
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

11-3-2016

Achieving Causal Consistency under Partial
Replication for Geo-distributed Cloud Storage
Tariq Mahmood
Purdue University, tmahmood@purdue.edu

Shankaranarayanan Puzhavakath Narayanan
Purdue University, spuzhava@purdue.edu

Sanjay Rao
Purdue University, sanjay@purdue.edu

T. N. Vijaykumar
Purdue University, vijay@purdue.edu

Mithuna Thottethodi
Purdue University, mithuna@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Mahmood, Tariq; Puzhavakath Narayanan, Shankaranarayanan; Rao, Sanjay; Vijaykumar, T. N.; and Thottethodi, Mithuna, "Achieving
Causal Consistency under Partial Replication for Geo-distributed Cloud Storage" (2016). Department of Electrical and Computer
Engineering Technical Reports. Paper 475.
http://docs.lib.purdue.edu/ecetr/475

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages

1

Achieving Causal Consistency under Partial
Replication for Geo-distributed Cloud Storage

Tariq Mahmood, Shankaranarayanan Puzhavakath Narayanan, Sanjay Rao, T. N. Vijaykumar, and Mithuna
Thottethodi

Abstract—Causal consistency has emerged as an attractive middle-ground to architecting cloud storage systems, as it allows for high
availability and low latency, while supporting stronger-than-eventual-consistency semantics. However, causally-consistent cloud
storage systems have seen limited deployment in practice. A key factor is these systems employ full replication of all the data in all the
data centers (DCs), incurring high cost. A simple extension of current causal systems to support partial replication by clustering DCs
into rings incurs availability and latency problems. We propose Karma, the first system to enable causal consistency for partitioned
data stores while achieving the cost advantages of partial replication without the availability and latency problems of the simple
extension. Our evaluation with 64 servers emulating 8 geo-distributed DCs shows that Karma (i) incurs much lower cost than a
fully-replicated causal store (obviously due to the lower replication factor); and (ii) offers higher availability and better performance than
the above partial-replication extension at similar costs.

Index Terms—Causal Consistency, Partial Replication, Cloud Storage.

F

1 INTRODUCTION

C LOUD storage is one of the pillars on which the entire
cloud infrastructure rests. The application layers of the

cloud rely on the storage tier to offer low-latency, reliable,
available, consistent storage over geo-distributed scales [11],
[13], [15], [23], [27]. However, these goals are often at odds
with one another. In fact, the CAP theorem [20] (even the
more nuanced reading [8]) rules out certain strong flavors
of consistency (e.g., linearizability [13]) for wide-area sys-
tems that are available and partition-tolerant. At the other
extreme, eventual consistency [15], [23] ensures liveness but
offers no static guarantees of when a value may become
visible. Barring niche applications (e.g., banking), many
cloud applications are satisfied with weaker consistency
models than linearizability – however, eventual consistency
is inadequate in many scenarios including those requiring
causal ordering of events.

Causal consistency [2], [16], [17], [25], [27], [28], has
emerged as an attractive middle-ground for cloud storage
systems since it preserves the intuitive happened-before
relationship, critical in many scenarios (e.g., announcements
of price drops reaching customers who then discover the old
(undiscounted) prices).

Causally consistent storage systems, ensure that the
global ordering of operations respects each thread’s pro-
gram order as well as the (transitive) ordering implied
by any inter-thread value communication, while staying
available and partition-tolerant.

• At the time this work was done, all authors were with the Department of
Electrical and Computer Engineering, Purdue University, West Lafayette,
IN, 47907.
E-mails: (tmahmood, spuzhava, sanjay, vijay, mithuna)@purdue.edu

• Shankaranarayanan Puzhavakath Narayanan is currently with AT&T
Research.
E-mail: snarayanan@research.att.com

Despite these advantages, causally consistent systems
have seen limited adoption in practice. A key factor is
that current causally-consistent, distributed cloud storage
systems [2], [16], [17], [27], [28], suffer from a key drawback
that effectively renders them impractical; they require full
replication, where all the data is replicated in all the data
centers (DCs). Such full replication is infeasible because of
the immense size of the data stores as well as the large
numbers of DCs.

Partial replication, where each data object is replicated
in a subset of DCs, has been employed to reduce costs in
eventually-consistent (e.g., [15], [23], [38]) or linearizable
systems (e.g., [13]). Extending causal systems to support
partial replication is however not easy. Current causal sys-
tems [16], [27], [28] guarantee causality by statically binding
each client with one of many DCs, each of which contains
one full replica of the dataset. A simple extension to support
partial replication is to treat groups of (geographically close)
DCs as a single consistent-hashing ring, with one replica per
object in each ring. For example, Figure 3 depicts eight
DCs clustered into three rings, with each object having
three rather than eight replicas. We consider such a system,
which we call COPS-PR, as our baseline for comparisons.
However, COPS-PR faces a fundamental challenge. Current
causal systems require strong consistency within each ring
(except [2], which does not address partial replication,
as we discuss in Section 7). When a ring spans multiple,
geographically-distributed DCs as with COPS-PR, strong
consistency, availability and partition tolerance cannot be
simultaneously satisfied [20]. As such, one unreachable DC
may render the entire system unavailable because the DC’s
data is unavailable to the clients bound to the DC’s ring.

One may think that the above problem can be fixed by
accessing the unavailable data on a different ring. However,
the single-ring binding is central to achieving causal consis-

2

tency in current systems. To see why, consider two objectsX
and Y that are each present in two rings with initial values,
Xold and Yold. A client’s new values – Xnew and Ynew, in
that order – propagate to the two rings independently. If the
single-ring restriction were not enforced, another client may
read Ynew from one ring and the causally-earlier Xold from
another ring even though causal order within each ring is
maintained.

The single-ring restriction degrades availability and la-
tency. First, an object is unavailable if the replica in that
ring is not reachable due to network partition or a failure of
the DC hosting the replica, even though replicas in other
rings may be reachable. Second, a client is constrained
to accessing a replica in its associated ring, even though
a replica in another ring may offer lower latency due to
transient network congestion.
Our contributions: In this paper, we present Karma, the
first practical system that ensures causal consistency for
partitioned data stores with the cost advantages of partial
replication. Karma employs two novel ideas:
• First, unlike previous causal systems, which statically
bind a client to its associated DC (or ring), Karma allows
a client to be served by any replica based on availability or
latency. Karma leverages the key observation that causality
is violated only in the time window from when a causally-
later value is visible (Ynew) until the causally-earlier value
(Xnew) is propagated to all the rings (i.e., becomes “stable”).
Specifically, reads from multiple rings may be inconsistent
only in this short window (e.g., 300-400 ms is typical for
the geo-distributed 8 DCs in Amazon’s AWS). Accordingly,
Karma temporarily restricts reads from a client to go to the
same ring as a previous read to an “in-flight” (i.e., as-yet not
stable) data object. Because each ring is updated in causal
order (like the previous systems), this restriction guarantees
that later reads obtain consistent values. Karma’s dynamic
ring restrictions (DRR) dynamically tracks in-flight objects
to put the threads reading such objects into the restricted
mode and to release the threads to the unrestricted, full-
choice mode when the objects becomes stable. Because
this restriction is transient, Karma mostly retains the choice
of accessing any ring. Finally, because Karma allows ring-
switching, it avoids the unavailability problem that may
arise when DCs are not reachable.
• Second, Karma is the first system to integrate causal consis-
tency across persistent DC-level storage caches and replicas.
Integrating consistency guarantees across the storage and
caching tiers is one of the key challenges preventing adop-
tion of stronger consistency models [1]. While all accesses
go to the local DC in full replication, many accesses go to
remote DCs in partial replication (and in Karma). To achieve
low latency with partial replication, it is natural to employ
both read caching and temporary, persistent write buffering
at each DC. Write buffering and caching each pose their own
consistency challenges. To avoid consistency problems due
to the write-buffer (WB), (1) we use thread-private WBs to
prevent the premature reading of values by other threads
(which can violate causal-order write propagation), and (2)
we require client threads to check their own WBs to see if
gets can be satisfied from the WB before reading from the

cache or storage ring to avoid missing own writes. Similarly,
the cache poses a consistency challenge because it may miss
for some objects (unlike storage rings which are guaranteed
to be complete). For example, a client’s cache fill (upon a
miss) bringing in the in-flight Ynew to a cache that holds
Xold can violate consistency because (1) the same or (2) a
different client may read Ynew followed by Xold. For the
first case, we extend Karma’s DRR to force the clients, whose
read misses return in-flight values, to incur cache misses
temporarily for all the reads in the in-flight window. For
the second case, Karma allows demand fills only with stable
objects and not in-flight objects (the cached stable objects
are invalidated in causal order as part of write-propagation).
These two simple strategies – forced temporary cache misses
and disallowed demand fills – differ from conventional
caching which does not force misses nor disallow demand-
fills and are fundamental to ensuring Karma’s practicality.

