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ABSTRACT

Mosquera-Tabares, Mart́ın A. Ph.D., Purdue University, December 2014. Theory of
Density Functionals. Major Professor: Adam Wasserman.

Density functional theory is an alternative quantum mechanical theory that offers

simple ways of performing calculations of the electronic properties of matter. Many

different methods derive from density functional theory. The most appealing for

its simplicity and rigor is the theory of Kohn and Sham. In this thesis I propose

new methods in density-functional theory that are helpful to address some important

problems in the application of the local-density approximation within Kohn-Sham

DFT to the analysis of ground-states and dynamical properties of electronic systems.
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1. INTRODUCTION

The main topic concerning this thesis, as that of many others, is a challenge: The

electronic properties of molecules. Many technical aspects can be outlined pointing to

the difficulties of calculating the state of molecules, but after extensive and exhausting

readings about the topic I reach the conclusion: “solving the non-relativistic electronic

ground-state of a molecule in the Born-Oppenheimer picture is impossible, but a

reliable estimation has to be possible”. I must, however, specify what I mean by

solving the ground-state. Avoiding refined concepts of quantum mechanics, solving

is providing the answer to a question that is posed as a critic and obscure equation,

i.e., the non-relativistic time-independent Schrödinger equation (TISE), often seen as

H times Ψ equals E times Ψ.

Gazing for a while at HΨ = EΨ leads me to ask myself questions like: what is

a solution? how can I solve this problem with finite precision numbers (HΨ = EΨ

is defined over an Archemedean field, the real numbers) do we really ever find a

solution?. We can ask these questions even for a simple mathematical problem. For

example, the initial value problem y′(t) = −y(t). One would accept a solution of the

form y(t) = exp(−t). What is y(π)?. We know it is a real number. But, then what

is the meaning of exp(−π)? The symbol exp is only a label for a function that has

certain properties. More specifically, that function is exp(−t) =
∑

n(−1)ntn/n!. This

is an infinite expansion that requires an infinite number of operations to calculate

a number with infinite precision. These simple observations are trivial, and involve

a simple function, the exponential. Unless one can simplify the infinite series, one

has to employ some numerical method to approximate exp(−π), and, of course, the
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number π. It seems that only in few cases we produce an exact answer to the solution

of a differential equation that is expressed as a series of numbers.

The calculation of the number exp(−π) cannot be performed with infinite preci-

sion as of the year 2014, and the mathematical theory of numbers and functions still

grows. The problem y′(t) = −y(t) is apparently a simple one. Yet, it is quite in-

volved. Most laws of nature, e.g., electromagnetism, gravitation, quantum mechanics

(and its many variations), are expressed using differential equations whose domains

are the real numbers. These are often overlooked in applied science. The real numbers

are useful for theories, but problematic for calculations. The machinery of integral

and differential calculus offers a method to express laws of nature in simplistic and

subjectively beautiful forms. However, these laws are computationally quite demand-

ing because operations between real numbers require infinite number of operations.

We, humans, might conceive the existence of maps involving infinite number of cal-

culations; we can only perform a finite number of them. Thus, modifications of the

idealized formulas of physics is often required, leading to truncated, subjectively ugly,

versions of the laws.

Truncated forms of our fundamental equations, i.e., theories of approximation, are

usually sought by scientists to perform calculations that aid the interpretation and

understanding of experiments. An approximated theory often embodies assumptions

that are applied to the strict formal theory to obtain modified equations that ease the

computational calculations. The penalty of using approximated equations and finite

precision numbers is errors, deviations from the experimental values (which also are

prone to different sorts of errors). Minimizing such errors is the job of theoreticians.

Proposing an approximated theory is easier than finding the error because the former

only needs assumptions based on a posteriori knowledge that derives from formal

observation of the strict theory, or from reliable experiments. Error estimation is

quite more difficult because one needs to resort to the exact theory and its intricacies.

The development of quantum mechanics relies on experimental measurements. It

has been through experiments that the fundamental equations were refined until a
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satisfactory theory of atoms was proposed; there is, of course, still doubt about the

relativistic form of the laws for multi-electronic systems. The development of quantum

mechanics is based on human intuition and experimental observation. Quantum

mechanics is empirical. The quantum problem can be formulated in such a way that

one needs only few parameters such as the mass, charge, spin moment, speed of light,

permitivity, and the Planck and Boltzmann constants. The resulting equations (for

example HΨ = EΨ) are difficult to solve, except for special cases like atoms and

molecules with few electrons.

The complexity of the quantum mechanical equations is due to correlation: All

the electrons’ degrees of freedom are interdependent: One degree of freedom changes

all the others in a complex form1 (a degree of freedom is a spin-spatial coordinate

pair). In light atoms, the nuclear charge exerts a stronger force to the electrons

than that they exert on one another. If we assign a high importance to the electron-

nucleus interaction, then one can construct a wave function being just a product of

the orbitals representing each electron. The antisymmetry principle demands that

the wave function is a Slater determinant (this introduces some correlation because

two degrees of freedom cannot be assigned the same orbital). A space of Slater

determinants is defined and the energy wave-functional is minimized over such space.

This procedure leads to the Hartree-Fock (HF) equations, which display correlation

between the degrees of freedom. The way the orbitals are correlated in the HF

formalism is not enough to yield the right energies.

Post-Hartree-Fock methods are too expensive and intricate because of the com-

plexity of the Hamiltonian matrix that is to be diagonalized. The Hamiltonian con-

tains transition amplitudes between all possible states of the system. The problem

is that the more electrons are included in the analysis the more possible transitions

between electronic state arise. The number of possible combinations grows very fast

as a function of the number of electrons. This problem can be solved by introducing

1Note that what we mean here by correlation is not the conventional definition in quantum chemistry,
which is usually used to express a the deviation from Hartree-Fock theory in quantum chemistry.
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a method that eliminates the plethora of combinations. Density-functional Theory

(DFT) offers many ways to eliminate the exponential grow of combinations. In this

theory, a map is shown to exist between the ground-state wave-function of the sys-

tem and its ground-state density. This map can then be used to show that every

ground-state observable of the system is a density-functional. The philosophy of this

theory is to approximate the energy functional instead of the wave-function, leading

to alternative and productive methods to model molecular systems.

There are many ways, as I show in this thesis, to approximate the energy density-

functional. The Kohn-Sham (KS) formulation is, perhaps, the most widely used. In

this formulation the system of real electrons is mapped into a system of fictitious

ones, where they do not interact but are subject to an effective external potential

whose job is to force these electrons to yield the true density of the system. The

energy is then expressed in terms of the kinetic energy of the fictitious electrons, their

attraction energy with the nuclei, and the exchange-correlation (XC) energy, which is

the quantity needed to match the true energy of the system. An explicit expression in

terms of the electronic density is the primordial objective. The XC energy functional

can be used to obtain the XC potential, which is part of the effective potential that

the fictitious electrons are subject to in order to yield the ground-state density of the

molecule.

In the author’s opinion one may say that the electrons in KS-DFT interact through

a local potential. This interaction is neither a mean-field interaction nor a purely

Coulombic one. It is only by means of the XC potential that such interaction is de-

termined. The advantage of a local potential representing the density is an apparently

low computational cost. DFT allows us to reformulate the ground-state problem us-

ing an appealing and convenient picture, such as the non-interacting electrons, but

introduces an unknown term. The way of introducing formalisms in DFT usually

works as follows: Let F be our target functional, and let G be some functional that is

close to F . Then, write F = G+X, where X is exact and it is defined as X = F −G.

One can thus state that X is the missing piece and approximations to it allows us to
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approximate F as G + Xappr. In some cases, however, Xappr can be very accurate.

Because one can define an infinite number of different Gs, there is an infinite number

of DFT formulations. Nevertheless, many formulation are discarded by defining G

and X by demanding that they are accurate, or exact, in some limit.

This thesis is about formulations of DFT that lead to analytical forms that are

exact in some limit. Specifically, we will discuss some formal properties of KS-DFT,

Generalized-KS-DFT, and partition DFT. A common statement between these the-

ories is: “This G-DFT formulation is exact in principle, but X is the missing piece”

(as explained in the previous paragraph). An important feature of X is that it can be

explored in some limit; then, one expresses it as a density-functional and extends it

to another regime. Another way of performing approximations to X is by introduc-

ing a set of experimental quantities, fit a suitable form of X, and then extrapolate.

This methodology, is referred to as empiricism by those who approximate X based in

some limit. In the author’s point of view, these two methods are empirical: In both

cases one observes some behavior and then extrapolates it to other regimes, and there

is no guarantee for success. The author believes that useful approximations should

be based on formal limits, experimental measurements, and experimental validation.

This should be performed in a consistent and methodical way such that the use of

DFT approximations is more transparent.

This thesis is organized as follows: chapter 2 provides a compact mathematical

background. In chapter 3 I discuss non-analytic functionals, which are required to

describe the dissociation limit of molecules. Chapter 4 presents recent developments

on partition DFT, a formulation to study molecular dissociation. Useful functionals

for time-dependent Density-functional Theory (TDDFT) are introduced in chapter 5.

These functionals avoid the causality paradox dilemma: a perturbation in the density

in the future affects the potential in the past. The dynamics of fragments with fixed

number electrons that are subject to electromagnetic-fields is presented in chapter

6. A formalism to study fragments with variable number of electrons is shown in

Chapter 7. Finally, I conclude with a short remark.
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The majority of the developments shown in this thesis are reported in the litera-

ture. Section 3.3 is reported in Physical Review A [1]. Chapter 4 (excluding sections

4.5 and 4.6, which are in preparation along with Section 3.2 [2]) is published in Molec-

ular Physics [3]. Chapter 5 can be found in Physical Review A Ref. [4]. Chapter 6

is an invited article to a special issue celebrating forty years of the Hohenberg-Kohn

theorem by the Journal of Chemical Physics [6]; this paper is also an extension of our

previous work published in Physical Review Letters [5]. And, Chapter 7 is material

in preparation [7]. The published articles are attached at the end of this thesis. I

also attached an invited “new views” article [8] for Molecular Physics (this paper is

related to the material presented in chapter 3).

Finally, below there is a list of the schools and conferences I attended with the

work presented.

1. Midwest Theoretical Chemistry Conference, Northwestern University, Chicago

IL (2014), talk: “Fragment-based Time-dependent Density-functional Theory

with Variable Occupation Numbers”.

2. APS March Meeting, Denver CO (2014), talk: “Recovering the Integer Discon-

tinuity of Density-functional Theory”.

3. Centre Européen de Calcul Atomique et Moléculaire, Lusanne, Switzerland

(2014), talk: “Recovering the Integer Discontinuity of Density-functional The-

ory”.

4. 6th Time-dependent Density-functional Theory, Benasque, Spain (2014), poster:

“Partitioning the Current-density in Time-dependent Current-density-functional

Theory”,

5. International Conference of Density-functional Theory, Durham University, United

Kingdom (2013), poster: “Parition Density-Functional Theory: Some Formal

Results”.
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6. Semiclassical Origins of Density Functional Approximations, University of Cal-

ifornia at Los Angeles (2013), poster: “Partition Spin Density Functional The-

ory”.

7. Midwest Theoretical Chemistry Conference, University of Illinois, Urbana IL

(2013), poster: “Partition Current-density-functional Theory”.

