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ABSTRACT 

Perkis, David F. Ph.D., Purdue University, December 2014. Energy Production, 
Distribution, and Pollution Controls:  Combining Engineering and Economic Analysis to 
Enhance Efficiency and Policy Design. Major Professor: Wallace Tyner. 
 
 
 Three published articles are presented which focus on enhancing various aspects 

of the energy supply chain.  While each paper adopts a different methodology, all three 

combine engineering data and/or techniques with economic analysis to improve 

efficiency or policy design within energy markets. 

 The first paper combines a chemical engineering plant design model with an 

economic assessment of product enhancements within an ethanol production facility.  

While a new chemical process is shown to achieve greater ethanol yields, the animal feed 

by-products are denatured and decrease in value due to the degradation of a key 

nutritional amino acid.  Overall, yield increases outweigh any costs, providing additional 

value to firms adopting this process.  The second paper uses a mixed integer linear model 

to assess the optimal location of cellulosic ethanol production facilities within the state of 

Indiana.  Desired locations with low costs are linked to regions with high yield corn 

growth, as these areas provide an abundance of corn stover, a by-product of corn and a 

cellulosic source of ethanol.  The third paper implements experimental economic 

methods to assess the effectiveness of policies intended to control prices in emissions 

permit markets.  When utilizing reserve permit auctions as an alternative to setting 

explicit maximum prices, prices are elevated beyond the theoretical predictions of the 

model within the conditions of the experiment.  The most likely cause of higher prices is 

the negotiating power provided to sellers by grandfathering permits as evidenced by 

higher than expected welfare gains to sellers. 

 



xii 

 Before presenting the articles, a discussion is introduced regarding the role of 

assumptions used by economists.  For each article, a key assumption is highlighted and 

the consequences of making a different assumption are provided.  Whether the 

consequences are large or small, the benefits of elucidating our models with assumptions 

based on real world behaviors are clearly demonstrated. 
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CHAPTER 1. INTRODUCTION  

 Scientific theories are distinguished from myths merely in being 

criticizable, and in being open to modifications in the light of criticism.  They can 

be neither verified nor probabilified. 

 Karl Popper, Realism and the Aim of Science (Karl Popper, 1992) 

 

 Since the financial crisis of 2008, economists have been looking for answers as to 

what went wrong with the banking system and the economy.  While theories abound, 

Nobel laureate Paul Krugman provides some wise insight when stating that “the 

economics profession went astray because economists, as a group, mistook beauty, clad 

in impressive-looking mathematics, for truth.” (Paul Krugman, 2009)  Often hidden in 

many of our mathematical equations are simplifying assumptions.  If these assumptions 

are incorrect but on the periphery of the problem at hand, then it is often not an issue.  If, 

however, there are incorrect simplifying assumptions which change some key aspects of 

an economic problem, and other conclusions are built on top of these assumptions, then 

many of these conclusions are likely to be erroneous. 

 The fields of energy and environmental economics lend themselves to combining 

engineering and economic analysis to identify solutions to technological hurdles and 

policy debates.  Beyond simply lending technical data to the economist, research methods 

in the engineering sciences can prove useful.  While no one would expect any researcher 

to provide a model that avoids the criticisms of an empiricist of the ilk of Karl Popper, 

practiced engineers are often quite skilled at adopting simplifying assumptions while 

maintaining a few essential necessary complexities which allow the model to represent 

real world behavior. 
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 The three enclosed chapters each focus on a distinct issue related to optimizing 

energy supplies in the United States through improvements in either productive 

efficiency or policy design1.  Each chapter also depends on engineering and scientific 

data to either describe or solve an economic problem.  Finally, each chapter provides an 

example of how a simplifying assumption could cause a researcher to go astray, whereas 

an assumption based in real world behavior provides more reasonable results.  

 

 

 

 

1.1 There are Few Representative Molecules 

 The first paper offers an economic assessment of a manufacturing process 

intended to generate larger yields of ethanol and more value from corn (David Perkis et 

al., 2008).  The intent of the process is to transform distiller’s dry grains (DDGS), a by-

product of ethanol production used as a source of nutrition for hogs and cattle, into a 

higher value feed by increasing protein concentrations.  This would be achieved while 

simultaneously extracting more pure ethanol from the DDGS.  In this way, value would 

be added to two product streams with the only added costs being those related to 

additional capital and processing expenditures. 

 A combined chemical, engineering, and economic cost model demonstrates that 

the value added from larger ethanol yields outweighs the added manufacturing costs.  

However, when analyzing the new DDGS by-product via a nutritional assessment, it is 

determined that in spite of larger protein concentrations, the value has been decreased.  

The drop in value is caused by the disproportionate degradation of lysine, a key amino 

acid in the nutritional profile of swine and hogs, due to the use of heat in the new 

chemical process.  In net, the new process still provides added value to large scale 

production facilities, and subsequent energy supply streams, as the benefits of larger 

1 Each chapter represents a copy of a peer-reviewed article already published in a journal or a set of 
conference proceedings.  Copyright approval has been obtained from each periodical.  Citations are 
provided in each section of this introduction, and any changes to the articles are restricted to formatting for 
the purposes of this dissertation. 
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ethanol yields outweigh both the manufacturing and denatured DDGS costs.  However, 

with the expectation that the DDGS would have been enhanced, the returns on investment 

are not as lucrative as expected. 

 There is one additional learning from this research to which economists working 

with engineers and physical scientists would be well served to heed:  There are few 

representative molecules.  As economists, we often assume a representative agent, and 

can often do so while generating very robust and rich results with our models.  The 

physical sciences are much less forgiving of such generalizations.  As we see in this 

paper, measuring the overall concentration of a general classification of molecules 

(proteins and amino acids) yields different results than examining each molecule’s 

nutritional contribution separately. 

 Subsequent to publishing, the combined engineering and economic model was 

further modified for research in biofuel production technology assessment (Rakesh 

Agrawal et al., 2008, Rakesh Agrawal et al., 2009) and policy design (Wallace E. Tyner 

et al., 2010a, Wallace E. Tyner et al., 2010b).  With regards to the latter, a stochastic 

component was added to the model in order to assess a variable biofuel subsidy design in 

comparison to the existing fixed subsidies in the market.  It was determined that a 

properly designed variable subsidy could enhance production value and decrease firm 

risk while simultaneously lowering the cost of the subsidy to tax-payers. 

 

 

 

 

1.2 The Social Planner vs. Profit Maximizing Firms 

 The second paper implements a cost minimization model in order to determine the 

optimal locations for ethanol production facilities from cellulosic sources in Indiana 

(David F. Perkis et al., 2008).  The sources considered are corn stover, a secondary 

residue from corn crops, and switchgrass, a primary crop requiring dedicated land.  Costs 

which are minimized include those covering the production and shipping of biofuel crops 

up to the door of the conversion plant. 
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 Two very strong assumptions are adopted for the model.  First, production 

facilities are assumed to be capable of receiving either type of biomass.  This would 

require all facilities to have equipment which converts each type of biomass into a form 

that can be chemically processed and fermented, and for the cost differential between 

conversion processes to be negligible.  Second, costs are minimized over the network of 

plants consistent with a social planner’s framework.  This requires decisions regarding 

the location of manufacturing sites to be made simultaneously for all facilities in the 

network. 

 Perkis et al. (2008) conclude the following regarding the optimal location of 

manufacturing sites:  (1) The probability of having a county with a site is somewhat 

higher in the top half of the state where the highest yields of corn are produced, (2) Plants 

in the northwestern section of Indiana use the highest percentage of corn stover and 

obtain raw materials at the lowest cost, and (3) Plants operating in the southwestern 

section of Indiana use the largest percentage of switchgrass and operate at the highest 

cost.  These conclusions were consistent over various plant sizes and corn stover removal 

rate assumptions. 

 These conclusions are also consistent with what one observes within the industry 

today.  As some of the first cellulosic biorefineries begin production this year, they tend 

to locate within corn-rich regions, utilizing corn stover pulled from nearby farmland 

(Tom Doran, 2014).  However, industrial practices are not entirely consistent with one of 

the paper’s key assumptions, namely that most sites would process multiple sources of 

cellulosic material.  As manufacturing operations that utilize corn stover come online, 

they tend to focus solely on this one raw material as their source of biofuel production. 

 Subsequent to publishing, the model was altered to more closely reflect the 

assumptions of profit maximization (Appendix A).  Instead of minimizing costs over the 

entire network of locations simultaneously, sites would minimize costs on a rolling basis.  

For instance, the first site would minimize costs with access to the entire resource base of 

cellulosic materials.  The second site would minimize costs without the raw materials 

utilized by the first site, and so on.  When changing assumptions from that of a social 

planner to profit-maximizing firms, most sites utilize only one type of cellulosic material, 

 



5 

with those first to market focusing on corn stover and those last to market focusing on 

switchgrass.  The main conclusions regarding plant location and cost ordering remain the 

same. 

 While the assumption of the social planner did not impact the main results of this 

paper, it certainly did impact the mixture of cellulosic materials being used by each site.  

For studies where the proportions of biofuel sources are important, the social planner 

assumption would lead to erroneous results.  Therefore, in subsequent studies conducted 

by colleagues who wished to use this model, the assumption of profit maximization was 

adopted (Justin L. Quear, 2008). 

 

 

 

 

1.3 Mathematical Predictions and Human Behavior 

 The third paper utilizes experimental economic methods to examine the 

effectiveness of price controls utilized in markets which sell permits allowing firms to 

emit greenhouse gases and other pollutants (David F. Perkis et al., 2014).  Two types of 

policies are compared in this analysis.  The first type, referred to as a hard ceiling, places 

a legal maximum on permit prices.  The second type, referred to as a soft ceiling, releases 

an additional reserve of permits into the market near the end of the regulated time period.  

A hard ceiling provides absolute price control while the soft ceiling does not. 

 To further complicate issues, the mathematics of the soft ceiling requires firm 

managers to use some foresight while trading by predicting market conditions and 

optimal behavior when reserve permits are eventually released.  If firm managers are 

skillful in adopting foresight, their behavior should converge towards the theoretical 

predictions of the soft ceiling model.  The set of experiments presented were designed to 

determine whether subjects trading in experimental markets regulated by a soft ceiling 

would converge towards the price limit predictions of the model.  If they do not, then 

such policies should likely be redesigned and/or reconsidered before being passed into 

law. 
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 The paper demonstrates that under certain conditions, the soft ceiling design does 

not control prices as intended.  In some cases, prices are higher than the desired 

maximum even after subjects have been exposed to the same experimental market 

structure over 12 repeated periods.  One of the most likely culprits is the grandfathering 

of permits which provides sellers with appreciable negotiating power.  This is 

demonstrated by large shifts in welfare from buyers to sellers in comparison to theoretical 

predictions. 

 Regardless of the reason for the model’s divergence from theory, this research 

highlights another issue prevalent within economics:  some theories and policies that are 

mathematically sound may not hold when subjected to the reality of human behavior. 

 In the natural sciences, experiments are easier to conduct.  Engineers and 

scientists are able to run controlled experiments with physical materials, keeping certain 

factors constant and varying others.  Economists have a more difficult task, as conducting 

experiments requires working with human subjects as well as anticipating the factors over 

which the economist has no control.  Fortunately, with the growing number of 

experimental labs within economics departments, more and more researchers are able to 

test their ideas on a small scale (akin to an engineer’s pilot plant) before they are 

implemented as policy.    In doing so, economists can modify their mathematical models 

to account for human behavior and improve policy design before it is implemented on a 

larger scale and passed into law. 
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CHAPTER 2. ECONOMIC ANALYSIS OF A MODIFIED DRY GRIND ETHANOL 
PROCESS WITH RECYCLE OF PRETREATED AND ENZYMATICALLY 

HYDROLYZED DISTILLERS’ GRAINS  

2.1 Abstract 

 A modification of the conventional dry grind process for producing ethanol from 

yellow dent corn is considered with respect to its economic value.  Process modifications 

include recycling distiller’s grains, after being pretreated and hydrolyzed, with the ground 

corn and water to go through fermentation again and increase ethanol yields from the 

corn starch.  A dry grind financial model, which has been validated against other 

financial models in the industry, is utilized to determine the financial impact of the 

process changes.  The hypothesis was that the enhanced process would yield higher 

revenues through additional ethanol sales, and higher valued dried distiller’s grains 

(DDGS), due to its higher protein content, to mitigate the drop in DDGS yields.  

However, there may be no value added to the enhanced dried distiller’s grains (eDDGS), 

even in light of its higher protein levels, as current pricing is expected to be more 

sensitive to the amino acid profile than the total protein level, and the eDDGS has lower 

lysine levels, a key amino acid.  Thus, there is a decrease in revenue from eDDGS due to 

the combination of no price change and loss of DDGS yield to ethanol.  A 32% increase 

in net present value (NPV) for the overall operation is expected when applying the 

process modifications to a 100 million gallon ethanol plant.  The financial improvements 

are a result of the increased revenue from higher ethanol yields outpacing the sum of all 

added costs, which include higher capital costs, larger loan payments, increased operating 

costs, and decreased revenues from dried distiller’s grains. 
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2.2 Introduction 

 The dry grind process converts the entire corn kernel into two main products of 

economic value, ethanol and dried distiller’s grains (DDGS).  While ethanol has typically 

been known as a key component in alcoholic beverages, its rapidly growing use as an 

automotive fuel, through subsidies and high oil prices, makes it a product of high value.   

The DDGS co-product is sold as animal feed for swine, cattle, and chickens due to its 

protein, amino acid, and energy content.  However, DDGS also contains some 

unconverted starch and sugar precursors to ethanol, which, if processed, could increase 

the ethanol yield of a dry grind facility.  Increasing ethanol yields would increase the 

revenue from ethanol of the dry grind process, and could also enhance the value of the 

DDGS by creating a product with higher concentrations of protein for animal feed. 

 A process has been proposed which takes the distiller’s grains from the 

conventional dry grind process and recycles them for further processing and fermentation, 

resulting in higher yields of ethanol and an enhanced dried distiller’s grains (eDDGS) 

product with increased protein levels (Kim et al., 2007).  The conventional process 

(Figure 2.1), or “base” process, grinds the corn and breaks it down into simple sugars to 

be fermented into ethanol.  The ethanol is then separated by distillation off the top of a 

column, while the bottom products are further processed to separate water from the 

distiller’s grains.  The proposed modifications (Figure 2.2) would subject the material 

from the bottom of the distillation column to further processing, including a pretreatment 

heating step and subsequent hydrolysis of polymeric sugars and residual starches by 

enzymes, and then separate the sugar-rich “pretreated” liquid to be recycled back through 

the original hydrolysis and fermentation processes in order to increase ethanol yields.  

The remaining distiller’s grains not recycled with the pretreated liquid would be dried 

and sold as eDDGS, an animal feed with higher protein levels than conventional DDGS. 

 A dry milling model, called the DM model based on dry milling of corn (Dale and 

Tyner, 2006a), was developed using MS Excel (Microsoft Corporation, 2003) to monitor 

the financial feasibility of the conventional dry grind process given market trends for the 

costs of corn, the price of ethanol, and other product and input prices.  Validation of this 

model included comparisons of capital costs and variable costs against industrial 
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estimates from the Ethanol Production Handbook (BBI Int., 2003) and a 2002 Cost of 

Production Survey (Shapouri and Gallagher, 2005) respectively.  In the 100 million 

gallon nameplate range, the DM model calculated capital and variable costs valued at 97% 

and 103% of their respective industrial estimates (Dale and Tyner, 2006a).  Calculations 

performed at other nameplate ranges were similarly close.  Thus, there is confidence that 

the DM model can be utilized to determine the financial feasibility of the conventional 

dry grind process, and can be augmented with a technology module and adjusted pricing 

to analyze the financial costs and benefits of the dry grind process with pretreated liquid. 

