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CSD TR 55 

"A SIMPLEX ALGORITHM - GRADIENT PROJECTION 

METHOD FOR NONLINEAR PROGRAMMING" .  

by 

L .  Duane Pyle 

10 June 1971 

ABSTRACT 

W i tzgal l [ 7 L comment ing on the gradient project ion methods 

of R .  Frlsch and J .  B .  Rosen ,  states: "More or less a l l algori thms 

for solving the l inear programming problem are known to be modif-

icat ions of an algori thm for matrix inversion .  Thus the simplex 

method corresponds to the Gauss-Jordan method .  The methods of 

Frisch and Rosen are based on an interest ing method for invert ing 

symmetric matrices .  However ,  this method is no t a happy one ,  con-

sidered from the numerical point of v i ew ,  and this seems to ac-

count for the relat ive instabi l i ty of the project ion methods" .  

This paper presents an implementat ion of the gradient project ion 

method which uses a variat ion of the simplex algori thm .  

The underly ing (wel l-known) geometric idea is that the simplex 

algori thm for l inear programm ing [1] provides a method for obtaining 

vectors along the "edges" [4] of the feasible region A={x | Ax=b ,x>6} 

which l ie In certain nu l l spaces.  Th is property is discussed in 
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detai l in sect ion §1.,  Geometric Analysis of the Simplex Method 

of Linear Programming .  

In sect ion §2.,  Project ion on Paces of A of Higher D imension ,  

the geometric analysis .of §1.  is extended to obtain the orthogonal 

project ion matrix P such that 

* ( P ) = N(A) n M f J
1

) )
1 

i=s+l 

where ^ ( P ) is the range of P; N(A) is the nu l l space of A ; and 

M ( u
( i )

)
X

 = {x |
X l
=0} .  

The gradient project ion method [6] ,  [2] requires computat ions 

involving (l) an orthogonal project ion matrix whose range is a 

certain nu l l space; and (2) a related general ized inverse [33- In 

sect ion §3.» Simplex A lgori thm Implementat ion of the Grad ien t 

Project ion Me thod ,  the developments given in }2.  are combined w i th 

the simplex algori thm to prov ide the computat ional resul ts re-

quired by the gradient project ion method .  Mot ivat ion for this 

approach may be found in [5].  

In the approach given here ,  a representat ion of the project ion 

matrix 

P = (I-N N
+

) \ r r '  

is generated using the simplex a lgori thm ,  whereas Rosen gives a 

method for ob tain ing N
r
N* based on an algori thm Involving 

T — 1 
( N , j O ~ • Is a matrix whose columns are normals to the "active*

1 
N

 r r * r 

constrain ts . ) If the dimension of R( l -N
r
N^) is smal l compared to 

the dimension of H ( N J ^ ) ,  as is the case when the current vector 
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i terate l ies on a face of A of low d imension ,  one would expect 

significant computat ional improvements .  This expectat ion is 

further enhanced by the use of a variat ion of the product form 

of the inverse in comput ing the vectors which const i tute the 

representat ion of the matrix P ,  and by the use of "simplex 

mul t ipl iers" and "relat ive cost factors" in the standard fashion 

of simplex algori thm technology .  
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§1.  Geometric Analysis of the Simplex Algori thm of Linear 

Programming .  

The notat ion used here is simi lar to that in [1],  Chapters 

5 and 8 .  

Consider the l inear programming problem 

Minimize (x , c) where 

(1 .01) A
X
 = [PjPg .  . . P

n
] = b h P 

n 

and x > e ,  where 6 is a column vector of zeros,  

problem as 

Reformulate this 

Minimize ( 

~z '1 " 
X

1 » > 
0 • 

» 

• 
• 

« 

0 L

 n
 J 

L J 

) = z where 

[ V r ' • 

z 
x ,  

n J 

• 1 c ,  — c 1 n 
9 P ,  . . .  1 n 

z 
x .  

n 

0 
P .  = P .  

x^ > 0 (i = 1 , . . .  ,n) ,  

z unrestricted .  
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(1.  03) 