8. Midwest Theoretical Chemistry Conference, Univeristy of Wisconsin, Madison

WI (2012), poster: “Partition Spin Density Functional Theory”.

9. 1st Colombian School of Theory and Computation in the Molecular Sciences,

Cali, Colombia (2012), talk: “Time-dependent Partition Density Functional

Theory”.

10. APS March Meeting, Boston MA (2012), poster: “Time-dependent Partition

Density Functional Theory”.

11. Panamerican Advanced Studies Institute, Cartagena Colombia (2011), poster:

“Derivative Discontinuities in Density Functional Theory: A Simple Illustra-

tion”.
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2. BACKGROUND

2.1 Definitions

In this chapter, the background required for the following sections is introduced.

Here we only discuss the basic formal framework of TD and ground-state DFT. The

mathematics in this thesis is presented almost entirely in Dirac’s notation.

2.1.1 Quantum Mechanics

Let HN = ∧NL2(R3N ,C2N) be a space of antisymmetric wave functions. The

basic composite unit of the space HN is the spin-orbital:

χ(r, z) = φ(r)z , (2.1)

where φ ∈ L2(R3), z ∈ C2, and r = (r1, r2, r3) is the position vector in Cartesian

coordinates. z has two components, and we write z = (z0, z1)T . Both φ and z are

normalized, i.e.,
∫
|φ|2 = 1 and z2

0 +z2
1 = 1. The natural basis for C2 is {z↑, z↓}, where

z↑ = (1, 0)T and z↓ = (0, 1)T . In this representation the spin-measurement operators

are simply matrices in C2×2, for example:

S3 =
1

2
σ3 =

1

2

 1 0

0 −1

 (2.2)

is the z-component of the spin operator. Therefore S3z↑ = 1/2z↑ and S3z↓ = −1/2z↓.

Although a wave-function in HN is an acceptable object, we must also need to impose

that it vanishes in the asymptotics. This requirement avoids inconsistencies with

functions like shrinking combs.
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Throughout this work Dirac notation will be used. We assume that the wave-

functions of HN are represented by kets in an abstract Hilbert space HN . Thus we

say that ψ ∈ HN is represented by |ψ〉, and the dual 〈φ| ∈ H∗N is such that:

〈φ|ψ〉 =

∫
φ∗ψ . (2.3)

Operators acting on HN are denoted with a hat. D(Ô) is the domain of the operator

Ô. We define:

〈φ|Ô|ψ〉 = 〈φ|(Ô|ψ〉) . (2.4)

If |φ〉 ∈ D(Ô†), then we can write the above equation as (Ô†|φ〉)†|ψ〉.
Great part of this work concerns states with variable number of electrons. For

this reason we introduce the Fock space F :

F = H0 ⊕H1 ⊕H2 ⊕ . . . , (2.5)

and also the Liouville space, L, of density matrices of the form

Γ̂ =
∑
M,k

wM,k|ψM,k〉〈ψM,k| . (2.6)

This sum is performed over energy levels (k) and particle number (M) of a given

system. One can define an energy operator ĤN that operates on HN . In coordinate

representation this operator can be written as:

ĤN(r1, r2, . . . , rM) = −1

2

∑
j

∇rj +
∑
i>j

V (ri − rj) +
∑
j

v(rj) , (2.7)

∇2
rj

is the laplacian operator with respect to variable rj, V is the Coulombic repulsion

potential:

V (r1 − r2) =
−1

|r1 − r2|
, (2.8)

and v is the 1-body external potential.

The energy operator in the Fock space is:

Ĥ =
⊕
M∈N

ĤM . (2.9)
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This operator can be expressed in terms of creation (ψ̂†(r)) and annihilation (ψ̂(r))

operators, which satisfy {ψ̂(x), ψ̂†(x′)} = δ(x − r′). Using these operators we can

write:

Ĥ[v] =

∫
d3r ψ̂†(r)h̄[v](r)ψ̂(r) , (2.10)

here

h̄[v](r) = −1

2
∇2

r + v̂H(r) + v(r) , (2.11)

and

v̂H(r) =

∫
d3r′

n̂(r′)

|r− r′| . (2.12)

The energy operator Ĥ is a function of the 1-body external potential v, this observa-

tion is essential for the development of density-functional theory.

The operator n̂(r) corresponds to the density operator, which is defined as:

n̂(r) = ψ̂†(r)ψ̂(r) . (2.13)

The particle-number operator is N̂ =
∫
n̂. The operator Ĥ[v] is particle-conserving,

[Ĥ[v], N̂ ] = 0. This means that a measurement of an energy of the system conserves

the number of particles, an observation that does not hold at high energies.

2.1.2 Functional Derivatives

It is customary to introduce a space of functions before defining functionals, which

are the central objects of this work. Let G be a Banach space. A functional f is

typically defined as a map f : G→ R. However, we will refer to anything that takes

values on a space of functions as a functional.

Suppose n, m ∈ G are given, the variation of f at n in the m direction is:

δmf [n] = lim
ε→0

f(n+ εm)− f(n)

ε
. (2.14)

We say f is differentiable if there is a linear functional δf/δn such that

δmf [n] =
〈δf
δn

[n],m
〉

(2.15)
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for any m ∈ G. For example, in L2(R3) we have that:〈δf
δn

[n],m
〉

=

∫
d3x

δf

δn(x)
[n]m(x) . (2.16)

The function δf/δn(x) is called the functional derivative.

2.2 Energy Functionals

The ground-state energy of a system of electrons under a 1-body external potential

v is:

E(M ; [v]) = inf{〈ψM |Ĥ[v]|ψM〉| |ψ〉 ∈ HM , M ∈ N} . (2.17)

To calculate the above quantity one needs the number of particles and the 1-body

external potential; although, the energy of a system of electrons is in fact a function of

many variables: masses, charges, spin, etc. The electron-electron interaction potential

is another parameter needed to determine the energy. The ground-state problem

would be easy to solve if the electron-electron interaction were negligible, because we

would only need a Slater-determinant to describe the energy; consequently, excited

states would be easy to estimate as well.

For the development of density-functionals it is convenient to analyze the different

components of the energy operator. We thus define the following operator

Ĥλ[v; Ŵ ] = Ĥ0
λ[Ŵ ] +

∫
d3r v(r)n̂(r) , (2.18)

where

Ĥ0
λ[Ŵ ] = T̂ + λŴ , (2.19)

here Ŵ is an electron-electron interaction operator. We will assume that Ŵ is given,

but it must bear mind that different choices are allowed. For example, screened,

electron-electron repulsion.

From the minimization of Eq. (2.17) the following physical theorem emerges, due

to Hohenberg and Kohn:

Theorem 1. Assume a Hamiltonian Ĥλ, and two potentials v and v′ that differ

by more than a constant are given. Two non-degenerate ground-state kets |ψ〉 and
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|ψ′〉 corresponding to v and v′, respectively, cannot be give rise the same density,

〈ψ|n̂(x)|ψ〉 6= 〈ψ′|n̂(x′)|ψ′〉.
A corollary of the above theorem, often overlooked in the literature, is that the

potential and number of particles determine the density, and vice versa. This corre-

spondence requires a proper mathematical map.

One can extract a non-degenerate ket from Eq. (2.17) as follows:

|ΥM [v]〉 = arg inf
|φ〉∈HM

〈φ|Ĥ[v]|φ〉 . (2.20)

Suppose V is a space of potentials and DM is a space of the densities generated by the

non-degenerate kets coming from V ; this space of kets can be expressed as |ΥM [V ]〉.
Theorem 1 implies that there is a map between the spaces DM and V . Let us define

the map ΛM : V → DM . Hence, for a given number of particles M and potential v ∈ V
we obtain the density by setting ΛM [v]. Using ΛM we can define a density-functional

|Υ̃[n]〉 = |Υ ◦ Λ−1∫
n
[n]〉. This last observation allows us to define an energy functional

via the relation EHK[n; v] = 〈Υ̃[n]|Ĥ[Ŵ , v]|Υ̃[n]〉. An interesting observation, also

made by Hohenberg and Kohn, is that EHK, for a given external potential v and

number of particles M , can be minimized over the set DM to give the ground-state of

the system corresponding to the potential v. Note that the definition of the energy

functional EHK involves only densities with integer number of electrons.

The second theorem also due to Hohenberg and Kohn is:

Theorem 2. For a given potential v ∈ V and number of electrons M , the ground-

state energy of the system is

inf
n∈DM

EHK[n; v] . (2.21)

The construction of computable density-functionals is the challenge in ground-

state quantum chemistry. As we will discuss in the next section, a density-functional

approach has proven useful as an alternative to the strict formulation of quantum

mechanics. Nevertheless, EHK is defined within the space DM , which is a space that

is restricted to densities that come from a ground-state.
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2.3 Kohn-Sham Theory

A useful functional extending the domain of that of Hohenberg and Kohn is:

Eλ
v [n] =

∫
d3r v(r)n(r) + min

|ψ〉→n
〈ψ|Ĥ0

λ[Ŵ ]|ψ〉 . (2.22)

Kohn and Sham defined an auxiliary system of non-interacting electrons that are

subject to an effective external potential such that a preset density is recovered. The

kinetic energy of this system of electrons is defined as:

Ts[n] = inf{〈Φ|T̂ |Φ〉| 〈Φ|n̂(r)|Φ〉 = n(r)} , (2.23)

where the search for the minimum is performed strictly over Slater determinants.

The energy is then split into three components: Ts,
∫
vn, and the Hartree-exchange

correlation part, which is defined as follows:

EHXC[n] = E1
v [n]− E0

v [n] . (2.24)

This quantity is the change of energy associated to connecting the system of fictitious

electrons (λ = 0) with that of fully interacting electrons. The HXC energy is further

split into the Hartree energy and the XC energy, where we define the XC energy as:

EHXC[n] =

∫
d3rd3r′

n(r)n(r′)

|r− r′| + EXC[n] . (2.25)

The density is obtained from the orbitals that are solution of the KS equations, these

read (−1/2∇2
r +vHXC(r) +v(r))φk(r) = εk(r), where vHXC(r) = δEHXC/δn(r). By oc-

cupying the KS orbitals of system we obtain the electronic density n(r) =
∑

k fk|φk|2.

The occupation numbers are obtained from a proper electron-distribution; for exam-

ple, Fermi-Dirac.

2.4 Time-dependent Density-functional Theory

The dynamical properties of the molecular system are obtained from the TD

Schrödinger Eq.:

i∂t|Ψλ[u](t)〉 = Ĥλ[u(t)]|Ψλ[v](t)〉 . (2.26)
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For full interactions (λ = 1), the solution of the above equation would provide us the

TD wave function to calculate the dynamical observables of the system. It is quite

difficult, however, to solve this problem even for a system with few electrons.