 

Figure 2.1 Schematic Flow Diagram of Current Dry Grind Ethanol Process.  Water 
Utilization for Cooling of Heat Exchangers Is Not Shown (Kim). 
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Figure 2.2 Schematic Flow Diagram of Alternative Dry Grind Process with Recycle of 
Distiller’s Grains (Wet Cake) to Liquefaction (Kim).

2.3 Methodology 

The DM model is based on the process in Figure 2.1, which takes yellow dent 

corn, hydrates the ground corn particles, breaks down the starch into simple sugars using 
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enzymes, and then ferments the simple sugars into ethanol.  The ethanol is then separated 

from the remaining distiller’s grains, which are also processed in order to sell to the 

animal feed market.  The DM model takes specific flow rates (ethanol output, water 

recycle), conversion rates (hydrolysis and fermentation yields), and product and input 

characteristics (grain, ethanol, DDGS) to determine all other flows in the process (Dale 

and Tyner, 2006b).  Especially important are the product and process stream moistures, 

as these determine how water is managed in the process, both in terms of drying capacity 

and recycle use.  With this information, all product flow rates and densities can be 

estimated, allowing for equipment sizing, motor loads, and temperature and thermal 

energy requirements. 

 Market prices for variable costs (grain, chemicals, energy, and utilities) and 

revenues (ethanol, DDGS, CO2) are incorporated into the model to determine yearly 

operating costs and benefits in real terms.  The equipment sizing and specifications allow 

for pricing of individual units to be determined.  Equipment prices are scaled to the 

current year by the Marshall Swift Index (chemical engineering, 2007).  For large 

nameplates such as this, the DM model uses the Fixed Capital Investment (FCI) method 

to determine the Total Capital Costs (TCC) based on equipment costs (Dale and Tyner, 

2006a).  Working capital based on initial real operating expenses is added in, and the 

resulting Total Capital Investment (TCI) is obtained.  Part of this investment, as well as 

any capitalized interest, is assumed to be financed through loans.  Finally, interest and 

discount rates are utilized to determine both nominal and real loan payments and perform 

the final benefit-cost analysis to determine the financial measures of interest such as net 

present value (NPV) and the internal rate of return (IRR).  

 

 

 

 

2.3.1 The Base Process 

 The material balance for the conventional dry grind process (Kim, 2007) was 

normalized by setting the ethanol output volume equal to the hourly flow rates assumed 
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in the DM Model, and subsequently adjusting the starch and sugar conversion yields in 

order to match the corn input rates of the material balance.  Additionally, adjustments to 

process flow moisture levels and backset recycle rates were made in the DM model to 

match the material balance as closely as possible. 

 Once all the material and energy flows were determined based on this 

normalization, prices were updated to represent current market values (Table 2.2).  

Commodity prices were updated based on market pricing in the last week of May 2007.  

Specialty chemical prices which typically show less volatility were updated using 

information from industry obtained during the first half of 2007.  As previously stated, 

capital costs for equipment are automatically updated in the DM model with the Marshall 

& Swift Equipment Cost Index, a commonly used engineering equipment inflation index.  

In some cases, information from industry differed in that some equipment costs had 

increased more dramatically than estimated by the Marshall & Swift Index, likely driven 

by the increased demands on equipment by the ethanol industry.  In such situations, the 

equipment cost was inflated to more accurately represent prevailing market prices.  The 

DDGS price was also updated based on regional market prices, as opposed to being 

estimated based on its historical relationship to corn or soy bean meal prices. 

 Once the base process model and all pricing was updated, loan terms were 

determined and project financials were calculated. 

 

 

 

 

2.3.2 Pretreated Liquid 

 A technology module containing the parameters of the pretreated liquid process 

has been added to the base DM model in order to assess the financial impact of building a 

plant with the pretreatment process.  The module, as with the material balance, assumes 

an equal rate of input corn, adjusting the remainder of the process flows with scaling 

factors as indicated by the material balance (Kim et al., 2007).  For instance, while the 

pretreated liquid brings in more sugars to the fermentation process, increasing the 
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requirements of yeast, it is assumed that no additional starches are introduced into the 

liquefaction step with the pretreated liquid.  Thus, the enzymes used in the base process 

can be maintained at the same levels since they are tied to the starch flow rates coming 

from the corn.  Some rates increase such as the ethanol processing streams since higher 

yields are obtained than in the base process.  Finally, some of the rates decrease such as 

the DDGS processing streams as more of the fermentable starches and sugars are 

recycled.  For water and thermal energy rates, it was assumed that these would be 

consumed by the process at the same rate for each gallon of ethanol as the base process.  

This is believed to be a conservative estimate as more savings would likely be realized in 

the pretreatment process by recycling water and using effective heat exchange. 

 Existing equipment has been resized and new items are assumed to have been 

purchased, including a saccharifaction tank for the enzymatic hydrolysis of the cellulose 

and residual starch in the combined wet cake/thin stillage, and a centrifuge to separate out 

the resulting pretreated liquid from the remaining distiller’s grains.  Resizing is 

performed based on the key operating parameters used for each piece of equipment.  This 

parameter is often as simple as the throughput, although some capital is sized based on 

other factors, such as residence time or drying loads. 

 With flows rates and equipment sizing determined, market prices can be applied 

to the pretreated liquid technology module just as in the base process.  Loan terms are 

then calculated and the financials for the pretreatment module are determined, such as 

annual net benefits, NPV, and IRR. 

 

 

 

 

2.3.3 Price Expectations for eDDGS and enzymes 

 While most market prices apply to both the base and pretreated liquid processes, 

there are two additional components in the new process without a market price, the added 

enzyme mixture and eDDGS.  Prices for the new enzyme mixture are estimated by the 
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supplier (Genencor International, Inc.) and are based on the additional ethanol yields (in 

gallons) obtained in the new process. 

It was expected that the higher protein levels in eDDGS would bring higher prices, 

without having to pay a premium for the enzyme requirements of the pretreated liquid 

stream.  The eDDGS price is estimated based on the change in value compared to DDGS 

as determined by a swine feed ration pricing model.  The compositional analyses of 

DDGS and eDDGS (Table 2.1) required for the pricing model were performed by the 

Experiment Station Chemical Laboratories, University of Missouri-Columbia, following 

methods outlined in a previous paper in this series (Kim et al., 2007). 

 

Table 2.1 Total Swine Feed Nutrition Limits in Feed Cost Model for Swine Feed 
Containing 15% DDGS or eDDGS. 

 

 MINIMUM MAXIMUM 

Crude Protein 0.160  

App. Dig. Methionine+Cystine 0.502  

App. Dig. Threonine 0.518  

App. Dig. Tryptophan 0.144  

Calcium 0.720 0.820 

Available Phosphorous 0.240  

Crude Fat  8.00 

App. Dig. Lysine 0.850  

Isoleucine 0.468  

Valine 0.570  

Vitamin Premix 0.150 0.150 

 

 A swine feed pricing model was chosen due to the strong dependence of swine 

health on the amino acid and nutrient profile of swine feed (National Research Council, 

1998).  It is desirable that eDDGS would increase in value in all markets where it is 

purchased, whether for cattle, swine, or any other animal which currently consumes 

DDGS.  Since initial analytical results showed a substantial increase in protein for the 
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eDDGS, it was expected that this protein would yield higher value for eDDGS.  As swine 

do have a more particular diet based on specific amino acid levels (Thaler, 2002), it is 

believed that value determinations based on the added constraints of a swine diet will 

represent a true lower limit for eDDGS pricing in the market. 

 For the swine feed model, DDGS or eDDGS was assumed to be mixed into the 

animal feed at a 15% level for grower swine.  Because previous studies have shown that 

dried distiller’s grains with fat content similar to that of standard DDGS can cause 

reduced belly firmness and more soft fat when added at levels above 20% of a grower 

swine’s diet, current recommendations entail starting the swine at 10% DDGS and 

increasing the feed diet up to a maximum of 20% (Thaler, 2002).  The midpoint of 15% 

was therefore chosen for this analysis.  However, several percentages were tested in the 

model between 10% and 20% in an attempt to confirm the robustness of pricing estimates. 

 The swine feed model sets limits on amino acids (see Table 2.1), as well as total 

protein and other minerals (National Research Council, 1998 and Hill et al., 1998).  

Prices and nutrient levels are included for all other feed ingredients.  The total feed cost is 

minimized by adjusting corn, soy bean meal, vitamins, and amino acid supplements to 

obtain the desired nutrient requirements at the lowest price possible, and a shadow value 

is calculated for the DDGS.  In this analysis, shadow values for DDGS and eDDGS were 

obtained, and the ratio of the two shadow values was applied to the DDGS market price 

in order to estimate an expected market price for eDDGS. 

 

 

 

 

2.4 Results 

 Based on a dry grind nameplate level of 100 million gallons of ethanol, a corn 

price of $3.82 per bushel, and a denatured ethanol price of $2.23 per gallon (Table 2.2), 

the DM model predicts an NPV of $162 million (Table 2.3) over the 25 year life of the 

project, with operations beginning in year 3.  This includes a $33.5 million yearly net 

operating benefit (Table 2.4), not including initial annual loan payments of $11 million 
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(Table 2.3).  The loan pays off 60% of the total capital investment of $148 million plus 

any capitalized interest.  The total capital investment per gallon of ethanol is $1.48.  

While this number may seem somewhat low, some of the large capital investment values 

found in industry may be due to a bubble from the growing ethanol demand.  It is likely 

that TCI values will soon return to lower levels more in line with our model.  More 

annual cost and revenue data can be found in Table 2.4. 

 

Table 2.2 Key Prices and Economic Assumptions  

(Price Data Taken from Chicago Board of Trade, Ethanol Producers Magazine, 
Bloomberg.com, and other Industrial Contacts) 

 

 Value 

Corn price $3.82 / bu. 

Soybean meal price $217 / ton 

Ethanol price $2.23 / gal. 

Gasoline price $2.27 / gal. 

DDGS price $105 / ton 

CO2 price $6.36 / ton 

Alpha-amylase $5.50 / lb. 

Gluco-amylase $3.15 / lb. 

Debt interest rate 8.7% 

Debt/Equity ratio 60/40 
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Table 2.3 Capital and Financial Analysis of the Base and Alternative Processes. 

  All Values in Real Dollars 

 

 Base Process With Pretreatment 

Total Capital Investment $148,260,425 $158,454,889 

40% Equity Paid $59,304,170 $63,381,955 

Initial Loan Payment $10,901,732 $11,651,340 

IRR (real) 33.1% 38.5% 

NPV $161,957,921 $214,581,147 

Change in NPV  $52,623,226 

% diff from base   32% 
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Table 2.4 Annual Revenue and Operating Cost Details of the Base and Alternative 
Processes 

 

Revenues Base Process With Pretreatment 
Ethanol $223,000,000 $251,254,754 

DDGS or eDDGS $37,694,685 $28,735,669 
CO2 $2,004,506 $2,271,200 

Total Revenue $262,699,191 $282,261,623 
      

Costs Base Process With Pretreatment 

      Materials $166,843,443 $171,035,283 
Grain $136,176,590 $136,176,590 

Enzymes $13,532,318 $16,066,376 
yeast $1,018,105 $1,056,774 
SO2 $4,766,430 $4,947,464 

denaturant $11,350,000 $12,788,078 
      Energy and Water $33,707,243 $39,552,795 

Thermal $25,576,643 $29,602,759 
Electrical $7,673,417 $9,434,927 

H2O $457,184 $515,110 
      Indirect $27,917,734 $30,813,358 

Labor $6,553,650 $7,017,489 
Taxes $8,234,656 $9,698,408 

Liscence Fees $5,253,984 $5,645,232 
Maintenance $5,253,984 $5,645,232 

Misc. $2,621,460 $2,806,996 
Total Operating Costs $229,165,569 $241,401,436 

   
Net Benefits Base Process With Pretreatment 

without loan $33,533,622 $40,860,187 
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2.4.1 Pretreatment Module:  Pricing Adjustments 

 The new enzyme mix cost is estimated to add $0.20 per additional gallon of 

ethanol above 100 million gallons.  With 12.7 million gallons of additional ethanol being 

produced by the pretreatment process (Table 2.5), there are roughly $2.5 million in 

additional enzyme costs. 

 

Table 2.5 Input and Output Rate Changes of Major Ingredients between the Alternative 
Process and the Base Process 

 

 Base Process With Pretreatment 

Yellow Dent Corn (tons) 998,143 998,143 
Ethanol (gal) 100,000,000 112,670,293 
DDGS (tons) 358,997 277,951 

 

 

 

 eDDGS drops in value roughly 1.5% compared to the base DDGS currently in the 

market as determined by the swine feed model.  This drop is due to the loss of lysine in 

the eDDGS samples.  Our base DDGS has 0.87% digestible lysine while the eDDGS has 

0.54% (Table 2.6).  Lysine is a key ingredient in swine feed (Thaler, 2002), and such a 

drop forces the model to supplement the feed with higher cost, lysine rich components 

and supplements, resulting in a very slight drop in value of the eDDGS.  If the lysine to 

protein ratio were to stay the same, we would predict an eDDGS lysine level of 1.27% 

and an increase in eDDGS value of 6.7% vs. the base DDGS. 

 

 

 

 

2.4.2 Pretreatment Module:  Process Flows, Capital, and Operating Costs and Revenue 

 The ethanol yield increases with the pretreatment module by 12.7% (Table 2.5).  

This has a substantial impact on plant revenue, increasing revenue by over $28 million 
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annually due to ethanol yields alone.  A couple of other notable changes are driven by 

this yield increase.  All ethanol processing equipment is more expensive due to the 

increased throughputs, and the utilities are more expensive as well, as energy and water 

increase in cost from $33.7 million to $39.6 million (Table 2.4). 

 

Table 2.6 DDGS and eDDGS Nutrient Analysis 

 

 DDGS eDDGS 

Crude Protein 28.3     % 41.2     % 

App. Dig. Methionine+Cystine 1.08   % 1.14   % 

App. Dig. Threonine 1.08   % 1.33   % 

App. Dig. Tryptophan 0.19   % 0.21   % 

Calcium           0.031 % 0.035 % 

Phosphorus      1.07   % 1.20   % 

Available Phosphorous        0.92   % 1.02   % 

Crude Fat         14.5     % 14.7     % 

App. Dig. Lysine 0.97   % 0.58   % 

Crude Fiber        6.52   % 2.88   % 

Isoleucine 1.13   % 1.53   % 

Valine 1.48   % 1.94   % 

 

 While the ethanol yields drive up the throughput and prices of certain pieces of 

equipment, other capital expenditures are unaffected, or even decrease, due to the new 

process flows.  For instance, the hammer mill cost would be identical due to the constant 

corn input rates (Table 2.5).  Similarly, the costs of liquefaction and saccharification 

tanks would increase minimally as the pretreated liquid stream does not increase 

throughput in these two tanks substantially.  In the case of eDDGS drying and processing, 

the lower yields actually lessen the capacity requirements of the drum dryers, resulting in 

a decrease in capital costs through this part of the process.  The net result is that the 

pretreatment process module increases the equipment costs for existing equipment by just 

over $750 thousand, with another $1.4 million needed for the new equipment in the 
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process (Table 2.7).  These two increases lead to a total capital investment (TCI) of 

$158.5 million, or a 6.9% increase in TCI compared to the base process.  With the 

ethanol yield increasing by 12.7%, an efficiency in TCI per gallon of ethanol is realized 

as this value decreases from $1.48 in the base process to $1.41 in the pretreated liquid 

process. 

