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CSD TR 55
"A STMPLEX ALGORITHM - GRADIENT PROJECTION
METHOD FOR NONLINEAR PROGRAMMING™.

by
L. Duane Pyle
10 June 1971

ABSTRACT

Witzgall 7], commenting on the gradient projection methods
of R. Prisch and J. B. Rosen, states: "More or less all algorithms
for solving the linear programming problem are known to be modif-
ications of an algorithm for matrix Inversion. Thus the simplex
method corresponds to the Gauss-Jordan method. The methods of
Frisch and Rosen are based on an interesting method for inverting
symmetric matrices. However, this method 1is nbt e happy one, con-
sidered from the numerical point of view, and thls seems to ac~
count for the relative instability of the projection methods®.
This paper presents an implementation of the gradient proJjection
method which uses a variation of the simplex algorithm.

The underlying (well-known) geometric idea is that the simplex
algorithm for linear programming [1] provides a method for obtalning
vectors along the medges® [4] of the féasible region A={x|Ax=b,x>8}

which 1lie in certein null spaces. This property is dilscussed in



ii

detall in section §1., Geometric Analysis of the Simplex Method
of Linear Programming.

In sectlon §2., Projection on Faces of A of Higher Dimension,
the geometric anelysis of §1. is extended to obtain the orthogonal

projection matrix P such that

R(P) = M) n  mu(Ht

i=s+1

where R(P) is the range of P; N(A) is the null space of A; and
Mu(1))t = {x]x,=0}.

The gradient projection method [6], [2] requires computetions
involving (1) an orthogonal projection matrix whose range is a
certain null space; and (2) a related generalized inverse [3]. 1In
section §3., Simplex Algorithm Implementation of the Gradient
Projection Methed, the developments given in §2.Agre combined with
the simplex algerithm to provide the computational results re-
quired by the gradient projection method. Motivation for this
approach may be found in [5}

In the approach glven here, a represent&tibn of the projection

metrix

_ tow Nt
P= (I NrNr)

is generated using the simplex algorithm, whereas Rosen gives a
method for obtaining NrN; based on an algorithm involving

(NgNr)_l. (Nr i1s a matrix whose columns are normals to the mactive®
constraints. ) If the dimension of R(I—NrN;) is small compared to

the dimension of R(NrN;), as is the case when the current vector



i1l
1terate 1lles on a face of A of low dimension, one would expect
significant computational improvements. This expectation 1is
further enhanced by the use of & variation of the product form
of the inverse 1n computing the vectors which constitute the
representation of the matrix P, and by the use of msimplex
multipliers™ and *"relatlve cost factors® in the standard fashion

of simplex algorithm ftechnology.



§1. Geometric Analysls of the Simplex Algorithm of Linear

Programming.

The notatlon used here is similar to that in [1], Chapters
5 and 8.

Consider the linear programming problem

Minimize (x,c) where

It

(=
L}
J

(1.01) Ax = [P1P2...Pn]

L] .« =
o8 iy

i

and x > 8, where @ 1s a column vector of zeros. Reformulate this

problem as

z 1
Minimize (| *1 |, 0 ) = z where
(x4 LO _
(1.02)
-z—' -Z-
. A " “1 C "o e C O PN
1l n x
P_P ...P:] *1] = 1= = p
[ z-1 n . 2] Pl oae Pn - [P%] o
‘xn_ _xn_1
xi 20 (1 = 1:---’n)’

z unrestricted.



(1.03)

(1.04)

(1.05)

(1.06)

(1.07)

(1.08)

(1.09)

(1. 10)

(1.11)

Now, Buppose Xys Xny cees X and z are basic, feasible

1

variables (we assume that A'is mw by n and that rank A = m; we
further assume that index sets have convenient labels,

such as (1,2,...,m), rather than using the correct, but

ponderous (Jl.day:--.dm))-

N -~ ~ ~ -~ -1
With B = [Pzpl”'Ph]’ where Pz = [ 0]' after a sequence of

one
pivotal reductions,obtainsthe canonical form

-_1Ah A A An'._le ~ A A
B (P P+ PyBo. .- B Po) = [ 81 Pm+1...Fth]

which we partition as
-1 98 ¢
e I P l.I.P Po
" ‘-1
From,'fE‘;J =B P
one obtains Pj = BFJ, thus

P, = [P...B,] [Fy] (1= 0,m2,...,n)

leyrencgd [PJ] + Eﬁ (4 = mfl,...,n)

Q
€
N

0= [cl...cm] [Pyl - Z, -

(1.08) states that

J
[Plpa...Puml.'.PJ...Pn] ' = 0




where Bl

and 92 are vectors of zeroe; the scalar -1

is the "jth" component of the vector

o -

(1.12) ¢
1.12

el s
-1
Bzd

pwr

matrix A.