Assume that u1 is the TD external potential driving the molecule of fully-interacting

electrons. In TDDFT, one searches for an effective potential v0 such that:

〈Ψ0[v0](t)|n̂(r)|Ψ0[v0](t)〉 = n[u1](r, t) . (2.27)

In this equation n[u1] is the density of the system of fully interacting electrons under

potential u1. If we denote the solution of the above equation as u0, then we can define

the HXC TD potential as follows:

uHXC(r, t) = u0(r, t)− u1(r, t) . (2.28)

In analogy with ground-state DFT a one-to-one map between potentials and densities

exists, this result is known as the Runge-Gross theorem. The information about the

evolution of the system is calculated from the TD KS. The orbitals satisfy the equation

(−1/2∇2
r + u0(r, t))φk(r, t) = i∂tφk(r, t). Because the function u1 is set by the user,

the TD HXC potential is sufficient to determine the evolution of the system. Finally,

the density of the system is n(r, t) =
∑

k fk|ϕk(r, t)|2. From the evolution of the

density we obtain the excitation frequencies of the molecule via the linear response

formalism.
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3. NON-ANALYTIC DENSITY FUNCTIONALS

In this chapter I show how to derive density-functionals with derivative disconti-

nuities, essential features to describe molecular dissociation correctly.

3.1 Introduction

When the distance between two atoms in a diatomic molecule is very large, their

charges are predicted to be fractional numbers by the local-density approximation

[1,2]. This is caused by an extra flexibility of the energy functional for densities that

integrate to non-integer numbers [3]. The KS equations are single-particle equations.

For a single orbital in KS theory, the molecule can be thought of as a set of wells

that the electrons wander about; moreover, the integral of an orbital density around

an atom is the probability of finding a KS electron in such atom. There is only one

constraint on the total density: It must integrate to the total number of electrons

in the molecule. A free electron is more likely to be found around the most favor-

able well, usually the deepest one. Unfortunately, the local-density approximation

only provides wells to the KS electrons, and no matter how far atoms are (ground-

state quantum mechanics involves no dynamics), the lack of constraints allow the KS

electrons to wander free, giving rise to fractional charges, or non-physical spins, in

the separated atoms. The KS potential should display a barrier between the atoms

to force the likelihood of finding a KS electron in an atom to be consistent with

ground-state quantum mechanics. However, no functional to date can display such

barrier. The grids used in most codes are atom-centered. The barriers are present in
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regions between the atoms; thus, if the bond distance is increased, the shells used for

integration do not overlap anymore, missing the barriers.

Perdew et al. [4] (PPLB) showed that the problem mentioned above has its roots

on the lack of derivative discontinuity of density functional approximations: To ad-

dress static correlation, one expresses the wave function as a linear combination of

wave functions describing the possible products of the dissociation, if the stretching

is performed adiabatically one would obtain pure states and a desired spin symme-

try. If one considers a system of well separated atoms close to their ground-states, X

and Y, there is a wave function for XY, and there is one for the state X+Y−, each

state is weighted by a probability amplitude. When the energy is measured, it is the

sum of the energies of the states, weighted by their respective probabilities. PPLB

showed that the energy minimizes non-analytically with a derivative discontinuity

with respect to the average amount of charge transferred between the atoms. At dis-

sociation, many density-functional approximations (DFAs), on the other hand, lead

to a non-linear minimization where the energy derivative with respect to the amount

of charge transfer is continuous, giving rise to a spurious state with fractional charges.

The DD of the XC energy functional and the linear dependency between discrete

intervals is required to improve the physics of density functionals. The missing integer

discontinuity causes problems in the estimation of ground-state properties like bind-

ing energies [1] and reaction barriers [5]. In TDDFT, the missing integer discontinuity

is also required to improve the accuracy of density-functional approximations [6–11],

especially to describe bond-stretching processes. In general, most approximations in

DFT are unable to describe bond stretching without recurring to spin-polarized DFT,

in which the symmetry is broken. The non-linearity with respect to the number of

electrons is pervasive and affects all calculations that use continuously differentiable

XC energy functionals such as the local density approximation (LDA) [2]. These

known problems point to the need to develop new functionals with the correct piece-

wise linearity, capable of describing bond-stretching without resorting to symmetry

breaking.
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The problem of fractional charges is usually addressed by splitting the Coulomb-

repulsion potential into a short-range (SR) and long-range (LR) part [12, 13]. For

the SR regime, a local exchange energy-functional is used, and for the LR regime,

exact exchange is employed. This procedure improves the description of dissociation,

but it does not completely yield neutral charges at infinite separation. Non-long

range-corrected Hybrid functionals, by using non-local exchange energy, also offer

improvements but not a complete solution to the problem. A usual problem with

most approximate methods is that they, as mentioned earlier, break spin-symmetry

and the orbitals employed are not, strictly speaking, Kohn-Sham orbitals, but orbitals

closer to those of Hartree-Fock theory.

In this chapter I show how to solve the problem of fractional charges with a

density-functional, herein defined, that is exact in the molecular dissociation limit,

where it displays the desired non-analiticity. This functional allows us to divide the

space of molecular configurations into two domains, a SR, and a long-range LR one.

For the long-range domain, the energy is obtained from the functional with the correct

derivative discontinuity, and in the short range domain the regular density-functional

approximation is used. Both regimes are then connected employing a kernel smoother.

This procedure eliminates the problem of fractional charges, allows for the use of van

der Waals functionals, and also offers simple ways to eliminate the self-interaction

error.

3.2 Density-functional Theory for Molecular Dissociation

In this work we use 1-body density operators of the form

γ̂ =

∫
d3rd3r′ γ(r, r′)ψ̂†(r′)ψ̂(r) , (3.1)

where γ(r, r′) is the coordinate representation of γ̂:

γ(r, r′) =
∑
n

fnφ
∗
n(r)φn(r′) , (3.2)
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φn is the orbital of level n, and {fn} is the set of occupation numbers. Let us define

the 1-body Hamiltonian operator:

ĥv =

∫
d3r

[
t̂(r) + v(r)n̂(r)

]
. (3.3)

where t̂(r) = 1/2(∇ψ̂†(r)) · (∇ψ̂(r)). In KS-DFT, the energy as a density functional

is:

Ev[n] = min
γ̂→n
Ev[γ̂] , (3.4)

where Ev is the energy-functional:

Ev[γ̂] = tr{ĥvγ̂}+ EHXC[n] . (3.5)

Here, n(r) = tr{n̂(r)γ̂}, and EHXC[n] = EH[n] + EXC[n].

EH[n] =

∫
d3rd3r′ n(r)n(r′)/|r− r′| (3.6)

is the Hartree energy. The ground-state energy of the system is then obtained by

minimizing Ev[n] for a given integer number of electrons, M . The ground-state energy

is thus

E0
v(M) = min

n→M
Ev[n] . (3.7)

The minimization in Eq. (3.4) is carried out over 1-body density matrices (1BDMs)

of the form shown in Eq. (3.2). Hence, the orbitals are obtained from self-consistent

solution of the KS equations:(
− 1

2
∇2

r + vHXC[n](r) + v(r)
)
ϕk(r) = εkϕk(r) . (3.8)

The orbitals {ϕk} are functionals of the external potential v. By the Hohenberg-Kohn

theorem there is an invertible map, u−1, that assigns v a unique density. Let {ϕk[n]}
be the KS orbitals expressed as density-functionals, where these are solutions of the

KS equations with potential u[n].
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We assign each fragment a 1-body density operator representing the fragment with

a given integer number of electrons, Mα:

γα,Mα(r, r′) =
∑
k

fα,kφ
∗
α,k(r)φα,k(r) . (3.9)

The occupation numbers satisfy
∑

k fα,k = Mα,k.

In section 3.3 I show that the XC energy functional for states with fractional

number of electrons includes a relaxation kinetic energy that current DFAs miss.

This problem is avoided in partition DFT by assigning discrete number of electrons

to each fragment in the molecule and then averaging over an ensemble of different

discrete configurations. The density operator describing a configuration is

γ̂f,M =
⊕
α

γ̂α,Mα , (3.10)

where M = {Mα}. An ensemble of such molecules is represented by the density

matrix:

γ̂f =
∑
M

wMγ̂f,M , (3.11)

where wM ≥ 0 and
∑

MwM = 1. The use of direct sums allows us to express the

1-body energy in the form tr{ĥvγ̂f,M} =
∑

α tr{ĥvγ̂α,Mα} . The energy of the localized

electrons with classical electrostatic interactions is defined as:

Gv[γ̂f,M] = tr{ĥvγ̂f,M}+ EHXC[n+
M] , (3.12)

where n+
M(r) = tr{n̂(r)γ̂f,M}.

Now introduce the functional:

Gv[γ̂f ] =
∑
M

wMGv[γ̂f,M] . (3.13)

The energy of an auxiliary molecular configuration is:

Gv(N) = inf
γ̂f→N

Gv[γ̂f ] , (3.14)
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where N = {Nα} are fractional numbers. Finally the auxiliary ground-state is ob-

tained by minimizing over electron-occupation of the fragments, we denote this energy

as G0
v and is given by:

G0
v(M) = inf

N→M
Gv(N) . (3.15)

The function G displays derivative discontinuities when the fragments have integer

number of electrons, it is exact in the atomization limit, when all fragments are at

infinite separation, and it also reveals where the avoided crossing point is located.

The total 1-body external potential of the system is a sum of fragment 1-body

potentials, v =
∑

α vα. vα is the potential representing the interaction between an

electron and the nuclei in fragment α. In partition density functional theory (PDFT)

[14], a given electronic density n, can be decomposed into localized fragment-densities

by solving the minimization problem:

min{
∑
α

Evα [nα]
∣∣∣ ∑

α

nα = n} . (3.16)

This requires the introduction of an auxiliary Lagrange multiplier, the partition po-

tential, that represents n. The densities that solve the above problem are density-

functionals and are denoted as {ñα}. The density of a fragment is given by a sum of

KS orbital-densities: ñα =
∑

k fα,k|ϕα,k|2. ϕα,k satisfies the equation:(
− 1

2
∇2 + vHXC[nα](r) + vα(r) + vp(r)

)
ϕα,k(r) = εα,kϕα,k(r) , (3.17)

where vp is the partition potential, a Lagrange-multiplier used to satisfy the constraint

shown in Eq. (3.16). The partition potential can be expressed as a density-functional;

for each density there is a corresponding partition potential, and vice versa. Us-

ing these orbitals we introduce the 1BDM γ̂p
α,Mα

[n](r, r′) =
∑

α fα,Mαϕ
∗
α,k(r)ϕα,k(r

′).

Where these orbitals are density-functionals as well. Now, the energy functional is

expressed as:

Ev[n] = Gv[γ̂p[n]] + Ek
p[n] , (3.18)

where γ̂p =
∑

Mwp
Mγ̂

p
M, and Ek

p[n] = tr{t̂(γ̂[n] − γ̂p[n])}; in section 4.5 I show a

method to approximate Ek
p. If the functional Ep were known, then minimization
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of Ev[n] could be carried out over a complete basis set representing the orbitals

of a fragment. And, solution of the partition KS equations would yield the localized

fragment densities. Fortunately, basis sets for orbital expansion are constructed using

atom-localized basis-functions. Thus we restrict the fragment 1BDM to be of the form

γL
α,Mα

(r, r′) =
∑
µν

Pα
µν(Mα)φ∗α,µ(r)φα,ν(r

′) , (3.19)

where {φα,µ} are contracted, atomic basis-functions, and

Pα
µν(Mα) =

∑
k

fk(Mα)(Cα
µ,Mα

)∗Cα
ν,Mα

. (3.20)

We denote the space of 1BDM of the form
∑

MwMγ̂
L
M, where γ̂L

M = ⊕αγ̂L
α,Mα

, as Lf .