 

Table 2.7 Capital Costs for the Base Process and Alternative Process 

 

 Base Process With Pretreatment 

Total Existing Purchased Equipment $30,015,719 $30,782,203 
New Purchased Equipment  $1,357,896 
Other Capital Costs and Working Capital $118,244,707 $126,314,789 
Total Capital Investment $148,260,425 $158,454,889 
Total Capital Investment / Gallon Ethanol $1.48 $1.41 
 

 Finally, the decrease in eDDGS yields, with no appreciation in its value, results in 

a revenue loss of nearly $9 million annually (Table 2.4), diminishing some of the revenue 

gains from the ethanol. 

 

 

 

 

2.4.3 Pretreatment Module:  Financials 

 The loan payments increase for the pretreated liquid process, due both to 

increases in capital requirements, as well as increases in working capital (based on 

operating costs tied to higher values for capital and ethanol revenue).  However, with the 

lower capital cost per gallon of ethanol, and the large increase in ethanol revenue, it is not 

surprising that the NPV for an operation which includes the pretreatment and enzymatic 

hydrolysis technology is $214.6 million, or a $52.6 million increase compared to the base 

process (Table 2.3).  The IRR also increases to 38.5%, compared to 33.1% for the base 

process. 
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2.4.4 Sensitivity to eDDGS Pricing 

 If any variability exists with respect to lysine losses in the distiller’s grains due to 

the pretreatment technology, it would be useful to understand the impact on the plant 

financials.  Assuming no loss of lysine in the protein, and an eDDGS lysine level of 

1.27%, the adjusted value of eDDGS (a 6.7% increase instead of a 1.5% decrease) yields 

an NPV of $230.7 million, or $16 million higher than the estimate with the lower eDDGS 

value. 

 

 

 

 

2.4.5 Sensitivity to Enzyme Mix Pricing 

 The enzyme mixture which hydrolyzes the pretreated distiller’s grains by far 

represents the most significant raw material cost increase, and brings an additional $2.5 

million in material costs to the operation.  Without this added cost, the net operation 

benefits of implementing the pretreatment and hydrolysis of distiller’s grains is $9.9 

million.  Thus, added enzyme costs cut into this net benefit by 26%.  Looking at the 

sensitivity of pricing for the enzyme mixture, a decrease in the new enzyme mixture cost 

by 20% would yield a net yearly benefit of $7.8 million and an NPV of $218.2 million 

compared to $7.3 million and $214.6 million respectively for the assumed pricing.  

However, if the enzyme mixture cost ended up being higher by 20%, the net yearly 

benefit and NPV would drop to $6.9 million and $211.0 million respectively. 

 

 

 

 

2.5 Summary and Conclusions 

 Based on the conservative practice of utilizing swine feed models to determine the 

value of dried distiller’s grains, the eDDGS product does not show an increase in value as 

anticipated compared to the base DDGS due to the loss of lysine through the pretreatment 

 



24 

and enzymatic hydrolysis processes, lysine being a particularly important amino acid in 

the swine diet.  While using a swine diet might seem restrictive as other animals may 

benefit more from the high protein content in eDDGS, it is not known whether such a 

product differentiation is possible in the DDGS market, being able to sell the product for 

one type of animal feed at a premium while eliminating other markets.  Thus, the 

restrictions of a swine diet may be appropriate.  If this is the case, then finding ways of 

retaining lysine could prove important.  While the value of eDDGS did not decrease 

substantially compared to the base, further losses of lysine could drop the value enough 

that overall feed costs become prohibitive to the farmer, and eDDGS loses more of its 

worth to the swine population. 

 Nevertheless, even with the eDDGS value not appreciating, the pretreatment 

technology does add value to a conventional dry grind operation at current corn and 

ethanol prices.  The large yield increases in ethanol, combined with its value over that 

yield, increases revenues substantially, more than making up for added capital costs, 

higher operating costs, and revenue losses from decreased DDGS yields.  Thus, at current 

ethanol prices, the economics of the pretreatment technology are encouraging, and 

finding a way to maintain lysine levels in the dried distiller’s grains would likely make 

the technology even more economically attractive.   Furthermore, any reductions in 

pricing of the enzyme mixture are shown to add to the economic gains of the 

pretreatment and hydrolysis process.  It is also known that lower ethanol prices would 

reduce the gains of hydrolyzed distiller’s grains substantially.  For instance, given the 

assumptions used in this analysis, the breakeven ethanol price for the pretreatment 

process is roughly $1.95 per gallon compared to $1.99 per gallon for the conventional dry 

grind process.  Any changes which either increase the value of the eDDGS or decrease 

the cost of the enzyme mixture would help to lower this breakeven price even more, thus 

making ethanol production by the dry grind process feasible over a larger range of 

ethanol prices. 

 

 

 

 



25 

2.6 Acknowledgments 

This work was supported by US Department of Energy (Contract: DE-FG36-

04GO14220) in cooperation with Midwest Consortium for Biobased Products and 

Bioenergy.  Acknowledgements are due to Mike Ladisch, Youngmi Kim, Nate Mosier, 

Paul Preckel, Brian Rickert, and Todd Hubbs for their assistance with parts of the 

analysis. 

 

 

 

 

2.7 References 

BBI International, 2003.  The Ethanol Plant Development Handbook:  Fourth 
Edition.  BBI International Publishing, Grand Forks, ND. 
 
Bloomberg.com, 2007. Bloomberg Energy Prices.  Available from: 
<http://www.bloomberg.com/markets/commodities/energyprices.html>.  
Accessed May 2007 
 
Chemical Engineering, 2007. Economic Indicators: Marshall and Swift 
Equipment Cost Index. Chemical Engineering.  January, 68. 
 
Chicago Board of Trade, 2007. Agricultural Products.  Available from: 
<http://www.cbot.com/cbot/pub/page/0,3181,963,00.html>  Accessed May, 2007. 
 
Dale, R.T.; Tyner, W.E., 2006a.  Economic and Technical Analysis of Ethanol 
Dry Milling: Model Description, Staff Paper # 06-04, Purdue University. 
 
Dale, R.T.; Tyner, W.E., 2006b.  Economic and Technical Analysis of Ethanol 
Dry Milling: Model User’s Manual. Staff Paper # 06-05, Purdue University. 
 
Ethanol Producer Magazine, 2007.  Commodities.  Available from: 
<http://www.ethanolproducer.com/commodities.jsp>   Accessed May, 2007. 
 
Hill, G.; Rozeboom, D.; Trottier, N; Mahan, D.; Adeoli, L; Cline, T.; Forsyth, D.; 
Richert, B., 1998.  Tri-State Swine Nutrition Guide.  Bulletin 869-98, The Ohio 
State University 
 
Hosein, S.; Gallagher, P., 2005.  USDA’s 2002 Ethanol Cost-of-Production 
Survey.  Agricultural Economic Report Number 841. United States Department of 
Agriculture. 

 



26 

 
Kim, Y.; Mosier, N.;  Ladisch, M.R., 2007.  Simulation of Modified Dry Grind 
Ethanol Processes with Recycle of Pretreated and Enzymatically Hydrolyzed 
Distiller’s Grains.  Bioresource Technol. Xx, xxx-xxx 
 
Microsoft Corporation, 2003.  Microsoft Excel 2003, SP2, Redmond, WA. 
 
National Research Council, 1998.  Nutrient Requirements of Swine: Tenth 
Revised Edition.  National Academy Press, Washington D.C. 
 
Thaler, B., 2002.  Use of Distillers Dried Grains with Solubles (DDGS) in Swine 
Diets.  Extension Extra 2035, Cooperative Extension Service, South Dakota State 
University. 
 

 

 



27 

CHAPTER 3. SPATIAL OPTIMIZATION AND ECONOMIES OF SCALE FOR 
CELLULOSIC TO ETHANOL FACILITIES IN INDIANA 

3.1 Abstract 

 Based on cellulosic biomass yield projections of a recent national study, the 

optimal spatial distribution and size of cellulose to ethanol conversion facilities is 

determined for cellulose sources in Indiana to be converted to ethanol through a 

biochemical conversion process.  Such sources include corn stover and switchgrass.  A 

cost minimization approach is implemented that optimizes over the raw material and 

transportation costs of the process, with economies of scale included for large facilities.  

Due to the abundance of corn stover and its current low cost as a byproduct of corn 

production, a high concentration of facilities in the northwest section of Indiana is ideal.  

Such plants would utilize high levels of corn stover and operate at relatively lower cost 

than other facilities in the state.  Other regions of the state would have fewer facilities, 

several specializing in switchgrass and operating at a higher cost.  Economies of scale 

similar to those found in corn to ethanol facilities are likely to support large sized plants 

given current yield projections.  However, if more conservative biomass yield projections 

are expected due to lower collection or land utilization rates, the economies of scale 

needed to support large plant sizes nearly doubles, increasing the likelihood of an optimal 

strategy in which smaller facilities are more broadly distributed around the state.   
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3.2 Introduction 

 Ethanol output has grown significantly in recent years, both in Indiana and across 

the United States.  With the desire to promote cleaner, renewable fuels, both the federal 

and state governments have instituted subsidies intended to increase output.  In December 

2007 Congress passed and the President signed the “Energy Independence and Security 

Act of 2007” which contains a renewable fuel standard (RFS) requiring 35 billion gallons 

of ethanol by 2022, of which at least 16 billion must come from cellulosic sources (U.S. 

Congress, 2007).  Additionally, recent increases in gasoline prices compared to the 

historically low prices experienced in the United States likely will continue to put upward 

pressure on the demand for substitutes.  As less expensive production technologies in 

ethanol manufacturing come online, ethanol substitution levels in fuel mixtures may 

continue to increase. 

 While there is much excitement about this ethanol boom and the potential for 

profit, there are also undesirable outcomes for participants in closely related markets.  

Specifically, with corn being the primary input for the ethanol production process, 

livestock producers dependent on corn as a feed ingredient have been negatively 

impacted by rising corn prices.  Such factors also impact food markets as higher costs for 

feed are passed on to consumers of chicken, eggs, dairy, beef, and pork through higher 

prices.  Thus, while ethanol shows great potential as a cleaner fuel that could decrease 

U.S. dependence on foreign oil, there are concerns about how increased ethanol output 

levels and the induced demand for corn will impact the affordability of certain dietary 

staples. 

 Given the potential for adverse price effects in food markets, there is a desire to 

develop alternative sources of the raw materials needed for ethanol production.  Materials 

rich in cellulose show great potential as ethanol feedstocks.  Not only can they be 

converted to the necessary precursors for ethanol production, but many cellulose sources 

are natural by-products of other farming and manufacturing processes.  Corn stover and 

wood trimmings are two common examples of by-products of corn farming and logging 

respectively (Perlack et al., 2005).  Furthermore, some high energy sources of cellulose 

that would be grown as primary crops can be grown on terrains hostile to corn and other 
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crops, thus in some cases being produced on currently uncultivated lands without having 

to displace food production. 

 Recently, the “Billion-ton” study investigated the potential for U.S. grown 

biomass sources to provide enough ethanol to replace 30% of domestic fuel consumption 

(Perlack et al., 2005).  In short, the authors conclude this would be feasible, with 

cellulose based sources making up a substantial portion of the over 1.3 billion dry tons of 

biomass resources projected to be available for conversion to fuels. 

 The State of Indiana has benefited from the push for ethanol and other biomass 

based fuels.  The large quantity of farmland dedicated to growing corn has made Indiana 

an attractive site for the construction of conventional corn to ethanol dry grind 

manufacturing facilities.  With the push for alternative biomass to produce ethanol, it is 

useful to begin assessing how Indiana can position itself to take advantage of cellulosic 

materials if the Billion-ton study projections are correct.  The Billion-ton study 

anticipates that 18.3 million dry tons of cellulose feedstocks would be available in 

Indiana given proper land utilization.  As these sources are developed, and firms begin to 

construct facilities for conversion to ethanol, there will be many questions affecting the 

welfare of firms and citizens alike.  For instance, where should manufacturing facilities 

be located and how large should they be?  Which locations will best take advantage of the 

cellulose source materials with respect to minimizing costs?  What impact will a 

potentially large network of facilities have on our roads and highways?  What will be the 

impact of new manufacturing facilities and some newly cultivated land on the Indiana job 

market and the environment? 

 The intent of this paper is to begin to answer some of these questions and to 

provide a framework for follow-up studies.  Specifically, it seeks to determine an optimal 

spatial distribution of ethanol plants within the state of Indiana given the projections of 

biomass availability projected by the Billion-ton study and detailed cost information for 

harvesting, storing, and shipping biomass products (Brechbill and Tyner, 2008).  

Additionally, this paper provides guidance regarding the optimal size of ethanol facilities 

based on economies of scale.  One of the key assumptions is that conversion facilities 

will use all of the cellulose materials grown within Indiana, and only these materials, in 
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the production of ethanol.  This is acknowledged to be a strong assumption, but one 

which should not dramatically alter the findings of the study.  Since crop costs grow with 

increased shipping distances one would expect that only crops near the borders would be 

shipped across state lines, and there is no reason to believe that more crops would be 

shipped in one direction or the other.  It is therefore believed that the impact of this 

assumption on the conclusions should be small. 

 Projections of optimal plant locations have been made in the past.  Notably, 

Nelson projected plant locations across Indiana for 40 equal output sites (Nelson, 1981).  

However, Nelson focused on agricultural residues without taking into account cellulose 

source crops which are specifically grown for conversion to ethanol.  Additionally, 

Nelson made regional assumptions of harvest rates not required here due to the detailed 

county level data provided by the Billion-ton study.  Given expected residue and crop 

outputs in this data, a specific county level analysis can be performed by combining the 

yield data with inter-county distances and transportation costs.  Additionally, this paper 

considers some of the larger throughput rates anticipated to benefit from economies of 

scale based on historical experience from fermentation of corn-based sugars (Dale et al., 

2006). 

 Another series of papers exemplified by English et al. (2000) has a broader scope 

by investigating the impact of corn stover and other biomass output expectations on the 

economies of several corn-growing states including Indiana, even including output prices 

and other factors for sensitivity analyses.  However, English et al. focuses on economy 

wide results at the state level as opposed to county level output decisions, the main focus 

of this paper’s spatial distribution plan.  Additionally, this paper utilizes the most recent 

county yield estimates (Billion-ton study) and biomass cost information (Brechbill and 

Tyner, 2008) for Indiana. 

