Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1985

Efficient Plane Sweeping in Parallel

Mikhail J. Atallah
Purdue University, mja@cs.purdue.edu

Michael T. Goodrich

Report Number:
85-563

Atallah, Mikhail J. and Goodrich, Michael T., "Efficient Plane Sweeping in Parallel" (1985). Department of
Computer Science Technical Reports. Paper 482.
https://docs.lib.purdue.edu/cstech/482

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

EFFICIENT PLANE SWEEPING IN PARALLEL

Mikhail J. Atallah
Michael T. Goodrich

CSD-TR-563
December 1985
Revised October 1986

Efficient Plane Sweeping in Parallel *

Mikhail J. Atallah
Michael T. Goodrich

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

Abstract

We present techniques which result in improved parallel algorithms for a number of
problems whose efficient sequential algorithms use the plane-sweeping paradigm. The
problems for which we give improved algorithms include intersection detection, trape-
zoidal decomposition, triangulation, and planar point location. Our technique can be
used to improve on the previous time bound while keeping the space and processor
bounds the same, or improve on the previous space bound while keeping the time and
processor bounds the same. We also give efficient parallel algorithms for 3-dimensional
maxima, multiple range-counting, rectilinear segment intersection counting. and visibil-
ity from a point. In addition to being asymptotically better than previous solutions, our
algorithms do not use the AKS sorting network, thus avoiding the large multiplicative

constant found in the time bounds of the previous solutions.

“This research was supported by the Office of Naval Research under Grants N00014-84-K-0502 and N0OD14-86-K-
0689, and the National Science Foundation under Grant DCR-8451393, with matching funde from AT&T.

1 Introduction

The plane-sweeping technique has proven effective for developing efficient sequential algorithms for
a variety of geometric problems. This technique, in two dimensions, involves sweeping a line through
& set of geometric objects (such as line segments), updating global data structures at critical points
(sometimes called event points, e.g. segment endpoints). It has been used to find efficient sequential
algorithms for a host of computational geometry problems (see Lee and Preparata {1984)). It also
seems to be a very sequential technique.

Most of the sequential algorithms which use plane-sweeping are already optimal to within a
multiplicative constant. There is already a small but growing body of work on finding efficient
parallel algorithms for computational geometry problems (e.g., Aggarwal et ol. (1985), Atallah and
Goodrich (1985, 1986), Chow (1980), and ElGindy (1986)), addressing the question of what kinds of
speed-ups can be achieved through parallelism. In this paper we present efficient parallel algorithms
for a number of problems whose efficient sequential algorithms use the plane-sweeping paradigm.

We list the problems addressed in this paper below, and summarize our results in Table 1.

1. Trapezoidal Decomposition: Given a simple n-vertex polygon P, determine the trape-
zoidal edge(s) for each vertex. A trapezoidal edge for a vertex v; is an edge s of P which is
directly above or below v; and such that the vertical line segment from v; to s is interior to
P.

2. Polygon Triangulation: Given a simple n-vertex polygon P, augment P with diagonal

edges o that each interior face is a triangle,

3. Arbitrary Triangulation: Given a set S of n points in the plane, connect pairs of points

by edges so that each interior face of the convex hull of S is a triangle.

4. Planar Point Locatlon: Given a planar subdivision consisting of n edges, construct in
parallel a data structure which, once built, enables one processor to quickly determine for

any query point p the face containing p. We let Q(n) denote the time for performing such a

query.
5. Intersection Detection: Given n line segments in the plane, determine if any two intersect.

6. 3-Dimensional Maxima: Given a set S of n points in 3-dimensional space, determine which
points are maxima. A mazimum in § is any point p such that no other point of § has z, Y,

and z coordinates that simultaneously exceed the corresponding coordinates of p.

7. Two-Set Dominance Counting: GivenasetV = {p1,pz,...,p;} andaset U = {g1,42,...,qm}

of points in the plane, compute for each point ¢; in U the number of points in ¥V which are

2-dominated by g;. The problem size is n = { + m.

8. Multiple Range-Counting: Given ! points in the plane and m isothetic rectangles (ranges)

determine the number of points interior to each rectangle. The problem size is n = I+ m.

9. Rectilinear Segment Intersection Counting: Given n horizontal and vertical line seg-
ments in the plane, determine for each segment the number of other segments which intersect

it.

10. Visibility from a Point: Given n line segments such that no two intersect (except possibly

at endpoints) and a point p, determine that part of the plane visible from p.

As in references (Aggarwal et al., 1985) and (Atallah and Goodrich, 1985), our framework is one
in which we have a linear number of processors and wish to achieve the best time bound possible.
It may also be desirable in this context to try to achieve the best space performance possible as
well. Unless otherwise stated, our algorithms will be for the CREW PRAM parallel model. Recall
that this is the synchronous parallel model in which processors share a common memory where
concurrent reads are allowed, but not concurrent writes.

Aggarwal et al. (1985) show that several problems whose efficient sequential algorithms use
the plane-sweeping paradigm can be solved in parallel in O(log® n) time and O(nlogn) space
using O(n) processors in the CREW PRAM model. The problems addressed by Aggarwal et al.
include intersection detection, trapezoidal decomposition, polygon triangulation, and planar point
location, among others. We reduce the time bound from O(log? r) to O(log nloglog n) for each of
these problems (keeping the space bound at O(n logn)) by using a special data structure, which we
call the plane-sweep tree, which is similar to a data structure used by Aggarwal et ol., but differs
from it in some important ways. We build this date structure by using parallel merging and s
technique similar to the sequential “fractional cascading” technique of Chazelle and Guibas (1986).
If space is important, then our technique can be modified to achieve O{n) space and O(log? r) time.
We manage to achieve O(n) space performance, even though this data structure takes 6(n log n)
space, by never completely building it. Instead, we use it as we are constructing parts of it and
destroying other parts of it. Also, the previous algorithms use the sorting network of Aj tai, Komlés,
and Szemerédi (1983) (sometimes refered to as the AKS sorting network), which introduces a large
multiplicative constant into the time complexity. We never use the AKS network.

We also present a technique which we use to efficiently solve other problems as well: namely,
3-dimensional maxima, multiple range-counting, rectilinear segment intersection counting, and vis-
ibility from a point. This technique is based on the divide-and-conquer paradigm and for each of
these problems it achieves O(logn loglogn) time and O(n) space bounds using O(n) processors.

Instead of dividing and merging in the usual way, we divide based on how sequential plane-sweeping

stores objects during the sweep, and we “marry” subproblem solutions by merging lists of critical
points and computing labels associated with each critical point. The key to this technique is in
finding critical-point labels which can be computed quickly in parallel and which can be used to
solve the problem af hand once we have completed the divide-and-conquer procedure.

In the next section we give some preliminary definitions and observations. In Section 3 we

present the plane-sweep tree technique, and in Section 4 we present our second technique.

2 Preliminaries

In this section we introduce some notation and review some known results which we will use later
in the paper. For any point p in the plane we use z(p) and y(p) to denote, respectively, the z and
y coordinates of p. If p € R®, then we use z{p) to denote the z-coordinate of p. Given a set §
of non-infersecting line segments in the plane, we define a partial order on the elements of S such
that two segments in S are comparable iff there is a vertical kine which intersects both segments.
The segment with the lower intersection is said to be the smaller of the two. Note that if there is
a vertical line which intersects all the segments in S, then this partial order is actually total.
Given a sorted (nondecreasing) list B = (by,bs,...,b,) and an element a taken from the same
total order as the b;’s, the predecessor of ¢ in B is the greatest element in B which is less than
or equel to . If @ < by, then we say that the predecessor of a is ¢ (¢ is a special symbol such
that ¢ < b for every element b in the total order). Clearly, we can use binary search te locate the
predecessor in B of any such a. The next easy lemma states that if we have two sorted lists A and
B whose elements are taken from the same total order, we can find the predecessor in B of every

element in A efficiently in parallel.

Lemma 2.1: Given two sorted arrays A and B whose elements are taken from the same total
order, the predecessor in B of each element in A can be determined in O(loglog n) time using O(n)
processors on 6 CREW PRAM, where n = |A|+ |B|.

Proof: The parallel merging algorithm of Valiant (1975) (which Borodin and Hoprocoft (1985)
have shown to be implementable in the CREW PRAM model) first finds predecessors and then does
the merge. Thus, the lemma follows directly from the work of Valiant and Borodin and Hopcroft.
| |

Parallel merging is a powerful tool in designing efficient parallel algorithms, and we make
repeated use of it in this paper. Another powerful paralle] technique is the parallel prefiz technique.
Stated in its simplest form, given a sequence of integers A = (a;, az,..., @n), it allows us to compute

all the partial sums ¢; = Ef=1 a; in O(logn) time using O(n/logn) processors (see Kruskal,

Rudolph, and Snir (1985) for a more in-depth study of this technique). Parallel prefix is used as a

subroutine in many of our algorithms.

3 The Plane-Sweep Tree Technique

In this section we present the plane-sweep tree technique. We present it for the case when the
objects under consideration are line segments in the plane, but essentially the same technique
applies for other planar objects as well. We describe the technique in a very general setting, and

in the subsequent subsections we show how it can be applied to solve specific problems.