Let γ̂f,0 = arg inf{Gv[γ̂f ]| γ̂f ∈ Lf} be an optimal density matrix of the fragmented

molecule. The calculation of γ̂f,0 consists in the following: Set the fragment occupation

numbers M. Suppose nM is the total density of the fragments in the M electronic

configuration. Define the matrix

Fα
µν [nM] =

∫
d3r φ∗α,µ(r)f̂ [nM](r)φα,ν(r) , (3.21)

where f̂ [nM](r) = −1/2∇2 +vHXC[nM](r)+v(r). Also, let Sαµν =
∫

d3r φ∗α,µ(r)φα,ν(r).

The coefficients determining the optimal density matrix of a fragment are obtained

from self-consistent solution of FαCα
Mα

= εαSαCα
Mα

. Once the coefficients are de-

termined we can construct the optimal density matrix. The functional Gv does not

couple the statistical weights wM; therefore, in a diatomic molecule, γ̂f,0 represents

states with complete charge transfer.

Define the electronic density:

n+
0 (r) = tr{n̂(r)γ̂f,0} . (3.22)

We use n+
0 to generate a biased XC local scalar field for the KS electrons. The biased

orbitals of the system satisfy the Kohn-Sham equations:(
− 1

2
∇2

r + vH[n](r) + vXC[n+
0 ](r) + v(r)

)
ϕ0
n(r) = ε0nϕ

0
n(r) , (3.23)
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where n(r) =
∑

n fn|ϕ0
n(r)|2. Hence, the 1-body KS density matrix of the complete

molecule is γ0(r, r′) =
∑

n fn(ϕ0
n(r))∗ϕ0

n(r′). By means of this quantity we calculate

the biased ground-state energy:

E0
v = tr{ĥvγ̂0}+ EHXC[n0] , (3.24)

where n0(r) = tr{n̂(r)γ̂0}. Because n0 differs from the exact ground-state density of

the system, we have the inequality:

E0
v(M) ≥ Ev(M) . (3.25)

This inequality holds even if a DFA is used for the XC energy.

The methodology shown above assumes that the positions of the nuclei are fixed.

We now denote γ̂0(X) and γ̂f(X) as the optimal 1-body density operators correspond-

ing to a nuclear configuration represented by X, a tuple of all nuclear coordinates.

The function Gf [γ̂0(X)] is correct at very large distances between the atoms. When

these are brought together, the function Gf [γ̂0(X)] overbinds the molecule because

each atom is only subject to the electrostatic and XC forces due to the other atoms,

increasing the interaction energy, while keeping the kinetic energy below its true value.

The function Gf [γ̂0(X)] cannot account for electron hopping between atoms properly,

a variable quantifying the domain of application of Gf is:

η(X) =

∣∣∣∣∣tr{ĥv(γ̂0
f (X)− γ̂∞f )}
δE

∣∣∣∣∣ , (3.26)

where γ̂∞f is the 1BDM of the system at the complete fragmentation limit, i.e. when

all the fragments are at infinite distance. δE is a characteristic energy deviation. Let

us partition the space of nuclear coordinates into LR and SR regions:

Ω = Ωsr ∪ Ωlr , (3.27)

where

Ωlr = {X ∈ Ω| η(X) < ηref} . (3.28)
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Here, ηref is the level of deviation tolerance with respect to δE. The short range space

is obviously the complement of the long range one.

Given a function of the nuclear coordinates f , we define its long range part as

follows flr:

flr(X) =

f(X) if X ∈ Ωlr

0 otherwise .

(3.29)

If f is an observable, in general, its long range part, defined as above, will display

discontinuities. Since observables are continuous, a smooth function can be obtained

by an integral transformation of flr. If Kθ(X,X
′) is a smoothing kernel, with θ being

a smoothing parameter, the filtered LR function reads:

f̃lr(X) = K̂θ(X) ∗ flr

=

∫
dNcX Kθ(X,X

′)flr(X
′) ∀X′ ∈ Ω .

(3.30)

For example, to correct the energy of a regular DFA, we first define εv,lr(X) =

Gf [γ̂
0
f (X)]− Ev[γ̂0(X)]. The correction to the energy is thus:

ε̃v,lr(X) = K̂θ(X) ∗ εv,lr . (3.31)

Finally the ground-state energy estimation reads:

Egs
v (X) = Ev[γ̂0(X)] + ε̃v,lr(X) . (3.32)

An obvious advantage of the separation is that it allows for the use of van der Waals

potentials in the LR region, avoiding the problem of charge penetration, i.e., large

negative energies at equilibrium distances.

The calculations for our example were carried out using a script that I devel-

oped based on the quantum chemistry package PyQuante. The algorithm consists

in generating the density matrices for the individual atoms and the molecule, then

the Fock matrix is partitioned into two blocks, one for atom A and another for atom

B (we restrict our discussion to diatomic molecules). The XC matrix is obtained

using the usual multi-center grid suggested by Becke [15]. For each block the eigen-

values are obtained and then new densities are generated, the DIIS [16] algorithm
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is employed for each fragment as well (the 6-311++G** basis set was used [17–19]).

Once the procedure has converged, an XC potential is generated for the molecule

using the atomic densities. For this potential, the KS equations are solved, only

the Hartree potential is updated. Once the calculations are performed for each nu-

clear configuration, the LR and SR regions are defined using η. A Gaussian kernel,

Kσ(X,X′) = exp
(
− |X−X′|/2σ2

)
, was used to connect the two regions (σ = 1.5).

The VWN LDA form for correlation was employed [22].

Now we apply the functional Gv to a simple system, lithium hydride; the original

system employed by PPLB to illustrate the problem of the derivative discontinuities!.

Let ω be the average amount of electronic charge transferred between Li and H; a

given value of ω ∈ [−1, 1] corresponds to the lowest-energy configuration Liω · · ·H−ω.

If N = (NLi, NH), then we define the average energy as a function of ω is G(ω) =

Gv(JLi + ω, JH − ω). Note that G(ω) = Eens
Li (JLi + ω) + Eens

H (JH − ω), where Eens
X is

the ensemble average at 0K of atom X = Li or H (see next section). The avoided

crossing point is predicted by the function Eω to be Rc = 7.9 with LDA. At distances

less than Rc the auxiliary atoms are in the charge-transfer state of lowest energy,

Li+ · · ·H−. At Rc, the configurations Li+ · · ·H−, and Li · · ·H, are equivalent in energy,

G(1.0) = G(0.0), so does any combination of those two configurations. In Fig. 4.1.a

we show the dissociation curve of LiH with the LDA approximation and its correction.

At complete dissociation, the charges predicted by LDA are approximately −0.3 at

hydrogen and +0.3 on lithium. The functional G(ω), on the other hand, predicts

neutral charges on each atom, and the derivative discontinuity (Fig. 4.1.b).
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Figure 3.1. a) Dissociation energy curve of LiH. Solid line: Present
method, dashed line: KS-LDA. b) Energy as a function of the charge
transfer amount ω. The dashed line is the energy at the avoided
crossing point.

3.3 Density-functional Theory of Ensembles

The PPLB density functional is defined as: Ev[n] = F [n] +
∫

d3r n(r)v(r) , where

F [n] is the constrained-search functional:

F [n] = inf
Γ̂→n

tr{(T̂ + Ŵ )Γ̂} . (3.33)

T̂ is the kinetic energy operator, Ŵ is the electron-electron repulsion operator, and

Γ̂ is the density matrix operator in Fock space. The notation “Γ̂→ n” indicates
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that the search for the infimum is performed over all density matrices satisfying

tr{Γ̂n̂(r)} = n(r). In order to carry out an equivalent search without requiring this

density constraint, we introduce the Lagrange multiplier u[n] as indicated below. The

generalized energy EN [u], now a functional of u[n], involves a search over all density

matrices corresponding to N electrons (N is in general non-integer):

EN [u] = inf
Γ̂→N

tr{(T̂ + Ŵ +

∫
d3r u(r)n̂(r))Γ̂} . (3.34)

Here, N is a real number between J and J + 1, where J is a positive integer. If the

convexity assumption holds, i.e. EJ−1[u] − EJ [u] ≥ EJ [u] − EJ+1[u] for any J , then

EN [u] = (1 − ω)EJ [u] + ωEJ+1[u], where ω[n] =
∫

d3r n(r) − J . We assume that

0 < ω < 1. The search for the infimum in Eq. (3.34) yields a density matrix Γ̂[n]

that is also a linear interpolation of integer-number density matrices, Γ̂J and Γ̂J+1.

For example, if the bordering systems are pure ground states then Γ̂M = |ψM〉〈ψM |,
M = J, J + 1. The densities of the pure states, that is nM [u](r) = tr{Γ̂M [u]n̂(r)},
M = J, J + 1, satisfy the restriction:

n(r) = (1− ω)nJ [u](r) + ωnJ+1[u](r) . (3.35)

Because u is a functional of the density, so are the densities nJ and nJ+1. Inserting

the minimizing density matrix Γ̂[n] into F [n] we find that

F [n] = (1− ω[n])F [nJ ] + ω[n]F [nJ+1] . (3.36)

For notational convenience, we introduce the average function:

y(x) =



1 x = 0 ,

1− x 0 < x < 1 ,

1 + x −1 < x < 0 ,

0 otherwise ,

(3.37)

which allows us to express F (as well as the energy, density, etc.) as:

F [n] =
∑
M

y(N −M)F [nM ] , (3.38)
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where N = ∫ n is of course a density-functional as well, and M runs over non-negative

integer numbers. The functional F [n] is split in the usual Kohn-Sham manner:

F [n] = Ts[n] + EHXC[n] , (3.39)

where

Ts[n] = inf{tr[T̂ Γ̂s]|Γ̂s → n} , (3.40)

and EHXC[n] = EH[n] + EXC[n], the Hartree and exchange-correlation energy func-

tionals.

The ground-state energy for the auxiliary system of non-interacting electrons, Es,N

can be thought of as a functional of us(r), an analog of u(r) introduced to carry out

the non-interacting search version of Eq. (3.34):

Es,N [us] = inf
Γ̂s→N

tr{(T̂ +

∫
d3r us(r)n̂(r))Γ̂s} . (3.41)

As in the case of F [n], the minimization performed to obtain Ts[n] returns two densi-

ties ns,J(r) and ns,J+1(r) that, when added together with the weight factor y(N−M),

yield the density n(r) of the interacting system. In what follows, we will refer to ns,J(r)

and ns,J+1(r) as the non-interacting bordering-integer densities. We emphasize that

even employing the exact exchange-correlation functional, the non-interacting integer

density ns,M(r) is not equal to the M -electron density of the interacting system (see

Fig. 2.a for a model system we describe later on). Rather than being the ground-

state density of M interacting electrons in v(r) (or M non-interacting electrons in

vs(r)), it is the ground-state density of M non-interacting electrons in us(r), a po-

tential that differs from vs(r) for non-integer M , as illustrated in Fig. 2.b. For

example, ns,J(r) =
∑J

i=1 |φi(r)|2, and ns,J+1(r) = ns,J(r) + |φJ+1(r)|2, where {φi}(r)

are single-particle orbitals that satisfy(
T̂ +

∫
d3r us(r)n̂(r)

)
|φi〉 = εi|φi〉 , (3.42)

and by definition
∑

M y(N − M)ns,M(r) = n(r). The non-interacting bordering-

integer densities ns,J(r) and ns,J+1(r) are density functionals as well. Inserting Eq.
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(3.39) on both sides of Eq. (3.38) and expanding Ts[n] as
∑

M y(N −M)Ts[ns,M ], we

obtain:

EHXC[n] =
∑
M

y(N−M)
{

(Ts[nM ]− Ts[ns,M ])

+ EHXC[nM ]
}
,

(3.43)

an exact relation for EHXC[n] in terms of quantities that describe pure quantum

states, with Ts evaluated at both, the interacting and non-interacting bordering-

integer densities. The form of the above equation follows from conjectures by Casida

[20] and Harbola [21]. Here, we prove this formula from the assumption that the

energy is a convex function of the number of electrons, and that the densities are

ensemble-v, interacting and non-interacting. Eq. (3.43) is trivially true when n(r)

integrates to an integer number, but it is a useful identity when J < N < J + 1 in

the context of approximate DFT, as we show next.