If the basic solution corresponding to the canonicel

which thug lies in the null space of the

form (1.04) 1is non-degenerate, that ig, 1if PO > 8, then

the point

1

Xm

(1.13)

“..c
<

N e« & 9

- oy ey =D - -

- -
-7,
+ a A
9,
1
%

is feasible for problem {1.0l) provided a > 0, a

sufficiently smell.

The vector

is a "vector along an edge of

A= {x]ax = b, x>8}n [5].

The question 18 whether or



not & path in the dlrection of thls vector produces a
decrease in (x,c). This will be the case for a > 0,

provided that

-
J
(1.14) ( N ,é) < 0. Now, from relation (1.09)

we have that ( 611, ¢ =EJ, thus if 3J<0 a decrease

in {x,c) results for all a » O.

$2. Projectlion on Faces of A of Higher Dimensilon.

From the analysls given 1in §1. 1t ies spparent that a
non-degenerate, baslc feasible canonical form provides,
essentially, the directions of the projections of the
gradient of the function f{x) = (x,c), denoted

[ af
.

1

vf = o Wwhen vf 1s projected orthogonally upon

Sf
T

n

= -




(2.01) '

(2.02)

the various l-dimensional faces of A = {x]ax = b, x > 8}
which intersect in the vertex of A associated with that
canonical form. 1In order to obtaln the projections of
vf upon higher dimensional faces of A, consider the
following:

Suppose the canonical form

4
1
[ I :P REE Pn] has been obtained.

{Note the omissien of the "z-row" and B, column.)

Define
“Frrl (
Fmel) _ and 7 ) =-W:ﬁ%FI7ﬁ gml)
) n

Then frem §1 it follows that

n(™1) ¢ aay Amu{™2Nt L A ple)t

n(A) = the null space of A
= {z|Az = ¢}.

(m+1)T to {2.01) end complete the reduction

Now, adjoin %
to "canonical form"; 1.e. using elementary row operations

in the obvious way, reduce the form



{2.

(2.

(2.

(2.

(2.

03)

o4 )

. 05)

06)

o7)

08)

. 09)

As before, it follows that

n(™2e na) nata (PN npu(®3))Ln

Continuing in this manner, obtain vectors

"'l(mn,"l(me):---m(s) where (ﬂ(i),ﬂ("j)) =

(S = m'l'l,nl‘2,..- ,n)

and

1) ¢ ma) nau®E I AL APyt

for (i = (m+1),(m+2),...,s) where s < n.

Thus, as is well-known,

1
I ‘ P v a P
-———-i——-'-'-’t-l- ------ o to the form
T T
'Pmli 1 C]
[ I E 'Pm_'_e . ?n] where T is (m+1) by (m+1).
-P
Define F(2) 1m+2 and n{®2) _ mi Flm2)
. lif |

. N ﬂ.{u(n))l .

615

5
P= X n(i)n(i)T 18 an orthogonal projection and we

i=m+1

we have



Theorem 2. 1:

n
{2.10) R(P) = n(a) N m(u(i))" » where R(P) = Range of
i=s+1

P= {ylJz with y = Pz}.

Proof:
Relation (2,10) follows from the assumption that
the vertex assoclated with the canoniéal form (2.01) 1is
non-degenerate (see definitions of degeneracy and non-
degeneracy given in [4]), for then the vectors
o1} () ogether with a basis for the column
space of aT, {e(i)} (i = ¢+1,...,n) where q = n-m, form
a set of n, linearly independent vectors. Under the
assumption that A has full row rank, one could Just as
well take the {e(1)} to consist of the columns of AT.
The origin of the notation {e(i)} resides in develop-

ments given in [4] and [5]). Thus, by construction

T](m+l) € m (e(q-'-l),...,e(n),u(me),...,u(n))l
(2.11) = melatl) | e(n)ye ﬁ mutl)yd
1=m+2

aa) A (i)
i=mt2

(2.12) where dimension of m(e(Q+l),...,e(n),u(m+2),...,e("))* = 1.