We implemented Karma as a shim-layer between a key-
value storage tier consisting of individual (unmodified)
Cassandra instances and a YCSB client layer. Experimental
evaluation with 64 server nodes emulating 8 geo-distributed
data centers in 3 rings shows that Karma achieves 43%
higher throughput on average and significantly lower read
latencies than COPS-PR, while incurring similar costs. Note
that Karma achieves lower performance than impractical full
replication schemes where all accesses are local. However,
that is not a specific weakness of Karma; rather it is innate
to any partial replication scheme. Further, Karma offers
significantly stronger availability guarantees under failure,
and better performance network congestion than COPS-PR.
Finally, despite only partially replicating data, Karma guar-
antees full availability under a single availability zone [21],
[31] failure, and many common network partition modes.

2 BACKGROUND AND OPPORTUNITY

We discuss background and Karma’s rationale.

2.1 Consistency in cloud storage
Among the consistency models in cloud storage systems
are those limited to per-object guarantees. At the weak
end of the consistency spectrum are flavors of “eventual
consistency” wherein the system offers no guarantees other
than eventual propagation of updates to all copies. Eventual
consistency may not even guarantee read-your-own-write
ordering guarantees; a thread may write a new value and
then read an older value. There also exist consistency mod-
els which offer stronger per-key ordering guarantees [11],
[15], [19], but without any across-key guarantees (which is
the focus of this paper).

At the strong end of the spectrum, linearizability offers
global ordering of all reads and writes across all keys.
However, it is well known that these strong consistency
guarantees come at the cost of availability and/or partition
tolerance (the CAP theorem [20]).

2.2 Causal Consistency
Causal consistency is stronger than eventual consistency
with certain across-key ordering guarantees; yet it is can

3

X = 0

Client 1 Client 2

?

put(X=1) put(Y)

get(X) (returns X=1)
?

put(Z)

PPPPq

Fig. 1. Inter and Intra thread causal dependencies

achieve both consistency and availability under partition.
Causal consistency is a model wherein the global ordering
of operations respects each thread’s program order as well
as the (transitive) ordering implied by any cross-thread
value communication [4], [16], [27], [29]. For the special case
of concurrent writes to the same object, the writes must
resolved deterministically, which can be achieved using
version numbers as in previous work [27]. In other words,
causality defines a happens-before partial order among
puts (writes) and gets (reads). In this paper, we use the
notation X Y to imply that X happens-before Y . As
is intuitive, the happens-before partial order is transitive.
A causality violation occurs when two operations are per-
ceived to violate the happens-before relationship. Causal
systems track causal dependencies to ensure that reads and
writes cannot occur in an order that violates causality.

The basic primitive to enforce such ordering in dis-
tributed storage systems (assuming a single copy of each
object) is “put-after ” [27]. This operation ensures that
causal ordering is enforced in each ring by initiating
causally-later writes only after causally-earlier writes are
completed even though the items involved may be stored
on different servers (or DCs) in that ring. For example, in
Figure 1, put Z is initiated only only after both put X
and put Y complete, though X, Y and Z may be stored on
different servers.

The updates occur in causal order in each ring, but pro-
ceed asynchronously across the rings. While this ordering
provides consistency within each ring, causality may be
violated by reading from different rings, as discussed in
Section 1. For this critical reason, all current implementa-
tions statically bind clients to rings. Recall from Section
1 that such static binding incurs availability and latency
problems. While the latency problem is intuitive, one may
think that the availability problem can be addressed by
chained replication (CR) [37]. CR is appropriate within DCs
to ensure individual server availability, but does not pro-
tect against DC failures. However, using CR (which offers
linearizability) across DCs in the wide area would result in
prohibitively slow writes.

In the remainder of this paper, we assume a key-value
store that allows puts and gets on individual tuples. We
do not explicitly consider complex key-value store opera-
tions such as read-modify-write as they can be interpreted
as puts for consistency purposes. Transactional atomicity is
orthogonal to causal consistency which deals with ordering.
Note that general transactions that include both reads and

writes are ruled out in a wide-area setting because of the
CAP theorem. Some previous papers on causal consistency
have also examined limited forms of transactional support
(e.g., read-only [16], [27], [28], and write-only [28]) in ad-
dition to causal consistency as their motivating examples
require both atomicity and ordering. Because ordering is
important on its own accord (as illustrated by our exam-
ples), we focus on causal consistency. However, we show
later in Section 4.5 that Karma can support read-only get-
transactions by adopting the approach from prior work [28].

2.3 Karma’s opportunity

Karma’s opportunity arises from the key observation that
statically binding clients to rings, as in current systems, is
sufficient to ensure causal consistency; but is not necessary.

To illustrate this point, consider the two states in which
any object may be. If an object has been written to (using a
put) and the write is complete (i.e., all replicas have been
updated with the latest value) then the object is in a stable
state. If one replica of an object has been written to (and the
asynchronous updates of the other replicas are in progress)
the object is in an in-flight state.

When a client reads an in-flight value, the client is
vulnerable to causality violations because causally-earlier
writes may not yet have been applied to all the replicas;
so the client may later read a stale value from the not-yet-
updated replicas. However, a client that has read only stable
values (or has read in-flight values that have since become
stable) can not violate causality. This claim follows because
all causally-earlier updates must necessarily be complete
because of causal-order write-propagation in any given ring.
The window of vulnerability is transient, presenting an
opportunity for Karma to give clients mostly the unrestricted
choice of reading from any replica and temporarily restrict
later reads to the ring from which an in-flight value was read
previously. Because each ring is updated in causal order,
the chosen ring is guaranteed to provide causally-consistent
values to later reads. Karma applies this restriction only
during the windows of vulnerability (i.e., until the in-flight
value becomes stable), as mentioned in Section 1.

3 Karma: DESIGN OVERVIEW

Since partial replication results in remote accesses which can
hurt latency, Karma attempts to minimize remote accesses
via the use of per-DC caches and persistent write-buffers
(WBs). While the latency improvements from caches and
WBs are attractive, the challenge of using these multiple
tiers while preserving consistency must be addressed care-
fully. Karma ensures that there are no ordering violations as
values flow through the WBs, storage rings, and caches, as
we describe next.

Karma’s goal is to achieve causal consistency by ensuring
that the no causally older value may be read after a causally
newer value has been read. Consider two put operations to
objects X and Y which previously had the values Xold and
Yold and which are updated by the put operations to have
the values Xnew and Ynew. If there is a causal dependency
between the two put operations with Xnew Ynew (say),

4

Fig. 2. ’Get’ operation in Karma

then, Karma (any causally consistent system) must ensure
that no client can read Ynew and then read Xold. Karma
achieves this overarching invariant by performing puts and
gets as outlined below.

Write Operation: Newly written values enter the WB
where values are held in thread order. The values are
asynchronously propagated to the storage rings. Like prior
causal systems, Karma requires causal-order write propaga-
tion across rings. This ensures that in any given ring, Xnew

is stored before Ynew is stored. As part of write propagation
to a ring, all the ring’s cached copies of the object are
invalidated before writing to the ring.

The get operation is performed as shown in Figure 2.
To understand get operation, we consider three cases based
on where objects are read from. In each case we show that
Karma ensures that causality is maintained.

Read Case 1: Objects are read from the WB. Because values
in the WB are invisible to other clients, there can be no other
causally-newer values outside the WB. Because causally-
newer values may be present in the read client’s own WB,
reads first check the WB before looking in the caches and/or
storage rings (see step 1 in Figure 2). (The check in the WB is
not as simple as testing presence; we present this detail later
in Section 4.1.2.) In our example, if Ynew was read from the
WB, then eitherXnew will also be read from the WB (ifXnew

has not been propagated from the WB (step 2 in Figure 2),
or Xnew will be read from a storage ring or a cache (if Xnew

has propagated to the ring or cache – steps 4, 5, and 6 in
Figure 2).