(1 .04) 

(1.  05) 

Now ,  suppose x^ ,  Xg ,  . ,  x^ and z are basic ,  feasible 

variables (we assume that A is m by n and that rank A = m ; we 

further assume that index sets have convenient labels ,  

such as (l ,2, . . . ,ra),  rather than using the correct ,  but 

ponderous ( J ^ J
2
'  • • • » 

Wi th B = C
p

z

p

i
#

• •
p

m
3 i where = ["gl* after a sequence of 

one 
p ivotal reduct lons

A
obtains the canonical form 

» A A A « * « _ -I A I » • * 
f ^ V i - V » n — W " [ e x i V i - V o ] 

which we part i t ion as 

•1 

9 I 

-Z/ 

A A . A 

(1.  06) From = B "
1

 P^ for (j = 0,nH-l, . . .  ,n) 

M A 

(1 .07) one obtains Pj = B"Fj,  thus 

(1 .08) Pj = £
p

i " -
p

m
3

 =

 ° '
B f l

'
,

" '
n

J 

(1.  09) 

(1 .10) 0 = Ce
1
. . . c

i n
] [7

0
] - z

Q
 ..  

(1 .08) states that 

e-

e,  

d 
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(1 .12) 

where e^ and are vectors of zeros; the scalar -1 

is the "jth" component of the vector 

0 ] 
-1 

Br 

which thus lies in the nul l space of the 

(1 .13) 

matrix A .  

If the basic solution corresponding to the canonical 

form (1 .04) is non-degenerate ,  that is ,  if > 6 ,  then 

the point 

*
 X

1 
• M 

9 

9 

m 
x

m + l • 
9 

_1_ n 

9 

9 

m 
x

m + l • 
9 

T U 

• 

• 

e 1 

• 

. 

is feasible for problem (1 .01) provided a > 0 ,  a 

sufficiently smal l .  

The vector 0

] 
l 

is a "vector along an edge of 

A = (x |  Ax = b
f
 x>e}» [5].  The question is whether or 



not a path In the direct ion of this vector produces a 

decrease in (x,c).  This wi l l be the case for a > 0 ,  

provided that 

(1 .1^) ( 

- T .  

i 

8, 

,c) < 0 .  Now ,  from relation (1 .09) 

 hare that 

1 

9,-

,  c)= Cj ,  thus if Cj <0 a decrease 

in (x ,c) results for al l a > 0 .  

§2.  Projection on Paces of A of Higher Dimension .  

From the analysis given in §1.  it is apparent that a 

non-degenerate ,  basic feasible canonical form provides ,  

essent ial ly ,  the direct ions of the project ions of the 

gradient of the function f(x) = (x ,c) ,  denoted 

vf s 

bf 

bf 

^ when vf is projected orthogonal ly upon 
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the various 1-dimensional faces of A = {x | Ax = b ,  x > 8} 

which intersect in the vertex of A associated with that 

canonical form .  In order to obtain the project ions of 

vf upon higher dimensional faces of A,  consider the 

fol lowing: 

Suppose the canonical form 

(2 .01) [ I |  ••• has been obtained .  

(Note the omission of the "z-row" and P^ column .) 

Define 

~
P

m+ l 
1 
8 

and , ^
1

) = * tf*") 
lln

1

 'll 

Then from §1 it fol lows that 

n
( m f l )

 e 91(A) n » i ( u
( m f 2 )

)
A

n . . .  n * ( u <
n

> )
A

 ,  

where 

?i(A) = the nu l l space of A 

= { z |  Az = 8}.  

Now ,  adjoin to (2 .01) and complete the reduction 

to "canonical form"; i .e .  using elementary row operat ions 

in the obvious way ,  reduce the form 
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(2 .03) 
I I 

T i e
1 to the form 

(2 .04) £ I j . . .  T j where I is (nH-l) by (nH-l).  