1m1%0m1ﬂ)=

But dimension of e(n( 1, together with




e (@)Ty pny [ (i)t
i=m+2

implles
(2.13) RO DM LTy _pia) A pulih)e
I=m+-2
Similarly,

n(®2) ¢ nia) 0 mu(t))d
i=m+3

P (1)44
where dimension of 77{(A} N #@(u )Y =2,
I=m+3

and so on. Thus

(2. 14) #(P) cn(A) N mull))e
i=s+1

where dim &(P) = (s+1) - {(m1l) = s-m and

dim n(A) ?1 wﬁu(i))l = n-{(n-q) + (n-8)] = s-m,
i=s+1

consequently

(2.15) p(P) = m(a) A muli)*,
i=st+1

Remark:
When the set of unit vectors is exhausted, i.e.,

when s=n, then R(P) = 7(A) and

P = T-AtA,

where AT is the generalized inverse of A [3].



§3. Simplex Algorithm Implementation of the Gradient
Projection Method.

In §1. the Simplex Algorithm of linear programming
[1] was shown to provide & method for obtalning “vectors
along the edges" [5] of the feasible region, A, which
lie in certain null spaces. This 1dea was extended in
§2 to provide a means of projecting on faces of higher
dimension. Use of the gradient projectlion method [6]
requlires computations involving

(1) an orthogonal projection matrix whose range 1s &

certain null space; and (2) a related generalized inverse
[6],[2])- In this section we continue tﬁe discussion
given in §2 to show how the simplex algorithm may be
used to provide the computetionel results Involving
(1) and (2). Motivation for this approach may be found
in [47].

Consider the transformation which must be applied

to the matrix discussed in §2:

I 'P L B p
(3.01) B .. S n|
T T
Por1il 8
Let _ -
al,m+1
(3.02) .
Pm+1“ : and
_am,m+1_




(3.03)

(3.04)

(3.05)

(3.06)

10

Omy1 = 1 F 1§é ¥ me1 = 1+ (?&+1, Pm+l)'
if Ol = 1 then no actlon 1s required. Otherwise

¢ .1 > 1 and the transformation of (3.01) to canonical

form

[I oo ?n]

is well-defined. Thils 1s achieved by pre-multiplying

the columns of (3.01) by

1 1 2 3 T T 1 T
8 1 8 T Pﬁ+1 1
m+1

Ir B! = [Pl...Pm]'1 ig retained in product form, then

the required composite product form transformation is

It is easlly verified that

T, = () (j = 1,...,m)
"%gme1
P
v, m+1 = y(m+1)
-1 —
_ p
T, - ?z (3 = ™2,...,n).
0




(3.08)

(3.09)

(3.10)

(3.11)

(3.12)

11

(Note that uld?),u{m 1)

and ?j are vectors with m+l
elements ).

To compute Mly for some vector y, one need have

stored only the m+l values [ai,mﬂ} and Tp.q,
When
Bl Pj Iﬁ
y=1| = (i = m2,...,n)
0 1 0 0
then
T, (BP_..,FB.) -F
?j = My = Ji 4+ m-l” g7 m+1 ’
0 1+(?m1,15m+1) 1

which follows from the representation of Ml given below:

T
Pm+iFm+1 Pm+1
My =1 "é T Iy
it ;Pm+1 Pm+ipm+1

The continuation of the process described above,

yielding the vectors ?m+3"‘ . ’ﬁn’ 18 performed using the
transformation
T 8
_ 1
To=My | 0
8 1
where
) I ‘?;»2 T 0 I
M. = N(z)N(Q)N(Q =
2 1 2 3 T T 1 ?T
0 1 0 — -2
L o2
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me = 1+ (Pm+2’?m+2)'

transformation which ylelds the successive canonical

(3.13) and ¢ In general, then, the

forms 1s
' T 8
k
(3.14) Tesr = Mopq for (k = 0,1,2,...,(n-m-1})
8 1
where
k+1
(kL) (k1) (k1 I -F I 8 T 8
(3.15) M1:_+1=N£ )Né )Ng - r PR 1 ey
o 1 0" i+t || Prrka1
kt+1 kt+1
Yot = 1+ (P P i1 /)2
1 K+
T. =B "~ and P_ ... is the *{mtk+1)st® column of the
0 mEk+1

“(k+1)st"canonical form. Note that T, . 1is ADK?+k+1)L3 (k40

petrix. The relations anelogous to (3.07) are as follows:

i )
Py

“%y,mel

T “Gy m2 = u(J) (1 =1,2,...,m)

(3.16)

T, m2

me1,p3 | (e D)

k+1 .

| "%me1, mik1

I
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oF1 mt 2, -4 - u(m+2)

(3.16) :

- y(mk+l)

where the unit vectors u(J) are the columns of the

(m+le+1) by (mik+1) identity matrixg 6, 1s a vector
whose k elements are zeros, and

Pj k+2
Tyt B0 = PT for (J = mrk+2,...,n).