Read Case 2: Objects are read from the storage ring. In the
storage rings (i.e., if the object is not in the WB), there are
two cases to consider (step 3 of Figure 2). In the first case, a
client thread reads Ynew after the value has been propagated
to all rings. In this case, causal-order write propagation
ensures that Xnew was previously propagated to all rings.
Thus, the client may read X from the cache (step 5) or from
any ring (step 6) and is guaranteed to see Xnew or newer
values. As such, Karma looks in the cache, and serves the
object from the cache (step 5) if it is a hit and from any
storage ring (step 6) if it is a miss.

In the second case, a client threads reads Ynew from
the ith ring Ri (say) before the value is fully propagated
to all other rings. In this case, the client thread becomes
DRR-bound. Karma’s DRR forces reads to access values only

from ring Ri. When accessing the ring, because Ynew was
propagated to ring Ri in causal order, any causally older
values (includingXnew) are guaranteed to be present in ring
Ri (step 4).

Read Case 3: Objects are read from the cache. Caches can
pose consistency problems if they allow causally-later val-
ues of some objects to be brought into the cache while there
are earlier values of other objects present in the cache (e.g.,
Ynew and Xold). Mixing of old and new values can occur
either in the cache (first case) or by accessing some objects
in the cache and others in the storage rings (second case).

For the first case, new values may enter the cache
through a traditional demand-fill where an object is brought
into the cache upon a miss. To prevent mixing of new and
old values through demand fills, we disallow the caching of
in-flight values that are brought in on demand fills. Thus,
the caches hold only stable values which are invalidated
upon writes (in causal order), preventing mixing of causally-
earlier and later values in the cache. In our example, if
Ynew becomes stable and is brought into the cache, then
Xold is guaranteed to have been invalidated. Note that the
disallowing is only during the in-flight window and does
not prevent caching in the common case.

We address the second case by forcing temporary cache
misses during DRRs which ensure access to the DRR-
constrained ring, preventing mixing accesses to the cache
and to the storage rings (step 4 in Figure 2). In our example,
if an in-flight Ynew is read by a client, the client is put
under DRR forcing cache misses and forcing reads to the
DRR-constrained ring which is guaranteed to have Xnew.
These forced misses are only under DRRs which are tempo-
rary (during in-flight windows) permitting the benefits of
caching the vast majority of time.

In each of the above cases, Karma guarantees that it
is impossible to read Xold after reading Ynew. In the next
section, we describe Karma’s implementation to achieve the
operational behavior described above.

4 Karma: IMPLEMENTATION

For ease of exposition, we first present Karma’s dynamic
read restriction without caches in Section 4.1 and then
add caches in Section 4.3. These sections assume fault-free
operation to focus on Karma’s consistency mechanisms. In
Section 4.4, we describe Karma’s fault-tolerance mechanisms
and guarantees.

4.1 Dynamic ring binding in Karma

Recall from Section 1 that Karma dynamically tracks in-flight
objects to put the storage clients reading in-flight objects into
the restricted mode and to release the clients to the normal,
full-choice mode when the objects becomes stable. Because
objects become stable when the corresponding write com-
pletes globally (i.e., in all the replicas), detecting global
write-completion is a key functionality of Karma. In con-
trast, prior causal systems enforce static client-ring binding
which requires detecting only local write-completion (i.e., in
the local ring). Karma’s other key functionality is dynamic
read restriction. Accordingly, we describe in Section 4.1.2

5

DC-2

DC-3 DC-6

DC-7

DC-8

CC
MM
+ DS

MM+DS

DC-1
CC

MM+DS

DC-5
CC

DC-4

MM Middle Man

CC Client Coordinator

DS Datastore
(e.g. Cassandra)

DC-8

Fig. 3. Karma Architecture Overview

how Karma tracks objects’ in-flight state to detect write-
completion; and in Section 4.2 how Karma imposes tempo-
rary read restrictions.

4.1.1 Basic architecture overview

Figure 3 illustrates Karma’s organization. We use any stand-
alone key-value data store (DS) at each node. We assume
that the geo-clustered sets of DCs form one consistent-
hashing ring1 holding one full replica set of the data. In Fig-
ure 3, there are three rings, one for each of the US and
Western Europe, Asia and Australia, and Brazil; and the
Brazilian ring is magnified to show some details discussed
below.

Karma requires per-client state (to track causal depen-
dencies) and per-object state (to track in-flight versus
stable status of individual objects). Karma employs a client
coordinator (CC) to redirect client requests to the appropriate
back-end servers much like other datastores including non-
causal datastores such as Cassandra. We augment CC with
the additional responsibility of tracking per-client causal
meta-state. There can be multiple CCs per DC. The CC is
responsible for two major tasks. First, it is responsible for
causality-preserving write-propagation to all rings from the
write-buffers and for satisfying the safety property of detect-
ing write-completion. Second, the CC enforces temporary
restrictions to ensure that causality is not violated in the
window of vulnerability (Section 4.2).

To track the per-object stable versus in-flight state,
one may either provision per-object state (1 bit/object) or
equivalently, use a set of inflight objects. We introduce a
module in the storage layer called the middle man (MM)
which holds per-object metastate; there is an MM for the
replica in each ring. Figure 3 shows a CC in Brazil interacting
with an MM for an object’s replica in each of the three
rings. The MM and storage server can be co-located on the
same node so that the MM holds the metastate for the data
shard on the server. To prioritize modularity and separation
of concerns, we implement the MM as a separate module
isolating causality-related metastate from the underlying
datastore, though one could alternatively implement the
MM as an integral part of a causally-consistent datastore.

1. Karma extends to directory-based object placement by having the
set of ith replicas in each directory entry form the ith ring.

Together the MM and CC guarantee the safety property
for causality enforcement: a given version of an object must
be considered stable only if the version (or a later version)
of that object is present at all the replicas (rings). Safety is
not violated if a stable object is considered temporarily to be
in-flight.

4.1.2 Global tracking of writes and detection of write com-
pletion

Every put starts with a write to a client-private persistent
WB, after which the client is free to proceed. Karma’s causal
order propagation of writes from the WBs to the rings uses
puts to the storage rings, orchestrated by the CC and MM
as in Figure 4. The CC appends any received puts to the
WB and to the tail of per-ring propagation queues (ENQ in
Figure 4). A per-ring propagator thread in the CC processes
entries in queue order and uses put or put-after to
propagate values to their corresponding ring. In Figure 4,
the propagator threads, PT1, PT2, and PT3, propagate the
values to MM1, MM2, and MM3, respectively. As in the
previous causal systems, each propagator thread propagates
values to its ring at its own pace, not synchronizing with the
other propagator threads.

Similar to Orbe [16], Karma achieves causal-order write-
propagation from the front-end CC. This eliminates the
within-thread put-afters by using client-side program-
order write-propagation. For example, for the scenario in
Figure 1, the system generates a put-after at client 2 to
ensure that put Z occurs after put X in client 1 to enforce
the inter-thread dependence induced by the get X. How-
ever, because put Z and put Y are in the same thread (client
2), no put-after is needed if the puts are completed
in thread program order. This is distinct from COPS [27]
which does write-propagation not from the front-end client
but from the storage server where all thread-program-
order information is already lost. Consequently, COPS uses
put-afters even for within-thread ordering. As a further
optimization over Orbe [16], Karma only includes items that
are in-flight as part of its put-after dependencies, since
stable items are known to be written.

Upon receiving a new put, the MM in each ring tran-
sitions the object to the in-flight state (by including it
in the in-flight set). After the local put is complete, the
MM sends an acknowledgment to the CC that initiated the
request. The CC marks the write as propagated to that ring.
Tracking the propagation to each ring is also useful when
determining whether a value can be forwarded from the
WB or not. Specifically, when a get request looks up the
WB while under DRR (bound to ring Ri, say), if the object
is already propagated to ring Ri, the WB lookup fails.