3.1 Definitions and Observations

Let S = {91,52,...,8n} be a set of non-intersecting line segments in the plane. To simplify the

exposition we assume that no two endpoints have the same z-coordinate.

Figure 1: The skeleton of the plane sweep tree. The circled nodes are the nodes of T covered by

8.

The idea of using a tree to parallelize plane-sweeping is due to Aggarwal et al. (1985). We
review some of the definitions and observations from their work as it relates to ours. Let T' be the
complete binary tree with its leaves corresponding to the 2n+ 1 intervals formed by projecting the
segments’ endpoints onto the z-axis. Associated with each node v € T is an interval [ay,b,] on the
z-axis which is the union of the intervals associated with the descendants of v. Let I, denote the
vertical strip [a,, by] X (—00,00). A segment s; coversa node v € 7' if it spans II, but not II,, where
z 18 the parent of v (See Figure 1). Clearly, no segment covers more than 2 nodes of any level of

T; hence, every segment covers at most O(logn) nodes of 7.

As in (Aggarwal et al., 1985) we define H(v) and W (v) for each node v € T as follows:

H(v) = {s;| 8 covers v},
W(v) = {s;| s; has at least one endpoint in II,}.
However, here we also define two other sets, L(v) and B(v). L(v) (resp. B{v)) is the set of

segments with one endpoint in IT, and another left (right) of IT,. More formally, if we let left(T1,)
(right(IT,)) denote the left (right) vertical boundary of II,, then

L{v) = {s:|s; € W(v) and & nieft(Il,) # 0},
R(v) = {s:|s; € W(v) and s; N right(IL,) # 0}.
We study the relationships between H, L, and R in the following lemma. The observations
made in this lemma are needed in the construction presented in the next subsection.

z

w1 v

Figure 2: A configuration of nodes in T'.

Lemma 3.1: Let v be ¢ node in T with children vy and v;, sibling w, and parent z (Figure 2
tllustrates the case when w 1is to the left of v). Let A+ B denote the union of two disjoint seta A
and B, and let A— B denole set difference where B C A. Then we have the following:

(1) L{v) = L{va) + H(v1);
(2) R(v) = R(vy) + H(v2);
(3) H(v) = R{w) — (R(w) N L{v)) if v is the right child of z (as is the case in Figure 2); !

H(v) = L{w) — (L{w) N R(v)), if v is the left child of 2.

Proof: We first prove Equation (1). Since IT,, and II, have the same left vertical boundary,
L(vi) € L(v). Also, from the definition of H we know that all segments in H(v;) intersect v’s
left vertical boundary; that is, H{v1) C L{v). Noting that H(v1) N L(v;) = @, we have that |
L{v) = H(v;) + L(vy). |

The proof of (2) is similar.

So we have yet to justify Equation (3). First note that by definition all segments in H{v) must
have an endpoint in II,. If v is the right child of z, then they must intersect II,,’s right vertical
boundary (which is also IT,’s left vertical boundary). So, if we remove from R(w) all those segments
which have and endpoint in II,, then we will have all those segments which span II, but do not
span II,, that is, the set H{v). Therefore, H(v) = R(w) — (R(w) N L(v)). The argument that
H(v) = L{w) — (L{w) N R(v)) for the case that v is the left child of z is analogous. W

Lemma 3.1 essentially states that the sets L, R, and H associated with a node in the tree T can
be defined in terms of sets associated with nodes one level below it in 7. An important property of
the sets L(v), R(v), and H(v) is that for any v € T the segments in L{v)U H(v) (resp., R(v)U H(v))
can be linearly ordered. We use this fact, and Lemma 3.1, in the next subsection to show how to

efficiently construct H(v) for every node v in 7'.

3.2 Constructing the Plane-Sweep Tree

In this subsection we show how to efficiently construct and traverse the plane-sweep tree T. The
next lemma states that the set operations 4+ and — of Lemma 3.1 can both be performed in

O(loglogn) time.

Lemma 3.2: Let A and B be two sets represented as sorted arrays. If ANB =0, then A+ B can
be computed in O(loglog n) time using O(n) processors. If B C A, then A — B can be computed in
O(loglogn) time using O(n) processors.

Proof: If AN B = @, then the set A+ B can be constructed by simply merging A and B into
one sorted list. This can clearly be done in O(loglogn) time and O(n) processors (Borodin and
Hopcroft, 1985; Valient, 1975). If B C A, we construct A — B by first determining the predecessor
in B of each 6; € A (which can be done in O(loglog n) time by Lemma 2.1). Then, by assigning a
processor to each element in A, we compress A by moving each element in A and not in B over by
the rank of its predecessor. Since this compressing operation can be done in constant time, the set
A — B can be constructed in O(loglogn) total time. B

From Lemma 3.1 we know that the sets L, R, and H for any level { of T' can be defined in terms of
sets on the level below I. We have yet to see how these sets can be constructed in O(log log n) time
using a linear number of processors. From Lemma 3.2 we know that the constructions implicit
in Equations (1) and (2) of Lemma 3.1 can be performed in O(loglogn) time. Equation (3),
however, also uses set intersection, so we cannot perform the construction implicit in Equation (3)
by using Lemma 3.2. To get around this problem we exploit a regularity property of the segments

in the intersection (R(w) N L(v)) of Equation (3) in order to compute all these intersections as a

preprocessing step, storing them away for future use. The details of this and other preprocessing
steps follow.
Preprocessing steps:

Input: A set S = {sy,93,...,8,} of non-intersecting segments.

Output: The skeleton of T, the plane-sweep tree for S, with a set I(v) constructed for each node
v € T, where I(v) is the set of all segments with one endpoint in IT tehita() @0d the other in IT,.hi14(0)-
(We do not yet compute L{v), R(v), or H(v) for any v€ T.)

Step 1. Sort the set of endpoints of s1,..., 3, by increasing z-coordinate, and build the skeleton

of the tree T on top the the 2n 4 1 intervals determined by these endpoints.

Comment: Since we only perform this step once, we can use parallel merging to sort the endpoints
in O(logn loglog n) time using O(n) processors, inatead of using the sorting network
of Ajtal, Komlds, and Szemerédi (1983), which would introduce a large multiplicative
constant. (Our algorithms take O(logn log log n) anyway, so there is no point in using
the AKS network to perform this step in O(log) time.)

Step 2. Let J be the set of all (v, s;) pairs such that v is the lowest node in T such that s; c TI,
(that is, v is the least common ancestor of the II’s containing s;’s two endpoints). Clearly,
J can be constructed in O{log n) time using O(n) processors.

Step 3. Sort J lexicographically and use a straight~forward parallel prefix type of computation,
to compute the set I(v) = {s; | (v,5;) € J} foreach v € T.

Comment: Observe that 3, .7 |I(v)| = n.

Step 4. Sort each I{v) by the y-coordinates of the intersections of the s;’s in J(v) with the vertical
boundary separating the vertical strips IT tehitd(v) 20d Irenita(u)-
End of Preprocessing Steps.

Observation 3.3: The preprocessing steps take O(log n log logn) time and O(n) space using O(n)
processors on a CREW PRAM. For each v € T the set I(v) consists of all segments with one
endpoint in Ijcp400) and the other in I, ckitafv)-

Proof: Immediate. B

Note that the set B{w) N L(v), as well as L(w) N R{v), of Equation (3) in Lemma 3.1 is exactly
the set of all segments with one endpoint in II,, and the other in II,. Thus, by Observation 3.3,
we can rewrite Equation (3) of Lemma 3.1 as H{v) = R(w) — I{2) if v is 2 right child, and
H(v) = L(w) — I(2) otherwise. Having observed this, we are now ready to describe how to
construct the plane-sweep tree 7'
The Build-Up Algorithm (BUILDUP):
Input: The skeleton of the plane-sweep tree T built in the preprocessing steps (including the sets
I{v) for each v € T).

Output: The plane-sweep tree T with the set H(v) constructed for every node v € T'. The contents
of each H(v) are sorted by the “above” relationship defined in Section 2.
Step 0. Initialize T by constructing L(v), R{v), and H(v) for each leaf v in T. Note that each of
these sets will have at most 1 entry.
Step 1. For I = lowest level of T until / = 0 repeat Steps 2-4 below, in parallel for each vertex
vatlevellin T.
Step 2. Use equations (1) and (2) of Lemma 3.1 and Lemma 3.2 to build the sets L{v) and E{v)
from the sets for v’s children.
Step 3. Use the modified equation (3) of Lemma 3.1 (that is, H{v) = R{w) — I(z) if v is a right
child, and H(v) = L({w} — I(z), otherwise) and Lemma 3.2 to build H(v) from I(z) (which
was precomputed) and the appropriate R(w) or L{w) constructed in Step 2.
Step 4. Discard the sets L and R for the nodes on level { 4 1 (the level below 1), as they are no
longer needed.
End of Algorithm BUILDUP.

