersecting line segments S == {Sl, 82, ... 1 sn}. The s;'s are not given in any

particular order.

Output: A set X == {PI,P2, ... , P2n} consisting of the endpoints of the segments in S sorted by

x-coordinates (x(P;) < X(Pi+l))' We also have a label VIS associated with each Pi E X, such

that VIS(Pi) is the segment in S visible on the interval (x(P;),X(pi+l}}J for i:::: l,2, ... ,2n -1,

and VIS(P2n) == +00; by convention, VIS(Pi) == +00 if no segment is visible on the interval

(x(P,), x(p'+r)).
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Before merge:
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Figure 13: An example of visibility merging. The dashed segments correspond to the visible region

for Xl and the solid segments correspond to the visible region for X 2 • For simplicity in describing

the vectors Xl, X2, pred2 , and predl we denote each point Pi by its index i. Note that points are

never removed, even if the same segment defines the visible region for many consecutive intervals

(e.g., PS through P7).
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Step 1. Partition 8 into subsets 8 1 = {Sl, ... , Snj2} and 8 2 = {Sn/Hl' ... ' sn}, and recursively

solve the problem for 8 1 and 82 in parallel. Mter the parallel recursive call returns we will

have a list Xl of the endpoints of segments in 8 1 sorted by x-coordinates, and a similarly

defined list X 2 for 8 2• We also have labels VI81 (VI82) labels correctly defined for each

point in Xl (X2 ) when visibility is restricted to segments in 8 1 (82).

Step 2. Use parallel merging to merge the two sorted lists Xl and X 2 into a single list X, where

comparisons are based on the x-coordinates of points. Let X = {PloP'l, ... ,P2n}.

Step 3. For each Pi E X pardo

{Let pt'edj(p;} denote the predecessor of Pi in X j , j E {l, 2}.

If Pi has no predecessor in Xb then predj(pd = q,. }
VIS1(4)) := VIS,(4)) := +00;

If Pi E Xl then {Pi "came from" Xl }

VIS(p;) := min{V1Sl(p,),VIS,(p"d,(p;)))

Else {pi "came from" X 2 }

VIS(p,) := min{VIS1(p"d,(p;)), VIS,(p;))

Endlf

EndFor

Comment: Taking the minimum of VI81(Pi) and VI82 (pred2 (Pi» (or of VIS1(predl(Pi» and

VI82 (Pi» is well defined, since the segments being compared span the interval (X(pi),X(PHl»
and do not intersect (see Figure 13). Having observed this, note that Step 3 completes

the construction, since the list oflabels VIS (Pi) is a description of the visible part of

the plane.

End of Algoritiun VISIBILITY.

Theorem 4.6: The algorithm VISIBILITY solves the problem of computing the tn·sibility from a

point in O(lognloglogn) time and O(n) space 'Using O(n) processors on a CREW PRAM.

Proof: The correctness of VISIBILITY follows from the observation that in the conquer step (3)

when computing VIS (Pi) we need only compare the two segments which span the vertical strip

(X(Pi),X(PHl» X (-00,00). This is precisely what is happening in Step 3 when we compare the

old VIS la.bel of a critical point with the VIS label of its predecessor in the other set.

By the same argument as in the proof for Theorem 4.1 the algorithm VISIBILITY runs in

O(lognloglogn) time and O(n) space using O(n) processors.•

5 Conclusion

In this paper we have given general techniques for solving a number of geometric problems whose

efficient sequential algorithms use the plane-sweep paradigm. These techniques can be viewed
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as efficient parallel analogues to the plane-sweeping paradigm. We applied the plane-sweep tree

technique to intersection detection, trapezoidal decomposition, polygon triangulation, and planar

point location. We were able to achieve an O(lognloglogn) time bound for each problem, using

O(n) processors. For the problem of triangulating an arbitrary point set we were able to achieve

an O(logn) time bound using O(n) processors, which is optimal. We were able to achieve a faster

running time for arbitrary triangulation than for polygon triangulation because we could avoid the

bottle-neck computation in our polygon triangulation algorithm, that is, constructing a trapezoidal

decomposition (which is not even defined for an arbitrary point set). A consequence of our planar

point location algorithm is that the time bound of the Voronoi diagram construction algorithm of

Aggarwal et al. (1985) can be improved from O(logS n) to O(log2 nloglogn), still using only O(n)

processors.

We applied divide-and-conquer with critical-point merging technique to visibility from a point,

3-dimensional maxima, two-set dominance counting, multiple range-counting, and rectilinear seg­

ment intersection counting. We were able to achieve an O(lognloglogn) time bound for each

problem, using O(n) processors.
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Problem Previous Bounds Our Bounds

Trapezoidal
(10g2 n, nlogn)

(log n log log n, n log n)

Decomposition or (log2 n, n)

Polygon
(10g2 n, n log n)

(Iognloglogn, nlogn)

Triangulation or (log2n, n)
Arbitrary

not considered (Iogn, n)
Triangulation

Planar Point (10g2 n, nlogn) (log n log log n, nlogn)

Location Q(n) = O(Iog' n) Q(n) = O(logn)

Intersection
(log2 n, n log n) (log2n, n)

Detection
Int. Detection

not considered (Iognloglogn, nlogn)
(CRCW model)

3-D Maxima " (lognloglogn, n)
Two-Set Dam.

" (lognloglogn, n)
Counting

Multiple Range-
" (lognloglogn, n)

Counting

Rect. Segment
" (lognloglogn, n)

Int. Counting

Visibility " (log n log log n, n)

Table 1: Summary of Results. The pair (t(n), ,(n))

denotes that the parallel algorithm runs in O(t(n)) time

and O(s(n)) space, using O(n) processors. All previous

bounds are due to Aggarwal et al. (1985).
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