The completion of the put on the local ring of the
object does not guarantee the object is stable. Rather, the
last propagator thread to process the per-ring put essen-
tially triggers the CC to detect global write-completion. By
waiting for all the propagator threads, the CC detects global
write completion despite asynchrony of write propagation
across rings. The CC sends a notification to each MM which
marks its object copy as stable (in Figure 4, see ”WRITE
COMPLETE” on the left and ”STABLE” on the right). The

6

Client CC MM1 MM2 MM3PT1 PT2 PT3

ENQ

STABLE

IN-FLIGHT +
LOCAL PUT

WRITE
COMPLETE

TI
M

E

STABLESTABLE

Fig. 4. Write-propagation in Karma

CC also evicts the object from the WB. Thus, the CC and MM
achieve the safety property of detecting write completion.

4.2 Dynamic causality enforcement

The CC’s second major task is enforcing temporary read
restrictions to ensure causality. Recall from Section 2.3 that
clients that read (via gets) stable values are not vulnerable
to causality violations. As such, these clients operate in the
unrestricted mode which is the common case. For such
clients, Karma is free to route the gets to any ring based
on availability and network proximity.

In the uncommon case, when a client reads an in-flight
value from a ring (as indicated by the MM), the CC dy-
namically restricts the client to that ring by using a per-
client Dynamic Ring Restrictions (DRR) structure. Recall from
Section 2.3 that because each ring is updated in causal order,
this restriction ensures that the client’s later reads obtain
consistent values. DRRs are tied to an object and a version
number to avoid premature transitions to the unrestricted
mode when there are multiple restrictions. For example, a
client may read multiple in-flight values (or read multiple
in-flight versions of the same object). Such a client must
wait for all the restrictions to be lifted before returning to the
unrestricted mode. Nevertheless, the restrictions are short-
lived due to relatively fast write-propagation (e.g., 300-400
ms for 8 geo-distributed DCs in Amazon’s AWS under no-
load conditions).

Lifting the DRRs poses the interesting challenge that the
CC associated with a read of an in-flight object is not notified
of the object’s write-completion. Only the CC that originates
the write and the MMs responsible for the object in each ring
are made aware of write-completion (Section 4.1.2). Without
additional safeguards, a DRRs would become permanent
upon the first access to an in-flight object (and degrade
to static binding). A naive approach of maintaining per-
object state, that tracks the reader CCs for notifying write-
completion, would be cumbersome and would incur signifi-
cant tracking overhead. Fortunately, there is an elegant way
to capture write-completion without additional effort. We
exploit the fundamental transitivity property that whenever
a restricted client performs a put, the completion of that put
guarantees the completion of any earlier put (from any client)
that may have been read by the client. Because (1) writes within
each ring are done in causal order (via put-after) and
(2) the CC detects global write-completion across all the
rings, a client’s put can complete only after all causally-
earlier puts from any client are complete (e.g., in Fig-
ure 1, put Z can complete only after put X). Consequently,

CC MM C1 C2 C3
IN-FLIGHT +
LOCAL PUT

ACKTI
M

E

PT1

Fig. 5. Write-propagation in Karma with caches

each put completion removes all restrictions due to earlier
gets in program order without reader CCs receiving write-
completion notifications.

Of course, one must also consider read-only clients
where such natural garbage collection of expired restric-
tions does not occur. To avoid permanent read restric-
tions for such clients, we propose write insertion which
inserts dummy writes periodically for the purpose of such
garbage collection via notify-after, a new primitive.
notify-after returns write-completion notification after
verifying the same dependencies as a put-after would,
but without actually writing to the DS (and hence avoiding
the full overhead of a write). One can tune the frequency of
the notify-afters to balance their overhead and removal
of expired DRRs.

4.3 Write-completion with caches

Write-propagation in the presence of caches is organized as a
two-step mechanism. In the first step writes are propagated
from the CC to the MM as described in Section 4.1.2. The
MM’s are responsible for write-propagation to the caches,
which is the second step. Each MM holds a cached-at set
per object which tracks the DC caches that obtained the
object from the MM. Because no single MM may naturally
know the location of all the cached copies, each MM tracks
only a subset of DCs where each object may be cached.
The MM conservatively assumes that any DC that accesses
stable objects may cache the object; and thus adds the DC
to its cached-at set for that object. DC caches may evict
objects from the cache without notifying the MM (i.e., silent
replacement). Upon the next write, the MM will send an
unnecessary invalidation and remove the cache from the list.

The second step of write-propagation from the MM to
the caches may be achieved via updates or invalidations.
While there are well-known tradeoffs in using either of
updates or invalidations, the latter are simpler and hence
our choice. After sending invalidations to the caches, the
MM must wait for acknowledgments from the caches before
sending its acknowledgment to the propagator threads, as
discussed in Section 4.2. This waiting ensures the safety
property of detecting write completion (Section 4.1.2). Fig-
ure 5 shows the acknowledgments from the caches (C1,
C2, and C3). The invalidations ensure causal-order write
propagation to caches. Instead of invalidations, cached data
may also be self-invalidated via leases that expire after a
time-out. Writes would complete faster in this approach (no
invalidations needed) implying fewer DRRs, at the potential
cost of unnecessary discarding and refetching of valid data.

7

4.4 Karma: Fault tolerance

We have designed Karma to be available under server fail-
ures, failure of a single availability zone (AZs) [21], [31],
and a broad class of network partitions. Upon network
partitions or an AZ failure, Karma remains available but may
operate in a degraded mode wherein causal consistency is
guaranteed, but dynamic ring switching remains prohibited
till all zones are up (or till all partitions are healed). To put
that in perspective, (a) Karma’s common-case, fault-free per-
formance is better than that of COPS-PR because of dynamic
binding, and (b) though Karma suffers from static binding
under an AZ failure, COPS-PR is not even available. In
fact, Karma (under failure) incurs the static binding penalty
that COPS-PR always incurs (even when fault-free). While
Karma is not guaranteed to be available under multiple,
simultaneous AZ failures, such failure modes are relatively
rare.

We assume a reliable transport (e.g., TCP, or application-
level ack/retry mechanisms). Table 1 summarizes Karma’s
resilience under common failure modes, compares Karma
with other schemes and lists Karma’s mechanisms. We now
discuss individual failures:
• Individual MM/Backend-server/rack failure: Since the MM is
co-located with the storage server, Karma leverages Chain
Replication (CR) [37] within the same DC to protect both
data and metadata (in-flight status and cached-at sets)
against individual server or rack failures (assuming CR
spans multiple racks).
• Cache node failure: Because Karma caches only stable state,
the cache state can be re-fetched if lost. Loss of cached
data can never cause correctness problems (e.g., consistency
violations or unavailability); it may, at worst, lead to perfor-
mance penalties of remote data access. Also, a cache node
failure means invalidations, and hence writes, to the cached
data cannot complete potentially causing some DRRs, and
hence performance penalties, but no availability problems.
• CC failures (individual and DC): Failures involving the CC
requires more careful treatment since the CC is responsible
for write propagation. Liveness of write propagation is key
to achieving write completion which is central to Karma. It
is relatively easy to protect against individual CC failure,
by applying within-DC chain replication for CC’s as well.
However, if the entire DC containing a CC fails (or is
partitioned from the rest of the world), then those writes
will indeed stop propagating. A client that is unaffected by
the failure, and is DRR-bound to the same ring as the failed
DC which contains the write’s CC (because of reading the
write before the failure), may be indefinitely bound to the
ring with the failed DC. Data in the failed DC is no longer
available to the client.

We observe that this corner case occurs because of a
correlated failure where both CC nodes and backend servers
fail. To prevent such correlated failures, we simply require
that the front-ends (including CCs) and back-ends (storage
nodes) reside in different availability zones. Note that DCs
are typically architected using multiple availability zones,
which are isolated from each other and connected through
low-latency links [21], [31]. We refer to availability zones
with front-ends and back-ends as AZ-F and AZ-B respec-

tively.
As such, though write-propagation has stopped due

to the CC’s (AZ-F) failure and the client is DRR-bound
to the AZ-F’s ring (due to reading an incomplete write),
the complete data is available in the ring (the AZ-Bs are
operational). On the other hand, if an AZ-B fails, then write-
propagation of the DRR-causing object (i.e., the in-flight
object which the client read and got DRR-bound) and all
its dependencies will complete because (1) the writes of
the object (and its dependencies) have completed in the
ring to which the client is DRR-bound (by definition, since
that caused the DRRs originally), and (2) the writes are
guaranteed to propagate to the other rings (AZ-B in other
rings and all AZ-Fs are alive). Therefore, the DRR will lift
allowing access to the other rings with the complete data.