Theorem 3.4: The BUILDUP algorithm correctly builds the set H(v) for every node v in T in
O(logn loglogn) time and O(nlogn) space using O(n) processors on a CREW PRAM.

Proof: The correctness of BUILDUP follows from Lemma 3.1, the fact that the segments in
L(v) (resp., R(v) or H(v)) are linearly ordered, and the fact that the segments in L{v}U H(v)
(resp., R(v) U H(v)) are totally ordered. Steps 1 and 2 are performed by using Lernma 3.2 and
therefore take O(loglog n) time. Also, Step 3 clearly takes O(1) time. For any node v the number
of processors necessary to perform Steps 1-3 for v is proportional to the number of descendants of
v. Since Steps 1-3 are performed for nodes which are all on the same level of T' in parallel, we use
O(n) processors. The fact that we use at most O{n log n) space follows from the fact that a segment
can cover at most 2log n nodes of 7. Thus, the BUILDUP =algorithm runs in O(log n loglog n) time
and O(nlogn) space using O(n) processors. B

We are now ready to show how to traverse the plane-sweep tree. In all the problems we solve
using this technique, an essential computation done while traversing the plane-sweep tree is that
we want to locate for each input point p the segment in H{v) which is directly above (or below)
p, for all v € T such that p € II,. We call this computation the multilocation of p in T. The
specific set of multilocations we will perform will vary from problem fo problem, and will become
apparent in the subsections on applications. We augment T with sets and pointers in a manner
similar to the sequential “fractional cascading” technique of Chazelle and Guibas (1988) so that
the multilocation of any query point p can be performed in O(logn) serial time. To perform the
multilocation of a point p we first find the leaf v € T such that z(p) € [ay,b,). Then, for every
node z on the path from v to the root, we search in H(z) to find the segments in H(z) which are

directly above or below p (note that this leaf-to-root path consists of zll nodes z € T such that
p € I1,). The main idea of the augmenting technique is that we want the search done at a node
v to allow us to perform the search at pareni(v) in constant time (rather than in O(logn) time).
As in (Chazelle and Guibas, 1986) we make the following definition: given a sorted sequence A the
k-sample of A, denoted SAMP.(A), is & sequence consisting of every k-th element of A.

The Algorithm AUGMENT:
Input: A set S of non-intersecting line segments in the plane, and the plane-sweep tree T built for
S, with the sets H(v) constructed for every node v € T (as produced by the BUILDUP algorithm).
Output: An augmented plane-sweep tree TV, which allows & multilocate of any query point p to be
done in O(log n) serial time.
Method: The idea is to construct an augmented list A(v) for every node v € T' such that H(v) C
A(v), and associate pointers with the elements of A(v) so that, given the position of an element in
A(v), we can locate that element in both H(v) and A(pareni(v)) in O(1) additional time.
Step 1. Let A(r) = H(r), where r is the root of the plane-sweep tree T.
Step 2. For ! = 1 (the level just below the root) until I = lowest level repeat Steps 3-5 below in
parallel for each vertex v € T on level [.
Step 3. Merge H(v) and SAMP4(A(z}) into one sorted list and store this list as A(v), where
z =pareni(v).
Step 4. Use Lemma 2.1 to determine for each s; € A(v) its predecessor in A(z). For each s; € A(v)
let up(s;) be a pointer to the predecessor of s; in A(z).
Step 5. Use Lemma 2.1 to determine for each s; € A(v) its predecessor in H(v). For each s; € A(v)
let over(s;) be a pointer to the predecessor of s; in H(v).
End of AUGMENT.

Theorem 3.5: AUGMENT runs in O(lognloglogn) time and O(nlogn) space using O(n) pro-
cessors on @ CREW PRAM. The augmented tree T' it produces allows us to multilocate any query

point p in O(log n} serial time.

Proof: We firat prove that the space complexity of 7'/ is the same as that of T', namely, O(n log n).
We prove this by examining the extent to which any set H(v) contributes to the space of 7. For
any v € T, on level I, AUGMENT copies |H(v)|/2 elements to nodes on level I + 1, [H{v)|/4 to
level [+ 2, and so on. Thus, any set H(v) contributes at most |H'(v)| extra space to T’. Therefore,
the space required by T' is at most 2 times the space used by T. Hence, the space complexity
of AUGMENT is O(nlogn). That the number of processors used is O(n) follows by a similar
argument. In order to do the parallel merges we need to know ahead of time how many elements
will be involved, for all v € T'. This is not a problem, however, because we can calculate the number

of processors needed to compute A(v) for each v € T' as a preprocessing step. The time complexity

10

of AUGMENT is clearly O(lognloglogn), since Steps 3-5 are all done using parallel merging or
Lermma 2.1.

A multilocate of a point p proceeds as follows (WLOG, we describe the version which finds
the segments directly below p in the appropriate H{v)’s, the version for finding segments above p
being similar). Locate the leaf v in T corresponding to the interval [a,,b,] such that z(p) € [ay, by)-
We begin the sequence of searches by using binary search to locate the segment in A(v) which
is directly below p; this is the predecessor of p in A(v). Let c,(p) denote this segment. We can
then follow the pointer over(cy(p)) to find the segment in H(v) which is directly below p. Now, by
following the pointer up(c,(p)) to the list A(z), where z = pareni(v), we can use a sequential search
from up(cu(p)) to locate the segment c:(p) in A(z) which is directly below p in O(1) time. This
is because c,(p) can be no more than 4 storage locations away from up{c,(p)) in the array A(z).
From this point on every search will take O(1) time to complete. Since there are O(log n) nodes
which must be searched, the sequence of searches can be performed in O(logn) total time. N

We show in the following subsections how to apply BUILDUP and AUGMENT to solve specific
geometric problems. Before doing so, however, we describe how to perform a collection of m
multilocations using only O(n) space, at the expense of more time. Let V = {py,ps,...,pm} be a
set of points we wish to multilocate in T', where m = O(n). The method is similar to the BUILDUP
procedure, but differs from it in two respects. First, after constructing the set H(v) for all v on
& level ! (in Step 2), we perform a binary search in H(v) for all points p; such that p; € TI, to
find the segments in H(v) directly above and below p; (this is one of the searches needed for the
multilocation of p;). Next, after we have completed the searches of nodes on level for all points
pi €V, we can discard the sets L, R, and H for all nodes on level I 4+ 1 (this of course means that
we do not output any H(v)’s as BUILDUP does). Since we never construct sets for more than 2
levels in the tree at a time, we never use more than O(n) space. Also, recall that the space used by
all the I(v)’s is O(n). The time taken for this is clearly O(logn) for each level of T, or O(log % n)

overall. We summarize the above discussion in the following theorem.

Theorem 3.6: Given a set S of n non-intersecting segments and a set V of O(n) guery points, we
can perform the multilocation of all the points in V in O(log nloglogn) time and O(nlogn) space
(or, alternatively, in O(log? n) time and O(n) space) using O(n) processors on @ CREW PRAM. n

We are now ready to show how the plane-sweep tree technique is used to solve a number of
geometric problems. The first application we present is for trapezoidal decomposition.
3.3 Trapezoidal Decomposition

Let P = {vy,va,...,vn} be a simple polygon, where the v;'s denote the vertices of P and are listed

so that the interior of P is to the left of the walk vyvz...v,. For any vertex v; of P a trapezoidal

11

edge for v; is an edge of P which is directly above or below v; and such that the vertical line
segment from v; to this edge is interior to P. Note that a vertex can have 0, 1 or 2 trapezoidal
edges. The trapezoidal decomposition problem is to find the trapezoidal edge(s) for each vertex of
P (see Figure 3).

Figure 3: A trapezoidal decomposition of a simple polygon.

Theorem 3.7: A trapezoidal decomposition of P can be constructed in O(log nloglogn) time and
O(nlogn) space (or, alternatively, in O(log? n) time and O(n) space) using O(n) processors on a
CREW PRAM.

Proof: We first prove the O(log nloglogn) time result. Let S = {si,82,...,5n} be the set of
edges of P, i.e., 8y = (vij,vi41), for i1 =1,2,...,n — 1, and s, = (vn,v1). We find the trapezoidal
edge (if any) below each vertex as follows. First, use algorithms BUILDUP and AUGMENT to
construct an augmented plane-sweep tree T for $. As in (Aggarwal et al, 1985), we solve the
problem by performing a multilocation of each ¥; € P. In our case we use Theorem 8.5 to perform
all O(n) multilocates in O(log n) time using O(n) processors. During the multilocation, for each
vertex v;, we keep track of the segment below v; and with minimum vertical distance from v; (call
this segment trap(v;)). When we complete all the multilocations, for each v;, trap(v;) will store

the segment which is directly below v; in the totally ordered set of segments that are cut by the

12

vertical line through v; (i.e., the union of all H(v) such that v; € I1,). By a similar procedure we
can find for each v; the segment in § which is directly above v;. We can then test in constant
time if these segments are trapezoidal edges or not by checking if the line segment from v; to the
segment trap(v;) is interior to P or not.