(2 .05) Define ^
1 3

*
2

) = 
-T mf2 
1 

e 
and V ^

2

) =
 / m

f - .  f f ^
2

) 

(2 .07) 

As before ,  it fol lows that 

Cont inuing In this manner ,  obtain vectors 

ij 
(s = nn-l,W-2, . . .  ,n) 

and 

( 1 )

 6
 n( ) n « i ( u

( s + 1 )

)
1

 n . . .  n w C u ^ V 

for (i = (mfl) ,  ( m + 2 ) , — ,s) where s < n .  

Thus ,  as is wel l-known ,  

s (i W i )
P = ZI t] T|  is an orthogonal project ion and we 

i=nH-l 

we have 
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Theorem 2.  1: 

n / J \ |  
(2 .10) tf(P) = 7?(A) fi fftfu^O ,  where tf(P) e Range of 

I=s+1 

P = (y |  3 z wi th y = Pz} .  

Proof: 

Relat ion (2 .10) fol lows from the assumption that 

the vertex associated with the canonical form (2 .01) is 

non-degenerate (see defini t ions of degeneracy and non-

degeneracy given in [4]) ,  for then the vectors 

u
( m f l ) ^ , t o g e t h e r wi th a basis for the column 

space of A
T

,  { e ^ } (i = q*-l, . . . ,n) where q = n-m ,  form 

a set of n ,  l inearly independent vectors .  Under the 

assumpt ion that A has ful l row rank ,  one could just as 

wel l take the to consist of the columns of A .  

The origin of the notat ion { e ^ H resides in develop-

ments given in [4] and [5].  Thus ,  by construction 

i=m+2 

= JI(A) n flCu^V 
i=m+2 

where dimension of fftfe^
1

), . . .  ,e^
n

 * . . .  = 1.  

But dimension of ^ t / " *
1

 V " *
l ) T

) = 1> together wi th 
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i=nH-2 

implies 

(2 .13) W ^ V "
1

'
1

) = n u ) n v i u ^ h
1

.  
i=DH-2 

Simi larly ,  

n
( n H

"
2 )

 e 7j(A) n K u *
1

) ) * 
i=nH-3 

n M I X 
where dimension of 7j(A) f|  u* ') = 2 ,  

i=m+3 

and so on .  Thus 

(2 .14) *(p) c 7 ( W 0 !?t(u
f i )

)
A 

i=s+l 

where dim #(P) = (s+l) - (nH-l) = s-m and 
n /j \ x 

dim 71(A) n = n-[(n-q) + (n-s)] = s-m ,  
i=s+l 

consequent ly 

(2 .15) tf(P) = *{A) n tflCu^)
1

".  
i=s+l 

Remark: 

When the set of unit vectors is exhausted ,  i .e . ,  

when s=n ,  then /p(P) = A) and 

P = I-A
+

A ,  

where A is the general ized inverse of A [3]. 
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§3.  Simplex Algori thm Implementat ion of the Gradient 
Project ion Method .  

In §1.  the Simplex Algori thm of l inear programming 

[1] was shown to provide a method for obtaining "vectors 

along the edges" [5] of the feasible region ,  A ,  which 

lie in certain nul l spaces .  This Idea was extended in 

§2 to provide a means of project ing on faces of higher 

dimension .  Use of the gradient project ion method [6] 

requires computat ions involving 

(l) an orthogonal projection matrix whose range is a 

certain nul l space; and (2) a related general ized inverse 

[6],[2]- In this section we continue the discussion 

given in §2 to show how the simplex algori thm may be 

used to provide the computat ional results involving 

(l) and (2).  Mot ivat ion for this approach may be found 

Consider the transformation which must be appl ied 

to the matrix discussed In §2: 

in [4] 

I V n 

! 1 6 ,T m+1
 1 

Let 
a l,nH-l 

m+1" and 
a m ,m+l 
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m 
0 g

« f l =
 1 +

 ° 7.-.1
 2 1 +

 ^ n ) .  
1 = 1

 ijHH-1 mf l '  nH-l '  