Resilience Analysis: We discuss the resilience of Karma
to AZ failures, and network partitions. We define a ring to
be completely-available if all AZs in that ring are reachable
from all clients. We make two observations:
(1) A client C has no availability problems if (i) there is
at least one completely-available ring; and (ii) C has no
DRRs, or is DRR-restricted to the completely-available ring.
(2) A client C has no availability problems when it is
DRR-restricted to a ring with a failed or unreachable AZ,
provided all other rings are completely-available.

(1) is trivially true. To see (2) consider that upon a AZ-F
failure, the ring to which the client is DRR-bound has the
complete data. And upon a AZ-B failure, write propagation
of the DRR causing object and its dependencies completes,
allowing the DRR restriction to be lifted (as argued for the
corner case in Section 4.4). C may then access other rings
with no availability problems. These observations enable the
following claims:
Claim 1 [AZ failures]: Karma ensures availability under the
failure of an arbitrary number of AZs of the same type in
one ring (i.e., either AZ-F’s or AZ-B’s), provided all AZs in
all other rings are completely available.

This claim holds because a client which is DRR-restricted
to the ring with failures has no availability problems as per
(2). In all other cases, (1)holds.
Claim 2 [Partitions]: Karma ensures availability
(1) [intra-ring] under any intra-ring partition isolated to a
single ring provided AZs in all other rings can reach one
another, and there are no inter-ring partitions (i.e., AZs in
different rings can reach each other)
(2) [inter-ring] under an inter-ring partition where a pair of
AZs in two different rings are unreachable from each other,
but AZs in any other pair of rings can reach each other, and
there are no intra-ring partitions.

The proof for case 1 follows an identical argument to
Claim 1 above. For case 2, assume the partition occurs
between rings R1 and R2. If both AZs are of the same type
(both AZ-Fs, or both AZ-Bs), the partition trivially poses no
problem because data in all the rings is completely available
to all the clients. Consider that a AZ-F in R1 is partitioned
from a AZ-B in R2. For a client in R1, because all the rings
except R2 are completely-available, there are no availability
problems unless the client is DRR-restricted to R2. However,
by Observation 2 this DRRs does not lead to availability
problems.

8

TABLE 1
Impact of failures (†includes COPS/Orbe/Eiger, ’Better∗’ implies Karma is better than COPS-PR)

Failure Available? Contrast to Protection Mechanism
Full Replication† COPS-PR

Backend Server Yes Same Same Chain replication
Cache Server Yes Not applicable Not applicable Stable state
Rack Yes Same Same Chain replication
CC server Yes Same Same Chain replication of CC
Single AZ Yes Same Better∗ Dynamic binding
AZ-B Cutoff Yes Same Better∗ Dynamic binding
AZ-F Cutoff No Worse∗ Same ∗Partial replication limit
Partition Yes Same Better∗ Dynamic binding

In summary (Table 1), Karma’s flexibility of ring switch-
ing leads to (a) better availability than COPS-PR which
employs static-ring binding, and (b) similar availability as
full-replication systems which incur much higher cost than
Karma. Note that there are scenarios where full-replication
systems achieve better availability. For example, if one AZ-
F gets completely network-partitioned from the rest of the
world the clients within that AZ-F would see unavailability
under all partial-replication schemes including Karma, inde-
pendent of the consistency model or system, but would have
no availability problems with full-replication systems. Even
so, Karma ensures all other clients do not see unavailability.

4.5 Get-Transaction Support in Karma
Recall from Section 2 that the general case of read/write
transactions are not appropriate for our domain because our
goal is to offer consistency and availability even under par-
tition. The serializable semantics of read/write transactions
is ruled out because of the CAP theorem. However, read-
only transactions (get-transactions), which effectively offer
the ability to group a collection of gets such that they read
an instantaneous snapshot without any intervening writes
is be achievable (i.e., not ruled out under the CAP theorem)
[16], [27], [28].

While our focus in this paper is on ordering which is
orthogonal to transactional atomicity, we show that Karma
can leverage prior designs to support read-only transac-
tions. Specifically, Eiger’s [28] read transactions are based
on (1) eagerly attempting to read the latest values, (2)
detecting if such reads form a snapshot without intervening
writes, and (3) if the reads are determined not to be a
snapshot, reconstructing a snapshot by reading appropriate
older versions (which must be saved). There are additional
optimizations to avoid indefinite retention of older values
and to abort/retry transactions if they cannot complete
within specified timeouts.

Karma can use the same get-transaction mechanism used
in Eiger with only two minor changes to address dynamic
ring binding and caching.
Interaction with Dynamic ring binding Eiger’s get-transactions
mechanism works within a single statically bound ring/DC.
Similarly, in Karma, all transactional reads go a single ring.
However, Karma can choose a different ring for each trans-
action if there are no DRRs. Even within a transaction, if the
transaction aborts (because of a timeout/failure), Karma can

retry the transaction in a different ring. This last feature is
important for Karma because if some data is not available
in a ring, the transaction can be reattempted at another ring.
Interaction with Caching Karma can bypass all interaction
of transactions with caching by requiring all transactional
operations to bypass the cache.

Finally, while it is also possible to incorporate Eiger’s
write-only transactions in Karma, we believe it is not worth
the complexity because it involves implementing two phase
commit in the wide area.

5 EXPERIMENTAL METHODOLOGY

We used a 64-node cluster in the Probe test-bed [18].
Modeling geo-replicated settings: To model geo-replicated
settings, we group DCs into multiple geographic regions, as
shown in Figure 3. We considered eight regions, modeled
after Amazon AWS, with three in the US, (2 in the West and
1 in the East Coast), one in Europe, one in South America,
and three in Asia/Australia. We measured delay across EC2
instances in different regions and emulated these delays in
our cluster using Dummynet [10]. For instance, the round-
trip delay from US-West1 to US-East, US-West2, Europe,
Singapore, Tokyo, Sydney and Brazil were 86, 23, 175, 221,
143, 198 and 205 milliseconds respectively.
Clustering DCs into rings: Our evaluations of Karma used
three rings, comprising (i) all the DCs in the US and Europe;
(ii) all DCs in Asia and Australia; and (iii) the DC in South
America. This partitioning generally ensures that within-
ring delays are lower than across-ring delays. Because of our
target of three rings, Europe’s relative network proximity
to the US puts their DCs in the same ring. Karma’s design
is independent of partitioning heuristics. More generally,
factors besides network proximity may be considered in ring
partitioning.
Schemes: We compare Karma using the rings described
above with the following state-of-the-art schemes. We im-
plemented each of Karma and these schemes as a shim-layer
between a key-value storage tier consisting of unmodified,
individual Cassandra instances and a cloud client layer. The
MM maintains the necessary metastate for Karma, which is
minimal. There is a table of inflight objects which is small
because there are only a few in-flight objects at any given
time. The cached-at metastate holds 8 bits per object (a full
bitmap of eight DCs where the object is cached).

9

• COPS-Ideal: This full-replication scheme replicates all
data items in each of the eight DCs, and includes key
optimizations in COPS and Orbe (Section 2.2). To validate
that our implementation of COPS-Ideal is similar to COPS,
we measured the achieved throughput of our COPS-Ideal
implementation with the same configuration (2 DCs, 1
server/DC, and zero wide-area delays) as in the original
COPS paper. Because our hardware is different from that
in the COPS paper, absolute throughput comparisons are
not meaningful. As such, we compared throughput as a
fraction of peak sustainable throughput of pings between
servers. Such ping throughput represents an upper-bound
on achievable throughput. Our COPS-Ideal implementation
achieves comparable throughput (within 8% and better la-
tency (99th percentile) than COPS.
• COPS-PR: Recall from Section 1 that this more practical
COPS-variant is a straightforward extension of previous
causal systems to support partial replication. This scheme
uses (1) the same three rings as Karma (therefore resulting in
identical cost), but with the restriction that reads arriving at
a DC may access only the replica in the DC’s ring; and (2)
write buffering for fast local writes but no caching (includ-
ing which would require the causality-preserving caching
techniques of Karma).