Since the necessary multilocations can alternatively be performed in O(log? n) time and O(n)
space using O(n) processors (by Theorem 3.6), we can construct a trapezoidal decomposition of P
in these same bounds. &

It is easy to see that roughly the same technique can be used to find the trapezoidal decompo-
sition of a arbitrary set of non-intersecting line segments, with the same complexity bounds. We
chose to describe the solution for simple polygons because in the next subsection we show how to

use trapezoidal decomposition in solving the polygon triangulation problem.

3.4 Triangulation

Let P = {v1,v2,...,v5} be a simple polygon, where the v;’s denote the vertices of P and are
listed so that the interior of P is to the left of the walk vyvy...v,. We wish to augment P with
diagonal edges so that each interior face of the resulting planar subdivision is a triangle. Qur
method consists of two phases. The first is to use trapezoidal decomposition to decompose P into
one-sided monotone polygons Py, P, ..., P;,. We say that a polygon P is one-sided if there is a
distinguished edge on P such that the vertices of P are all above (or all below) that edge {except
for the endpoints of the edge). In the second phase we triangulate each P; in O(logn) time and
O(n) space using O(n} processors. The algorithm DECOMP which follows is the first phase in our

triangulation procedure.

Algorithm DECOMP:
Input: A simple polygon P = {vy,vs,...,v5}.
Output: A decomposition of P into one-sided monotone polygons.

Step 1. Construct a trapezoidal decomposition for P.

Step 2. For every s; construct V;, the set of vertices of P for which s; is a trapezoidal edge. This
can be done by sorting lexicographically the set of (s;, v;) pairs such that s; is a trapezoidal
edge for v;, and then using a parallel prefix computation to construct the set V; for each
8;.

Step 3. Sort the vertices in every V; by z-coordinate, in parallel.

Step 4. For each edge s; = (v;,,Vn,41), Suppose V; = {v,-“v,-,,...,v,-n',}. Augment P by adding
edges (vi,,vi;,,) for §=0,1,2,...,n,, if they are not already in P. Let P; be the polygon

consisting of s; and of the edges (v;;,v;;,,), for j = 0,1,...,n; (see Figure 4).

End of algorithm DECOMP.

13

v;

1]
Figure 4: The polygon F; for s; = (vj,,v;,) and V; = {v;,v,,...,v;,}. The edges in P; but not

in P are shown dotted. Note that the sequence v;, v;,,v;;,...,¥;, i3 monotone in the z-direction.

Theorem 3.8: The algorithm DECOMP correctly decomposes a simple polygon P into one-gided
monotore polygons in O(logn loglogn) time and O(nlogn) space (or, alternatively, in O(log? n)
time and O(n) apace) using O(n) processors on a CREW PRAM.

Proof: First, note that the P;'s form a decomposition. That is, an edge added to construct some
F; may coincide with an edge added to construct some Py, but it cannot cut across any other edge.
This is because edges are only added between vertices which are both vertically visible from the
same segment. Second, the vertices of V; are all on the same side of s;, because the vertical line
from any point in V; to the segment s; must be interior to P, and the interior of P can only be on
one side of s;. Thus, each F; is one-sided. Finally, each P; is monotone because we sorted the points
in V; by z-coordinate in Step 3. The complexity bounds for DECOMP follow from observations
made in Section 3.3. &

After decomposing P into polygons Py, P, ..., Pi, we now triangulate each P; in parallel. So
let us concentrate on the problem of trizangulating a one-sided monotone polygon. WLOG, we are
given a one-sided monotone polygon which is monotone in the z-direction and the vertices not on
the distinguished edge s are all above s. Let a one-sided monotone polygon P = (v1,vz,...,05,v1)

be given, where vyv, is the distinguished edge. We triangulate P by using the following algorithm

14

to triangulate the underside of the monotone polygonal chain V' = (v1,v3,...,¥,) in O(logn) time

and O(n) space using O(n) processors.

Algorithm CHAIN-TRIANGULATE(V):

Input: A monotone polygonal chain V = {vy,v3,...,v,}. WLOG, we assume that the indices of V'
are listed by increasing z-coordinate.

Output: A listing LH (V') of the vertices belonging to the lower convex hull of V', sorted by increasing
z-coordinate, and a triangulation of the under side of V' (i.e., the region bounded from above by V
and from below by LH(V)). (By symmetry, we could alternatively output a triangulation of the
upper side of V, and a listing of the upper hull vertices.)

Method: One of the ideas in our algorithm is the use of the v/n parallel divide-and-conquer technique
of Aggarwal et al. (1985) and Atallah and Goodrich (1985). We divide the vertices of V into +/n
subsets V,V3,...,V 5 containing +/n vertices each, and recursively solve the problem for each V; in
perallel. The main ideas behind our method for merging the subproblem solutions are the following.
We first build a binary tree “on top” of the collection of subproblem solutions so that each leaf
corresponds to a subproblem. (We use V; to denote both the set and the leaf associated with it; the
context will make clear which one is meant.) For any node w in this tree let Ichild(w) (rchild{w))
denote the left (right) child of w, let parent(w) denote the parent node of w, and let Dese{w) =
{vi | v; € V; and V; is a descendent of w}. In parallel for each node w in the tree, we construct the
polygon P, whose boundary consists of the following: the vertices in LH(Desc(Ichild{w))) not in
LH(Desc(w)), followed by the edge of V' between Desc(lchild(w)) and Desc(rehild(w)), followed by
the vertices in LH(Desc(rchild(w))) not in LH(Desc{w)), and finally followed by the supporting
lower common tangent of LH(Desc(lchild(w))) and LH(Desc(rchild(w))) (See Figure 7). We
then use the special structure of the P,’s to triangulate each P, in Oflogn) time using O(|Py|)
processors. Since the P,’s form a decomposition of the untriangulated region below V' and above
LH(V), this completes the triangulation of the underside of V. Incidentally, the lower convex hull
LH(V) is computed as a by-product of the step which constructs all the P,’s. The details of this

algorithm follow.

Step 1. Divide V into 1/n subsets V;,V4,... , Vism of size /r each using vertical dividing lines.
Time: O(1); Space: O{n); Processors: O(n).

Step 2. Recursively call CHAIN-TRIANGULATE(V;) in parallel for all V;’s.
Time: T(v/n); Space: \/nS(y/n); Processors: \/nP(y/n), where T(n) (S(n)) is the
time (space} complexity of CHAIN-TRIANGULATE, and P(n) is the number of
processora used.

Step 3. Build a complete binary tree B “on top” of the subsets V; such that each leaf corre-

sponds to a V; (see Figure 5). For each w € B find the common tangent t, supporting

15

: ~ : : : . :

Y -\/{ . [: B

. : : : : : : 4
. - . . - - . +,
: : : : : : : ’

- - - - - 0 - rd

. : : : : : 4

. - - . - - -

. : : : : : i

. : : : : : /

: . . : : : st

. . - - . . - .

: : : : : S / :

. . - - . T -

Figure 5: 'The binary tree B and the /n lower hulls LH(V;) associated with the leaves of B.

LH(Desc(lchild(w))) and LH(Desc(rchild(w))) by performing Steps 3.1-3.2 below, where

Dese{w) = {v; | v; € V; and V; is a descendent of w}. Note: we don’t actually compute

LH(Desc(w)), just the common tangent t,,.

Step 3.1.

Comment:

Step 3.2.

Time: O(logn); Space: O(n); Processors: O(n).

For each pair (1,5), 1,7 = 1,2,..., /n, compute the common tangent line t;; sup-
porting LH(V;) and LH(V;) in parallel.

The common tangent line supporting two lower hulls can be computed in O(log n)
time by a single processor using a binary search technique developed by Overmars
and Van Leeuwen (1981). Thus, this step can be done in O(logn) time by assigning
one processor to eack of the O(n) pairs of lower hulls.

For each w € B let Ty, be the set of tangent lines #;; such that V; is a descendant
of lchild(w) and V; is a descendant of rchild(w). In parallel for each T, find the
minimum tangent line t,,, where comparisons are based on the y-coordinate of the
intersection of each tangent line with a vertical line L, separating the descendants
of lchild(w) and rchild{w), respectively (see Figure 6). This can be done in O(log n)

time using [Ty| processors per Ty, or n processors overall.

16

lehild(w) rchild(w)

Figure 6: The tangent lines in T, supporting the descendents of lchild{w) and rchild(w). The

tangent t,, is shown as a solid line, and the others are shown dotted.

17

Comment: The common tangent supporting LH(Desc(lchild{w))) and LH(Desc(rchild(w)))
must be a member of T\, and it cannot intersect L, above t,’s intersection with

L. Thus, t, is, in fact, the lower common tangent supporting the vertices of

LH(Desc(lchild(w))) and LH(Desc(rchild(w))).
1

Py
Figure 7: The polygons P, for each internal node w € B. Note that the polygon P is simply a

triangle and the polygon Pz is just a line segment.

Step 4. In this step we construct LH (V') and for each w € B we construct the polgyon P,,, where
P(w) is the polygon whose boundary consists of the vertices of LH(Desc(lchild{w)))
not in LH(Desc(w)), the edge of V' between Desc(lchild(w)) and Desc(rchsid(w)), the
vertices of LH (Desc(rchild(w))) not in LH(Desc(w)), and t,, (see Figure 7). This is done
by performing the computation below.