If ^JJ^  = 1 then no action is required .  Otherwise 

> 1 and the transformation of (3-01) to canonical 

form 

(3 .04) I T m+2 -

is wel l-defined .  This is achieved by pre-mul t iplying 

the columns of (3-01) by 

(3 .05) 
I -T.  nri-1 

'nH-l mf l 

9 

1 

If B "
1

 = [P^.  . .  Pjjjl
-1

 is retained In product form ,  then 

the required composite product form transformation is 

(3 .06) T

l =
 M

1 
B "

1

 e 

T e
1

It is easily verified that 

'
a

j ,nH-l 

- uU> (j = 1 , . . ,  ,m) 

(3 .07) DH-1 (nH-l) = u
v

 '  

(J nH-2, . .  .
 f
n) .  
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(Note that and are vectors with irH-1 

elements) .  

To compute M^y for some vector y ,  one need have 

stored only the m+1 values and
 ff

n+l-

When 

y = 
V 1 e 

' p / " V 
y 0 0 _ 

(j = m+2j . . .  ,n) 

(3 .09) 

then 

T j = M
i y

 -
r . 

j + < V l ' V m+1 

which fol lows from the representation of M^ given below: 

•p -pT 
m+ 1 m+1 

- " P .  m+1 

m+1 
•pT -

m+1 m+1 

The cont inuat ion of the process described above ,  

yielding the vectors P . ^ 3 P
e r f o r m e d

 using the 

transformation 

(3 .11) T
2
 = M

2 

T
x
 0 '  

T 8 1 

where 

(3 .12) M
2
 * H <

2

> M <
S

> H <
2 ) 

I m+2 

8
T

 1 

e 

m+2 

I 8 

** 1 rrv+2
 1 
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(3 .13) and a ^ = 1 +
 I n

 e
e n e r a l

»
 t h e n

>
 t h e 

transformat ion which yields the successive canonical 

forms is 

(3 .14) 
T

k
 0 

0
T

 1 

for (k = 0 ,1 ,2 , . . .  ,(n-m-1)) 

where 

(3 .15) M ^
 S

 N ^ N ^ N ^
1

^ 
I 

k+ l 
5 
m + k H 

0
T

,  

8 
1 

mfk + 1 

I e 
•B 

m+k+1 

,k+l k+l .  
"ittrk+1 =

 1 +

 V ^ m ' ^ m + k f l J '  

k+ l 
T

q
 = B

_ 1

 and is
 t h e n

(nH-k+l)st" column of the 

(k+l)st"canonical form .  Note that is an|(riH-k+l) + k 

matrix .  The relat ions analogous to (3-07) are as fol lows: 

k+l 

-a 
-a 

j,ro+l 

/
a

j ,nH-k+l_ 

= U(J) (J = 1 ,2 , . . .  ,m) 

rrri-1 
1 

-a i 
-a 

L

k+ l 

nH-l,nH-2 

riH-l,gH-3 = u (xrH-l") 

-a nH-1,  m+k+1 
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k+l 

m+2 
0 
1 

-a 
-a 

n>+2,m+3 
'm+2,m+4 

-a 
m+2 ,m+lcH 

k+l 

HH-fc+1 

9,  = u
(mfk+ l ) 

where the uni t vectors u O ) are the columns of the 

(m+k+l) by (m+k+l) identity matrix j.  6
k
 is a vector 

whose k elemente are zeros,  and 

k+l ' k
+
l 

k+2 
for (j = m+k+2 ,« . .  ,n).  

Consider the nonl inear programming problem 

f-^x) 
(3 .17) Maximize g(x) where F(x) = 

f
t
(x) 

> 6 • 

If g(x) and the f
1
(x) (i = l , . . . , t) are different iable 

a A 

and concave (see [6],[2]) then if F(x) > e,  x is a 
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(global) constrained maximum of g(x) if and only if 

there exists an n by r matrix of rank r < p whose r 

columns provide a set of linearly independent 

gradients to the p constraints active at x ,  such that 

(3.18) (I - N
r
N";) 7 g(x) = 0 

(3 .19) -N+ v g(x) > 0 .  