Consider the nonlinear programming problem

(£, (x)
: >8.

]

(3.17) Maximize g(x) where F(x)

If g(x) and the fi(x) (1 =1,...,t) are differentiable

and concave (see [6],[2]) then if F(x) > 6, X 1s a




(3.18)

(3.19)

(3.20)

(3.21)

14

(global) constrained maximum of g(x) if and only if
there exists an n by r matrix of rank r < p whose r
columns provide e set of linearly independent

gredients to the p constraints active at x, suech that

(I - NN.) @ g(x) = o

-Ni v g(x) >0 .

A constraint fi(x) is active at ; provided fi(x) = 0;
otherwise fi(;) > 0 and fi(x) 1s sald to be inactive
at ;.

Rosen's conditions (3.18) and (3.19), qualified
as above, are equlvalent to the Kuhn-Tucker conditions
[2]. The proof given in [2] requires only minor

modifications In order to support the following:

Let Np = [vfjl(x)... vfjp(x)]

be that matrix whose columns consist of the gradients
to all p active constreints. Then in (3.18) and (3.19)
r may be taken to be equal to the rank of Nb. Thus the

matrix Nr is composed as followa:
N_ = [vf, (x)... 9f X
p = (96 () 9ty (x)]

where fj {x),...,f, (x) form & subset of the active
1

JI'




(3.22)

(3.23)

15

constraints, active at x, and r = rank Nb.
Now restrict conslderation to the linearly

constrained, nonlinear programming problem

Maximize h(x) where Ax = b, x>8,

and h(x) is concave, differentiable. In order to
sinplify the expositions we wlill continue to assume

that A 1is m by n of rank m and, further, that all

points in the set A = {x|Ax = b, x > 8} are nondegenerate
in the sense deflned in [5]. A second paper will take

up techniques for handling deficlent rank and de-
generacy, together with a related toplc: the use of

an interior gradlent projection method [5] when some

of the constralnts fi(x), other than the non-negativity
constralnts x > 6, are nonlinear.

If problem (3.22) is replaced by the equivalent

problem
EN [ 17

Maximize | -1 0© ) = g(z,xl,...,xm) =z
X, 0

o 3
—
™
—
)
N
]

T
L

iy 1l

@@ o O
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and each equality constraint is represented by a pair
of 1lnequality constraints, then at e non-degenerate

vertex X of A, which corresponds to a canonical form

5.5%) -1 obet § ) LT (R
> FRERE N T,
' I Tmtl n o
where
Z_ = b(%)

and the 3&(?) are obtained by transforming the vector
vh(X) in the standard way [1], the matrix Np is

compoged as follows:

-1 or -1 8" 0
(3.25) I ;IO S S I
——— T 4
® M1 Pin+1 . qm+1'P$+1 s
. a 4 . I
- =T = i
L Gn Pn en Pn

Since X non-degenerate implies rank Np = n+l, 1t follows
that the matrix N_ of (3.18), (3.19) consists of {(n+1)
columns; precisely (m+l) of the columns of N_ are taken
from the first two submatrices of Np’ the remsinder

being teken from the third submatrix. If column J appears

in N, column (34+m+l) does not, and conversely, for




(3.26)

17 -

(j =1,2,...,m1). In any event, N_. is nonsingular

and thus

+ -1 _ _
1- NrNr = I - NrNr =1-I=0

and (3.18) is trivially satisfied. Put somewhat
differently, the vertex X of A lies in the O-dimensional
intersection of the active constraints.

Condition (3.19) is realized by solving the system

Nr W= u(l) = Vg

(u(l) here has {n+1) elements)

for its unlque solution w = as follows:

b

Case A: If column 1 of Np appears in N,

Case B: If column m+2 of Np appears in Nr’

= = Lee = = =_e. s ea =E'.
Yo 1 1 ¥ = 05 Ypyq m+1’ 2¥n n

Then we have

Theorem 3.1: The non-degenerate X is a maximizing

solution for (3.23) if and only if




(3.27)

(3.28)
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é'j(i') <0 (J=ml,...,n), where the :J('i')

are defined in (3.24).