 This paper will focus on the anticipated 14.6 million dry tons per year of corn 

stover and switchgrass available to be processed by biochemical conversion (Perlack et 

al., 2005).  This process breaks the cellulose down to simple sugars using enzyme 

hydrolysis, and then ferments the sugars to produce ethanol.  Enzymatic hydrolysis and 

fermentation are currently used to convert corn to ethanol and would be conducive to the 
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cellulose sources considered in this study.  These sources are corn stover, an agricultural 

residue from corn production, and switchgrass, a high energy primary crop (US DOE, 

2006).  In addition to considering the optimal spatial distribution and size of plants given 

the projections of the Billion-ton study, an additional scenario will be tested making more 

conservative assumptions with respect to collection rates of corn stover, as well as land 

utilization and biomass conversion rates for both corn stover and switchgrass.This is the 

second page of your chapter.  

 

 

 

 

3.3 Methodology 

 Focusing on biochemical conversion facilities, it is assumed producers can utilize 

one of two plant sizes, a large plant (100 million gallons/year) or a small plant (50 

million gallons/year), in order to convert Indiana’s projected corn stover and switchgrass 

into ethanol.  It is also assumed that this conversion process will be robust enough to 

handle either of the two feedstocks in varying proportions within one plant.  While this 

might assume an optimistic level of manufacturing robustness, the key components of 

each material which are hydrolyzed are similar.  It seems feasible that enzyme mixtures, 

as well as technological modifications of the crops themselves, could be developed to 

provide such robustness.  Finally, the following simplifying assumptions are made:  (1) 

each county will have at most one manufacturing facility, (2) the construction and 

operating costs are identical for each plant except for the biomass raw material costs and 

an economy of scale factor which will be represented by an added per gallon cost for the 

smaller plant, and (3) cost differences exist only in the growing (switchgrass), harvesting, 

and transportation costs of the biomass raw material mixture which is input into the 

process. 

 The objective for firms is to maximize their profit, which is revenue less costs.  

Since plants of modest size are assumed, individual plants should not have an impact on 

the price of ethanol and unit revenues are thus assumed to be identical for each site 
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regardless of its location.  Thus, to maximize profits, firms must focus on minimizing 

their costs.  Since construction and operating costs are assumed to be identical for each 

site, optimization focuses on the production, harvesting and transportation costs of 

biomass.  Specifically, how do the relative costs for each crop impact the choice of the 

input mix in order to minimize costs. 

 This model will assume that costs are minimized over all sites, even though each 

site may be owned by a different enterprise.  While this appears to be more of a central 

planning solution than one of competitive firms maximizing profits, the general results 

should be similar, with plants locating based on the comparative advantages relative to 

surrounding counties (Nelson, 1981).  In reality plants will likely contract for cellulose 

raw materials before the plant is even constructed.  The early plants will locate in least 

cost areas and will contract for available raw material in those areas.  Since the purpose 

of this exercise is to determine the use of all biochemically converted cellulose sources, it 

is assumed that the price of ethanol is sufficiently high that all plant sites are constructed 

and able to make a positive profit.  Otherwise, not all sites would be constructed and 

continue operating.  As sites are constructed to convert the total supply of materials, firms 

acting competitively will locate in order to minimize total costs. 

 The amount of dry biomass shipped between counties is designated Xijk, where i 

is the set of counties where biomass is produced, j is the set of counties where ethanol is 

potentially produced, and k is the set of biomass feedstocks (corn stover and switchgrass).  

The relevant parameters for the cost minimization model are as follows: 
pk – production cost for biomass feedstock k ($/dry ton shipped with profit) 
sk – fixed shipping cost for biomass feedstock k ($/dry ton shipped) 
f – freight rate for shipping biomass ($/dry ton shipped/mile) 
dij – distance from county i to county j (miles) 
Cp – added plant cost for a 50 Mgal facility (reflecting diseconomies of scale) 
N – total plant capacity needed (100 Mgal/year) 
l – fractional storage loss of biomass feedstock 
bik – amount of biomass k produced in county i (dry tons/yr) 
ck – million gallons of ethanol per dry ton of biomass 
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The binary (0-1) variables Ij
50 and Ij

100 represent the number of 50 million and 100 

million gallon ethanol plants respectively in county j, and the model is optimized by 

minimizing the total cost C as follows:  
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The optimization problem has several constraints.  Constraints 2, 6, and 7 imply that any 

county can have at most one plant of either size, 100 Mgal or 50 Mgal, and that fractional 

plants are not permitted.  Constraint 1 requires that the total amount of ethanol produced 

will exactly exhaust the feedstock resource base.  Finally, constraints 3, 4, and 5 require 

that the amount of biomass supplied by a county cannot exceed the amount available 

from the farms in that county after taking collection/storage losses into account, and the 

amount of biomass supplied to each manufacturing site must be sufficient to cover the 

production level.  The problem is implemented using GAMS version 22.5 (Brooke et al, 

2005). 

 To determine the sensitivity of the model to biomass availability and total 

statewide ethanol output levels, several of the strong assumptions of the Billion-ton study 

are relaxed in a second application of the model, with each adjustment of assumptions 

resulting in lower ethanol yields for Indiana in what is considered a more conservative 

scenario.  For instance, our base case assumes that all cropland is managed with no-till 

 



34 

methods.  When this assumption is relaxed, corn stover recovery rates drop from 70% to 

52.5% (Table 3.1).  Additionally, land utilization rates for the base case are assumed to 

be 100% whereas a rate of 75% in the second application recognizes that land owners 

may choose not to participate.  Finally, conversion rates are decreased in the second 

application to reflect technical inefficiencies which are likely as manufacturing facilities 

begin to convert cellulosic biomass to ethanol for the first time (Tiffany, 2007).   

 

Table 3.1 Indiana Ethanol Supply Capabilities from Major Cellulosic Sources 

 Billion-ton Projection Conservative Estimate 
 Corn Stover Switchgrass Corn Stover Switchgrass 
Projected yearly dry tons of 
biomass 9,887,958 5,348,497 6,206,723 5,348,497 

Corn Stover clearance % 70% N/A 52.5% N/A 
Land-use rate 100% 100% 75% 75% 
Adjusted yearly dry tons of 
biomass 9,228,761 5,348,497 3,258,530 4,011,373 

Storage losses 8.4% 8.4% 8.4% 8.4% 
Ethanol conversion  
(gal/dry lb biomass) 81.4 79.0 69.7 67.6 

Volume ethanol   
(gal/year) 688,118,569 387,038,637 208,041,476 248,574,327 

Total volume ethanol 
(gal/year) 1,075,157,206 456,615,803 

Total ethanol assumed  
(gal / year) 1,050,000,000 450,000,000 

Data sources: Projections are taken from the Billion-ton study with no till methods, 
adjusting for a 70% corn stover harvest rate as opposed to 75%.  Conservative estimates 
are taken from the Billion-ton study with current tillage methods, adjusting for a 52.5% 
corn stover harvest rate as opposed to 75%.  Ethanol conversion figures are taken from 
McLaughlin, 1999 and Spatari, 2005 for the projects and from Tiffany, 2007 for the 
conservative estimate.  Storage losses are calculated (see notes for Table 3.2).  
 

 Experience has shown that corn dry grind facilities are typically sized between 20 

and 100 million gallons, with plants producing at or over 80 million gallons reaping most 

of the economies of scale associated with capital expenditures (Dale et al., 2006).  On a 

dry cellulosic biomass input basis, there is some evidence suggesting that economies of 

scale might be optimized when crossing over 2,000 metric tons per day, roughly equating 

to 65 million gallons per year (Huang et al., 2006).  The plant sizes of 50 and 100 million 
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gallons are chosen for simplicity.  Aside from the belief that these will aptly represent the 

low and high economy of scale regimes, the fact that 100 is divisible by 50 provides 

some interpretive benefits to the model.  Namely, investors deciding upon a single 100 

Mgal plant or two 50 Mgal plants will have to weigh the tradeoffs between the economy 

of scale benefits of a larger plant and the reduced transportation costs associated with 

distributing production sites more broadly. 

 Given these plant sizes, assumed conversion rates, and the resource constraints, 

the maximum amount of ethanol expected to be produced in the base case is 

1,050,000,000 gallons per year (Table 3.1).  This number is very high compared to 

estimates developed in other papers which apply further constraints beyond the billion-

ton study based on several present day realities.  The recent work of Brechbill and Tyner 

(2008) is one example.  Using the assumptions of the second application will allow for 

the effects of biomass density to be tested, as 450,000,000 gallons are expected to be 

produced annually given the more conservative estimates of this scenario. 

 The costs being minimized are a combination of raw material costs, transportation 

costs, and economy of scale costs (the added cost of operating a small plant).  Because 

corn stover is a residue, the cost of growing corn stover is only the marginal cost of 

additional fertilizer applied because of nutrients lost when the stover is removed.  For the 

base case, harvesting, handling and storage costs are added, taking storage losses and a 

15% profit premium into account, to provide a product cost of $33.68 per dry ton of 

shipped material (Table 3.2).  Harvesting costs assume a corn stover clearance level of 

70%, with 30% remaining on top of the soil past the harvest.  Bales are net wrapped to 

minimize costs during handling.  Fixed and variable transportation charges are applied at 

a rate of $2.20 per dry ton and $0.15 per dry ton-mile respectively.  Miles are measured 

as the distance between the county of the farm and the county of the plant.  This cost 

takes into account the round trip between the farm and the manufacturing facility.  

Similar estimates using the conservative assumptions of the second case can also be 

found in Table 3.2. 

 Switchgrass is grown as a primary crop, and therefore requires seeding and 

establishment costs not present for corn stover.  Additionally, a land rental fee is assumed 
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to represent the value of the land’s next best alternative use.  Adding these costs together 

with the harvest and storage costs, and assuming a 15% profit premium, results in a raw 

material cost of $52.95 per shipped ton.  Shipping costs are then added in an identical 

manner to that of corn stover (Table 3.2). 

 

Table 3.2 Raw Material and Transportation Costs for Harvested Crops and Shipped 
Product. 

 Billion-ton Projection Conservative Estimate 
 Corn Stover Switchgrass Corn Stover Switchgrass 
    Seeding and establishment 0 4.51 0 4.51 
    Equipment cost ($/ 1.86 1.31 1.86 1.31 
    Fertilizer/herbicide costs ($/ 15.63 15.41 15.63 15.41 
    Harvest costs ($/ harvested 5.25 2.88 4.85 2.88 
    Handling costs (net wrap) 3.97 3.97 3.97 3.97 
    Storage ($/ harvested dry 0.11 0.09 0.11 0.09 
    Land rent ($/ harvested dry 0 14.00 0 14.00 
Total raw material cost ($/ 26.83 42.17 26.43 42.17 
    Storage losses (loss %) 8.4% 8.4% 8.4% 8.4% 
    Profit (% of raw material 15% 15% 15% 15% 
pk: Total raw material cost 33.68 52.95 33.18 52.95 
sk: Shipping costs, fixed ($/ 2.1962 1.8919 2.4466 1.8919 
f : Freight costs, variable ($/ 0.1498 0.1498 0.1498 0.1498 

Data Sources: Raw material costs for corn stover and switchgrass, as well as shipping charges 
and storage/transportation losses, are taken from a concurrent Purdue University working paper 
(Brechbill and Tyner, 2008).  All costs account for residence times of harvesting, storage, and 
transportation. 
 

 

 Because transportation costs are based on the mileage between a farm in one 

county and a potential manufacturing site in another county, the distances between 

counties are required as part of the optimization problem.  In this analysis, the distances 

between county seats are utilized as a proxy for transportation distances.  Latitude and 

longitude coordinates were obtained for each county seat using arcGIS.  Using these 

measures, the Haversine formula was implemented to determine the distance between 

county seats on the globe (Sinnott, 1984).  Given that this method would produce no 

shipping charges for transit within a county, a distance of 10 miles is assumed for intra-

county transportation. 
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 As previously mentioned, a cost factor Cp is added for each facility, with the value 

equaling zero for a 100 Mgal plant and positive for a 50 Mgal plant.  This factor 

represents the added cost of producing at a low output level and not taking advantage of 

the economies of scale.  For instance, when producing ethanol from corn, the savings in 

capital expenditure is calculated to be on the order of $0.23 or greater when doubling the 

plant size from 50 to 100 million gallons (Tyner and Dale, 2006).  Since Cp is included as 

an annual operating cost, it will have to be converted to a capital cost by implementing a 

financial analysis similar to those performed on corn ethanol plants.  Specifically, what 

level of capital savings provides the same net present value (NPV) benefit as saving the 

added cost of Cp by operating at a larger level?  Assumptions for the financial analysis 

are listed in Table 3.3. 

 

Table 3.3 Assumptions for Financial Analysis to Annualize Economies of Scale Which 
Would Cover Increased Shipping Distances Associated with Larger Plant Sizes. 

Assumption Value 
Project years 25 
Start up years/operating years 2/23 
1st / 2nd year capital investment split 40% / 60% 

Investment hurdle rate (real) 8.7% 
Data Sources: Assumptions taken from dry mill model (Dale and Tyner, 2006). 

 

 It is expected that if Cp is set to zero for a 50 million gallon facility (i.e., no 

economies of scale), that only small facilities will be used in an attempt to spread 

production more broadly over the state and minimize shipping distances.  As Cp increases, 

the ideal spatial distribution of facilities should include some larger plants as the benefits 

of running a large scale operation would outweigh the costs of longer shipping routes.  

Thus, the model will be optimized over various levels of Cp to determine at what level of 

diseconomy of size makes it preferable to utilize larger plants, either occasionally or 

throughout the state.  
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3.4 Results 

 The increase in capital expenditure needed to make large plant sizes economical is 

modest (Table 3.4).  At a total capital investment (TCI) level just under $0.07 per gallon, 

at least three large plants are needed to minimize costs.  Increasing TCI in very small 

increments results in optimized scenarios with more and more large plants until costs are 

minimized by operating as many large plants as possible (ten to be exact) at TCI levels of 

almost $0.17 / gallon and higher. 

 

Table 3.4 Operating Cost Savings and Their Economy of Scale Equivalents Which Lead 
to the Transition from 50 Million Gallon Facilities to 100 Million Gallon Facilities for the 

Production of Cellulose Source Ethanol. 

Operating costs, 
Cj

p  
($/gal ethanol) 

Economy of scale* 
in capital investment  

($/gal ethanol) 

Target number of  
100 Mgal plants, 
high IN output 

Target number of  
100 Mgal plants, 

moderate IN output 
$0.000 $0.000 0 0 
$0.003 $0.034 0 0 
$0.006 $0.067 3 0 
$0.009 $0.101 5 0 
$0.012 $0.134 8 0 
$0.015 $0.168 10 1 
$0.018 $0.201 10 2 
$0.021 $0.235 10 2 
$0.024 $0.268 10 3 
$0.027 $0.302 10 3 
$0.030 $0.335 10 4 
$0.033 $0.369 10 4 
$0.036 $0.402 10 4 

*Note: Economies of scale for ethanol from corn are over $0.23 / gallon based on scaling up from 
a 50 Mgal facility to a 100 Mgal facility (Dale and Tyner, 2006). 
 

 

 Based on this cost minimization approach, a large number of counties chosen for 

the biochemical production of ethanol from cellulose sources (corn stover and 

switchgrass) are located in the top half of the state independent of the economies of scale.  

As Figure 3.1 demonstrates, when no economies of scale are assumed, all ethanol is 

produced using 50 million gallon plants, a majority of which are located in the northern 

half of Indiana, with roughly one third being located in the southern half (using 
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Indianapolis in Marion County as an unofficial dividing line between the two halves).  

While the counties are spread out within regions, there are still several instances of 

neighboring counties having facilities, especially in the northwest region of the state.  