A constraint f^(x) is active at x provided f^(x) = 0; 
A 

otherwise f ^ x ) > 0 and f^fx) Is said to be inactive 
A 

at  x.  

Rosen ' s conditions (3.18) and (3.19),  qualified 

as above ,  are equivalent to the Kuhn-Tucker conditions 

[2].  The proof given in [2] requires only minor 

modifications in order to support the following: 

(3 .20) Let N = [vf .  (x). . .  vf ,  (x)] 
P J

p 

be that matrix whose columns consist of the gradients 

to al l p active constraints.  Then in (3.18) and (3.19) 

r may be taken to be equal to the rank of Thus the 

matrix N
r
 is composed as follows: 

(3.21) N = [vf .  (x). . .  vf (x)] r J

1 ^r 

where f .  (x) , . . . ,f ,  (x) form a subset of the active J

1
 J

r 



15 

constraints ,  active at x ,  and r = rank N .  
P 

Now restrict consideration to the linearly 

constrained ,  nonl inear programming problem 

(3*22) Maximize h(x) where Ax = b ,  x > 9 

and h(x) is concave ,  differentiable .  In order to 

simplify the expositions we wi l l continue to assume 

that A is m by n of rank m and ,  further ,  that al l 

points in the set A = {x |Ax = b ,  x >  are nondegenerate 

in the sense defined In  A second paper wi l l take 

up techniques for handling deficient rank and de-

generacy ,  together with a related topic: the use of 

an interior gradient projection method [5] when some 

of the constraints f
i
(x) ,  other than the non-negativity 

constraints x > 9,  are nonl inear .  

If problem (3-22) 1b replaced by the equivalent 

problem 

z 1 
Maximize ( x » 0 ) » g(z,x 

(3.23) x n 0 

where 

h(x )-z = 0 
Ax = b 
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and each equality constraint is represented by a pair 

of inequal ity constraints ,  then at a non-degenerate 

vertex x of A,  which corresponds to a canonical form 

(3 .24) 
-1 i °

T

 i • . .  r
n
( * ) 

* 

e i
1

 : V i • \ 

where 

z
D
 = h(Sf) 

(3 .25) 

and the ^ j(x)
 a r e

 obtained by transforming the vector 

vh(x) in the standard way [1],  the matrix N
p
 is 

composed as fol lows: 

-1 T " -1 e
T

 " 
_e I_ 8 i 

%H-1 • 
T

t 

ra+1 
• 

* °m+l • m+1 
m 

• 
• 

7 n iS _ 
* 
m 

Since x non-degenerate implies rank N = n+l ,  it fol lows 
r 

that the matrix N
r
 of (3 .18) ,  (3 .19) consists of (n+l) 

columns; precisely (m+l) of the columns of N
r
 are taken 

from the first two submatrices of N ,  the remainder P 

being taken from the third submatrix .  If column j appears 

in N
r
,  column (j+m+l) does not ,  and conversely ,  for 
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(j = 1 ,2 , . . .  ,ro+l).  In any event ,  N
r
 is nonsingular 

and thus 

I - N Jft = I ~ N N "
1

 = 1 - 1 = 0 r r r r 

and  is trivial ly satisfied .  Put somewhat 

different ly ,  the vertex x of A l ies in the 0-dimensional 

intersect ion of the act ive constraints .  

Condi t ion (3 .19) is real ized by solving the system 

N W = U ^ ^ = 7g r 

( u ^ here has (n+l) elements) 

"w 

for its unique solution w = w ,  

w n 

as follows: 

Case A: If column 1 of N
p
 appears in N

r
,  

w
o
 = -1 ,  w

x
 = . . .  = w

m
 = 0 ,  w

m f l
 = •

B H
.

1
, -- . , w

n
 = o

n
.  