In order to perform an ensemble-ground-state calculation, the external poten-

tial and non-integer number of electrons are required, one then needs to average

two ground-state energies corresponding to states with integer numbers of electrons,

provided the convexity assumption holds. These pure ground-state densities are com-

bined to produce the ensemble density and, through a density-inversion procedure (as

illustrated in the next section), one obtains ensemble KS potentials, which formally

also come from Eq. (3.43) by means of functional differentiation. By approaching an

integer number of electrons from above, one then observes the discontinuity in the XC

potential. An alternative way of performing the calculation is by employing a suit-

able approximation to the functionals appearing on the right-hand-side of Eq. (3.43)

and estimating the KS ensemble potential through the optimized effective potential

method or variations of it (see, for example, Ref. [23]).

Let us denote as Eapp
HXC[nM ] an approximation for M = 1, 2, . . . Inserting this

functional into Eq. (3.43) yields Eapp
HXC[n], a useful approximation to the ensemble
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functional. The densities {nM} can in principle be obtained from the search in F [n],

a functional we do not know. But we can circumvent the use of F [n] by defining

Gs[n] = inf
{ñM}→n

∑
M

y(N −M)Gs[ñM ] , (3.44)

where

Gs[ñM ] = inf
Γ̂s→ñM

tr{(T̂ +

∫
d3r vapp

HXC[ñM ](r)n̂(r))Γ̂s} . (3.45)

By {ñM} → n we refer to the constraint
∑

M y(N −M)ñM(r) = n(r). If J < N <

J + 1, the optimal densities {nM} that minimize the right hand side of Eq. (3.44)

are obtained from solving two sets of KS equations self-consistently: one with KS

potential ṽs[ñJ ] = vapp
HXC[ñJ ] + ũ and another with ṽs[ñJ+1] = vapp

HXC[ñJ+1] + ũ. The

orbitals arising from the KS equations with ṽs[ñJ ] and ṽs[ñJ+1] are complex-squared

and added together to yield the densities ñJ and ñJ+1. The external potential ũ

is a Lagrange multiplier arising from the constraint {ñM} → n and is to be varied

until the constraint is satisfied. If ũ is set as the external potential of the system,

v, then one obtains an approximation to the ensemble ground-state density. The

functional in Eq. (3.44) reformulates the non-interacting v-representability problem

for an approximate XC potential. When the exact XC potential is used, then setting

ũ = v and solving the two sets of KS equations produces the orbitals needed to build

the exact ground-state densities nJ and nJ+1.

The total energy of the system is

Eapp
v [n] =

∑
M

y(N−M)
(
Ts[nM ] + Eapp

HXC[nM ]

+

∫
d3r v(r)nM(r)

)
.

(3.46)

The approximated ground state energy is found by setting Eapp
N [v] = infn→N E

app
v [n].

If the convexity assumption holds for our system of interest then

Eapp
N [v] =

∑
M

y(N −M)Eapp
M [v] , (3.47)

where

Eapp
M [v] = inf

nM
Ts,M [nM ] + Eapp

HXC,M [nM ] +

∫
d3rv(r)nM(r) . (3.48)
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Eq. (3.47) shows that it is possible to recover the piecewise linear dependence of the

approximated energy. Using the analog of Eq. (3.35) for J − 1 < N < J and the KS

equations, it can be shown that:

δEapp
HXC

δn(r)
= Eapp

J − Eapp
J−1 − εapp

J + vapp
HXC(r)

+
∑
M

y(N −M)

∫
d3r′

( δEapp
v,M

δnM(r′)

)δnM(r′)

δn(r)
.

(3.49)

The proof is as follows: Eq. (3.43) is equivalent to:

EHXC[n] = −Ts[n] +
∑
M

y(N −M)(Ts[nM ] + EHXC[nM ]) . (3.50)

Set v = u[n] as fixed. We can add −
∫

d3r v(r)n(r)+
∫

d3rv(r)n(r) to the right hand

side of the above equation to yield

EHXC[n] = −Ts[n]−
∫

d3r v(r)n(r) +
∑
M

y(N −M)Ev[nM ] . (3.51)

Suppose J − 1 < N < J , and note that δTs/δn(r) = εJ − us[n](r) [3], where us[n] =

vHXC[n] + u[n]. Using the chain and product rules we get the equation leading to Eq.

(3.49):

δEHXC

δn(r)
= −εJ+us[n](r)− v(r) +

∑
M

{
δN

δn(r)

∂y

∂x
(N −M)Ev[nM ]

+ y(N −M)

∫
d3r′

δEv[nM ]

δnM(r′)

δnM(r′)

δn(r)

}
.

(3.52)

Where

∂y

∂x
=

sgn(−x) − 1 < x < 1

0 otherwise ,

(3.53)

and δN/δn(r) = 1.

The term δEapp
v,M/δnM(r′) is a constant at the minimum and

∫
d3r′ δnM(r′)/δn(r) =

0, which leads to (dropping the Hartree contribution):

δEapp
XC

δn(r)
= −Iapp − εapp

J + vapp
XC (r) . (3.54)
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Since vapp
XC = δEapp

XC /δn, by definition, we obtain the Janak’s theorem [24] εapp
J =

−Iapp, where Iapp = Eapp
J−1[u] − Eapp

J [u] is the ionization energy of the system, and

J − 1 < N < J . We can also write Eq. (3.54) as:

δEapp
XC

δn(r)
= −Iapp − δTs

δn(r)
− u(r) . (3.55)

This result allows us to calculate the XC DD as:

∆XC = lim
∆N→0+

δEapp
XC

δn(r)

∣∣∣∣∣
J+∆N

− δEapp
XC

δn(r)

∣∣∣∣∣
J−∆N

= Iapp − Aapp − (εapp
L − εapp

H ) ,

(3.56)

where Aapp = Eapp
J [u] − Eapp

J+1[u] is the electron affinity of the J-electron system and

εapp
H and εapp

L are the HOMO and LUMO orbital energies of the J-electron system.

The XC DD turns out to be the difference between the fundamental gap of the real

system and the KS gap. However, the approximated XC DD serves the same purpose:

correct the KS particle band gap.

For an ensemble DFA the Janak’s theorem is valid but the ionization theorem is

not, in general. For example, for a system with strictly J electrons it is known that

the LDA HOMO energy does not match the ionization predicted by LDA, i.e. when

N = J , εLDA
J 6= −ILDA. To satisfy the Janak’s theorem, a constant must be added to

the approximate XC potential to replace the HOMO orbital by the DFA ionization.

When J − 1 < N < J , this constant is −I − εH(N = J). At N = J , however,

there is no need for such correction since the functional derivative with respect to the

density at this point is not defined uniquely. On the other hand, using the XC energy

functional, the ionization theorem for Coulombic systems leads to the well-known

expression for the DD of the XC energy functional: −A− εL.

Eq. (3.43) indicates that the approximation Ẽapp
XC [n] = (1 − ω)Eapp

XC [ns,J−1] +

ωEapp
XC [ns,J ] misses the different KS kinetic energy contributions leading to the piece-

wise linear features of the energy; also observe that Ẽapp
XC is an average using the

densities ns,M instead of nM . (Note: Ẽapp
XC does hold for the uniform electron gas

where the level spacing is negligible. The discrete-state densities returned in that
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case by the minimization of the kinetic energy are negligibly different from those re-

turned by F when both are evaluated at the electron-gas density n, and N is not an

integer). Employing the optimized effective potential method, Kraisler and Kronik

[23] showed that the linear dependency on the number of electrons is almost restored

using the functional Ẽapp
XC . With the kinetic energy and density contributions of Eq.

(3.43), it is completely restored.

3.4 Numerical Example

To illustrate our findings, let us consider the example of a system of contact-

interacting fermions [25,26] described by the energy functional

Ev[nM ] = Ts[nM ] + EH[nM ] + EX[nM ] +

∫
dxv(x)nM(x) , (3.57)

where EH[nM ] = 1/2
∫
dxn2

M(x) and EX[nM ] = −1/4
∫
dxn2

M(x). Suppose that

nref
N (x) = (Na/π)sech(ax) (3.58)

is a density of interest with N = 2.5 and a = 2. To find the potential u[n], we

minimize the error functional:

e2
N [u] = ‖√nN [u]−√nref

N ‖2
2 . (3.59)

The preset density is recovered by solving the KS equations for N = 2 and N = 3

and setting n2.5[u](x) = 1
2
n2[u](x)+ 1

2
n3[u](x). Note that the self-consistent procedure

has to be applied twice, once for vX[n2] = −1
2
n2(x) and once for vX[n3] = −1

2
n3(x);

in both cases, the same estimation of u is used. The finite differences method was

employed to solve the Kohn-Sham equations. We represent u in a spline basis set and

e2
N [u] is minimized with the Levenberg-Marquardt algorithm [27,28]. This procedure

yields the optimal potential u[n2.5] shown in Fig. 4.1.a. Now we set that potential as

fixed v(x) = u(x) and calculate the ensemble energy as a function of the number of

electrons. Fig. 4.1.b shows the results. The solid line represents the piecewise ensem-

ble interpolation and the dashed lines result from setting EX[nN ] = −1/4
∫
dxn2

N(x)
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Figure 3.2. a) Preset ensemble density for N = 2.5 (solid line), ex-
ternal potential (dashed line). b) Energy as a function of N (solid
line), approximated energy (dashed line). c) Difference between Eq.
(3.47) and the energy calculated using EX[nN ] = −λ/4

∫
n2
N for any

N . d) Ensemble exchange potential for N = 2.0 (solid line), N = 2.15
(dashed line), and N = 2.01 (dashed-dotted line).

(which lacks the DD) to calculate the energy for any number of electrons. The solid

and dashed lines look to the eye very close to each other, but their differences are

made clear in Fig. 4.1.c. This difference is small for the functional chosen. The

deviation is more severe for the 3D LDA functional [1].

In Fig. 3.2.d we show the estimation of the DD that results from inverting the

KS equations for a non-integer number of electrons close to N = 2. To impose the

Janak’s theorem we minimize the error functional:

ẽ2
N [us] = ‖√nN [us]−

√
n

ref
N ‖2

2 + (εH,N [us]− εref
H )2 , (3.60)
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where nref
N is the target “exact” ensemble density that corresponds to the external

potential shown in Fig. 3.2.a and electron number N . εref
H is the HOMO eigenvalue

of the system with N = 3, obtained from solving the KS eqs. with vX = −1/2n3

and external potential v. ẽ2
N is minimized using the conjugate-gradient method [29].