Proof: If ¥ is a meximizing solution for (3.24), then
(3.18) and (3.19) imply that the solution w of (3.26)
iz such that w < 8. This means that Case B: above is
impossible, thus Case A must hold, in which case
EJ(Y)_f O for (j =ml,...,n).

If‘:J(f)_g 0 for (j = m+l,...,n), then with w
determined as in Case A, conditions (3.18) and (3.19)
hold with any N (of the type specified following
reletion (3.25)) having as its first column the first
column of Np in (3.25). Thus ¥ is & maximizing solution
for (3.23).

At a vertex of A the condition

-+
W= Nr e < 8

is thus the well-known condition involving the
nrelative cost factors""é'J [1].

If instead of (3.22) the problem is formulated as

Minimize f(x) where Ax = b, x > 8, where f£(x) is
convex, differentlable, then the above conditions
become those for meximizing -f(x) and we take

h(x) = -f{x), in which case, assuming the'?d(f)
values are obtained at & vertex X by sultably trans-

forming the vector vf(X), condition (3.19) becomes




(3.29)

(3.30)

-oj(f)_s 0; that 1s,

EJ(E).g 0 for (j = m+1,...,n).

Since the developments In sections §1 end §2 follow
Dantzig's practice of formulating problems in terms

of minimization, whereas Rosen formulates problems

in terms of maximlzation, it is impossible to continue
notational agreement. In the remainder of the paper
we wlll follow Dantzig's practice. Thus suppose
Rosen's gradient projection method [6] is initiated

at a vertex X of A. Such a vertex could be obtainegd,
for example, by executing”Phaae Ilbf the simplex
method [1]. Then, unless x is an optimal solution

for the problem.

Minimize f(x) where Ax = b, x > 8, f(x) convex,

differentiable;

1

least one value of j. Defilning s, which for con-

it must be that Ej(i) < 0 for at

venience we label m+l, by letting

Es(f) = Einfyum Ej(f),
ej(x)<0

(m+1)

compute the direction of a vector 7 along the
associated edge of A, determining a path in that
direction. Let % be that feesible point located
at the maximal distance from X along this (linear)

A A
path. Then determine X such that f(x) < f(x) for

19




(3.31)

(3.32)

~ ~ AL
8ll x = P X + {(1-§) X where 0 <y < 1. If x = X, the

process then employed 1s a simplex iteration. If
A~ A '
Xx # X, then at x
T A
(L) (m )T o 2y = o,

»
A
siﬂce otherwise x may be determined on the path with

f(;) < f(;). Thus vf(g) is orthogonal to the vector
% - X, Note that, &s usual, a 1-
dimensional minimizatlon problem must be solved; we
assume that thls presents no difficulties. The

point Q lies in the 1-dimensional intersection of the
active constraints, Ax = b, Xppp = »00 = X = o,
precisely at the point where it intersects the

A
hyperplane (n(m+1),x) = (n(m+1),x).
Let . _ _ .
:.L..-------ET--
I : I I_.. 0
T = ';ﬁ+2(k) P£+2
r . . ?
: : T
e, (®) F,

20

where the values ?J(i) for (J = m2,...,n) are obtained

by transforming the vector vf(%). (A method for

determining the successive vectors of'E'J values, usgling

a varlation of the simplex algorithm with multipliers,

is given et the end of this section.) Then we have



(3.33)

2l

(m+1)n(m+1)

Theorem 3.2: If 7 vf(X) = 9 then X is

a minimizing solution of (3.28) if and only if

cJ(R)_Z 0 for (J = m2,...,n).

Proof: Suppose 33(2) < 0 for some value J_ in the
index set (J = m2,...,n). Then X is not a minimizing
solution of (3.28) since f£(x) can be decreased by

treating X as a vertex of the convex set

A1) 2 {x18x = v; (x,n (1)) - (2,q(m1)) EX

by proceeding along an edge of A(l) determined by Jo.
Thus £ a minimizing solution of (3.28) implies
EJ(i) >0 for (J = m+2,...,n).

Now suppose that oj(x)_z 0 for (j = m2,...,n),

and that ® 1s not a minimizing solution for (3.28).