Case B: If column nrt-2 of N
p
 appears in N

r
,  

w
Q
 = 1 ,  w

x
 = . . .  = w

m
 = 0 ,  w

m f l
 = - ,w

n
 = c

n
.  

Then we have 

Theorem 3«1* The non-degenerate x is a maximizing 

solution for (3-23) if and only if 
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(3 .27) 5%(x) < 0 (3 = dh-1,..  .  ,n),  where the » ,(x) 
J j 

are defined in (3-24).  

Proof: If x is a maximizing solution for (3 .24),  then 

(3.18) and (3.19) imply that the solution w of (3-26) 

is such that w < 8.  This means that Case B: above is 

impossible ,  thus Case A must hold ,  in which case 

g .  (x) < 0 for (j = m+1 , . . .  ,n).  
J " 

If Oj(x) < 0 for (j = m+1 , . . .  ,n),  then with w 

determined as in Case A ,  conditions (3.18) and (3 .19) 

hold with any N
r
 (of the type specified following 

relation (3-25)) having as its first column the first 

column of in (3-25).  Thus x is a maximizing solution 

for (3.23).  
At a vertex of A the condition 

w = N*

is thus the wel l-known condition involving the 

"relative cost factors" "cj [1]. 

If instead of (3*22) the problem is formulated as 

(3.28) Minimize f(x) where Ax = b ,  x > 9,  where f(x) is 

convex ,  differentiable ,  then the above conditions 

become those for maximizing -f(x) and we take 

h(x) = -f(x) ,  in which case ,  assuming the 

values are obtained at a vertex x by suitably trans-

forming the vector 7f(x) ,  condition (3-19) becomes 
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-o .(x) < 0 ; that is ,  

(3 .29) Cj(x) > 0 for (j = nH-l, . . .  ,n).  

Since the developments in sections 51 and §2 fol low 

Dantzig ' s pract ice of formulat ing problems in terms 

of minimizat ion ,  whereas Rosen formulates problems 

in terras of maximizat ion ,  it is impossible to cont inue 

notat ional agreement .  In the remainder of the paper 

we wi l l follow Dantzig
1

s pract ice .  Thus suppose 

Rosen ' s gradient project ion method [6] is initiated 

at a vertex x of A- Such a vertex could be obtained ,  

for example ,  by execut ing Phase I of the simplex 

method [1].  Then ,  unless x is an opt imal solution 

for the problem*.  

(3 .30) Minimize f(x) where Ax =  x >  f(x) convex ,  

different iable j it must be that e",(x) < 0 for at 

least one value of j .  Defining s ,  which for con-

venience we label nH-l,  by lett ing 

c (x) = minimum c".(x) s j 
0 j(x)<0 

compute the direct ion of a vector i/
11

*
4

"*") along the 

associated edge of A ,  determining a path in that 

direct ion .  Let x be that feasible point located 

at the maximal distance from x along this (l inear) 
A /\.  

path .  Then determine * such that f(x) < f(x) for 
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A ~ A 

( 3 . 3 1 ) 

£ A A 

t x  ( n
( m f l )

^ ) .  

U
r
 = 

-1 J .  
-I.  

J 
a

m f 2 ^ ^mf 2 
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 ^
l )

 7f

J o 

x

> = O l A * = bj (x,!) '""-
1

' ) = > e> 

 St

®r = 1 ! e |  _ _ 

vf(*) i a ^ i u ^ L . u ^ ) 
m 

 s 
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Bu t n i n ^ h
1

 =C (77(A) n fl(u
(i)

)V 

n-1 

1 

-v 
= 7g 

1 
0 

 - V 1

J^vg = 
- V 

U t vg =r r 
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(I - BT
r
 7g = 8.  