One may imagine an alternative system with equal cost
as Karma wherein the three replicas are located in three of
the eight DCs. The remaining 5 DCs will all see degraded
latencies and availability on partition; as such, we limit the
comparison to COPS-PR which also has the same cost as
Karma.
• Karma-NC: This Karma-variant excludes caches but in-
cludes write buffering for fast writes.
Experiment configuration: Each DC comprised of eight
storage nodes (each of which ran a single-node Cassandra
datastore and our MM (per-object state) code). The CC’s
(which hold per-thread state) are also co-located on the
same nodes; however, any CC may access any back-end.
For Karma, we considered two cache nodes in each DC.
To avoid giving Karma a resource advantage, we reduce
the number of storage nodes in Karma to six per DC. This
paper focuses on achieving consistency and leaves design-
space exploration, such as optimizing the number of storage
and cache servers, to future work. Further, our performance
results include all the overhead of write-completion notifi-
cations and invalidations in Karma (Figure 4 and Figure 5).
Workloads: We used the well-known Yahoo! Cloud Serving
Benchmark (YCSB) [12]. We focus on read-heavy workloads
with a read-write ratios of 95-5, which is used extensively in
prior work [3], [4], [11], [16], [27]. For each configuration,
the number of client threads are empirically increased till the
system saturates. The number of client threads at saturation
for COPS-Ideal, Karma, Karma-NC, and COPS-PR, are 600,
1050, 1200 and 1200, respectively. We also include sensitivity
analysis for more write-heavy workloads. Each record has
200 bytes of data by default, but we report on sensitivity of
our results to object size (Section 6.3). We run seven experi-
ments for each experiment and show the standard deviation
to quantify run-to-run variation. For each experiment, we
loaded the system with 500 million records, and ran for 10
million operations.

C
O

P
S

-Id
ea

l

K
ar

m
a

C
O

P
S

-P
R

K
ar

m
a-

N
C

0

5000

10000

15000

20000

25000

30000

35000

Th
ro

ug
hp

ut
(o

ps
/s

ec
)

(a) Throughput

(b) Latency

Fig. 6. Throughput and latency comparison.

6 RESULTS

6.1 Performance Results

Figure 6(a) and (b) illustrate the sustainable throughput and
get latency (put latency is omitted as puts are always
local) achieved with each of the four schemes.

Several observations can be made from Figure 6. First,
Karma achieves 43% higher throughput on average, and
significantly lower latency than the equivalent cost COPS-
PR. COPS-PR has lower per-thread throughput than Karma
because of the absence of caches. However, COPS-PR uses
a higher number of client threads (1200 vs. 1050) to saturate
the system. Second, the throughput and latency of Karma-
NC and COPS-PR are similar as expected. The primary ad-
vantage of Karma-NC over COPS-PR is Karma-NC’s ability
to adapt to failures and network congestion by accessing

10

-0.8

-0.6

-0.4

-0.2

0

0.2

0 50 100 150 200T
h
ro

u
g
h

p
u
t

(n
o

rm
a
liz

e
d
 t
o

a
v
g
 t
h
ro

u
g

h
p
u

t)

Time (s)

Karma-NC COPS-PR

congestion

event begins

congestion

event ends

0

100

200

300

0 50 100 150 200

A
v
g
 R

e
a

d

L
a
te

n
c
y
 (

m
s
)

Time (s)

Karma-NC COPS-PR

Fig. 7. Throughput and latency under congestion

other rings (Section 6.2). Third, the performance gap (both
in throughput and in latency) between the ideal COPS
(which is impractical because of full-replication) and Karma
is because of partial replication. Specifically, (i) COPS-Ideal
achieves 100% local gets by incurring the high cost of
full replication. In contrast, Karma’s local reads come from
caching, which cannot achieve 0% miss rates. In addition to
local reads due to caching, Karma’s also benefits from local
reads in two other cases: gets that are served from the local
write-buffers, and gets of objects that are mapped to the
local DC in the storage ring. The aggregate effect is that
Karma achieves nearly 77% of local accesses. Karma’s key
advantage over COPS-Ideal is its reduced write propagation
costs. However, this advantage is diminished in our read-
heavy workload where only 5% of operations are puts.
Indeed, our sensitivity experiments (Section 6.3) revealed
that as workloads become more write-heavy, Karma can
match and even out-perform the throughput of COPS-Ideal.

6.2 Importance of dynamic ring binding
A key performance advantage of Karma is its ability to allow
clients to dynamically select replicas from any ring, rather
than statically binding a client to one ring. To evaluate the
dynamic ring switching ability of Karma separately from the
caching component, we focus on Karma-NC and COPS-PR.

Specifically, we examine system behavior when sub-
jected to network congestion, and evaluate the effectiveness
of Karma-NC in ensuring good performance even in such
scenarios. We emulate congestion by sharply increasing the
latency (by 300ms, 600ms, and 1200 ms) of all traffic in
and out of one randomly chosen DC (Europe). We maintain
this congestion for a period long enough for the systems to
settle (120s in our experiments), and then revert to the un-
congested state. Background processes continually monitor
the delays between DCs, and feed the information to the
systems.

Figure 7 shows the time-varying behavior (normalized
throughput in the top graph and read latency in the bot-
tom graph) of the two systems (the two curves) with the
1200ms added delay in the Europe DC. Karma-NC and

Fig. 8. Throughput and latency under congestion

COPS-PR are similar in performance in an uncongested
environment. However, Karma-NC performs significantly
better than COPS-PR during the congestion event. This is
because the static ring-binding in COPS-PR forces clients in
the ring which includes the congested European DC to incur
the full penalty for all accesses to the Europe DC. In contrast,
Karma-NC provides clients with the flexibility to access
data from other rings rather than incur the high latency
of going to the European DC. Finally, Karma-NC does see
some performance degradation during the congestion event
compared to its performance under normal conditions. This
is because redirecting accesses to remote rings does involve
higher latencies than local latencies under normal condi-
tions. Further, the congestion event extends write comple-
tion times of objects that are held in the Europe DC which
may impact performance.

The two graphs in Figure 8 show the throughput and
latency degradation (averaged over the time of the conges-
tion event, relative to uncongested operation in percentage)
on their respective Y-axes, for congestion delays of 300ms,
600ms, and 1200ms (X-axis). Karma-NC demonstrates con-
sistently better performance under congestion and degrades
at a slower rate than COPS-PR. This is because of Karma-
NC’s ability to switch to other rings as discussed above.

11

80-20 50-50
Workload (read-write ratio)

0

5000

10000

15000

20000

25000

30000

35000
Th

ro
ug

hp
ut

(o
ps

/s
ec

)
COPS-Ideal
Karma
COPS-PR
Karma-NC

Fig. 9. Sensitivity to read-write ratio

Fig. 10. Impact of workload on access fraction under DRR

6.3 Workload sensitivity and DRR behavior

While our results so far assume a read-write ratio of 95-
5, Figure 9 presents throughput for workloads with higher
write ratios. Karma continues to out-perform the cost-
equivalent COPS-PR scheme across read-write ratios. Inter-
estingly, with increasing put fraction, Karma’s performance
improves relative to COPS-Ideal. The performance is com-
parable at 80-20 (within 13%), while at 50-50, Karma achieves
32% higher throughput than COPS-Ideal. This is because
COPS-Ideal incurs significantly higher replication cost for
each write than Karma (8X vs. 3X). Thus, Karma not only
achieves its primary objective of significantly reducing costs
as compared to COPS-Ideal, but also achieves comparable
or better throughputs at higher put ratios.

Figure 10 shows the fraction of accesses made while un-
der DRR (Y-axis) for different read-write ratios (X-axis). For
each ratio, we not only show performance under saturation
throughput, but also at 33% and 66% of saturation load since
real systems typically operate at a smaller fraction of their
peak load. With 95-5 traffic, less than 2% of accesses are
under DRR for all load levels. Even under the most extreme
datapoint (100% load with 50% puts), more than 30% of
accesses are not DRR-bound (i.e., they retain the ability to
switch rings). In contrast, prior static-binding approaches
are always bound to the local ring.