Time: O(log n); Space: O(n); Processors: O(n).

18

Figure 8:

Ichild(w) : rehild(w)

v
12 vss

v1s

v3s

H, hi
Hycnitd(w) v2z rekitd(w)

Y19

Vi = V1g ty, Vi = ¥s1

Ly

Constructing P, and H, from Hichitd(w), Hychitd(w), and ty. In this case

Hy = (v12,v13, ¥15, V16, U31, ¥z, v33,vss) and Py = (v1g, v1s, v19, v20, V21, V22, Y30, ¥31)-

For each leaf node w let Hy, = LH(V;), where V; is the monotone

chain associated with w in B;

For [= the penultimate level of B to the top level of B do

For each node w on level [pardo
Let ¢y, = v;u; be the common tangent
joining LH (Desc(lchild(w))) and LH(Desc(rchild(w)));
Split Hicnita(w) at vi, so that Hicpitgrw) = Hienitagw) + (vi) + Ha ehitatw);
{We use + to denote the concatenation of vertex lists}
Split Hychitd(w) ab v5, so that Hyepita(uw) = Hi renita(w) T (v5) + Ha renitafu);
Set Py = (vi) + Hy ehitdiw) + Hirehitd(w) + (v5);
Set Hy := Hygenita(w) + (¥i: ;) + Ha renitd(u)s
Discard Hichitd(w)r Hrenitd(w)r Hitenita(w)r Hatenita(w)s Hirenitd(w), a0d Hy renitd(w);
{ P, is the polygon associated with w, and L{w) is the lower
convex hull of Dese(w) (see Figure 8) }
EndParFor

19

Comment: For any w € B each of the splitting and concatenating steps of the inner (parallel) for-
loop can be performed in O(1) time using O(| Desc(w)|) processors. Thus, Step 4 runs
in O(logn} time using O(n) processors. That the space complexity is O(n) follows
from Euler’s theorem (the Py’s, tw’s, and LH(Desc(w))’s from 2 planar graph having
vertex set V).

Step 5. Triangulate each P, in paralle] by performing Steps 5.1-5.2 below.
Time: O(logn), Space: O(n), Processors: O(n).
Step 5.1. For each v; € P, find the edge in P, which is intersected by the line containing v;
and parallel to .. Let e; denote the edge chosen for v; (e.g., in Figure 9 ey is the
edge vgup). This can be done in O(logn) time and O(|P,|) processors by doing a
binery search for each v; € P, in parallel.

Comment: Note that this implies that the vertex v; is visible from the lower of the two endpoints
of e;.

Step 5.2. Augment P, by adding an edge from each v; to the lower of the two endpoints of ;
(see Figure 9). This can clearly be done in O(1) time using O(|Py|) processors.

Comment: We show below that in adding an edge from each v; to the lower endpoint of the
corresponding ¢; we triangulate Py,. Since the P,’s form a partition of the region
between V' and LH(V), this completes the triangulation of the underside of V.

End of CHAIN-TRIANGULATE.

Theorem 3.9: Given a monotone polygonal chain V the algorithm CHAIN-TRIANGULATE cor-
rectly triangulates the under side of V, as well as computing the lower convez hull LH(V}, in
O(logn) time and O(n) space using O(n) processors on a CREW PRAM.

Proof: We first show that CHAIN-TRIANGULATE is correct. The correctness of the algo-
rithm depends on the following facts: (1) ¢,, is the tangent line between LH(Desc(lchild(w))) and
LH(Desc(rchild(w))) for all w € B, (2) the P,’s form a decomposition of the region bounded
from above by V' and bounded from below by LH(V), and (3) each P, is triangulated correctly.
Facts (1) and (2) follow immediately from comments made above, so we have yet to show that
each P, is triangulated correctly. That is, we need to show that, for any Py, in adding an edge
from each v; € P, to the lower endpoint of the edge e; we form a triangulation of P,,. Consider
any edge e in P, other than t,,, with endpoints v; and v;. Let vz (v;) be the lower endpoint
of ¢; (e;). It is enough to show that the slice of Py, between v;v; and v,v is triangulated cor-
rectly. WLOG, 1, is parallel to the z-axis, y(v;) < y{v;}, and the edge e has positive slope. If
vi = v, then in adding the edges v;v; and v;u; we construct the triangle v;v;v; (See Figure 10.a).
If v; 3% v, then there must be a chain of vertices (vp = vg,,vg,,..., v, = v) C P, such that
y(ve,) < w(vi) < y(vr,) < y(vr,) < -+ < ylvg,) < y(v;) (see Figure 10.b). Thus, in Step 5.2 we

20

V10

U30

Figure 9: An example of a triangulated polygon P,. The left convex chain is from
LH(Desc(lchild(w)})) and the right convex chain is from LH (Desc(rchild{w))).

add an edge from each vertex v,,...,vr, to v;. Therefore, the portion of P, between v;v; and
v;v; consists of the triangle v;v;u; and a series of triangles ;v 1vm, for m € {ky,...,k;_1} (See
Figure 10.b). This completes the proof of the correctness of CHAIN-TRIANGULATE. We now
move on to the complexity bounds of the algorithm.

Summing up all the time complexity bounds from each of the above steps, we get that the time
complexity, T'(n), of CHAIN-TRIANGULATE is characterized by the recurrence T'(n) = T(y/n) +
O(logn), which has solution T'(n) = O(logn). The space bounds, S(n), can be characterized
by the recurrence S(n) = max{\/nP(y/n),bn}, for some constant b. Thus, S(n) = O(n). The
processor bounds, P(n), can be characterized by the recurrence P(n) = max{y/nP(y/n),cen}, for
some constant ¢, which implies that P(rn) = O(n). B

Corollary 3.10: Given a simple polygon P with n vertices, P can be triangulated in O(log n log log n)
time and O(n logn) space (or, alternatively, in O(log® n) time and O(n) space) using O(n) proces-
sors on ¢ CREW PRAM.

Proof: Since we can friangulate the underside of a monotone polygonal chain in O(log n) time and

O(r) space using O(n) processors, by Theorem 3.9, the bottle-neck computation in triangulating a

21

(a) (b)

Figure 10: The two cases for proving that the portion of P,, between v;v; and vjv; is triangulated.

simple polygon is in computing the trapezoidal decomposition used in parti tioning P into one-sided
monotone polygons. The complexity bounds follow, then, from Theorems 3.7 and 3.8. B

We also note, in the corollary which follows, that that the algorithm CHAIN-TRIANGULATE
can also be used in triangulating an arbitrary point set in O(logn) time and O(n) space using O(n)

processors, which is optimal,

Corollary 3.11: Given a set S of n points in the plane a triangulation of $ can be computed in
Oflogn) time using O(n) processors on « CREW PRAM, and this is optimal.

Proof: The method is to first sort the points of S by z-coordinate. This can be done in Oflogn)
time using O(n) processors by using the sorting network of Ajtai, Komlés, and Szemerédi (1983).
After this is done, we can easily form a monotore polygonal chain V' with each of the input points as
vertices by joining consecutive vertices in the sorted order with an edge. We then use the algorithm
CHAIN-TRIANGULATE twice: once to triangulate the region between V' and its lower hull, and
once to triangulate the region between V and its upper hull. By Theorem 3.9 we can see that the
sorting step clearly dominates the complexity bounds, so we can triangulate an arbitrary point set
in O(logn) time using O(n) processors on a CREW PRAM. Since this problem has an O(nlogn)

22

sequential lower bound (by a trivial reduction from sorting) we can do no better than O(logn) time
using O(n) processors on a CREW PRAM.

Merks (1986) recently established the above corollary using a substantially different method
than the one we describe above. His method is also based on the /n-divide-and-conquer method,
but it does not generalize to the problem of triangulating a simple polygon.

We next point out that the plane-sweep tree technique can be used to efficiently solve the planar

point location problem.

3.5 Planar Point Location

Given a planar subdivision S consisting of n edges, construct a data structure which, once con-

structed, enables one processor to determine for a query point p the face in S containing p.

Theorem 3.12: Given ¢ planar subdivision S consisting of n edges, we can construct in parallel
a data structure which, once constructed, enables one processor to determine for any query point
p the face in S containing p in O(logn) time. The construction takes O(lognloglog n) time and
Ofnlogn) space using O(n) processors on a CREW PRAM.

Proof: The solution to this problem is to build the augmented plane-sweep tree for S and associate
with each edge s; the name of the face above and below 5;. A planar point location query can
then be solved in O(logn) serial time by performing a multilocate like that used in the proof to
Theorem 3.7. 1

It may seem that the usefulness of planar point location data structures is limited to sequential
computational geometry, but this is not the case. For example, doing many planar point locations
in parallel is the bottleneck computation in the parallel Voronoi diagram algorithm of Aggarwal et
el. (1985). Ar easy consequence of Theorem 3.12 is that the running time of their algorithm can
be improved from O(log® n) to O(log® nloglog n), still using only O(n) processors.