 (k

0 

fif = 
-1 • 1 e 

U (n) 

N
r 

 Ax

( n
( m f l )

, x ) = ( i / ^ . S ) 
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Thus ,  defining 

40) 5f
p
= 

- l ©T o -l 8 0 

-Vf u
( m f 2 )

. . . u 

(3 .18) and (3-19) imply that there exists a matrix ft r 

of rank (n+l) ,  wi th columns chosen as in the development 

fol lowing relat ion (3 .25) (except that (m+2) columns are 

taken from the first two submatrices: as before ,  If Is 

nonsingu lar ,  thus (3 .19) is trivial ly sat isfied) ,  and 

such that the unique solut ion z of 

sr
r
 z =

 v

g 

satisfies 

z > 8 ,  where z = 

n 

Since z
Q
 = ±1,  i t fol lows that z = 1 ,  thus that 

column (m+3) ,  [vf(x)L of ®f appears In If .  Designat ing 
m P r 
If as fol lows: r 

5T
r
 = 

i e 

vf(x) D u ^ . . .  u<
n

> 

independent columns taken from [A^ r/
11

**"
1

^ and 

where D = . .  d/
11

""
1

^] is composed of (m-l) l inearly 

independent columns 
t

 n
( m f l )

L thus 

z vf(x) + [D ,  u
( m f 2 ) (n) 

n 

= 8 
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where z ,  > 0 for (i = 1 , 2 , — ,n) and z = 1 .  1 — o '  
or 

[D ,  u
( n H

"
2 )

. . .  u ^ ] 

-z n 

= Vf(x) 

where -Zj^ < 0 .  Now in reference to (3 .33),  take 

e
T

 • 

where D '  consists of the first (m+l) columns of D .  As 

pointed out fol lowing relat ion (3 .37),  ( I - ) V g = 0 

and if x Is not a minimizing solut ion for (3 .28),  the 

associated v ' ,  which solves the system analogous to 

(3 .34),  must have at least one element v^ > 0 .  The 
o 

uniqueness of the representat ion of vf(x) as a l inear 

combinat ion of the columns of . . .  u ^ ] then 

impl ies -z
x
 = - z

2
 = v j = v^ ,  - z ^ = 0 ,  

-z = V ' m+2 " "mfl ' ' ' '  * ~
 z

n =
 v

n-l>
 a n d

 V > °> '
z

i <
 0 

o 

provides a contradict ion ,  thus x is a minimizing 

solut ion of (3 .28).  

Let us review: 

Start ing at a vertex x of A = {x | Ax = b ,  x > 0>,  a path 

along an edge of A is determined .  This path is fol lowed 

to the point x ,  possibly an adjacent vertex of A- If 

that be the case ,  the process employed is the simplex 
algori thm .  If 2 is not a vertex of A ,  then the values 
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o  ̂ (x) are determined and if Cj(x) > 0 for (j = m+2 , . . .  ,n),  

x Is opt imal for (3-28).  Otherwise x ,  a vertex of 

A
( l )

 = {x |Ax = b , ( n
( m f l )

, x ) = ( n
( m f l )

, i ) ,  x > e> 

is treated in the same fashion as was x ,  with the 

following exception: In general ,  a path along an edge 

of A ^ (In the feasible direction of the vector r/
11

""
2

) 

developed in §2) lies on a 2-dimensional face of A.  
A / ,  \ 

If a point not a vertex of A ,  is determined on 

such a path ,  then t/
1

**"
2

 V ^ ^ v f ^ ) = 9 as before ,  
however this need not imply that Pvf(it) = 0,where 
„ _(m+l) (m+l)T .  „(m+2) (nH-2)T .  ,  .  p = T)

v

 ' ) + V '  .  At such a point 
a 

one first determines whether or not Pvf(x) = 0.  
a 

If Pvf(x) 4 9,  a new 1-dimensional path on the related 

2-dimensional face of A is followed .  (Note that If 
f 1) 

x is a vertex of A
1

 the process employed is the 

simplex algorithm .  ) The procedure outlined above is 

continued unti l one of two situations occurs: 

(3-42) The terminal point ,  x ,  lies on the related 2-dimensional 

face of A,  no additional non-negativity 

constraints having become act ive ,  and is such that 

Pvf(x) = 0 where P =
 +

 ^ ^ ( n ^ T ,  

or 
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(3 .43) 

A <
2 )

 = {x |  Ax = b , ^ ^
1

) ^ ) ^ ^ ^
1

) ^ ) , ^ ^
2

) ^ ) ^ ^ ^
2

) ^ ) ,  

x > 0} 

in a manner completely analogous to that already 

discussed .  It Is apparent that the proof of Theorem

need be mod ified only sl ight ly to support the indicated 

general izat ion; both i ts formulat ion and the mod ified 

proof are left to the reader .  