Several plant locations in the northwest tend to be the lowest cost operations in the state 

(Figure 3.1). 

 

50 Mgal plants (21) 

 

Figure 3.1 Optimal Counties of Manufacturing Sites for the Biochemical Conversion of 
Corn Stover, Switchgrass, and Poplar to Ethanol Based on Billion-Ton Study Projections 

and No Economies of Scale. 

With respect to crop usage, there is a strong correlation between corn stover use 

and cost.  As demonstrated by Table 3.5, which ranks the counties by corn stover use, the 

top five plants with respect to reducing costs all utilize the highest levels of corn stover.  

In fact, the ranking of cost reduction is almost identical to the ranking of corn stover 

usage, with plants incurring greater costs as they switch from corn stover to switchgrass.  

 

Lowest cost plants using the 

highest percentage of corn 

Highest cost plants using the 

highest percentage of
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In fact, the highest cost plants are the three plants located in the southwest portion of the 

state (Figure 3.1) and are the only three plants to use over 60% switchgrass.   

 

Table 3.5 Cost Ranking and Biomass Percentages for Each Plant Site Based on Cost 
Minimization Procedure: Billion-Ton Assumptions without Economies of Scale 

Plant location 

Low cost 

ranking* 

% ethanol from 

corn stover# 

% ethanol from 

switchgrass 

Marshall     2 99% 1% 
Porter        4 97% 3% 
White     3 97% 3% 
Newton      1 95% 5% 
Miami         5 94% 6% 
Shelby      6 85% 15% 
Tipton       7 83% 17% 
Tippecanoe    8 76% 24% 
Boone       9 76% 24% 
Randolph      10 64% 36% 
Lagrange        11 63% 37% 
Montgomery     13 61% 39% 
Wells       12 59% 41% 
Whitley     16 51% 49% 
Delaware        15 51% 49% 
Fountain   14 49% 51% 
Fayette        17 48% 52% 
Clay          18 41% 59% 
Knox        19 38% 62% 
Vanderburgh    20 24% 76% 
Jackson      21 24% 76% 
* 1 is the lowest cost plant and 21 is the highest cost plant. 
# While plants using close to 90% or higher of corn stover are likely to operate 

with this single input, no such restriction was placed on the model. 
 

 

 This trend carries over into the larger economies of scale scenario in which as 

many plants as possible are of the large variety (Figure 3.2).  In this scenario, the top four 

plants in corn stover use are in northwest portion of the state.  The two highest cost plants 

are located in the southwest and utilize significant levels of switchgrass. 

 By relaxing some of the assumptions from the Billion-ton study, less cellulosic 

biomass is produced and collected in each county, resulting in a drop of total ethanol 
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produced in Indiana.  In this case, the highest cost and lowest cost plants are located in 

the same regions as the base case with the low cost plants still using mostly corn stover 

and the high cost plants using the most switchgrass (Figures 3.3 and 3.4).  However, with 

the lower density of cellulosic biomass materials, greater economies of scale are required 

to allow for large plant sizes to be produced.  While economies of scale of $0.17 / gallon 

ethanol allow for most plants to be converted to 100 Mgal facilities in the base case, this 

value only allows firms operating under conservative assumptions to consider such 

facilities in the low cost regions, with the full conversion to 100 Mgal facilities occurring 

at $0.33 / gallon ethanol (Table 3.4). 

 

50 Mgal plants (1) 

 

Figure 3.2 Optimal Counties of Manufacturing Sites for the Biochemical Conversion of 
Corn Stover and Switchgrass to Ethanol Based on Billion-Ton Study Projections and 

Economies of Scale. 

Highest cost plants using the 

highest percentage of 

 
Lowest cost plants using the 

highest percentage of corn 
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50 Mgal plants (9) 

 

Figure 3.3 Optimal Counties of Manufacturing Sites for the Biochemical Conversion of 
Corn Stover, Switchgrass, and Poplar to Ethanol Based on Conservative Total Yield 

Estimates and No Economies of Scale.

 
Lowest cost plants using the 

highest percentage of corn 

Highest cost plant using the 

highest percentage of 

switchgrass 
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50 Mgal plants (1) 

Mgal plants (4) 

Figure 3.4 Optimal Counties of Manufacturing Sites for the Biochemical Conversion of 
Corn Stover and Switchgrass to Ethanol Based on Conservative Total Yield Estimates 

and Economies of Scale. 

3.5 Discussion 

The State of Indiana has a large potential for producing biomass sources 

containing cellulose, which can be biochemically converted to ethanol.  This analysis 

optimizes the overall utilization costs of these biomass resources through the selection of 

optimal plant locations and sizes.  However, this analysis is really a two-step 

optimization problem.  The first step is performed by the Billion-ton study, in which land 

utilization is optimized based on crop potentials and current land use.  For instance, since 

switchgrass is not a residue but a primary crop, its production requires ground preparation, 

seeding, and land rental fees making it more costly to grow than corn stover which is a 

 Lowest cost plant using the 

highest percentage of corn 

Highest cost plant using the 

highest percentage of 
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residue of corn.  Currently it would be foolish to grow switchgrass on land capable of 

producing corn, as both corn and corn stover can be used to produce ethanol.  Therefore, 

switchgrass would be chosen for lands less economically suited for producing corn.  

These factors are taken into account in the land utilization choices of the Billion-ton 

study, which are therefore taken as a given, having already balanced the trade-offs 

between costs and benefits.  While there are likely still arguments to be made for 

alternate land utilization strategies, they should not affect the general conclusions of this 

analysis. 

 From the analysis presented here, it is clear that current costs would dictate a high 

concentration of facilities within corn stover producing areas.  There is ample corn stover 

in the northwest to support a proportionally large number of facilities, regardless of the 

assumptions.  In areas where the land is better suited to growing switchgrass and corn 

stover is in short supply, raw material costs are higher due to the added costs of 

establishing, seeding, and renting the land.  The facilities projected for two counties in 

the highlighted region of the southwest are prime examples, with the highest switchgrass 

level usage, very low corn stover farm yields, and the highest cost facilities.   

 If the assumed cellulosic source yields from the Billion-ton study hold true, it is 

likely large plant sizes of 100 million gallons or more will minimize costs.  The model 

predicts that economies of scale for TCI above $0.17 / gallon ethanol would provide a 

sufficient incentive to outweigh increased shipping costs, and economies of scale for corn 

are at least $0.23 / gallon ethanol.  Assuming that technological developments lead 

researchers to enzymes which can chemically break down cellulosic materials into 

fermentable sugars, the actual process differences between corn and cellulose conversion 

are (1) preparation of the material for the enzymatic conversion and (2) processing and 

use of the by-products.  If neither of these cause large differences in the cost structures 

for corn and cellulosic conversion, and assuming that yields are high enough to match the 

Billion-ton study projections, then there likely would be more larger plants as suggested 

in Figure 3.2.  However, another unknown is whether or not there will be diseconomies 

of scale due to the requirement for handling very large amounts of cellulosic materials.  

For example, a 100 million gallon plant with a yield of 70 gallons per ton operating 360 
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days per year 24 hours per day would need 3968 tons of raw material per day.  Using 13 

ton trucks, that amounts to over 300 trucks per day or 12 per hour (Popp and Hogan). 

 To the degree that the assumptions of the Billion-ton study do not hold true, the 

results of the conservative scenario may be more applicable for predicting the spatial 

distribution and size of plants.  For instance, if no-till methods are not implemented or a 

significant proportion of land owners do not employ their land in the production and 

harvesting of cellulosic biomass, then economies of scale of a 100 Mgal facility may not 

be sufficient to cover the costs associated with the larger shipping distances which would 

be required to collect material.  In this scenario, if economies of scale were similar to 

corn, it is likely that one or two large plants could be supported in the corn stover rich 

part of Indiana, with smaller plants filling out the rest of the state (Table 3.4). 

 An assumption was made pertaining to the robustness of manufacturing facilities 

and their ability to handle various proportions of the two major biomass sources.  It may 

turn out that facilities are constructed to handle only a single biomass feedstock.  

However, this should not alter the main conclusions presented here.  A firm wanting to 

convert only corn stover would most likely locate in the northwestern part of the state 

where corn stover supplies are ample, while a firm focusing on switchgrass conversion 

would likely locate in the south.  All the crops should still be utilized based on the 

assumption that ethanol prices are high enough to yield any facility operator a positive 

profit, regardless of the crop type used.  Producers utilizing higher cost crops would 

simply have lower profits. 

 Finally, the issue of naming specific counties as being “ideal” for ethanol 

production facilities could be misleading.  Other than anticipated crop yields and 

distances between counties, no data was collected on any distinguishing characteristics of 

the counties such as infrastructure, local government incentives, or industrial zoning.   A 

small change in raw material production costs or shipping charges could easily shift the 

ideal location for a facility into a neighboring county.  The important conclusions here 

pertain to the quantity and spatial distribution of plants within certain regions of the state 

and the costs of operating in those regions more than the exact counties where sites might 

be located in the future.  Additionally, as switchgrass and other primary cellulosic 
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sources continue to be developed and optimized for the specific purpose of ethanol 

production, further shifts in ideal plant locations are likely to occur. 
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CHAPTER 4.  AN EXPERIMENTAL INVESTIGATION OF HARD AND SOFT 
PRICE CEILINGS IN EMISSIONS PERMIT MARKETS 

4.1 Abstract 

 Tradable emissions permits have been implemented to control pollution levels in 

various markets and represent a major component of legislative efforts to control 

greenhouse gas (GHG) emissions.  Because permits are supplied for a fixed level of 

pollution, allowing the market for permits to determine the price, price control 

mechanisms may be needed to protect firms from price spikes caused by fluctuations in 

the demand for permits.  We test permit markets in an experimental laboratory setting to 

determine the effectiveness of several price control mechanisms, with special attention on 

the soft price ceiling.  We focus on a static setting similar to some of the earliest 

experimental work focused on price ceilings.  Results indicate that both permit supply 

adjustments and price ceilings (hard ceilings) effectively limit elevated prices in this 

setting.  By contrast, reserve auctions to implement soft ceilings do not consistently 

control prices, especially when a minimum reserve permit price is applied.  Furthermore, 

the grandfathering of permits allows permit sellers to realize significant welfare gains at 

the expense of buyers under a soft ceiling policy.  Our results thus highlight several 

advantages of hard ceilings for controlling short term price increases.   
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4.2 Introduction 

 Emissions permit markets have been established for many pollutants to 

control environmental degradation.  In such markets, a government supplies a fixed 

level of permits and firms must obtain and report permits equaling their pollution 

level at the time of demonstrating compliance each period.  To minimize costs in a 

competitive emissions market, firms purchase permits at a price equal to their 

marginal cost of abatement, so that all firms have the same marginal cost of the last 

unit abated.  In theory, this minimizes the total cost of achieving the target level of 

emissions abatement. 

 Price controls have been considered in many pollution markets to manage the 

price fluctuations of permits.  Policies which introduce permits into the market at a 

fixed quantity corresponding to the level of pollution allowed in the market can 

contribute to large price volatility (Fankhauser and Hepburn, 2010).  This is due to 

the inelastic supply of government policies that fix the permit level.  Any shocks to 

the marginal cost of abatement will cause fluctuations in the demand for permits.  

Given a controlled quantity of permits, and therefore perfectly inelastic supply, any 

fluctuations in demand for pollution abatement are realized through adjustments to 

the market price and not quantity. 

The purpose of price controls is to introduce elasticity in the supply curve 

over the range of non-zero prices, mitigating the effects of shocks or unexpected 

shifts in the cost of pollution abatement on permit prices.  Typical controls involve 

the use of a price collar, which combines a ceiling and a floor.  Price ceilings help 

firms to avoid exorbitant costs associated with price spikes due to volatility or 

aggressive abatement targets.  Price floors stimulate investment in emissions 

abatement technologies in an environment where low prices provide an insufficient 

incentive, thus encouraging lower emissions levels in the future (Burtraw et al., 2010).  

Based on simulations with stochastic emissions, Fell and Morgenstern (2010) 

demonstrate under various banking and borrowing rules that a price collar is 

consistently more cost-effective than a price ceiling alone.1  

1 This conclusion assumes that policies are compared for equal expected accumulative emissions.  
Because the price floor decreases the number of permits utilized with the price collar, simulations 
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In the context of greenhouse gas (GHG) legislation in the United States, 

various price collars have been proposed that are only differentiated by their ceilings.  

Each policy has a hard price floor, not allowing purchases of permits below a 

minimum price.  The various ceilings, however, fall into one of two policy definitions:  

hard ceilings which set an absolute maximum on permit prices and soft ceilings 

which introduce a minimally priced reserve of permits into the market beyond the 

original target quantity.  The former provides absolute price control with some 

emissions flexibility while the latter provides absolute emissions control while 

allowing prices to fluctuate beyond the soft ceiling level. 

 Laboratory experiments have been used to investigate a broad range of cost 

and price control mechanisms to manage price volatility in permit markets.2  For 

example, Cason and Gangadharan (2006) find that banking diminishes price volatility 

in the presence of emissions shocks.  However, emissions are greater when banking is 

allowed due to lower permit compliance rates.  Stranlund et al. (2011) extend this 

analysis by explicitly separating compliance and reporting violations as two separate 

events.  They find that enforcement efforts should focus on untruthful reporting since 

large fines applied directly to non-compliance of emissions have little effect.  In 

either case, banking of permits allows subjects to allocate permits reasonably well 

over time, even in the presence of non-compliance.  Stranlund et al. (2014) consider 

the ability of banking and hard ceilings to dampen volatility, finding that both tools 

are capable of individually controlling price volatility, even though the hard ceiling 

contributes most of the dampening effect when the two are implemented in tandem.   

 A broad and comprehensive set of experiments would test both hard and soft 

ceilings in a dynamic setting, with various combinations of banking and enforcement 

mechanisms, in order to compare the degree of price control in the presence of permit 

supply or demand shocks.  However, given the limited study of the soft ceiling 

proposal, and the lack of any experimental research on this policy, this study begins 

testing only the price ceiling were provided with a more limited number of permits to equalize 
expected emissions.  In this context, the higher cost induced by the price floor was outweighed by the 
higher cost of a more restrictive permit allotment when testing the price ceiling alone. 
2 Cason (2010) provides a comprehensive outline of various experimental evaluations of emissions 
permit market structures. 
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with a more modest goal of first understanding how the soft ceiling behaves in a 

repeated static environment. 

 Earlier research on hard price ceilings does focus on isolating within-period 

price effects to determine if there are any behaviors which would cause deviations 

from theory.  For instance, a non-binding hard ceiling placed at the equilibrium price 

should mathematically produce the same equilibrium outcome as if there were no 

ceiling policy.  However, researchers have found that a non-binding hard ceiling at 

the equilibrium price decreases transaction prices in an experimental double auction 

when compared to markets with no price ceiling (Isaac and Plott, 1981, Smith and 

Williams, 2008, Smith and Williams, 1981).  This effect is strongest in the initial 

periods and for subjects with less trading experience, with outcomes featuring welfare 

shifts from sellers to buyers of permits.  Coursey and Smith (1983) also confirm the 

presence of price depression in a posted offer market.   

 The soft ceiling policy is more complex than a hard ceiling, and yet there are 

no analogous experimental studies to determine how subjects will trade within this 

new environment, or how trading behavior may deviate from theoretical predictions.  