In the previous algorithms we assumed that segments did not intersect. In the next subsection
we show that we can use the plane-sweep tree technique to detect if any two of n line segments

intersect.

3.6 Intersection Detection

Given a set § of n line segments in the plane, determine if any two segments in S intersect. We

begin by stating the conditions which we use to test for an intersection.

Lermma 3.13: (Aggarwal et al., 1985) The segments in S are non-intersecting iff we have the
Jollowsing for the plane-sweep tree T of S:

23

(1) For every v € T all the segments in H(v) intersect the left vertical boundary of IT, in the

same order as they intersect II,’s right vertical boundary.

(2) For every v € T no segment in W (v) intersects any segment in H{v). &

We use this lernma by testing for each condition at the appropriate point during the construction
or traversal of the plane-sweep tree for S. We use these observations in the proof of the following
theorem. We note that one result in the theorem is stated for the CRCW PRAM parallel model in
which we allow for concurrent writes so long as all processors attempting to simultaneously write
in the same memory cell are writing the same value. This is the only point in this paper in which
we use the CRCW model; all other algorithms are for the (weaker) CREW PRAM model.

Theorem 3.14: Given n line segments in the plane it is possible to detect if any two intersect in
O(lognloglogn) time and O(nlogn) space using O(n) processors on « CRCW PRAM (alterna-
tively, in O(log? n) time and O(n) space using O(n) processors on ¢ CREW PRAM).

Proof: We begin with the proof of the O(log n log log r) time result. We can test for Condition (1)
during the BUILDUP procedure. After building a set H(v) in Step 2 of the BUILDUP procedure
we can test Condition (1) by constructing two other sets LB(v) and RB(v), where LB(v) (RB(v))
18 the list of the intersection points of the segments in H(v) with the left (right) vertical boundary of
IT,, listed in the same order as they appear in H(v). If either of these lists is out of order, then there
is an intersection. We can test whether either is out of order by comparing each element in LB(v)
(and RB(v)) with its two neighbors. If a processor detects an inconsistency then it writesa 1 to a
global “intersection detected” flag (this is where we need the power of the CRCW model). Only if
this flag is 0 do we proceed to the next level in T and repeat the above test. This will multiply the
amount of work done by the BUILDUP algorithm by a factor of O(1), so by Theorem 3.5 we can
check Conditien (1) in O(log nlog log) time and O(n logn) space using O(n) processors.

If we complete the BUILDUP procedure and do not detect an intersection, then we can
test for Condition (2) as follows. First, we execute the AUGMENT algorithm on 7. Let V =
{p1,p2,...,p2x} be the set of endpoints of segments in S, and let 8(p;) denote the segment in §
with endpoint p;. If p; € I, for some v € T, then clearly s(p;) € W(v). If a segment s(p;) € W{v)
intersects a segment in H(v), then it must intersect the segment in H(v) directly below p; or the
segment in H(v) directly above p; (this is because we already know that no two segments of H{v)
intersect each other). We can then perform a multilocation of each p:, and each time we find
a segment in H(v) directly above or below p; we check if s(p;) intersects it. Thus, we can test
Condition (2) in O(logn) additional time.

To prove the O(n) space result, we use the alternative method of Theorem 3.6 to perform the

necessary multilocations. We test Condition (1) each time a set H(v) is constructed, v € T. We

24

also test Condition (2) at this point, after performing the binary search in H (v) for each point p;
such that p; € Il,. The CRCW power is not needed in this case, because we are spending O(log n}
time per level of the tree anyway, so we can afford to spend an additional O(log n) time performing
an OR operation for each level of the tree. B

We now move on to the critical-point merging technique and how to use it in conjunction with
paralle] divide-and-conquer to efficiently solve problems whose efficient sequential algorithms use

the plane-sweeping technique.

4 Divide-and-Conquer with Critical-Point Merging

Often times when using the plane-sweeping paradigm to solve geometric problems sequentially, one
scans a set of objects by sliding a vertical line along the z-axis, storing the objects in some kind of
binary search tree as one goes. At various points (eritical points) during the plane-sweeping one
performs updates and queries on this tree. Intuitively, the method described in this section is to
turn plane-sweeping on its side and use divide-and-conquer to compute all the critical-point queries.
We begin by dividing the problem into two equally sized subproblems by splitting the set of objects
as they would be split into subtrees in the binary search tree. After solving each subproblem in
perallel we take the set of critical points for each subproblem and merge them into one list. The key
to solving a problem in this manner is in defining labels to be associated with each critical point
such that the labels of the merged list can be computed quickly in parallel, and, more importantly,
such that when we have completed the construction we can use these labels to solve the problem
at hand. Instead of describing the technique in a generic fashion, as we did with the plane-sweep
tree, we describe it by presenting the solutions to four specific problems: 3-dimensional maxima,

multiple range-counting, rectilinear segment intersection counting, and visibility from a point.

4.1 3-Dimensional Maxima

Let V = {p1,p2,...,Pn} be a set of points in R3. For simplicity, we assume that no two input
points have the same « (resp., y, z) coordinate. We say that a point p; I-dominates another point
p; if z(p;) > z(p;), £-dominates p; if z(p;) > z(p;) and y(p;) > y(p;), and 8-dominates p; if
z(pi) > =(p;), y(p:) > y(p;), and 2(p;) > z(p;). A point p; € V is said to be a mazimum if it is not
3-dominated by any other point in V. The 3-dimensional maxima problem, then, is to compute
the set, M, of maxima in V. We show how to solve the 3-dimensjonal maxima problem efficiently
in parallel in the following algorithm. The labels we use are motivated by the labels used in the
binary search tree used in the plane sweep used in the optimal sequential algorithm for this problem

(Kung, Luccio, and Preparata, 1975). We assume that the input points are given in sorted order,

25

since sorting can be done in O(log n loglog r)) time and O(n) space using O(n) processors by using

parallel merging.

Algorithm 3-D MAXTMA:
Input: A list of points V = {p1,p2,...,pn} in ®%. We assume that the p;’s are given sorted by
y-coordinate (i.e., y(p;) < y{pi41))-

Output: A list X = {q1,¢2,...,¢n} of the points in V sorted by increasing z-coordinate. We

also have two labels ZO and ZT associated with each ¢; € X, such that ZO(g;) is the largest
z-coordinate in the set of points which 1-dominate g;, and ZT(g;) is the largest z-coordinate in the
set of points which 2-dominate ¢;.

Step 1. Divide V into two equally sized subsets V; and V2 such that all the points in ¥ have
smaller y-coordinate than points in V3. Recursively solve the problem for V; and V3 in
parallel. After the parallel recursive call returns we will have lists X; and X; of the points
in V1 and V3, respectively, sorted by increasing z-coordinate. We also have labels Z0;
{(Z02) and ZTy (ZT%) defined correctly for the points in Xy (X3) (when dominance is
restricted to Xy (X3)).

Step 2. Merge X; and X; info a single list X, basing all comparisons on the z-coordinates of the
points involved. Let X = {q1,4z,...,qn} {X is the set of points in V listed by increasing
z-coordinate).

Step 3. For each ¢; € X pardo

{ Let pred;{g;) denote the predecessor of ¢; in X;, 7 € {1,2}.
If ¢; has no predecessor in Xj, then pred;(g;) = ¢. Also, let
first(X;) denote the first element in X;. }
Z201(¢) == ZTi(¢) = max{Z0(first{X1)),z(first(X1))};
{ this is the maximum z-coordinate in X }
Z0x(9) == ZT(¢) = max{ZO0y(first(X2)),z(first(X3))};
If g; € X7 then { ¢; “came from” X; }
Z0(g:) == max{Z01(gi), ZO2(pred2(g:))};
ZT(q:) == max{ZTi(q:), ZO2(preds(g:))}
Else { ¢; “came from” X; }
Z0(g;) = max{Z01(pred1(%)), ZO2(g:)};
ZT(q;) == ZT2(q:)
EndIf

EndFor
Step 4. (Postprocessing) After we have computed the labels ZO and ZT for all points q:, we know

that g; is a maximum iff z(g;) > ZT(q:)-
End of Algorithm 3-D MAXTMA.

26

q o
s predz(p) o
| Q
e 1
|
° |
o I °
" I n
: 1
¢ predi(q) N
X1 : L e U
g p o

Figure 11: The different predecessor cases for 3-dimensional maxima. The figure is 2 projection
of the points of V' onto the zy-plane (z being the horizontal axis). Points enclosed in the dashed
lines are the points which affect p (or ¢’s) ZT label, while points to the right of the dotted lines
affect p (or ¢’s) ZO label.

27

Theorem 4.1: The algorithm 8-D MAXIMA solves the three-dimensional mazima problem in
O(lognloglogn) time and O(n) space using O(n) processors on a CREW PRAM.