The general izat ion of this approach to h igher 

dimensional faces of A is qui te apparent ly analogous 

to our discussion of 0 ,1 and 2 d imensional faces .  

Un t i l the author has had t ime to ponder possible 

simpl ificat ions In no tat ions and proofs ,  the formal 

steps required are also left to the (dedicated) reader .  

In case si tuat ion (3.43.) occurs ,  there is then the 

requirement to project on a face of A hav ing a different 

ini t iat ing vertex than x .  There does not seem to be 

an easy way to reverse the transformat ions (3 .14).  

Th is does not appear to be a serious ma t t er ,  however ,  

since it seems l ikely that the intersect ing hyperplanes 

a t such a point w i l l normal ly include many of those 

which intersect in the last vertex of A used in 

x l ies in the intersect ion of a set of act ive constraints 

which Is no t ^ s u b s e t of those containing the ini t iat ing 

vertex x .  )ln case si tuat ion (3-42) occurs ,  x is treated 

as a vertex of the convex set 
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the process .  Thus if the B "
1

 associated wi th this 

last vertex has been retained ,  as would usual ly be 

the case ,  an appropriate vertex ,  "adjacent" to the 

current point may be obtained by appl icat ion of a few 

"Phase I" simplex steps.  

To obtain the c ' jCx '^alues using the method of 

simplex mu l t ip l iers [1],  one so lves ,  for examp le ,  

(3 .44) uT-
1

 = y = [o-^x) . . .  c
r & f l

( x ) ] 

for the row vector 

(3 .45) tt(X) = C7r
1
(x). . .7r

irH
.
1
(x)] 

where c \ (x) = ^ for (j = 1 , . . . ,m+l) .  Then the 

J 

C j (x) values for (j = m+2 , . . . , n) are obtained from the 

relat ion 
m 

(3 .46) c j (*) = C j (x) - tt(X) "
 ? j  

Prom (3-4U) (see (3-12)) we have 

(3 .47) Lc
1
C

2
 . . .  « .

nH
.

1
] N ^ N ^ N ^ 

= [ c

l
+ a

l
j B

n V l ' - ^ m
+ a

m , m f l V l ' V l
] 

c

nri-l - |
 a

i
c

i 
where o ,  = » m+ J.  ff

m+l 
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( 3 - 4 8 ) [ c ^ . . . * ^ ] ^ = [ C c
1
. . . c

m
] B - V

0
^

1
T ^

1
B -

1

, c ^
1
> [ i r

l V
. .

 V l
] .  

A s im i l ar relat ion may be developed for subsequen t 

transformat ions ^v i* 

Conclud ing remark: In the approach given here the 

s imp l ex a lgor i thm is used in generat ing the pro jec t ion 
- f . 

ma tr ix I-N^N^ ,  whereas Rosen g ives a me thod for obtain-
ing N N't [6] based upon an algori thm invo lv ing (N

T

N J"
1

.  
<3 <3 q q 

S ince i t appears that dim >P(l-N N
+

) w i l l usual ly be q q 

much smal ler than dim one m igh t expect 

s ign if ican t compu t a t iona l improvemen ts .  Th i s expectat ion 

is fur ther enhanced by the po t en t i a l use of a varia t ion 

of the produc t form of the Inverse in compu t ing the 

vectors wh i ch const i tu te the required pro ject ion and by 

the use of "simp lex mu l t ip l i ers" and "relatif* cost 

factors" [1] in the standard fashion of l inear programm ing 

a lgori thm techno logy .  
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