Let
1 ]
N - 1 et i et __
T 1 ]
vf(%) A" ! u(m+2).. uln)
- (1)-
and A = a where a(i) is row 1 of A.
'a(m)-

Since n(m+1)n(m+l)T vf (%) = o, Vf(i)Gﬂﬁﬂ(m+l))L-



(3.34)

(3.35)

(3.36)

But 7(n

(m+1))1

22

~{(n(a) n i)y
Jemd-2

~n BTy (B il
1=1 i 2

= m(a(i)T,...,a(m)T,u(m+2),...,u(n)),

thus there exists & (unigue) solution v to the system

-[AT u(m+2)... u(n)] v = vf(x)

where v=

=

V1

Vn-l

1

1 1
, and we have ¥ [ ] =vg =} 0
,r -y

[ 3 L3 (3

where Nr is defined in (3.33). Sure N_. bas full column

rank,

thus




(3.37)

(3.38)

(3.39)

23

that 1s,
(I - Nr N:) vg = 6.

Therefore, if X is not a minimizing solution for

(3.28), v must have at least one element Y , k_ in
0 (o}

the index set (k = 1,...,n-1), such that Vi, <0,

i.e. such that Vic > 0.

0
Now let
-1 g% -1 6T 6T
N= sy - - - - - ===
p iy

-of(x) A ~9r(2) AT ’ u(m+2)...u(n)

It follows that the conclusion of the preceding paragraph
may be drawn for any Nr composed of n linearly independ-
ent columns teken from ﬂp. As in the development
following relation (3.25), precisely (m+1l) of the columns
of such an Nrare taken from the first twe submetrices of
Np, the remaining columns being taken from the third.
If column J appears in ﬂ}, column (J+m+l) does not, ~and
conversely, for (Jj = 1,2,...,m+1).Nr here has rank (n-1).

By previocus developments, 3J(i).2 0 for (j = m2,...,n)

implies that x is a minimizing solution for the problem

Minimize f(x) where Ax = b
(™) ) = (q(m1) 2
llhf-‘ X 2 B.
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Thus, defining

-1 T o 1 oT o o7

(3.40) Np= _er(3) AT T]([u-l-l) ' - -Vf(i) AT Tl(m+1) ’-u(m+2)”-u(n)

(3.18) and (3.19) imply that there exists a matrix Er

of rank (n+1l), with columns chosen as in the development
following relation (3.25) (except that (m+2) columns are
taken from the first two submetrices; as before, ‘Nur is
nonsingular, thus (3.19) 1is trivially satisfied), and

such that the unique solutlon z of

(3.41) N, z="Yg
satisfies " -
%o
z > 0, where z = zq e

Since z = +1, it follows that z, = 1, thus that
column {m+3), [vE{&)], of Np appears in N . Designating

Nr as follows:

1 OT

[
)
P i
N = l
!
|

e'I.'

- = et e —  wem e——

r vf(X) D u(mﬁe) - u(n)

where D = [d(l)...d_(m{'l)] i1s composed of (m+l) linearly

independent columns taken from [AT n(m+1) and
-[AT n(m+1)], thus
I
Z1 |
Zg vf{x) + [D, u(me)... u(n)] : = 8, l
[ *n _ |
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where z, > 0 for (1 =1,2,...,n) end z, = L, ,
or
(D, u(m+2)... u(n)] : = vf(x)

where -z; < 0. Now in reference to (3.33), take

where D' consists of the first (m+l) columns of D. As
pointed out following relation (3.37), (I-(N;)(N;)+)Vg=a
and if X is not & minimizing solution for (3.28), the
associeted v', which solves the system analogous to

(3.3%), must have at least one element vl >0. The
o

uniqueness of the representation of vf(%) as a linear

combination of the columns of [D,u(m+2) ‘o u(n)] then
implies ~Zy = vi, ~2p = vé, ceey -2 = vﬁ, “Zpq = o,
- - ' - - — 1 . -