The purpose of this research is to begin to lay the experimental foundation for the soft 

ceiling.  Specifically, similar to earlier research on the hard ceiling, we focus on the 

within-period price and welfare effects of this new policy.  We find that under certain 

conditions, not only does the soft ceiling lack absolute price control, but prices are 

elevated and welfare gains from trade are transferred from buyers to sellers compared 

to theoretical predictions.  There are also indications that splitting available permits 

between an initial and a reserve auction, an essential aspect of the soft ceiling policy, 

creates a coordination problem. Subjects do not fully account for the eventual permit 

allotment over both auctions, but are instead influenced by the short-term allocation 

before both auctions have been conducted. 

 The remainder of this paper is organized as follows:  Section 4.3 provides 

detailed descriptions of both hard and soft ceilings, while section 4.4 describes how 

agents may trade when subjected to the soft ceiling policy.  Section 4.5 provides the 

methodology for the study, and explains the identical theoretical outcomes between 
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policy scenarios and the baseline treatment.  Section 4.6 presents the results, with 

section 4.7 providing a discussion of the implications and policy recommendations. 

 

 

 

 

4.3 Structure of Ceiling Mechanism 

 A hard price ceiling is simply a price control which sets an absolute maximum 

value on permit prices.  Assume an initial permit allotment (QI) with an equilibrium 

price (PI).  When trying to avoid prices higher than a desired maximum (PC), a ceiling 

caps prices at Pc and buyers can purchase as many permits as desired at this price 

from an unlimited government reserve.  When demand is sufficiently high such that 

PI > PC, the market price (PM) will rise no higher than PC and the market quantity (QM) 

is elevated relative to the initial permit allotment (QI).  In such a situation, the price 

ceiling is binding, working effectively as an emissions tax (t) with t = PC.  By 

implementing perfectly elastic supply, a hard ceiling places utmost importance on 

controlling prices at the expense of releasing as many permits as required into the 

market to keep prices below the ceiling.  A notable example of such a price ceiling in 

Federal GHG legislation was proposed by Senators Cantwell and Collins (Cantwell, 

2009) as part of the Carbon Limits and Energy for America’s Renewal (CLEAR) Act.  

This act proposed a hard price ceiling with scheduled annual increases set 

automatically as a function of the real discount rate. 

By contrast, the soft price ceiling does not set an absolute upper limit on the 

price of permits.  In fact, the term “soft price ceiling” is not a ceiling by definition, 

but the terminology we utilize for a reserve auction of permits with a minimum 

reserve price as desribed by Murray, et al. (2009).  Fell et al. (2012) have employed 

the term “soft collar” when analyzing the effectiveness of a reserve auction in 

comparison to a hard collar with an absolute maximum price.  Such a reserve auction 

was passed in the House of Representatives as part of the permit trading market 

proposed in H.R. 2454 by Congressmen Waxman and Markey (Waxman and Markey, 

2009). Slightly different structures have been proposed in other policy initiatives, 
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including a contingency reserve of unsold allowances which could be a triggered by a 

soft ceiling as part of the Regional Greenhouse Gas Initiative (Burtraw et al., 2007) 

and a more complicated variant with three price tiers established in the California 

GHG permit trading scheme (Pavley and Nunez, 2006).  

In a permit market with a soft ceiling (Figure 4.1), an initial quantity of 

permits (QI) is introduced to the market equal to desired emissions levels.  In the 

absence of additional permits or controls, the equilibrium price for this initial 

allotment would occur at PI.  At the time when permit holders are expected to 

demonstrate compliance, an additional quantity of permits called the allowance 

reserve is offered at auction with a minimum reserve price (PSC), potentially allowing 

those with insufficient permits to make up for their shortage.  The aggregate of the 

initial and reserve auction permits represents a quantity control on the total market 

(QC).  The introduction of reserve permits as described by Murray et al. (2009), as 

well as Waxman and Markey’s legislation, is not induced by a price trigger but is 

provided automatically every period.  Firms are not bound by the soft price ceiling in 

the initial auction and will have reserve permits available regardless of trading prices 

earlier in the period. 

(a) Demand intersects supply at soft 

ceiling 

(b) Demand intersects supply above soft 

ceiling 

(Shaded regions represent allowable trades.) 

Figure 4.1 Controlling High Prices with a Soft Ceiling 
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The soft ceiling (PSC) receives its name from the intended impact of the 

minimum reserve price on the market price for permits (PM) by introducing supply 

elasticity as represented by the horizontal section of the supply curves in Figure 4.1.  

If demand were to intersect supply such that PI < PSC, the market price would be equal 

to PI and none of the reserve would be purchased.  As demand increases, PM increases 

until PM = PSC (Figure 4.1a).  Under such conditions, firms perfectly coordinating 

prices across auctions would purchase permits at the minimum reserve price.  In this 

way, while there is no absolute maximum, the horizontal portion of supply acts as a 

kind of soft ceiling over a range of demands.  As demand continues to increase, 

however, the market price would eventually rise above the soft ceiling when the 

reserve allotment is exhausted (Figure 4.1b).  Nonetheless, prices would still be lower 

than if there were no reserve at all.  This design is appealing to policy-makers 

primarily concerned with climate change because unlike hard ceilings it allows for an 

absolute cap on emissions (QC), while still providing some, although not absolute, 

control of prices. 

 

 

 

 

4.4 Expectations in a Repeated Static Environment 

Non-experimental studies comparing the effects of hard and soft ceilings on 

prices and total emissions are limited.  A macroeconomic analysis of proposed 

legislation predicts that permits in the initial market would be purchased at the ceiling 

price for many years in order to bank permits in expectation of higher future prices 

(Williams, 2010).  Fell et al. (2012) perform a dynamic numerical analysis, 

comparing the two mechanisms with banking of permits available.  When targeting 

identical cumulative emissions goals in the presence of shocks to baseline emissions 

levels, they find the intuitive result that the hard ceiling decreases price volatility 

more than a soft ceiling, and the hard ceiling level required for emissions parity with 
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the soft ceiling is higher. 3  While such findings are helpful for policy-makers in 

determining the optimal level and pathway for price ceilings, they do not address the 

behavior of individual agents who may deviate from theoretical assumptions of how 

optimization occurs within a single period of the price discovery process.  There are 

many types of behavior which could cause markets to deviate from the competitive 

equilibria described in Figure 4.1, in which costs are minimized by balancing 

marginal costs with the price of permits across both the initial and reserve auctions. 

Large deviations could introduce potentially significant consequences with respect to 

controlling prices. 

 For instance, if agents in the initial auction were to ignore reserve auction 

permits altogether, and thus price permits based on the initial auction only, one would 

expect initial auction prices to equilibrate close to PI. One of the earliest emissions 

permit auctions, which regulated SO2 levels under the Clean Air Act, demonstrated 

that the spot market was more heavily influenced by current market conditions and 

not the anticipated future auction of additional permits (Burtraw et al., 2011).  While 

this factor may play a role in elevating prices during the earlier periods, the repeated 

static nature of the experiment should allow agents to gain experience and more 

successfully equilibrate across auctions in later periods as compared to a dynamic 

setting. 

 Another factor which could cause prices to deviate from the competitive 

equilibrium is market power.  Buyers with market power wanting to avoid prices 

above the floor of the reserve auction could withhold demand to depress prices in the 

initial auction while sellers with market power wishing to hold out for the reserve 

would tend to increase prices.  In this set of experiments, as well as for the beginning 

years proposed in the Waxman-Markey legislation, sellers could maintain market 

power due to extensive grandfathering of permits.  Goeree et al. (2010) study the 

impacts of grandfathering vs. auctioning initial permit allotments before a single-

round, limit-order call market.  Agents with large grandfathered permit allocations 

strategically withheld permits from the market, generating elevated prices in 

3 Fell et al. (2012) study a price collar, which provides a hard price floor in the initial auction in 
conjunction with either a hard or soft ceiling. 
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comparison to both the theoretical equilibrium and the allotment by auction.  Sellers 

could exercise similar market power in our experiment, exacerbating the resulting 

price elevation above the price floor in the reserve market. 

 Finally, we expect price increases from the floor of the reserve auction to be 

further augmented based on past experimental studies of bidding behavior in the 

presence of price floors and ceilings.  In the context of a double auction, Smith and 

Williams (1981) found that a hard price floor elevated bids of both buyers and sellers 

in comparison to non-bound theoretical equilibria at or in close proximity to the price 

floor.  Sellers with market power able to observe this behavior could construct higher 

price expectations for the reserve and revise their bids in the main auction upwards as 

a result.  For these reasons, we would expect prices to be elevated, and therefore not 

controlled, compared to the theoretical equilibrium. 

 

 

 

 

4.5 Methodology 

 We use an experimental laboratory setting to compare the ability of soft and 

hard price ceilings to control prices.  To isolate the impact of the soft ceiling, we 

consider stationary repetition of identical single period environments (i.e., no banking 

or borrowing of permits) and adjust only the price control mechanism across 

treatments.   

 We conduct 16 experimental sessions across four treatments consisting of a 

soft ceiling, a reserve auction with no soft ceiling reserve price, a hard ceiling, and a 

baseline with no price controls or reserve allocation for comparison.  Figure 4.2 

depicts the four policy choices tested.  In each case, an initial auction of QI permits 

yields an equilibrium price of PI, with PI > PT and PT denoting the target maximum 

price in the auction for permits.  Each policy targets the same price, quantity 

combination such that any differences in actual price outcomes are caused by subject 

behavior and not policy targets.  Starting in the upper left-hand corner of Figure 4.2, 

we test the soft ceiling, defined as a reserve auction with the key structural 
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components outlined in Waxman and Markey, a reserve floor price and substantial 

grandfathering of permits (Soft ceiling).  Moving clockwise, we test the same 

structure, but relax the minimum price floor in the reserve auction, thus eliminating 

the soft ceiling (Reserve auction).  We then test increasing the quantity to the same 

total cap (QC) as the first two policies, but in a single auction without the use of a 

reserve auction (Baseline), providing a control for the other treatments.  Finally, we 

test a hard price ceiling (PC) where the ceiling price equals the target price of the 

other three policies (Hard ceiling).  Due to its straightforward nature, the hard ceiling 

treatment was conducted in only 1 of the 16 sessions, which allowed us to confirm 

that prices readily converged to the ceiling price and to dedicate experimental 

earnings more heavily towards the other treatments. 

  We employed 8 subjects per session for a total of 128 subjects 

recruited from the population of undergraduate students at Purdue University with no 

prior experience in experiments related to emissions permit markets.  In addition to a 

$5.00 show-up fee, subjects earned experimental dollars which were converted 

immediately to U.S. Dollars at the conclusion of their experimental session.  Average 

total earnings were $26.69, with a standard deviation of $6.37. 

 Subjects were provided the opportunity to manage a firm with an existing 

level of pollution and a fixed revenue stream.  They were incentivized, through 

monetary payments, to minimize costs while accounting for all pollution through 

some combination of abatement and permit purchases.  While this research focuses 

on pollution abatement, subjects did not view any environmental terminology.  For 

example, the level of abatement of pollution was written as “units of an experimental 

good produced” and emissions permits were called “coupons.”  All experiments were 

conducted over a computerized network, with subjects interacting in markets through 

a client interface programmed in Z-tree (Fischbacher, 2007). 

 For each session, 8 subjects participated in 14 identical and separate periods, 

the first 2 of which were practice with no payment.  Within each period, all subjects 

were required to abate up to 10 units of pollution with increasing marginal costs of 

abatement or obtain permits to substitute for pollution not abated.  At the end of each 

period, the sum of permits held and pollution abated were required to equal 10 under 
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a rule of automatic compliance.  Each subject had a unique set of marginal costs, 

which when aggregated together determined the market demand for permits as 

illustrated in Figure 4.3. 

Soft ceiling  Reserve auction 

Hard ceiling Baseline 

(Shaded regions represent allowable trades.) 

Figure 4.2 Four Policy Treatments Tested as Price Controls in an Experimental 
Market. 

For all treatments, 40 permits were distributed to the market in each period, 

with half being distributed before the initial auction and half before the reserve 

auction.  (The one exception occurred in the Baseline treatment in which all permits 

were distributed before a single auction.)  While a typical soft ceiling design would 
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likely distribute a smaller proportion of the permit allotment in the reserve, we 

distributed 50% in order to increase the disparity between equilibrium prices with and 

without the reserve, and thus magnify behavioral effects on prices in our experimental 

market setting.  The predicted equilibrium price in the initial auction is $123.  A 

successful price control would decrease the price in the initial auction down to a new 

equilibrium of $85 as shown in Figure 4.3. 

Figure 4.3 Demand and Supply for Permits in Emissions Market (Soft Ceiling). 

After initial permits were allocated, subjects were free to purchase and sell 

permits with each other in a double auction.  We used this method to simulate the 

heavy grandfathering of permits built into the early years of the Waxman and Markey 

legislation.  We utilized a continuous double auction trading institution similar to 

Cason and Gangadharan (2006) in which any subject could continuously make or 

accept single permit price bids for both selling and purchasing of permits.  

Experimental instructions for all treatments are provided in the appendices.  We 

posted all price ceilings and floors at the top of the screen during trading, both for the 

initial auction and the future reserve auction when applicable. 
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 After completing the initial auction, reserve permits were distributed (except 

for the baseline treatment which ended at this point in each period).  Subjects then 

traded permits again using a double auction similar to the first phase of the period.  

We used the same trading procedures after grandfathering reserve permits for two 

reasons:  (1) the auction format already placed a high level of cognitive demand on 

subjects, and learning two completely different auction formats would have added 

unnecessary complexity; and (2) substantial grandfathering of permits is common 

during initial years of many permit trading schemes in the field. For both the initial 

and reserve allocations, permits were heavily distributed towards the 4 lowest cost 

abaters to induce a high volume of trading and create liquid markets. 

 

 

 

 

4.6 Results 

 We have implemented four treatments designed to achieve equal emissions 

levels and target the same equilibrium price in order to determine the effectiveness of 

a soft and hard ceiling in maintaining a maximum price.  We test a hard ceiling 

treatment, a soft ceiling treatment, as well as a reserve auction only treatment against 

our control, the baseline treatment in which the reserve amount is added to the initial 

auction, and the target equilibrium price. 

 

 

 

 

4.6.1 Prices in the Main (Initial) Auction 

Result 1:  The hard ceiling controls prices, with market prices converging closely to 

the target equilibrium price. 

Support:  Figure 4.4 displays the mean trading prices, indicating that the hard ceiling 

price quickly approaches the maximum target of $85 by the eighth period and 

averages $84.6 over the final five periods.  Since the hard ceiling effectively achieves 
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the objectives of controlling the price at the target, this treatment serves as a useful 

benchmark against which to evaluate other treatments. 

Figures 4.4 and 4.5 demonstrate that the hard ceiling treatment price 

converges on the target of $85.0, with the average market price in the final two 

periods equaling the ceiling price exactly.  Past research assessing price ceilings in 

experimental markets has demonstrated eventual convergence of price with the 

ceiling under certain conditions, with more experienced subjects converging more 

quickly (Isaac and Plott, 1981).  Our subject pool was drawn from students with no 

experience in emissions permit markets, and showed convergence speed 

commensurate with inexperienced subjects in other studies.  