Proof: We prove the correctness of the algorithm 3-D MAXIMA by induction. Suppose the ZQ
and ZT labels for each ¢; € X, 7 € {1,2}, are computed correctly. Case 1: q; € X comes from X;
(ie., g: € X1). Notice that every point which 1-dominates g;’s predecessor in X also 1-dominates
g:, since ¢;’s predecessor in X; is the point with largest z-coordinate less than z(g:). Also, since
every point in X has y-coordinate greater than y(g;), in this case, every point which 1-dominates
gi's predecessor will in fact 2-dominate ¢;. Thus, in constructing ZO(g;) we need only take the
maximum of the old ZO label for ¢; and the ZO label for the predecessor of ¢; in X3, and ¢;'s new
ZT label should be the maximum of its old ZT label and the ZO label of its predecessor in Xs.
Case 2: g; € X comes from X;. Clearly, in this case, no point in X; can 2-dominate ¢;, so the new
ZT label for g; should be the same as the old Z7T label of ¢;. Still, any point which 1-dominzates
¢i’s predecessor in X; also 1-dominates ¢;, so in order to update the ZO label for g: we still need
to take the maximum of the old value of ZO and the ZO label of the predecessor of ¢; in X;. (See
Figure 11.) Thus, after we have done the updates of Step 3, each g,’s Z7 label stores the maximum
z-coordinate of all the points which 2-dominate ¢;. Therefore, using these ZT labels we can use
the test of Step 4 (and a parallel prefix computation) to construct the set M of maxima in X (in
O(logn) additional time).

Lemma 2.1 implies that the algorithm’s time complexity, T(n), is determined by the recurrence
T(n) = T(n/2) + O(loglog n), whose solution is T'(n) = O(log nloglogn). The space and number
of processors used are clearly O(n). o

It is worth noting that we can use the method of algorithm 3-D MAXIMA as the basis step of
& recursive procedure for solving the general k-dimensional maxima problem. The resulting time
and space complexities are given in the following theorem. We state the theorem for k > 3 (the
2-dimensional maxima problem can easily be solved in O(logn) time and O(r) space using the

AKS sorting network and a parallel prefix computation.

Theorem 4.2: Fork > 3 the k-dimensional mazima problem can be solved in O((log n)¥~2log log n)
time and O(n) space using O(n) processors on ¢ CREW PRAM.

Proof: The method is a straightforward parallelization of the algorithm by Kung, Luccio, and
Preparata (1975), using 2 procedure very similar to 3-D MAXIMA as the basis for the recursion.
We omit the details. B

Next, we address the two-set dominance counting problem. We also show how the multiple
range-counting problem and the rectilinear segment intersection counting problem can be reduced

to two-set dominance problems efficiently in parallel.

28

4.2 Two-Set Dominance Counting and Related Problems

In the two-set dominance counting problem we are given a set V = {py,pz,...,pi} and a set
U = {q1,92,-- - 1gm} of points in the plane, and wish to know for each point ¢; in U the number of
points in V which are 2-dominated by g. In the algorithm which follows we show how fo solve this
problem efficiently in parallel.

Algorithm DOM-COUNT:

Input: A set V = {p1,p2,...,p1} and a set U = {q1,92,---19m} of points in the plane. For
simplicity, we assume that the points in V' and U are all distinct.

Output: A list X = {v1,v2,...,1+m} of the points defining this problem (vi is either a p; or a
q;) sorted by increasing lexicographical order. We also have labels CO and CT defined for each
v; € X, where CO(v;) is the number of points in V' 1-dominated by the point v;, and CT(v;) is the
number of points in V' 2-dominated by v;.

Step 0. (Preprocessing) Combine the points in V and U into one list W, and sort the points in W
by y-coordinate. Also, we mark each point in W if it came from V. Initially, the CO and
CT label for each point is 0.

Comment: For each v; € W define the function X, as follows: X, (v;) =1if v; € V; X, (%) =0
otherwise.

Step 1. Divide W into two equally sized subsets W1 and W such that all the points in W, have
smaller y-coordinate than points in W,. Recursively solve the problem for Wy and Wy
in parallel. After the parallel recursive call returns we will have lists X and X3 of the
points in W, and W3, respectively, sorted by increasing lexicographical order. We also
have labels COy (CO;) and CTy (CT:) defined correctly for the points in X3 (Xz) (when
dominance is restricted to X1 (X3)).

- Step 2. Merge X; and X; into a single list X, where all comparisons are done lexicographically.
Let X = {v1,v2,..,Yntm}-

29

Step 3. For each v; € X pardo
{ Let pred;{v;) denote the predecessor of v; in X;. If v; has
no predecessor in Xj, j = 1,2, then pred;(v;) = ¢. }
COy(¢) := COy(4) == CTi(¢) := CTa(9) := X, (¢) = O;
If v; € X; then { v; “came from” X, }
CO(v;) := CO1(v;) + COy(predy(v;)) + X, (pred; (vi));
CT(v;) :== CTi(v;)
Else { v; “came from” X, }
CO(v;) .= CO1(predi(vi)) + CO2 (%) + X, (pred; (v));
CT(v) :== CTi(predi(v;)) + CTa(v;) + X, (predy(v;))
EndIf

EndFor
End of Algorithm DOM-COUNT.

Theorem 4.3: Given a set V of | points in the plane and a set @ of m points in the plane, the
algorithm DOM-COUNT computes for each q; € Q the number of points in V 2-dominated by ¢; in
O(log n loglog n) time and O(n) space using O(n) processors on a CREW PRAM, where n = l+m.

Proof: The proof of correctness is by induction. For any point v; € X the number of points 1-
dominated by v;, CO(v;), is equal to the old CO label for v; plus the CO label for the predecessor
of v; plus 1 if the predecessor of v; is in V, since the predecessor of v; is 1-dominated by v;. If y;
came from X; then the number of points 2-dominated by v, CT(v;) is simply the old CT label
for v;, since v; cannot 2-dominate any points in X3. If v; came from Xz then the number of points
2-dominated by v; is the old CT label for v; plus the CT value for the predecessor of v; plus 1 if v;
is in V', since v; 2-dominates its predecessor in this case. (See Figure 12). By an argument similar
to the one used in the proof of Theorem 4.1 the algorithm DOM-COUNT runs in O(log nloglog n)
time and O(n) space using O(n) processors, where n =+ m. W

There are a number of other problems which can be reduced to two-set dominance counting. We
mention two here. We begin with the multiple range-counting problem. Given a set V of points
in the plane and a set R of m isothetic rectangles (ranges) the multiple range-counting problem is

to compute the number of points interior to each rectangle.

Corollary 4.4: Given a set V of I points in the plane and a set R of m disothetic rectangles, we can
solve the multiple range-counting problem for V and R in O(logn loglog n) time and O(n) space

using O(n) processors, where n =1+ m.

Proof: We know from (Edelsbrunner and Overmars, 1982) that counting the number of points

interior to a rectangle can be reduced to dominance counting. That is, if d(p) is the number of

30

Figure 12: The different predecessor cases for 2-set dominance counting. Points enclosed in the
dashed lines are the points which affect p (or ¢’s) CT label, while points to the left of the dotted
lines affect p (or ¢’s} CO label.

31

points in V' 2-dominated by a point p, given a rectangle r = (p1, p2, p3, ps) (Where vertices are listed
in counter-clockwise order starting with the upper-righthand corner), then the number of points in
V interior to r is d(p1) — d(p2) + d{ps) — d(ps). Therefore, it suffices to solve the two-set dominance
counting problem. N

Another problem which reduces to two-set dominance counting is rectilinear segment intersec-
tion counting: given a set § of n rectilinear line segments in the plane, determine for each segment

the number of other segments in S which intersect it.

Corollary 4.5: Given a set S of n rectilinear line segments in the plane, we can determine for

each segment the number of other segments in S which intersect it in O(lognloglogn) time and
O(n) space using O(n) processors on a CREW PRAM.

Proof: Let Uy (Uz) be the set of left (right) endpoints of horizontal segments, and let di(p)
(d2(p)) denote the number of points in U} (U3) 2-dominated by p. For any vertical segment s,
with upper endpoint p and lower endpoint g, the number of horizontal segments which intersect s
is d1(p) — di(g) + d2(g) — d2(p). This is because dy(p) ~ di(q) (d2(p) — d2(q)) counts the number
of horizontal segments with a left (right) endpoint to the left of 5 and y-coordinate in the interval
[v(¢),¥(p)]. Thus, di1(p) — di(g) — (d2(p) — d2(g)) counts the number of horizontal segments with
left endpoint to the left of s, right endpoint to the right of s, and y-coordinate in the interval
[¥(g),y(p)] (i.e., the set of horizontal segments which intersect s). m

The final problem we look at is visibility from a point.

4.3 Visibility from a Point

Given a set of line segments § = {s1, 92,...,8,} which do not intersect, except possibly at end-
points, and a point p, determine the part of the plane which is visible from p when every §;
is opaque. We can use divide-and-conquer with critical-point merging to solve this problem in
O(lognloglogn) time and O(n) space using O(n) processors. WLOG, the point p is at negative
infinity below all the segments. For simplicity, we assumne that the z-coordinates of the endpoints
are distinct.

Algorithm VISIBILITY:

Input: A set of non-intersecting line segments S = {s1,82,...,9,}. The s;’s are not given in any
particular order.