One key concern is that Karma has to bypass caches

Fig. 11. Local access fraction under varying read-write ratio and load

Karma compute cost

Storage costCOPS compute cost

Karma cache cost

(storage + compute)

Karma put cost/request

COPS put cost/request

Karma get cost/request

f = puts fraction

m = 31% (cache miss ratio)

M = 3 (Karma replication)

n = 8 (#DCs/ring)

N = 8 (COPS = #DCs)

α = 0.1-0.2 (disk

cost/server cost)

 fN

fmf
n

M

1

)1(
1

1

 NfNf

MfMfm

1)1(

)1()1(2
1

Storage cost

(a) Model for bandwidth (OPEX) savings

(b) Model for compute and storage (CAPEX) savings

Fig. 12. Models for cost savings with Karma

when under DRR. However, we show that the penalty
of bypassing the cache is more than compensated by the
increasing number of accesses that are served from the write
buffer. Figure 11 shows the aggregate fraction of gets that
are served locally on the Y-axis (i.e., from the cache or from
the write-buffer or local DC) for varying load levels and
read-write ratios (X-axis). As expected from the DRR trends,
higher load levels and higher put fractions are associated
with increasing DRR which correspondingly results in lower
cache hit ratios. However, there is a compensatory effect due
to reads being served from the write-buffer which results
in an overall improvement in the fraction of local accesses.
This again is not surprising given the popularity skew in
typical cloud storage traffic which is modeled as a Zipfian
distribution in YCSB.

6.4 Cost Analysis

To quantify Karma’s cost savings over COPS-Ideal, we use
simple cost models for inter-DC bandwidth costs (OPEX)
(Figure 12(a)), and compute and storage costs (CAPEX)
(Figure 12(b)), and Twitter traces [26] to ground our analysis.

12

We breakdown the storage and compute costs of a single
unit cost server as α and (1 − α), respectively. We then
scale the compute and storage costs independently to match
the compute and storage demand. We model compute cost
as proportional to the number of local operations (e.g.,
each put generates as many local operations as number
of replicas). Further, Karma has two local operations for
each cache miss (initial lookup + demand fill). Storage
cost scales in direct proportion to the degree of replication.
For Karma’s caches, we assume that storage costs scale the
same as compute costs. Finally, we model the inter-DC
communication costs to include put costs (replication cost
for every put) and get costs (misses). Because compute and
storage costs are capital expenditures and bandwidth costs
are operational expenditures, we treat these costs separately.
Analysis using Twitter data: To drive our model with
realistic data, we used a single day of publicly-available
Twitter traces [26] which included a user-friendship graph, a
list of user locations, and public tweets sent by users (along
with timestamp). We assume every user reads each tweet
from a friend exactly once, which yields a 3.5% miss rate
for Karma. Note that miss rates would be lower if a user
accesses the same tweet multiple times.

Figure 13(a) plots the compute and storage cost (CAPEX)
savings of Karma over COPS-Ideal on the Y-axis for various
put fractions (X-axis) using the miss ratio obtained from
the Twitter analysis, and for multiple values of α. Not
surprisingly, the cost savings exceed 50% for write-heavy
workloads. Even for read-heavy workloads, the cost savings
are between 32% and 43% (depending on the storage cost
fraction). Even under the 31% miss ratio seen in our 95-
5 workload, the cost savings vary from 8% to 26% (not
shown).

Figure 13(b) presents the bandwidth cost (OPEX) sav-
ings with the Twitter trace. The bar on the left (workload-
agnostic) shows the cost savings assuming the partitioning
of DCs into rings described in Section 5. However, this
partitioning is not cognizant of the distribution of user
locations. In the Twitter trace, 70% of tweets were from users
in the US East Coast, and 29% of tweets from users in the
US West Coast. We considered cost savings with an alternate
workload-aware partitioning (right bar) which comprised
a single ring for the US East Coast DC, a ring for DCs
in the US West Coast, and another ring for all the other
DCs. While workload-agnostic partitioning already results
in cost savings of 14% in inter-DC traffic, a workload-aware
partitioning could lead to cost savings of over 30%. More
generally, these results point to the benefits of exploiting
user location information, when available, in addition to
network delays, as part of the partitioning strategy. Further,
we have used a simple model of just counting total bytes
of inter-DC traffic. In practice, shipping data over trans-
continental links costs more, and we expect Karma’s savings
likely to be even more if this detail is factored in.

6.5 Sensitivity to Object Size

We varied object size from 200 B (default) to 1 KB, and 4 KB.
We do not consider larger objects like images and videos be-
cause causal consistency is relevant only for mutable objects.

Fig. 13. Karma cost savings (over COPS-Ideal)

Karma’s performance degrades gracefully to larger objects;
the throughput with 5X larger objects (1KB) is within 13% of
the default Karma throughput (with 200B objects) and within
32% with 20X larger objects (4KB).

7 RELATED WORK

Classical works on causal consistency(e.g., [6], [29]), some of
which consider partial replication [6], are limited to single
node DSs. In contrast, we focus on large DSs that span
hundreds of nodes. Other recent and concurrent ongoing
efforts are investigating partial replication with causally
consistent datastores. OPCAM [32], [33], [34] is a proposed
causal system with partial replication that is a strict subset of
our COPS-PR (it uses static ring-binding). Recall that static
ring binding leads to availability or consistency problems
(i.e., it is subject to CAP constraints). Other preliminary
work on partial replication is either underspecified [14]
(e.g., early vision papers, without an implementation or
evaluation) or has the static binding problem [7]. Karma is
the first scalable, causally-consistent data store to support
partial replication with or without DC-level storage caches
while offering consistency and availability under partition.

There are distributed stores that use primary-secondary
replication in which all writes are written to the primary
replica from where they are propagated to secondary copies
(e.g., [9], [36]). Specifically, Pileus shows that causal con-
sistency can be achieved in such a system. However, the
design choice of directing writes to the primary replica

13

results in either unavailability under partition or violation
of consistency. Karma achieves both availability and consis-
tency under partition by not requiring writes to be funneled
to primary replicas. In addition, directing all writes to a
primary site also hurts write latency. In contrast, Karma
allows all writes to be local.

ChainReaction [2], which employs a modified variant of
Chain Replication within each DC, relaxes the requirement
of linearizability within the DC. However, because of static
binding, ChainReaction is still dependent on full replication;
with partial replication ChainReaction remains susceptible
to unavailability when a DC that holds the head of a chain
is unavailable.

Bolt-on causal consistency(BOCC) [3], [4] enforces
programmer-annotated explicit causality and not for all po-
tential causality like Karma. SPANStore [38] seeks to reduce
costs through partial replication, but does not consider
causal consistency.

There is interest in supporting transactions in geo-
replicated storage systems [5], [13], [22], [27], [28], [35], [40].
Many of these systems (e.g.,, [5], [13]) uses Paxos [24] in
the wide-area, which is incompatible with low latency, and
sacrifices availability under partitions. Causally consistent
systems (including Karma) which are typically designed for
availability under partition usually offer limited forms of
transactional support as described in Section 4.5. Recent
work has extended causal read-only transactions to the
client caches [39]. While client caches are indeed not full
replicas, [39] continues to assume fully replicated causal
stores.

TxCache is a programmer-visible, application data
caching system that leverages programmer-specified stal-
eness tolerance to enable caching with transactional con-
sistency [30]. In contrast, Karma’s caches are transparent
to applications and programmers. Unlike TxCache, Karma
does not cache the results of application functions. As such,
TxCache can be used atop Karma for such “computation
caching”.

8 CONCLUSION

We have presented Karma, the first partitioned, causally-
consistent data store to support partial data replication with
storage caching while offering consistency and availabil-
ity under partition. Karma’s novel dynamic ring binding
mechanism enables it to guarantee full availability under
a single AZ failure, and simple network partition modes.
Evaluations using a test-bed emulating geo-replicated set-
tings show that Karma achieves 43% higher throughput on
average and significantly lower read latencies than COPS-
PR, while incurring similar costs. Further, Karma’s two key
features – dynamic ring binding and caching – are impor-
tant for significantly better performance under both normal
conditions and network congestion than COPS-PR. Finally,
Karma can reduce compute and storage costs by 32 − 60%,
and bandwidth costs by 14− 31% compared to COPS-Ideal.
Overall, our work is an important step forward towards
making causally consistent cloud storage systems practical.

REFERENCES

[1] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd,
and Kaushik Veeraraghavan. Challenges to adopting stronger
consistency at scale. In 15th Workshop on Hot Topics in Operating
Systems (HotOS XV). USENIX Association.