 

Figure 4.4 Mean of Last 8 Trades in Initial Auction for Each Period (All Sessions) 
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Figure 4.5 Mean of Last 8 Trades in Initial Auction for Last 5 Periods (All Sessions) 

Result 2:  In the baseline treatment with no price controls, prices attain the 

equilibrium price when the entire permit supply is provided in a single auction. 

Support:  Table 4.1 reports Wilcoxon Signed Rank tests, a non-parametric test which 

compares the average initial auction price over the last 5 periods for each session to 

the target equilibrium price (85). For the baseline treatment this test does not reject 

the null hypothesis that mean prices equal the equilibrium level. 

Table 4.1 p-Values for Main Auction Treatment Comparisona 

 (Non-Parametric Mann-Whitney Test and Wilcoxon Signed Rank Testb) 

Treatment Soft  

Ceiling 

Reserve 

Auction 

 

Baseline 

Mean price, $/permit (std err) 103.0 (2.9) 91.5 (8.8) 76.3 (4.5) 

vs. Reserve Auction 0.548   

vs. Baseline 0.008*** 0.310

vs. Equilibrium (85) 0.062* 0.438 0.188 

a Session means based on final 8 trades of initial auction over each of the last 5 periods. 
b The Wilcoxon Signed Rank Test is only used for comparisons to equilibrium. 
* significant at 10% 
***significant at 1% 
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   While non-parametric tests utilize data from the last 5 periods of each session, 

such tests do not differentiate data between periods.  Therefore, any information 

regarding experience gained and its impact on mean and error correlations across 

periods is lost.  Additionally, information from the first 7 periods is excluded.  Given 

the visual evidence in Figures 4.4 and 4.5, which indicates that prices may still be 

decreasing slightly over time for the reserve auction and soft ceiling treatments, it is 

desirable to adopt a model which can differentiate estimates of prices in the initial 

auction for each period.  Specifically, we adopt a model introduced by Noussair et al. 

(1995) and utilized in several applications to test for convergence of adjusting prices 

in experimental markets (Cason and Noussair, 2007).  For each treatment i, Table 4.2 

provides estimates for the mean price in the main auction for the first period with no 

experience ( i1), for the end of session period based upon the price to which the 

model converges with maximum experience ( i2), and for the change in price over the 

course of the experiment.  The model is specified as follows: 

 1 2
1

Price (1/ ) (1 1/ )
n

jt i i i i jt
i

D t D t , 

 where i indexes the treatment, j indexes the session, t indexes the period, 
  Pricejt  

  i1  
  i2  
  Di , and 
  jt  
 
This model accounts for the time pattern of prices using the terms (1/t) and (1 – 1/t).  

In the first period when t = 1, (1 – i1 provides an estimate for 

the price at the start of the markets for treatment i.  As t grows larger, (1/t)  i2 

provides an estimate for the price outcome approached in the limit for treatment i as t 

 

 Accounting for interdependencies between periods within each session 

requires the use of panel data regression methods.  We define each of the 15 

experimental sessions (excluding the single session testing the hard price ceiling) as a 

data cluster.  A generalized linear model procedure is employed which provides 
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robust standard errors based on an autoregressive structure to account for correlated 

errors within each session. 

 

Table 4.2 Estimates of the Mean Price in the Main Auction for the First Period  

( i1, t = 1), the End Period ( i2, t   and the Change Across Periodsa,B  

11 1 12 1 21 2 22 2 31 3 32 3Price (1/ ) (1 1/ ) (1/ ) (1 1/ ) (1/ ) (1 1/ )jt jtD t D t D t D t D t D t
 

Treatment 

Parameter 

i1, t = 1 i2, t   i2 - i1 

 Mean Price 

($/permit) 

test vs. equilibriumc 

Mean Price 

($/permit) 

test vs. equilibrium 

Price Change 

($/permit) 

test vs. 0 

   Soft ceiling  

   1.) 

103.1 (2.1) 

< 0.001*** 

102.1 (2.4) 

< 0.001*** 

-1.0 (2.9) 

0.733 

   Reserve auction  

   2.) 

104.4 (6.9) 

0.005*** 

90.6 (8.4) 

0.506 

-13.8 (5.4) 

0.010*** 

   Baseline  

   3.) 

70.7 (3.0) 

< 0.001*** 

81.4 (4.4) 

0.414 

10.7 (5.9) 

0.069* 

a Mean prices and price changes are provided with standard errors in parentheses and  p-values below.  
b Robust standard errors are assumed based on session level clusters with an autoregressive 
correlation structure.  
c p-values for estimates of the mean price are for tests against an equilibrium price of 85. 
* significant at 10%   
***significant at 1% 
 

 

 Table 4.2 shows i2 estimate for asymptotic prices 

(t ) is 81.4, which is not significantly different from the equilibrium prediction of 

85 (p-value=0.414).  With experience, we cannot reject that subjects achieve the 

competitive equilibrium. 

 

Result 3:  The reserve auction alone appears to control prices to equilibrium after 

subjects have had time for price discovery.  However, prices are elevated above 

equilibrium at the beginning of the price discovery process. 
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Support:  For the Reserve Auction treatment, Table 4.1 shows a comparison of mean 

prices averaged over the last 5 periods for each session to the equilibrium prediction 

of 85 using the Wilcoxon Signed Rank test and to the baseline treatment using the 

non-parametric Mann-Whitney Test.  No significant difference in the main auction 

prices is detected when compared to the equilibrium or the baseline treatment.  The 

asymptotic price estimate of 90.6 (Table 4.2) can also not be rejected as being 

equivalent to the equilibrium price (p-value=0.506) or the baseline treatment (p-

value=0.333, Table 4.3). 

 In the early periods of the reserve auction treatment, prices are elevated (104.4) 

compared to the equilibrium (Table 4.2), rejecting the null hypothesis that first period 

prices equal the target price of 85 (p-value=0.005).  As subjects gain experience, the 

prices decrease significantly (p-value=0.010) to 90.6.  Thus, while the reserve auction 

alone does not provide absolute control of prices over all periods, it yields prices that 

are not significantly different from the competitive equilibrium once subjects have 

gained experience across trading periods. 

 

Table 4.3 Comparing Estimates of the Main Auction Mean Price across Treatments  

i2, t  a 

Treatment Soft ceiling Reserve auction Baseline 

Mean price, $/permit (std err) 102.1 (2.4) 90.6 (8.4) 81.4 (4.4) 

vs. Reserve auction 11.6 (8.7) 

0.186  

  

vs. Baseline 20.7 (5.0) 

< 0.001*** 

9.2 (9.5) 

0.333 

 

a Differences between means are provided with standard errors in parentheses and  p-
values below. 

***significant at 1% 
 

 

 The reserve auction treatment increases the complexity of the baseline in that 

cost minimization efforts must be balanced across two separate auctions.  These 
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results indicate that for experienced subjects, we cannot reject the hypothesis that the 

reserve auction can effectively control prices in the main auction. 

 

Result 4: The soft price ceiling does not control prices as intended in the main auction.  

Prices are above equilibrium for both early and late periods. 

Support:  Non-parametric tests reject the null hypotheses that the soft ceiling price is 

equivalent to either the equilibrium price or the baseline treatment price (Table 4.1). 

Price estimates of the soft ceiling design are significantly elevated above the 

equilibrium price both for early and late periods (Table 4.2).  The null hypothesis that 

prices are equal to the baseline treatment (Table 4.3, p-value < 0.001) is clearly 

rejected.  Price estimates also do not change significantly over time (Table 4.2, p-

value = 0.733). 

 

 

 

 

4.6.2 Session Price Trends and Reserve Auction Prices 

 The data indicate that the hard ceiling controls prices in the main auction to 

the competitive equilibrium while the soft ceiling does not.  However, there is still 

some uncertainty regarding how well the reserve auction alone actually controls 

prices, even though we cannot reject price control for this treatment.  Recall from 

Table 4.2 that no statistically significant difference exists between prices in the main 

auction and the equilibrium price in either the baseline or the reserve auction only 

treatments.  When analyzing transaction prices in individual sessions for each of these 

two treatments, some have prices predominantly below equilibrium while some have 

prices predominantly above.  Only in the soft ceiling treatment do we observe average 

period prices consistently above the equilibrium price for all sessions.  Therefore, the 

ability of sellers to consistently trade permits above equilibrium in the main auction 

must be attributable to the reserve auction having a price floor as in the soft ceiling 

design. 
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Result 5: The minimum reserve price of the soft ceiling increases trading prices in the 

reserve auction. 

Support:  Table 4.4 reports price estimates generated for the reserve auction using the 

same regression techniques as in the main auction.  Reserve prices with a floor in the 

soft ceiling design are 96.0, significantly higher than equilibrium (p-value < 0.001).  

Reserve prices without a floor were not significantly different than equilibrium (p-

value = 0.818). 

 Given that sellers receive better prices in the reserve auction and consistently 

better prices in the main auction with the soft ceiling design, it is useful to determine 

whether higher prices translate to improved welfare outcomes for sellers. 

 

Table 4.4 Estimates of the Mean Price in the Reserve Auction i2, t   

and Comparison to Equilibriuma 

Treatment Soft ceiling Reserve auction only 

Mean price, $/permit (std err) 96.0 (2.1) 86.7 (7.3) 

vs. Equilibrium (85) 11.0 (2.1) 

< 0.001*** 

1.7 (7.3) 

0.818 

a Differences are provided with standard errors in parentheses and  p-values below. 
***significant at 1% 

 

 

 

 

4.6.3 Welfare Gains from Trade 

 Recall that permits were more heavily allocated to the 4 traders with low 

marginal costs of abatement in order to create a thicker market.  Such traders became 

net sellers of permits while the other 4 traders with small initial permit allotments 

became net buyers.  For each period, a subject’s welfare gains are calculated as: 
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   Revenue from permits sold – Marginal abatement costs realized from selling 

permits  

 – Cost of permits purchased + Marginal abatement costs avoided from buying 

permits 

 

Welfare gains differ from total profits in that they do not include fixed period 

revenues or initial abatement costs before trading.  Thus, welfare gains are completely 

determined by the trading decisions of subjects. 

 In an efficient market for this experimental environment, net buyers would 

purchase enough permits at the equilibrium price (85) to avoid any marginal 

abatement costs above this price.  Similarly, net sellers would sell enough permits at 

the equilibrium price to incur any marginal costs below this price.  The theoretical 

welfare gains for such an efficient market can be calculated for the aggregate of net 

sellers and net buyers separately.  The proportion of efficient welfare gains realized is 

determined by calculating the ratio of actual realized welfare gains to theoretical 

efficient welfare gains.  Note that this proportion can be greater than 1.  For instance, 

if net buyers are able to consistently purchase permits below the equilibrium price, 

they could realize welfare gains greater than the efficient level at the expense of net 

sellers. 

 

Result 6:  The soft ceiling policy allows net sellers of permits to realize greater 

welfare gains than efficient levels at the expense of net buyers.  

Support:  The same regression model and panel data methods used to analyze prices 

are also used for welfare analysis, with the proportion of efficient welfare gains 

replacing average price as the dependent variable.  We are interested in the end period 

welfare gain estimates corresponding to the auction price estimates in Tables 4.3 and 

4.4 i2, t   after subjects have gained experience. Table 4.5 shows that under the 

soft ceiling, net sellers realize welfare gains 1.31 times the efficient level based on the 

asymptotic estimate for this model.  This is consistent with the high prices observed 

for this treatment and significantly different at the 5% level and 1% level than the 

proportions for the reserve auction (0.87) and baseline (0.82) treatments respectively.  
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As deadweight losses for the soft ceiling are not statistically different than the other 

two treatments (ranging from 0.14 to 0.20), this large welfare gain occurs at the 

expense of net buyers, who realize a gain of only 0.5 times their efficient level.4  This 

low realized gain for net buyers in the soft ceiling treatment is significantly different 

at the 1% level from the proportions for the baseline (0.91) treatment. 

 

Table 4.5 Comparison of Welfare Gains from Trade for End of Session i2, t  a 

Treatment Soft ceiling Reserve auction Baseline 

Proportion efficient gain (std err) 

Sellers 

1.31 (0.05) 0.87 (0.21) 0.82 (0.12) 

Difference vs. soft ceiling 

Sellers 

 -0.44 (0.22) 

0.044** 

-0.49 (0.13) 

< 0.001*** 

Proportion efficient gain (std err) 

Buyers 

0.50 (0.07) 0.74 (0.14) 0.91 (0.05) 

Difference vs. soft ceiling 

Buyers 

 0.24 (0.16) 

0.139 

0.41 (0.09) 

< 0.001*** 

a Differences between means are provided with standard errors in parentheses and one sided p-
values below. 
** significant at 5%   
***significant at 1% 
 

 

 

 

4.7 Discussion 

 A hard ceiling provides an absolute maximum for prices, allowing the number 

of permits, and therefore the amount of emissions, to increase as much as needed 

when prices hit the ceiling.  Some scientists, economists, and policy-makers have 

advocated for reserve auctions and soft ceiling designs, which have the desirable 

property of placing an absolute cap on emissions levels, while still providing some 

4 Deadweight losses are a proportion of efficient welfare gains from trade that go unrealized, and are 
considerably smaller when reported as a proportion of efficient total profits. 
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level of price control.  A hard price ceiling could increase emissions considerably if 

the market price consistently hits the ceiling.  

 We have demonstrated that while a hard price ceiling can act as an effective 

price control, the soft ceiling fails to control prices to theoretical predictions under the 

conditions of our experiment.  The evidence points to the presence of the minimum 

reserve price as the culprit for elevated prices in the main auction.  The 

grandfathering of permits, in conjunction with the guaranteed minimum price in the 

reserve auction, allows net sellers to strengthen negotiating power in this multilateral 

trading institution, which translates to higher trading prices and greater welfare gains 

to sellers. 

 Previous research has also shown that the grandfathering of permits elevates 

prices compared to the direct auctioning of permits by the government (Goeree et al., 

2010).  In the reserve auction without a price floor, traders eventually converged on 

the equilibrium price.  When the price floor was introduced, prices remained 

significantly higher than equilibrium. This is partly due to the nature of the soft 

ceiling, which does not allow for price deviations below the equilibrium in the reserve 

auction. Interestingly, the elevated prices carried over into the main (or initial) 

auction even though it places no restrictions on prices. By contrast, when the reserve 

had no minimum price, we observed some sessions in which sellers traded below 

equilibrium in the main auction and some in which they traded above.  Sellers were 

not able to consistently elevate prices without the guarantee of the minimum reserve 

price.  As a result, only in the soft ceiling treatment did sellers achieve significant 

welfare gains at the expense of buyers. 

 Another concern relates to elevated prices in the main auction for 

inexperienced subjects.  We observed such price increases for both reserve auction 

treatments, regardless of the presence of a minimum reserve price.  From the data, it 

cannot be determined whether high prices are due to inexperience with the trading 

mechanism or inexperience with the static demand and supply conditions in the 

market.  If the latter contributes in any way, this would further hinder the ability of 

the soft ceiling to control prices in a dynamic setting. 
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 Our results raise serious concerns regarding legislation that combines a soft 

ceiling design with the grandfathering of permits.  This design is not an absolute price 

control in theory, and our results indicate that it actually elevates prices compared to 

theoretical predictions.  If absolute price control is the primary goal, a hard ceiling 

would be preferred.  Alternatively, if the reserve auction is desired to control the 

absolute level of admissions, eliminating the minimum reserve price or the 

grandfathering of permits would be beneficial to controlling prices, although more 

study is required for verification. 