Zoro LANETTRRY z, Vo1 and vko > 0, z; < 0

provides a contradiction, thus X is & minimizing
solution of (3.28),

let us review:
Starting at a vertex X of A = {x|Ax = b, x > 8}, a path
along an edge of A is determined. This path 1s followed
to the point X, possibly an edjacent vertex of A. If

thet be the case, the process employed is the simplex

algorithm. If X is not a vertex of A, then the values

#
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Ej(i) are determined and if'EJ(i).z 0 for (j = m2,...,n),

X is optimal for (3.28). Otherwise X, a vertex of

A(l) = {XIAX = b,(n(m:l):x) = (ﬂ(m”,i), X 2 e}

is treated in the same fashion as was X, with the
following exception: 1In general, a path along an edge
of A(l) {in the feasible direction of the vector n(m+2)
developed in §2) lies on a 2-dimensional face of A.
If a point 3, not a vertex of A(l), 1s determined on
such a path, then n(m+2)n(m+2)va(ﬁ) = @ as before,
however this need not imply that Pvtf(i) = 0,where

P = 11(an-l),](lMl)T N 1](m+2)n(m+2)T.

At such a point
one first determines whether or not Pvf(%) = Q.

If Pvf(é) £ B, & new l-dimensional path on the related
2-dimensional face of A is followed. (Note that if

% is a vertex of A(l), the process employed is the
simplex algorithm. ) The procedure outlined above is

continued untll one of two situations occurs:

(3.42) The terminal point, X, lies on the related 2-dimensiocnal
face of A, no additional non-negativity

constraints having become active, and is such that

1](m+1)n(m+1)'r + n(m-l-2)1_|(m+2)T .

Pof{x) = 8 where P = 3

or



(3,43) X lies in the intersectlon of e set of active constraints

——

which 1is not ?Egubset of those contalning the initiating

vertex X. |In case situation (3.4 ) occurs, X is treated

as a vertex of the convex set

n®) = (xlax = b, (00 )= (a (1) 3, (1 (2) ) (q(me2) 3y,

;x)=('ﬁ

x > 6}

in a manner completely analogous to that already
discussed. It 1s apparent that the proof of Theorem 3.2
need be modified only slightly to support the indicated
generalization; both ite formulation and the modified
proof are left to the reader.

The generallzation of thls approach to higher
dimensional faces of A is quite apparently analogous
to our discussiﬁn of 0,1 and 2 dimensionsel faces.
Until the author has had time to ponder possible
simplificatlicns in notations and proofs, the formal
steps required are also left to the {dedicated) reader.
In case pituation (3.4#3) occurs, there is then the
requirement to project on a face‘of A having a different
initiating vertex than X. There does not gseem to be
an easy way to reverse the transformations (3.14). ‘
This does not appear to be a serlous matter, however, é
since 1t seems likely that the intersecting hyperplanes F
at such a point will normally include many of those

which intersect in the last vertex of A used in




(3.44)

(3.45)

(3.46)

(3.47)
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the process. Thus if the 8”1 associated with this
last vertek hes been retained, as would usually be
the case, an appropriate vertex, radjacent" to the
current point may be obtalned by application of a few
"Phase I" simplex steps.

To obtain the Eﬁ(i}&g}ues using the method of

simplex multipliers [1], one solves, for example,

Tl =y = [5y(R) ..., (R)]

for the row vgctor

m(x) = [my(%)...m (%))

where'Fj(x) = g%iﬁl for (j = 1,...,m+1). ‘Then the

dJ
Ej(i) values for (j = m+2,...,n) are obtained from the

relation
P
54(%) = ey(R) ~ 7(%) [ 03] .
From (3.4)) {(see (3.12)) we have

[0102 .ee ¢m+1] Ngl)Ngl)Ngl)

=yt 2 mi®mer % o, 1 1 %1 J
m
) Cmr1 '1;21 GyCy
where °m+1 = . o
m+1
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Thus

-1 '

(3.48)  [oqepr--epyqIT) =(legene BB el BT B 0l Telmymye..m 07 .

A similar relation may be develcped for subsequent

transformations T .4

Concluding remark: In the approach given here the

simplex algorithm is used in generating the projection
matrix I—NqN; , Wwhereas Rosen gives a method for obtein-
ing NqN; {61 based upon an algorithm involving (Nqu)’l.
Since it appears that dim P(I-NqN+) will usually be

much smaller than dim e(N N )}, one might expect
significant computaticnal 1mprovements. This expectation
1s further enhenced by the potential use of a variation
of the product form of the inverse in computing the
vectors which constltute the required projection and by
the use of "simplex multipliers™ &nd ®relative cost
factors® [1] in the standard fashion of linear programming

algorithm technology.



(2)
(3)
(%)

(5)

(6)

(7)
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