Output: A set X = {p1,p2,...,p2n} consisting of the endpoints of the segments in S sorted by
z-coordinates (z(p;) < z(pi+1)). We also have a label VIS associated with each p; € X, such
that VIS(p;) is the segment in S visible on the interval (z(p;),z(piy1)), for i = 1,2,...,2n — 1,
and VIS(p2n) = +o0; by convention, VIS(p;) = +co if no segment is visible on the interval

(I(p,'), I(p.'+1)).

32

Before merge:

F1 P2 ps P4 Ps Ds P71 DPs P Pio F U1 P12z Pis

Xi= (1|3]e6|7[8]11]12 X,= |214[5]9[10]13
predzz ¢ 215155 |10|1C pred]_: 113|3|8|8|12

After merge:

[PM)

P.'l Pz ps P4 b5 };6 pr .!;s Po P.10 P'u D1z Pl13
Figure 13: An example of visibility merging. The dashed segments correspond to the visible region
for X; and the solid segments correspond to the visible region for X;. For simplicity in deacribing
the vectors Xj, X, preds, and pred; we denote each point p; by its index i, Note that points are

never removed, even if the same segment defines the visible region for many consecutive intervals

(e.g., ps through p7).

33

(p14)

Step 1. Partition S into subsets S1 = {81,...,8p/2} and Sy = {3n/2415.--,8n}, and recursively
solve the problem for S and S in parallel. After the parallel recursive call returns we will
have a list X of the endpoints of segments in S; sorted by z-coordinates, and a similarly
defined list X, for S;. We also have labels VISy (VIS;) labels correctly defined for each
point in X; (X2) when visibility is restricted to segments in $; (S).

Step 2. Use parallel merging to merge the two sorted lists X; and X into a single list X, where
comparisons are based on the z-coordinates of points. Let X = {p1,p2,...,P2n}.

Step 3. For each p; € X pardo

{ Let pred;(p;) denote the predecessor of p; in Xj, 5 € {1,2}.
If p; has no predecessor in X, then pred;(p;) = ¢. }
VIS (¢) = VIS (¢} = +oo;
If p; € Xy then { p; “came from” X7 }
VIS (p;) := min{VIS1(p:),VIS2(predz(p:})}
Else { p; “came from” X, }
VIS(p;) == min{VIS)(predi(p:)), VIS2(pi)}
EndIf

EndFor
Comment: Taking the minimum of VIS:(p;) and VIS:(predaz(p;)) (or of VIS:(predi(p;)) and

VISy(pi)) is well defined, since the segments being compared span the interval (z(p;), z(pi+1))

and do not intersect (see Figure 13). Having observed this, note that Step 3 completes
the construction, since the list of labels VIS(p;) is a description of the visible part of
the plane.

End of Algorithm VISIBILITY.

Theorem 4.8: The algorithm VISIBILITY solves the problem of computing the visibility from e
point in Olog nloglogn) time and O{n) space using O(n) processors on a CREW PRAM.

Proof: The correctness of VISIBILITY follows from the observation that in the conquer step {3)
when computing VIS (p;}) we need only compare the two segments which span the vertical strip
(z(p:), z(pi+1)) X (—o0,00). This is precisely what is happening in Step 3 when we compare the
old VIS label of a critical point with the VIS label of its predecessor in the other set.

By the same argument as in the proof for Theorem 4.1 the algorithm VISIBILITY runs in
O(logn loglog n) time and O(n) space using O(n) processors. N

5 Conclusion

In this paper we have given general techniques for solving a number of geometric problems whose

efficient sequential algorithms use the plane-sweep paradigm. These techniques can be viewed

34

as efficient parallel analogues to the plane-sweeping paradigm. We applied the plane-sweep tree
technique to intersection detection, trapezoidal decomposition, polygon triangulation, and planar
point location. We were able to achieve an O(lognloglogn) time bound for each problem, using
O(n) processors. For the problem of triangulating an arbitrary point set we were able to achieve
an O(logn) time bound using O(n) processors, which is optimal. We were able to achieve a faster
running time for arbitrary triangulation than for polygon triangulation because we could avoid the
bottle-neck computation in our polygon triangulation algorithm, that is, constructing a trapezoidal
decomposition (which is not even defined for an arbitrary point set). A consequence of our planar
point location algorithm is that the time bound of the Voronoi diagram construction algorithm of
Aggarwal et al. (1985) can be improved from O{log® n) to O(log? nloglog n), still using only O(n)
Processors.

We applied divide-and-conquer with critical-point merging technique to visibility from a point,
3-dimensional maxima, two-set dominance counting, multiple range-counting, and rectilinear seg-
ment intersection counting. We were able to achieve an O(logn log log n) time bound for each

problem, using O(n) processors.

Acknowledgment

We would like to thank Greg Frederickson for his valuable comments that considerably improved

the presentation of Section 4.

References

Aggarwal, A., Chazelle, B., Guibas, L., é’DL’mlaing, C., and Yap, C. (1985), “Parallel Compu-
tational Geometry,” Proc. 25th IEEE Symp. Found. of Comp. Sci., pp. 468-477.

Ajtai, M., Komlés, J., and Szemerédi, E. (1983), “Sorting in clog n parallel steps,” Comébina-
tortce, 3, pp. 1~19.

Atallah, M. J., and Goodrich, M. T. (1985), “Efficient Parallel Solutions to Some Geomet-
ric Problems,” to appear in Jour. of Parallel and Dist. Comp. A preliminary version
appeared in Proc. 1985 IEEE Int. Conf. on Parallel Proc., pp. 411-417.

Atallah, M. J., and Goodrich, M. T. (1986}, “Parallel Algorithms for Some Functions of Two
Convex Polygons,” to appear in 24th Allerton Conference on Communication, Control,
and Computing.

Borodin, A., and Hopcroft, J. (1985), “Routing, Merging, and Sorting on Parallel Models of
Computation,” Jour. of Comp. and Sys. Sei., 30(1), pp. 130-145.

Chazelle, B., and Guibas, L. J. (1986}, “Fractional Cascading: I. A Data Structuring Tech-
nique,” Algorithmica, 1(2), pp. 133-162.

35

Chow, A. (1980), “Parallel Algorithms for Geometric Problems,” Ph.D. dissertation, Comp.
Sci. Dept., Univ. of Illincis at Urbana-Champaign.

Edelsbrunner, H., and Overmars, M. H. (1982), “On the Equivalence of Some Rectangle Prob-
lems,” Info. Proc. Letters, 14(3), pp. 124-127.

El Gindy, H. (1986}, “A Parallel Algorithm for Triangulating Simplical Point Sets in Space with
Optimal Speed-up,” to appear in 24th Allerton Conference on Communication, Control,
and Computing.

Kruskal, C., Rudolph, L., and Snir, M. (1985}, “The Power of Parallel Prefix,” Proc. 1985 IREE
Int. Conf. on Parallel Proc., pp. 180-185.

Kung, H. T., Luccio, F., Preparata, F. P. (1975), “On Finding the Maxima of a Set of Vectors,”
Jour. of ACM, 22(4), pp. 469-478.

Lee, D. T., and Preparata, F. P. (1984), “Computational Geometry—A Survey,” IEEE Trans.
on Computers, C-33(12), pp. 872-1101.

Merks, E. (1986), “An Optimal Parallel Algorithm for Triangulating a Set of Points in the
Plane,” Tech. Report TR 86-9, Simon Fraser University, Burnaby, British Columbia,
Canada.

Overmars, M. H., and Van Leeuwen, J. (1981), “Maintenance of Configurations in the Plane,”
Jour. of Comp. and Sys. Sci., 23, pp. 166-204.

Veliant, L. (1975), “Parallelism in Comparison Problems,” SIAM Jour. on Comp., 4(3), pp. 348—
355.

36

Problem

Previous Bounds

Our Bounds

Trapezoidal " (lognloglog n, nlogn)
. (log“ n, nlogn) N

Decomposition or (log®n, n)
Polygon . (log nloglog n, nlogn)

.) (log* n, nlogn) .
Triangulation or (log®n, n}
Arbitr

) oy . not considered (logn, n)
Triangulation

Planar Point

(log? n, nlogn)

(log nloglogn, nlogn)

Location Q(n) = O(log® n) @(n) = O(logn)
o

Interse.c lon (Iogz " n logn) (logz ., n)

Detection

Int. Detection
(CRCW model)

not considered

(log nloglog n, nlogn)

3-D Maxima " (lognloglog n, n)
Two-Set Dom.
. » (lognloglog n, n)
Counting
Multiple Range-
i 7 (lognloglogn, n)
Counting

Rect. Segment
Int. Counting

(lognloglog n, n)

Visibility

(lognloglog n, n)

Table 1: Summary of Results. The pair (¢(n), s(n))
denotes that the parallel algorithm runs in O(t(n)) time

and O(s(n)) space, using O(n) processors. All previous
bounds are due to Aggarwal et al. (1985).

37

	Efficient Plane Sweeping in Parallel
	Report Number:
	

	tmp.1307986960.pdf.j6P7c