Because the ionization theorem is not satisfied, the potential satisfying vX → 0 as

x → ±∞ must be shifted by the constant −A − εH(N = 3). In accordance with

Eq. (3.56), the ensemble exchange potential displays its corresponding derivative

discontinuity. In Fig. 1d, the difference between the curves for N = 2.01 and N = 2.0

is −A[v] − εL(N = 2.0). If we shifted the solid curve by −I[v] − εH(N = 2.0)

(I[v] = E1[v]−E2[v]) and compared the shifted curve (which is limN→2− vX) with the

curve for N = 2.01, we would observe the discontinuity shown in Eq. (3.56) around

the center of the 1d atom. On the other hand, the KS potential far from the center is

given by us(x)→ Const.+1/(2φ2)d2φ2/dx
2. When the number of electrons is slightly

increased above N = 2, we are adding a density δn = εn3 with a slower asymptotic

decay than that of the system with 2 electrons, causing the discontinuity in Fig. 1.d

because δn(x) only affects the potential at distances that are far from the center.
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Figure 3.3. a) Difference between nM and ns,M for M = 3; these
densities are required to yield the density in Fig. 1.a. b) Kohn-Sham
potentials corresponding to N = 2.5 (solid line) and N = 2.0 (dashed
line).

A functional approximation for discrete states is sufficient to determine, through

Eq. (3.43), an approximation to the XC functional that is also applicable to en-

sembles. However, solving the linearity problem in DFAs is not enough to solve the

problem of molecular dissociation, which is caused by incorrect electron delocaliza-

tion. A possible solution is to induce localization by partitioning a molecule into

subsystems or a system-bath complex [30]. In such case, a functional with the cor-

rect DD is required since the theory of ensembles provides a rigorous framework for

defining energy functionals of open systems. This idea follows the main argument of

Ref. [4] pointing to the importance of the XC DD, which was the case of adiabatic

electron transfer between two different atoms separated at certain large distance.

3.5 Conclusions

The construction of energy density-functionals, applicable to both molecular dis-

sociation and the ensemble case, featuring derivative discontinuities has been shown in

this work. These functionals can be used, within partition density functional theory,

to recover the right atom (or fragment) electric charges without having to introduce
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modifications to the local density approximation, and resort to non-local potential

operators, which solve the problem partially.
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4. PARTITION DENSITY FUNCTIONALS

Partition density-functional theory (PDFT) is a set of tools and principles to treat

molecules as composed of molecular fragments for computational purposes. In this

chapter I present an extension of PDFT to also include spin-densities, approximate

the partition potential, and consider molecular fragments under static electromagnetic

fields.

4.1 Introduction

The practice of chemical sciences relies on the concept of molecular fragment.

This can be from a single atom or ion, or groups of several atoms. The paradigm of

dividing molecules into fragments has been useful to understand chemical reactivity

and to identify the components of molecules that are present in a given sample.

For this reason this concept needs to be formalized in terms of quantum mechanics

and density functional theory (DFT). Bader [1] introduced a definition of atoms in

molecules in terms of the gradient of the density. He suggested that an atom in a

molecule is enclosed by the surface over which the gradient of the density is zero. This

definition depends on the density, which is the key variable in DFT. Other definitions

like those of Voroni [2] and Hirschfeld [3] also link the molecular electronic density

to the definition of a fragment in a molecule. This motivates using DFT and spin-

density functional theory (SDFT) as tools to further advance the quantum mechanics

of molecules as composed of fragments joined together.

The scaling of the computational cost tends to be a limiting issue in quantum-

chemical simulations; even an approximate DFT calculation may be expensive for
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systems with hundreds of atoms. Several theories of molecular fragmentation have

been proposed, whose purpose is to allow for a divide-and-conquer approach (for

example, see Ref. [4]); this also establishes a qualitative way to study molecules

because it permits to assign electrostatic charges to individual fragments [3]. The key

is the division of a large molecular system into simpler and smaller subsystems for

which arbitrarily accurate calculations are feasible. The division of a molecule into its

atomic fragments is one of the most natural choices, and DFT offers several appealing

ways to define “atoms in molecules” [5–8]. The basic idea is to take advantage of the

fact that the external potential is the sum of nuclear attractive potentials. An energy

functional can then be defined for an electron density associated with each individual

nucleus; such energy functional only depends on a localized density which corresponds

to that fragment and (ideally) tends to localize around the fragment’s nucleus. Two

constraints are imposed: (i) the total number of electrons must be conserved, and (ii),

the sum of localized densities must coincide with the total molecular density. The

first constraint gives rise to the well-known chemical potential, and the second one

yields a Lagrange multiplier which is a function of the position [7].

A mathematical formulation of the above ideas within DFT was then proposed

in a series of papers by Cohen and collaborators [9–11]. The culmination of their

work is Ref. [11], in which they introduced an energy functional Ef , defined as the

minimum sum of the energies of the isolated fragments under the constraint that the

sum of the fragments’ electronic densities add up to the total molecular density. In

order to match Ef with the true energy functional, a residual functional needs to be

introduced, the ‘partition energy’, Ep. Its associated potential, the partition poten-

tial, is a global potential. This means that every fragment is influenced by this scalar

potential. The theory of Elliot et al. [11], named partition density functional theory

(PDFT), is an exact reformulation of the ground state problem that provides solid

footing to the ideas of Parr and co-workers [5–8]. There are other approaches that are

closely related to partition theory and the philosophy it is based upon. One of these

is the embedding theory, whose primary purpose is to treat a particular region within
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a large system [12–14]. This theory is focused on the particular system-surrounding

interaction, and offers the possibility to treat the system and surroundings with dif-

ferent levels of theory. Another partitioning scheme is frozen DFT, in which the

density of the surroundings is fixed, then the total density of the system is divided

into fragment densities and partitioning is applied to the KS equations [15, 16]. Ad-

ditionally, a method called Self-consistent atomic deformation has been proposed, in

which it is possible to partition the KS kinetic functional in terms of more tractable

kinetic energy functionals, these depend on localized atom-centered densities. These

densities are obtained from KS-type equations in which each fragment comes from a

definite external potential that depends on the fragment kinetic energy functionals,

exchange correlation, and external potentials [17–20]. In my opinion, this theory is

quite close to PDFT, but the former is focused on the kinetic energy partition, while

PDFT partitions the energy functional itself, and thus the deformation theory may

be regarded as a special case of PDFT.

In this chapter I propose a simple extension of PDFT to derive computable ap-

proximations. Based on this extension, I formulate Partition Spin-density Functional

Theory (PSDFT). First, the basic formalism is derived for a non-relativistic Hamilto-

nian which is free of static electric and magnetic fields. This requires partitioning the

external potential in the usual way, and assigning spin-up and spin-down densities to

each fragment. The associated partition potentials, which depend on the spin, are

derived. This formalism is then extended to include electric and magnetic fields. We

present two simple examples to illustrate how to apply the theory: An electron in a

symmetric double-cosh potential, and a asymmetric double-cosh potential with three

contact-interacting electrons. Finally, I propose a method that bridges SDFT and

DFT, and eliminates the problem of symmetry breaking in approximated SDFT.
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4.2 PDFT

We begin reviewing the basic formulation of PDFT. This theory offers a new way

to minimize the energy density functional [11]: Ev[n] = F [n] +
∫

d3r v(r)n(r) where

F is the conventional Levy functional: F [n] = minΓ̂→n tr{Γ̂(T̂ + Ŵ )} Here Γ̂ is the

zero-temperature density matrix of the molecular system. This allows us to introduce

variations in total number of electrons within a physical context.

Suppose we partition the external potential into Nf fragment potentials:

v(r) =

Nf∑
α=1

vα(r) . (4.1)

In principle this potential can be partitioned in many ways, depending on the physics

of the system. For example, for a molecule with Nf nuclei, the external field of the

electron is:

v(r) =

Nf∑
α=1

−Zα
|r−Rα|

, (4.2)

where Zα and Rα are the charge and postition of the nucleus, respectively. A simple

and natural way to partition the above external potential is by defining

vα(r) =
∑

I∈frag.α

−ZI
|r−RI |

, (4.3)

where the sum runs over the nuclei of the fragment. Now partition the total electronic

density as follows

n(r) =

Nf∑
α=1

nα(r) . (4.4)

Here the density nα is assigned to the potential vα. An intuitive energy functional can

be defined for the molecule divided into fragments. If we imagine that the fragments

are non-interacting then the energy of the system would be simply the sum over the

isolated fragments’ energies. However, such quantity would not be a density functional

because it depends on each fragment’s electronic density. This can be fixed by forcing
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the sum of energies to be a minimum under the constraint that the sum of fragment’s

densities is the total molecular density. Hence, this energy functional is [11]:

Ef [n] = min
{nα}→n

∑
α

Evα [nα] . (4.5)

In order to relate this quantity with the true energy, the following density-functional,

called partition energy, is introduced:

Ep[n] = Ev[n]− Ef [n] . (4.6)

This functional is the difference of energies coming from two states: The true state of

the molecule, which is given by Ev, and the state in which the molecule is partitioned.

To obtain the ground state of the molecule one needs to minimize Ev[n]. If the

minimization were carried out only in terms of the density, then the motion equation

for the energy would be δEv/δn(r) = µ , where the Lagrange multiplier µ arises from

the restriction that the total number of electrons is conserved. A similar and well

known Lagrange multiplier is used in thermodynamics to minimize the free energy,

this is termed chemical potential. Because µ plays the same role as that used in

thermodynamics, then it is also called chemical potential.

In order to minimize Ev within PDFT, Elliot et al. [11], in light of Equation (4.4),

assume that the energy functional Ev can be expressed in the form Ev[n1, n2, . . . , nNf ]

because n =
∑

α nα. Thus, around the minimum density, any perturbation to the

total density that comes from a perturbation in a fragment’s density will yield a

higher value for the energy. This can be expressed by the Euler-Lagrange equation:

δEv
δnα(r)

= µ . (4.7)

On the other hand if we minimize Ef around the density n(r) which minimizes the

energy Ev[n] we would obtain the motion equations (see Elliot et al. [11]):

δEvα
δnα(r)

+ vp(r) = µ , (4.8)
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where vp(r) is a Lagrange multiplier which enforces that the sum of the densities,

{nα}, add up to the total density n(r). If we substitute Equation (4.18) into Equation

(4.7) and compare with Equation (4.8) we get

vp(r) =
δEp

δnα(r)
. (4.9)

This equation shows that the potential vp is similar to the chemical potential because

it is the functional derivative of Ep with respect to any fragment’s density. This

methodology is valid in principle, however, it does not employ the total density as

the main variable.

In Kohn-Sham DFT and its generalization, the density is used as an intrinsic

parameter, for example, the exchange correlation potential is:

vXC(r) =
δEXC

δn(r)
. (4.10)

This definition of the exchange-correlation potential shows that variations of the total

density are still employed even though the calculations use the Kohn-Sham orbitals.