 An alternative policy not studied here could provide the best of both worlds. 

Such a hybrid policy would utilize a hard price ceiling for short term price stability, 

and the ceiling level could be adjusted periodically to achieve cumulative emissions 

targets.  Unlike other pollutants which may be toxic based on flow levels to the 

environment within each period, the deleterious nature of greenhouse gases is 

determined by stock amounts within an ecological system.  This affords regulators 

utilizing a hard ceiling system the flexibility to manage greenhouse gas levels across 

periods without extreme concern for emissions spikes within a given period.  In such 

a system, quantity control adjustments of the hard price ceiling could replace the 

discount rate adjustments currently proposed in most legislation.  The rule for making 

adjustments should be well-defined and clearly communicated so as not to introduce 

additional uncertainty to permit markets. 

 A similar approach has been recommended by Metcalf (2009) for emissions 

taxes, with the tax adjusted yearly to a greater or lesser extent as a function of 

proximity to cumulative emissions benchmarks.  Adjusting a hard price ceiling yearly 

using similar criteria would avoid the artificially inflated prices of the soft ceiling 

while providing for control of cumulative emissions over time.  Furthermore, 

allowing the market to set prices within a controlled price range would provide more 

information regarding price discovery than Metcalf’s variable tax. 

 

 

 

 



72 
 

4.8 Acknowledgments 

 This research was funded by the National Science Foundation Human and 

Social Dimensions Grant 0729348.  Professor Timothy Cason also acknowledges 

support from the U.S. Environmental Protection Agency's National Center for 

Environmental Research (NCER) Science to Achieve Results (STAR) program (EPA 

grant number R833672). We are grateful for helpful comments provided by an 

anonymous referee and participants at the Agricultural and Applied Economics 

Association Conference (Seattle) and the International Workshop on Mechanism 

Design and the Environment (Edinburgh). 

 

 

 

 

4.9 References 

Burtraw D, Goeree J, Holt C, Myers E, Palmer K, Shobe W (2011) Price Discovery in 
Emissions Permit Auctions, in: Isaac RM, Norton DA (Eds.), Experiments on Energy, 
the Environment, and Sustainability (Research in Experimental Economics). Emerald 
Group Publishing Limited, pp. 11-36. 

Burtraw D, Goeree J, Holt C, Palmer K, Shobe W (2007) Auction Design for Selling 
CO2 Emission Allowances Under the Regional Greenhouse Gas Initiative. Resources 
for the Future, Washington, DC. 

Burtraw D, Palmer K, Kahn D (2010) A Symmetric Safety Valve. Energy Policy 
38:4921-4932. 

Cantwell M (2009) The Carbon Limts and Energy for America's Renewal (CLEAR) 
Act:  A Simple, Transparent, and Equitable Approach to Energy Independence and 
Climate Change Mitigation. The Office of Senator Maria Cantwell, Washington, DC. 

Cason TN (2010) What Can Laboratory Experiments Teach Us About Emissions 
Permit Market Design? Agricultural and Resource Economics Review 39:151-161. 

Cason TN, Gangadharan L (2006) Emissions Variability in Tradable Permit Markets 
with Imperfect Enforcement and Banking. Journal of Economic Behavior & 
Organization 61:199-216. 

Cason TN, Noussair C (2007) A Market with Frictions in the Matching Process: an 
Experimental Study. International Economic Review 48:665-691. 

 



73 
 

Coursey DL, Smith VL (1983) Price Controls in a Posted Offer Market. American 
Economic Review 73:218-221. 

Fankhauser S, Hepburn C (2010) Designing Carbon Markets. Part I: Carbon Markets 
in Time. Energy Policy 38:4363-4370. 

Fell H, Burtraw D, Morgenstern RD, Palmer KL (2012) Soft and Hard Price Collars 
in a Cap-and-Trade System: A Comparative Analysis. Journal of Environmental 
Economics and Management 64:183-198. 

Fell H, Morgenstern RD (2010) Alternative Approaches to Cost Containment in a 
Cap-and-Trade System. Environmental & Resource Economics 47:275-297. 

Fischbacher U (2007) z-Tree: Zurich Toolbox for Ready-made Economic 
Experiments. Experimental Economics 10:171-178. 

Goeree JK, Palmer K, Holt CA, Shobe W, Burtraw D (2010) An Experimental Study 
of Auctions versus Grandfathering to Assign Pollution Permits. Journal of the 
European Economic Association 8:514-525. 

Isaac RM, Plott CR (1981) Price Controls and the Behavior of Auction Markets - an 
Experimental Examination. American Economic Review 71:448-459. 

Metcalf GE (2009) Cost Containment in Climate Change Policy: Alternative 
Approaches to Mitigating Price Volatility, NBER Working Paper Series, Working 
Paper 15125. National Bureau of Economic Research, Cambridge, MA. 

Murray BC, Newell RG, Pizer WA (2009) Balancing Cost and Emissions Certainty: 
An Allowance Reserve for Cap-and-Trade. Review of Environmental Economics and 
Policy 3:84-103. 

Noussair C, Plott C, Riezman R (1995) An Experimental Investigation of the Patterns 
of International Trade. American Economic Review 85:462-491. 

Pavley F, Nunez F (2006) Global Warming Solutions Act, in: General Assembly of 
California (Ed.). 

Smith VL, Williams AW (1981) On Nonbinding Price Controls in a Competitive 
Market. American Economic Review 71:467-474. 

Smith VL, Williams AW (2008) Chapter 5 Effect of Non-binding Price Controls in 
Double Auction Trading, in: Plott CR, Smith VL (Eds.), Handbook of Experimental 
Economics Results. Elsevier, pp. 46-53. 

Stranlund JK, Murphy JJ, Spraggon JM (2011) An Experimental Analysis of 
Compliance in Dynamic Emissions Markets. Journal of Environmental Economics 
and Management 62:414-429. 

 



74 
 

Stranlund JK, Murphy JJ, Spraggon JM (2014) Price Controls and Banking in 
Emissions Trading: An Experimental Evaluation. Journal of Environmental 
Economics and Management 68:71-86. 

Waxman HA, Markey EJ (2009) House Passes Historic Waxman-Markey Clean 
Energy Bill. Congressman Edward Markey Press Release. 

Williams E (2010) An Analysis of the Carbon Limits and Energy for America's 
Renewal (CLEAR) Act and Comparison to Waxman-Markey, in: Nicholas Institute 
for Environmental Policy Solutions (Ed.). Duke University, Durham, NC. 
 

 

 



 

 

 

 

 

 

 

 

 

APPENDICES

 



75 
 

Appendix A Spatial Optimization for Cellulosic to Ethanol Facilities in Indiana with 

Sequential Start-ups 

 The model in Chapter 3 is varied in such a way as to minimize costs over a 

sequence of ethanol plant start-ups utilizing cellulosic materials.  In Chapter 3, costs were 

minimized for a network of plants in a social planner’s context, assuming a simultaneous 

start-up of the network.  By minimizing costs for each plant separately, and assuming a 

sequential start-up of facilities, the model should simulate more closely how this industry 

would grow in the real world. 

 Please recall the model from Chapter 3, restated here for ease of reference:  The 

amount of dry biomass shipped between counties is designated Xijk, where i is the set of 

counties where biomass is produced, j is the set of counties where ethanol is potentially 

produced, and k is the set of biomass feedstocks (corn stover and switchgrass).  The 

relevant parameters for the cost minimization model are as follows: 

pk – production cost for biomass feedstock k ($/dry ton shipped with profit) 
sk – fixed shipping cost for biomass feedstock k ($/dry ton shipped) 
f – freight rate for shipping biomass ($/dry ton shipped/mile) 
dij – distance from county i to county j (miles) 
N – total plant capacity needed (100 Mgal/year) 
l – fractional storage loss of biomass feedstock 
bik – amount of biomass k produced in county i (dry tons/yr) 
ck – million gallons of ethanol per dry ton of biomass 
 

The binary {0,1} variables Ij
50 and Ij

100 represent the number of 50 million and 100 

million gallon ethanol plants respectively in county j, and the model is optimized by 

minimizing the total cost C as follows:  

 

 

 
50 100

50

, i,
min  =

j jijk

p
k k ij ijk j
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50 1001
2 j j

j j

I I N  (1) 

50 100 1j jI I  for each j (2) 

(1 )ijk ik
j

x l b  for each k and i (3) 

50 10050 100k ijk j j
i k

c x I I  for each j (4) 

0ijkx for each i, j, and k (5) 
50 0,1jI  for each j (6) 
100 0,1jI  for each j (7) 

 
The optimization problem has several constraints.  Constraints 2, 6, and 7 imply that any 

county can have at most one plant of either size, 100 Mgal or 50 Mgal, and that fractional 

plants are not permitted.  Constraint 1 requires that the total amount of ethanol produced 

will exactly exhaust the feedstock resource base.  Finally, constraints 3, 4, and 5 require 

that the amount of biomass supplied by a county cannot exceed the amount available 

from the farms in that county after taking collection/storage losses into account, and the 

amount of biomass supplied to each manufacturing site must be sufficient to cover the 

production level. 

 The model is revised by minimizing costs over a sequence of plant start-ups 

ordered by time (t), with costs being described by ( + + )  for each 

plant (t). Therefore, t is the index for both the ordering of plant start-ups and the specific 

site that starts up at time t in the ordering.  t is indexed from 1 to T, with T being the 

number of 50 million gallon manufacturing sites required to use most of the biomass 

available in the state of Indiana (see Appendix B for simulation software).  Based on low 

yield projections, T is equal to 9, resulting in the production of 450 million gallons of 

cellulosic ethanol per year. 

 The other significant revision reduces the amount of biomass available to each 

plant by the amount extracted from previous start-ups.  The term for total biomass 

available, , is therefore replaced by  .  This represents the amount of type k 

cellulosic material available in county i for sequential plant start-up t.  For t = 1,  is 
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simply equal to  from the social planner’s model in Chapter 3.  For t > 1, =( ) [ ( )]/(1 ). 
With these adjustments, the model predicts the network of plants depicted in 

Figure A.1, with the lowest cost sites starting up first in the corn-rich northwest portion 

of the state and the highest cost site starting up in the bottom half of the state.  These 

results do not deviate considerably from the results of the social planner model. 

50 Mgal plants 

 

Figure A.1 Sequential Start-Up of Manufacturing Sites for the Biochemical Conversion 
of Corn Stover and Switchgrass to Ethanol Based on Low Yield Assumptions and No 

Economies of Scale. 

Table A.1 ranks the sites by cost and reports the percentage of ethanol produced 

from corn stover for each site.  For comparison, the social planner model is run with the 

assumptions of low yields and 9 sites producing 50 million gallons/yr each.  When 

minimizing costs over the entire network, every site uses some mixture of the two major 

 

Lowest cost plants use 100% 

corn stover 

Highest cost plant uses 100% 

switchgrass 
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crops, with low cost sites using mostly corn stover and high cost sites using mostly 

switchgrass.  Utilizing a sequential start-up assumption results in most sites adopting a 

single, dedicated type of biomass, with lost cost sites using only corn stover and high cost 

sites using only switchgrass.  Therefore, even though the model assumes that plants are 

able to use any mixture of the 2 biomass types, adopting a sequential start-up framework 

largely negates this requirement as the manufacturing sites tend to self-segregate. 

 

Table A.1 Cost Ranking and Corn Stover Percentages for Each Plant Site Based on Cost 
Minimization Procedure: Billion-Ton Assumptions without Economies of Scale 

Low cost ranking* 

% Ethanol from Corn Stover 

Social Planner Sequential Start-up 

1 95% 100% 

2 77% 100% 

3 69% 100% 

4 52% 100% 

5 43% 7% 

6 36% 9% 

7 18% 0% 

8 9% 0% 

9 17% 0% 

* 1 is the lowest cost plant and 9 is the highest cost plant. 
 

 In conclusion, having modified the original model in Chapter 3 to accommodate 

the sequential start-up of profit maximizing plants, the model predicts that the first sites 

to be constructed will be small in scale (50 million gallons/yr or less), built in high yield 

corn areas, and utilize 100% corn stover for conversion to ethanol.  Only after most of the 

corn stover has been exhausted will sites begin to utilize switchgrass, and only if ethanol 

revenues can cover the costs of obtaining such an expensive primary crop.  
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Appendix B Links to Software Programs 

 

All computer programs can be located at the following site: 

 http://web.ics.purdue.edu/~perkis/researchsoftware 

Links are organized as follows: 

 

Chapter 1 and Appendix A 

• Mixed-integer program for plant location model assuming sequential start-ups 

 

Chapter 2 

• DM Model with modifications for pretreated recycle 

 

Chapter 3 

• Mixed-integer program for plant location model assuming social planner 

 

Chapter 4 

• Soft ceiling experimental software 

• Reserve auction experimental software 

• Baseline experimental software 

• Hard ceiling experimental softwar 

.  
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Appendix C Subject Instructions for Soft Ceiling Design 
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Appendix D Subject Instructions for Reserve Auction Design 
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Appendix E Subject Instructions for Baseline Design 
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Appendix F Subject Instructions for Hard Ceiling Design 
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VITA 

 With a bachelor’s degree in chemical engineering from the University of 

Pennsylvania, research leadership positions in both industry (Procter & Gamble) and 

academia (University of North Carolina), and now a Ph.D. focused on energy and 

environmental economics, David Perkis brings a wealth of knowledge and experience to 

bear on his current research and teaching efforts in resource economics. 

 Before arriving at Purdue University, Dr. Perkis demonstrated leadership in an 

academic setting by managing a statistical and data support group which served the 

efforts of a major research center spanning the University of North Carolina system.  In 

addition to managing a group of doctoral students and data managers, Dr. Perkis led 

efforts to coordinate and analyze both primary survey data and secondary data sources as 

part of a national home safety study, leading to a national report in conjunction with 

Lowe’s Home Safety Council and five journal publications.   

 During his studies at Purdue University, Dr. Perkis has received recognition for 

his work in policy analysis (http://www.purdue.edu/fivestudents/policy/perkis.html), 

often incorporating engineering models within economic analytical methods to obtain 

robust results.  These efforts have led to publications in both engineering and economic 

policy journals.  More recently, his research has utilized experimental economic methods  
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to determine the effectiveness of price controls in emissions permit markets.  This 

research found that some of the more recently developed mechanisms may be ineffective 

in hitting theoretical targets under certain conditions (published this year in 

Environmental and Resource Economics and in Chapter 4 of this dissertation).  Currently, 

Dr. Perkis is utilizing Markal equilibrium energy models to study the interactions 

between emissions and energy security objectives in the United States. 

 Dr. Perkis has also gained recognition for his skills as a university instructor, 

having won top teaching awards in the College of Agriculture at Purdue and the award 

for the top graduate instructor in the Agricultural & Applied Economics Association.  He 

is passionate about issues related to economic and financial education, and has 

successfully incorporated experimental economic techniques with student-focused 

learning methods to encourage active learning and increase student participation in the 

classroom.  Dr. Perkis currently teaches roughly four hundred students each semester, 

manages several undergraduate and graduate teaching assistants, and is actively involved 

in transforming the department’s entry level course in agribusiness in order to increase 

student engagement. 

 For a detailed list of publications and awards, please see his CV here:  

http://web.ics.purdue.edu/~perkis/cv-perkis.pdf 
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