[2] Sérgio Almeida, Joao Leitao, and Luı́s Rodrigues. Chainreaction:
a causal+ consistent datastore based on chain replication. In Pro-
ceedings of the 8th ACM European Conference on Computer Systems,
pages 85–98. ACM, 2013.

[3] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M Hellerstein, and
Ion Stoica. The potential dangers of causal consistency and an
explicit solution. In Proceedings of the Third ACM Symposium on
Cloud Computing (SOCC), page 22. ACM, 2012.

[4] Peter Bailis, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica. Bolt-
on causal consistency. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, pages 761–772.
ACM, 2013.

[5] Jason Baker, Chris Bond, James Corbett, JJ Furman, Andrey Khor-
lin, James Larson, Jean-Michel Léon, Yawei Li, Alexander Lloyd,
and Vadim Yushprakh. Megastore: Providing scalable, highly
available storage for interactive services. In CIDR, volume 11,
pages 223–234, 2011.

[6] Nalini Moti Belaramani, Michael Dahlin, Lei Gao, Amol Nayate,
Arun Venkataramani, Praveen Yalagandula, and Jiandan Zheng.
PRACTI replication. In NSDI, volume 6, pages 5–5, 2006.

[7] Manuel Bravo, Luı́s Rodrigues, and Peter Van Roy. Towards a
scalable, distributed metadata service for causal consistency under
partial geo-replication. In Proceedings of the Doctoral Symposium
of the 16th International Middleware Conference, Middleware Doct
Symposium ’15, pages 5:1–5:4, New York, NY, USA, 2015. ACM.

[8] E. Brewer. Cap twelve years later: How the ”rules” have changed.
Computer, 45(2):23–29, Feb 2012.

[9] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka,
Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin
Kulkarni, Harry Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar,
Yee Jiun Song, and Venkat Venkataramani. Tao: Facebook’s dis-
tributed data store for the social graph. In Presented as part of the
2013 USENIX Annual Technical Conference (USENIX ATC 13), pages
49–60, San Jose, CA, 2013. USENIX.

[10] Marta Carbone and Luigi Rizzo. Dummynet revisited. ACM
SIGCOMM Computer Communication Review, 40(2):12–20, 2010.

[11] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam
Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz,
Daniel Weaver, and Ramana Yerneni. Pnuts: Yahoo!’s hosted data
serving platform. volume 1, pages 1277–1288. VLDB Endowment,
2008.

[12] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrish-
nan, and Russell Sears. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing
(SOCC), pages 143–154, 2010.

[13] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
Christopher Frost, J. J. Furman, Sanjay Ghemawat, Andrey
Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd,
Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Ra-
jesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christo-
pher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s
globally-distributed database. In OSDI, pages 251–264, Berkeley,
CA, USA, 2012. USENIX Association.

[14] Tyler Crain and Marc Shapiro. Designing a causally consistent
protocol for geo-distributed partial replication. In Proceedings of the
First Workshop on Principles and Practice of Consistency for Distributed
Data, PaPoC ’15, pages 6:1–6:4, New York, NY, USA, 2015. ACM.

[15] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavard-
han Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo:
amazon’s highly available key-value store. In SOSP, volume 7,
pages 205–220, 2007.

[16] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy
Zwaenepoel. Orbe: Scalable causal consistency using dependency
matrices and physical clocks. In 2013 ACM Symposium on Cloud
Computing (SOCC), number EPFL-CONF-188527, 2013.

[17] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, and Willy
Zwaenepoel. Gentlerain: Cheap and scalable causal consistency

14

with physical clocks. In Proceedings of the ACM Symposium on Cloud
Computing (SOCC), pages 1–13. ACM, 2014.

[18] Garth Gibson, Gary Grider, Andree Jacobson, and Wyatt Lloyd.
Probe: A thousand-node experimental cluster for computer sys-
tems research. In USENIX ;login:, volume 38, June 2013.

[19] David K. Gifford. Weighted voting for replicated data. In SOSP,
1979.

[20] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web services.
ACM SIGACT News, 33(2):51–59, 2002.

[21] Amazon EC2 Availability Zones.
http://aws.amazon.com/ec2/faqs.

[22] Tim Kraska, Gene Pang, Michael J Franklin, Samuel Madden, and
Alan Fekete. Mdcc: Multi-data center consistency. In Proceedings of
the 8th ACM European Conference on Computer Systems, pages 113–
126. ACM, 2013.

[23] Avinash Lakshman and Prashant Malik. Cassandra:a decentral-
ized structured storage system. Newsletter. ACM SIGOPS Operating
Systems Review, 44:35–40, 2010.

[24] Leslie Lamport. Paxos Made Simple.
[25] Leslie Lamport. Time, clocks, and the ordering of events in a

distributed system. Commun. ACM, 21(7):558–565, July 1978.
[26] Rui Li, Shengjie Wang, Hongbo Deng, Rui Wang, and Kevin

Chen-Chuan Chang. Towards social user profiling: unified and
discriminative influence model for inferring home locations. In
ACM SIGKDD, pages 1023–1031. ACM, 2012.

[27] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and
David G Andersen. Don’t settle for eventual: Scalable causal
consistency for wide-area storage with COPS. In SOSP, 2011.

[28] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and
David G Andersen. Stronger semantics for low-latency geo-
replicated storage. In NSDI. USENIX, 2013.

[29] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M.
Theimer, and Alan J. Demers. Flexible update propagation for
weakly consistent replication. In SOSP, 1997.

[30] Dan RK Ports, Austin T Clements, Irene Zhang, Samuel Madden,
and Barbara Liskov. Transactional consistency and automatic
management in an application data cache. In OSDI, volume 10,
pages 1–15, 2010.

[31] Amazon EC2 Regions and Availability Zones.
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-
regions-availability-zones.html.

[32] Min Shen, Ajay D Kshemkalyani, and Ta-yuan Hsu. Opcam: Opti-
mal algorithms implementing causal memories in shared memory
systems. University of Illinois at Chicago, Dept. of Computer
Science, 2014.

[33] Min Shen, Ajay D Kshemkalyani, and Ta-yuan Hsu. Causal consis-
tency for geo-replicated cloud storage under partial replication. In
Parallel and Distributed Processing Symposium Workshop (IPDPSW),
2015 IEEE International, pages 509–518. IEEE, 2015.

[34] Min Shen, Ajay D Kshemkalyani, and Ta-yuan Hsu. Opcam:
Optimal algorithms implementing causal memories in shared
memory systems. In Proceedings of the 2015 International Conference
on Distributed Computing and Networking, page 16. ACM, 2015.

[35] Yair Sovran, Russell Power, Marcos K Aguilera, and Jinyang Li.
Transactional storage for geo-replicated systems. In SOSP. ACM,
2011.

[36] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Ma-
hesh Balakrishnan, Marcos K. Aguilera, and Hussam Abu-Libdeh.
Consistency-based service level agreements for cloud storage.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 309–324, New York, NY, USA,
2013. ACM.

[37] Robbert van Renesse and Fred B Schneider. Chain replication for
supporting high throughput and availability. In OSDI, volume 4,
pages 91–104, 2004.

[38] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett,
and Harsha V Madhyastha. SPANStore: cost-effective geo-
replicated storage spanning multiple cloud services. In SOSP.
ACM, 2013.

[39] Marek Zawirski, Nuno Preguiça, Sérgio Duarte, Annette Bieniusa,
Valter Balegas, and Marc Shapiro. Write fast, read in the past:
Causal consistency for client-side applications. In Proceedings of
the 16th Annual Middleware Conference, Middleware ’15, pages 75–
87, New York, NY, USA, 2015. ACM.

[40] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K
Aguilera, and Jinyang Li. Transaction chains: achieving serializ-
ability with low latency in geo-distributed storage systems. In
SOSP. ACM, 2013.

	Purdue University
	Purdue e-Pubs
	11-3-2016

	Achieving Causal Consistency under Partial Replication for Geo-distributed Cloud Storage
	Tariq Mahmood
	Shankaranarayanan Puzhavakath Narayanan
	Sanjay Rao
	T. N. Vijaykumar
	Mithuna Thottethodi

	tmp.1478201894.pdf.Q2n8k