We can recover a similar expression for the vp potential by noting that the derivative

shown in Equation (4.9) is indeed a partial derivative and that n =
∑

α nα, thus

Equation (4.9) should be written as

vp(r) =
δEp[n =

∑
β nβ]

δnα(r)
, (4.11)

if we employ the chain rule as follows then we obtain:

vp(r) =

∫
d3r′

δEp

δn(r′)

δn(r′)

δnα(r)
=

δEp

δn(r)
. (4.12)

Because of this expression, we propose to minimize the functional Ev over the total

density rather than over the fragments’ densities. Moreover, the fragmentation energy

Ef can be assumed to depend on each individual fragment’s density nα(r). And,

the density-conservation rule can be introduced by means of the following Lagrange

functional:

L [{nα}, n] = Ef [{nα}] + Ep[n] +

∫
d3r vp(r)×[∑

β

nβ(r)− n(r)
]

+ µ
[
N −

∫
d3r
∑
β

nβ(r)
]
.

(4.13)
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This functional guarantees particle-number conservation and leads to the Euler-

Lagrange equations expressed by Equation (4.8). Additionally, it leads to the previous

result for the partition potential, that is:

vp(r) =
δEp

δn(r)
. (4.14)

This approach minimizes the energy along a single path in the space of electronic

fragment densities. Thus, we assume that the fragments’ electronic densities are

functional of the total density. On the other hand, the approach of Elliot et al. [11]

minimizes in multiple directions, this means that a variation in the density is caused

by a variation in a fragment density. In our method, a variation of the density induces

a variation in the electronic fragment densities. In the following section we will show

how this alternative formulation of the minimizing procedure can be used to obtain

practical approximations for the partition potential and the total energy Ev.

4.3 Partition Spin Density Functional Theory for Scalar, External Potentials

Under the SDFT variational principle we need to minimize the following functional

in order to obtain the ground state energy and spin-densities:

Ev[n↑, n↓] = F [n↑, n↓] +

∫
d3r v(r)n(r) , (4.15)

where F is, in analogy with the previous section:

F [n↑, n↓] = min
Γ̂→n↑,n↓

tr{Γ̂(T̂ + Ŵ )} . (4.16)

The potential is again partitioned as shown in Equation (4.1). Now, each fragment

has two spin-densities associated to it. We identify the electronic density of fragment

α as nα(r) = n↑α(r)+n↓α(r). Hence, the total spin-density nσ is expressed as follows:

nσ(r) =
∑
α

nσα(r) . (4.17)

Now, let us define the partition functional as

Ep[n↑, n↓] = Ev[n↑, n↓]− Ef [n↑, n↓] , (4.18)
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where

Ef [n↑, n↓] = min
{nσα}→nσ

∑
α

Evα [n↑α, n↓α] . (4.19)

As in the previous case, we need to introduce the following Lagrangian functional

to minimize the ground state energy:

L [{nσα}, {nσ}] = Ef [{nσα}] + Ep[{nσ}] +
∑
σ

{∫
d3r vp,σ(r)×

[∑
β

nσβ(r)− nσ(r)
]}

+ µ
[
N −

∫
d3r
∑
σβ

nσβ(r)
]
.

(4.20)

Minimization of this functional with respect to the densities yield the following motion

Equation:
δEvα
δnσα(r)

+ vp,σ(r) = µ , (4.21)

vp,σ(r) =
δEp

δnσ(r)
. (4.22)

This shows that each fragment must have the same chemical and partition potentials.

If we partitioned into nuclear fragments, the polarized partition potential would repel

or attract the electrons into the fragments to ensure that the total density corresponds

to the ground state density. In general, the characteristics of the polarized partition

potentials depend on how the fragments’ energies (Evα) are defined. Besides, for

computer simulations, the partition potentials for positions close to certain fragments

might be assumed to depend only on nearest-neighbours densities. Now, to calculate

the functionals {Evα} we introduce fragment KS systems. Define the kinetic energy

functional of a fragment with non-interacting electrons as follows:

Ts,α[n↑α, n↓α] = min
{φσα}→nσα

∑
iσ

fiσα〈φiσα|t̂|φiσα〉 . (4.23)

This definition introduces KS spin-orbitals with occupation numbers for each frag-

ment, there are denoted as {fiσα}, these numbers are chosen following the theory of

Perdew et al. [21]. Consequently, the localized spin-densities are expressed by means

of the equation:

nσα(r) =
∑
i

fiσα|φiσα(r)|2 . (4.24)
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The total number of orbitals in our formulation is approximately the same as that

in standard SDFT. For example, suppose we have a molecule with three spin-up

electrons and a partition with two fragments has been chosen such that there are

1.5 electrons on each fragment. In SDFT we would need three spin-up orbitals to

describe these electrons, while in PSDFT 4 orbitals are required. Hence, in terms of

number of orbitals, the amount of computation does not increase significantly.

If the fragment spin-densities are non-interacting v representable, then these can

be obtained from the KS equations:[
− 1

2
∇2

r + vs,σα(r)
]
φiσα(r) = εiσαφiσα(r) , (4.25)

where we can set δTs,α

δnσα(r)
+ vs,σα(r) = µ Now, let us define:

Evα [n↑α, n↓α] = F [n↑α, n↓α] +

∫
d3r vα(r)nα(r) . (4.26)

This energy can be split as follows

Evα [n↑α, n↓α] = Ts,α[n↑α, n↓α] + EH[n↑α, n↓α]

+ EXC[n↑α, n↓α] +

∫
d3r vα(r)nα(r) .

(4.27)

If we differentiate this functional with respect to the polarized fragment density nσα

and compare with the first Euler-Lagrange equation and Equation (4.23) we obtain

vs,σα(r) = vH[nα](r) + vα(r) + vXC,σ[n↑α, n↓α](r) + vp,σ(r) . (4.28)

Thus, vs,σα differs from the usual definition only by the polarized partition potential.

These effective potentials are input into the corresponding KS equations of each

fragment which can be solved self-consistently: First, a reasonable approximation to

the KS orbitals {φiσα} is required, this can be employed to extract all the relevant

densities which allow us to make the first estimation of the KS potentials, these

potentials are then used to generate a new approximation to the densities and the

KS potentials as well. If a tolerance in the spin-densities estimation has not been

achieved then the procedure is repeated.
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4.3.1 Practical Aspects of PSDFT

When the functional Ef is minimized for some spin-density pair n↑, n↓ we obtain

a set of electronic fragment-densities. Let us denote such set as {n̄σα}. Each one of

these densities is a functional of the total spin-densities. In order to investigate the

mutual influence of fragments, define the “Q” function:

Qσ′α,σ(r′, r) =
δn̄σ′α(r′)

δnσ(r)
. (4.29)

The function Q satisfies the rule:∑
α

Qσ′α,σ(r′, r) = δσ,σ′δ(r− r′) . (4.30)

In order to take advantage of the Q functions we may need to employ an ap-

proximations. Suppose there is an idealized system in which a perturbation of the

form δnσ(r) = δ(r − z)nσ(r) induces a similar response in the spin-fragment σα as

δn̄σα(r′) = δ(r′ − z)n̄σα(r′), given that δn̄σα(r′) =
∫

d3rQσα,σ(r′, r)δnσ(r) then we

obtain the crude approximation to Q:

Qσ′α,σ(r′, r) ≈ δσσ′δ(r
′ − r)

n̄σ′α(r′)

nσ(r)
. (4.31)

This equation illustrates that the “Q” function plays the role of that of a weighing

factor, and it is analogous to a molar fraction. Also note that this approximation

is consistent with the rule shown in Equation (4.30). To avoid confusion and for

convenience we refer to the above Equation as the local-Q approximation.

Let A be a functional that can be written as an explicit functional A[{n̄σα[n↑, n↓]}],
we can invoke the chain rule to obtain:

δA

δnσ(r)
=
∑
σ′α

∫
d3r′

δA

δn̄σ′α(r′)
Qσ′α,σ(r′, r) . (4.32)

For example let us apply this formula to the polarized partition potential:

vp,σ(r) =
∑
σ′α

∫
d3r′ vP,σ′α(r′)Qσ′α,σ(r′, r) , (4.33)

where the spin-fragment partition potential is:

vp,σα(r) =
δEp

δn̄σα(r)
. (4.34)
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Because nσ =
∑

α n̄α, again, by the chain rule we obtain that:

vp,σα(r) = vp,σβ(r) . (4.35)

Equation (4.32) is not useful for Ep because of the above result. Nonetheless, it can

be applied to calculate the functional derivative of some functional E∗p that approx-

imates Ep and that does not satisfy the above equation. Because the partition KS

equations are solved self-consistently then the fragment densities used during the iter-

ative procedure are not the same as {n̄σα}. In other words, during the iterations, the

partition potentials are assumed to be of the form shown in Equation (4.33), where

they depend on the electronic fragment densities instead of the total density. We

define such partition potential as follows:

up,σ[{nσα}](r) =
∑
σ′α

∫
d3r′

δEp

δn̄σ′α(r′)

∣∣∣∣∣
n̄µβ=nµβ

Qσ′α,σ(r′, r)
∣∣∣
n̄µβ=nµβ

, (4.36)

and

up,σα =
δEp

δn̄σ′α(r′)

∣∣∣∣∣
n̄µβ=nµβ

. (4.37)

For example, under the local-Q approximation we get:

up,σ[{nσα}](r) =
∑
α

up,σα(r)
n̄σα(r)

nσ(r)
. (4.38)

Once the self-consistency has been achieved, all the fragment partition potentials for

the channel σ become the same (up,σ → vp,σ) (see section for more details). Now

introduce the spin-fragment average:

〈fσ′,α〉sf (r) =
∑
σ′α

∫
d3r′fσ′,α(r′)Qσ′α,σ(r′, r) . (4.39)

Therefore vp,σ(r) = 〈vp,σ′α〉sf (r), i.e. the polarized partition potential is an average

over fragments and spins, and the Q function plays the role of weighing factor. It is

plausible to conceive a fragment-localized approximation in which the spin-fragment

partition potential is averaged only over its closest neighbours. This might be used

to save computing time in practical calculations.
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To obtain approximations to the partition potential it may be convenient to start

from the partition functional. We can write Equation (4.18) as follows:

Ep[n↑, n↓] = Ep
k [n↑, n↓] + Ep

HXC[n↑, n↓] + Ep
ext[n↑, n↓] , (4.40)

where the partition functional can be interpreted as the change of energy associated to

the release of the electrons from the fragments. This gives origin to the kinetic (Ep
k ),

Hartree-XC (Ep
HXC), and external interaction (Ep

ext) partition functionals that are

associated to this change of state. The associated polarized partition potential for the

self-consistent calculation is up,σ = up
k,σ + up

HXC,σ + up
ext, where up

X,σ(r) = δEp
X/δnσ(r)

(X = k, HXC, ext). The kinetic energy partition functional is given by the expression

Ep
k [n↑, n↓] = T [n↑, n↓]−

∑
σα

T [n̄↑α, n̄↓α] , (4.41)

in this equation, and for the remaining partition terms, the polarized fragment densi-

ties are functionals of the total spin-densities. In principle the form of this functional

is known because we could regard the orbitals as functionals of the total spin-densities.

However, such approach is cumbersome because it might increase the computational

demands, which would go against the practical purpose of PSDFT.

A simple approximation to the kinetic relaxation functional can be obtained by

employing the von Weizsäcker kinetic energy functional:

T vW[n↑α, n↓α] =
1

2

∑
σ

∫
d3r (∇

√
nσα(r))2 , (4.42)

using the local-Q approximation, the partition kinetic potential up
k,σ is:

up
k,σ(r) = − 1

2
√
nσ(r)

∇2
√
nσ(r) +

1

2

∑
α

nσα(r)

nσ(r)

1√
nσα(r)

∇2
√
nσα(r) . (4.43)

Even though the von Weizsäcker functional is convenient because of its simplicity, it

is only exact for systems with one electron or less; alternative approximations to the

kinetic energy functionals are required.

The contribution from the Hartree and XC energies is simply

Ep
HXC[n↑, n↓] = EHXC[n↑, n↓]−

∑
σα

EHXC[n̄↑α, n̄↓α] , (4.44)
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under the local-Q approximation the contribution to the potential is

up
HXC,σ(r) =

δEp
HXC

δnσ(r)
−
∑
α

nσα(r)

nσ(r)

δEp
HXC,α

δnσα(r)
. (4.45)

This equation can be used to approximate the HXC contribution to the partition

potential. The analysis of this expression may lead to new approximations to the

exchange-correlation potential because the partition potential has to yield the correct

dissociation limit in molecules.

The last term of Equation (4.40) is:

Ep
ext =

∫
d3r v(r)n(r)−

∑
α

∫
d3r vα(r)n̄α(r) , (4.46)

this external-field partition energy is approximated as:

up
ext,σ(r) ≈ v(r)−

∑
α

nσα(r)

nσ(r)
vα(r) . (4.47)

As we will show in the next section, this term may not be negligible for the calculation

of the density.

The approximations shown here for vp,σ and the density-density response function

Q are entirely analogous for the spin-unpolarized case. We only need to drop the spin

indeces to the functions used. For example,

Qα(r′, r) =
δn̄α(r′)

δn(r)
≈ δ(r− r′)

n̄α(r′)

n(r)
. (4.48)

In Section 4.7 we show how to apply this formula for a simple system.

The physical insight in this formalism permits us to develop approximations that

might help to decrease the computing time even below common approximate DFT

calculations. Moreover, the method shown here is, in principle, exact and offers

new ways to find approximations for a broad field of applications. For example, if a

molecule were simulated with the local spin-density approximation (LSDA) we could

reproduce the calculations by partitioning the molecule and introducing the partition

potential that enforces that the sum of fragment densities add up to the LSDA den-

sity. Other functionals can be employed for this purpose as well, see [22]. Another
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advantage of the partition method is that the SIE can be treated locally by selecting

those fragments for which the SIE is relevant, like atoms with few electrons. Also,

note that different levels of theory can also be employed for each fragment, for ex-

ample, some fragments could be treated with the generalized gradient approximation

while others with LSDA or exact-exchange, local derivative discontinuities can also

be introduced.

The definitions of partition potential and fragmentation functional are general.

There is an infinite number of partition functionals because one can define infinite

Ef functionals. Moreover, this theory follows the philosophy of the generalized KS

method [23], and it extends the non-interacting KS system such that an alternative

fictitious system with interactions can be included. In principle any type of interaction

can be introduced in the fictitious system, e.g. one may include a system defined as a

Hartree-Fock system, where the electron-electron interactions are defined by Coulomb

and exchange operators. Other example is a system of fictitious electrons interacting

via screened Coulomb potential. To impose the restriction that the sum of squared

modulus of each orbital yield the density, one needs a local multiplicative potential.

In analogy with the partition potential, the residual potential of Seidl et al. [23]

turns out to be the functional derivative of a residual functional with respect to the

electronic density. If the energy of the fictitious system is closed enough to the actual

energy, then the residual potential should have a small contribution to the ground

state energy.

The chemical potential equalization defines the electronic occupation numbers for

those fragments for which their energy functionals are differentiable with respect to

their corresponding spin-densities. If the energy of a fragment is defined by means of

the PPLB functional, then its energy if not differentiable when the number of electrons

is an integer because the fragment does not have a definite chemical potential. To

overcome this difficulty the energy has to be minimized with respect to the occupation

numbers of the fragments without resorting to the chemical potential equalization.
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This requires a derivative-free algorithm to minimize the energy. Despite this, the

fragment KS equations remain valid.

4.4 Inclusion of Static Electric and Magnetic Fields

It might not be convenient to partition an external field of the form vE(r) = −µ(r)·
E(r) as shown in Equation (4.1) because it would introduce spatial discontinuities

that can be non-physical. A simpler and more physical alternative is to allow each

fragment (which is defined by means of Equation (4.1)) to interact with the external

field. Thus, the electrons in fragment α now are subject to the external field:

v̄α(r) = vα(r) + vE(r) . (4.49)

Note that Equation (4.1) does not hold for this type of partitioning becuase of the

global character of the electric field.

The energy of a fragment now reads

Ev̄α [n↑α, n↓α] = F [n↑α, n↓α] +

∫
d3r v̄α(r)nα(r) , (4.50)

given that this potential is global as well, then the partition energy functional, which

is a difference of the energy and the fragmentation energy, does not depend on the

electric field explicitly. The spin-polarized KS potentials turn into

vs,σα(r) = vH [nα](r) + vα(r) + vE(r) + vXC,σ[n↑α, n↓α](r) + vp,σ(r) . (4.51)

This scheme enables one to calculate the polarizability of the ground state. A simple

approximated approach is to calculate the ground state and find the partition poten-

tial, then it can be fixed and the density of the system can be estimated by solving

the KS equations under the influence of the electric field.

The inclusion of magnetic fields is somewhat more involved than the previous case.

For example, consider the Hamiltonian:

Ĥv,B = T̂ + Ŵ +

∫
d3r m̂(r) ·B(r) +

∫
d3r n̂(r) , v(r) (4.52)



56

where m̂ and B are the local magnetization and magnetic field, respectively. It

is known that there is no a one-to-one correspondence between v, B and the local

magnetization-density pair [24]. Capelle and Vignale [25] showed that if |ψ〉 satisfies

Ĥv,B|ψ〉 = E|ψ〉, then it is possible to find perturbations ∆v(r) and ∆B(r) such that:∫
d3r (n̂(r)∆v(r) + m̂(r) ·∆B(r))|ψ〉 = ∆E|ψ〉 . (4.53)

This is valid as long as there is no level crossing induced by the magnetic field. The

result of Capelle and Vignale poses a difficulty in applying our formalism to the Kohn

Sham formalism of von Barth and Hedin [24] and Rajagopal and Callaway [26]. A

simple solution is to regard the magnetic field as a fixed variable [27], thus the energy

Ev,B[n↑, n↓] = GB[n↑, n↓] +

∫
d3rn(r)v(r) , (4.54)

is a functional of the spin-densities. The functional G is defined in the above Equation

as follows:

GB[n↑, n↓] = min
ψ→n↑α,n↓α

〈ψ|T̂ + Ŵ +

∫
d3r m̂(r) ·B(r)|ψ〉 . (4.55)

Our partitioning approach is easily applicable to the functional given by Equation

(4.54). If the energy of a fragment is defined as

Ev̄α,B[n↑α, n↓α] = GB[n↑α, n↓α] +

∫
d3rn(r)v̄α(r) . (4.56)

One may define a fragmentation energy as the sum of all fragments energies, where

each energy is defined by the above equation. And the partition energy functional can

be defined as the difference between the true energy functional and the fragmentation

energy functional. The partition energy functional can thus be expanded as expressed

in Equation (4.40), but a partition term must be added due to the magnetic field

presence. This procedure avoids the non-uniqueness problems. However, it introduces

more complexity to the energy functional because the magnetic field is treated as a

inherent property of the system, just like the electron-electron interaction.
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4.5 Elimination of Spin-symmetry Breaking

The spin-polarized KS equations are quite successful because they break symmetry

with the LSDA and can be used to eliminate the static correlation error of the LDA (no

spin). Use of the unpolarized LDA misses the decomposition of the exchange energy

into spin-channels. Curiously, the LDA allows us to construct Slater determinant

with our desired spin-symmetry, but it does not perform well with energetics. I now

show a way to avoid the symmetry breaking problem.

Let us express the Levy functional as:

F [n] = min
{n↑,n↓}→n

F [n↑, n↓] . (4.57)

Denote ñ↑, ñ↓ as a pair of spin-densities that solve the above minimization problem.

Suppose a given explicit form of the spin-polarized XC energy functional is given, E ′XC.

Now express the XC density-functional as EXC[n] = E ′XC[ñ↑, ñ↓]; the spin-densities

{ñσ} are functionals of the total density.

Using the chain rule we obtain:

vXC(r) =
∑
σ

∫
d3r′ Qσ(r, r′)vXC,σ(r′) , (4.58)

where Qσ(r, r′) = δñσ(r′)/δn(r), and vXC,σ = δE ′XC/δnσ. Application of the local-Q

approximation to the above formula gives:

vLQ
XC(r) =

∑
σ

ñσ(r)

n(r)
vXC,σ(r) . (4.59)

For practical approximations, the ratio of densities in the local-Q approximation can

make difficult the calculations of the corresponding Fock matrix because the matrix

elements, electrostatic integrals, would have to be calculated numerically. The need

for numerical integrals could be eliminated by expanding the Q functions in terms

of a Gaussian basis set. On the other hand, in the homogeneous electron gas, the

polarized, approximated Q function is simply Nσ/N . For systems with large number

of electrons, the spin channels are almost, equally populated. Therefore we arrive at

the simple, practical approximation:

vhLQ
XC (r) =

1

2
vXC,↑(r) +

1

2
vXC,↓(r) . (4.60)
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Obviously, the formula is exact in the spin-unpolarized case because both spin chan-

nels are determined by the same polarized XC potential.

The prescription to connect approximations in SDFT with KS-DFT does not

solve the static correlation problem, but allows us to better quantify exchange and

correlation. However, if this solution of the symmetry breaking problem is combined

with the non-analytic density functionals of chapter 3, the static correlation problem

can be solved.

4.6 Estimation of Partition Functionals

For an approximation in PDFT to be computable and efficient, one needs to

express each component of the partition energy as an explicit function of the electron-

fragment densities. Suppose X ∈ (T,EHXC, Eext) is some component of the energy,

and let

Xp[n] = X[n]−
∑
α

Xα[ñα] . (4.61)

Now divide the system into a fragment and its complement. Let β be our fragment

of interest. Define ñc
β = n −∑α6=β ñα. The total density of the system is that of

fragment β plus the complementary density ñc
β. Now, assume that X[ñβ + ñc

β] is a

differentiable function of the density. If we further assume that ñc
β is a perturbation

to the density ñβ then:

X[ñβ + ñc
β]→ X[ñβ] +

∫
d3r

δX

δn(r)

∣∣∣∣∣
n=ñβ

ñc
β(r) . (4.62)

In this construction we omitted the other remaining fragments. A better estimation

is thus:

X[n]→
∑
α

(
X[nα] + cα

∫
d3r

δX

δn(r)

∣∣∣∣∣
n=nα

nc
α(r)

)
. (4.63)

Here, cα, the coupling strength, is a penalty parameter due to neglecting higher-order

terms. The parameter cα is dependent on the fragments (or atoms) that surround

the fragment (or atom) α.
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The form of the last equation leads us to identify the estimation to the X com-

ponent of the partition energy as:

Xp[n] =
∑
α

cα

∫
d3r

δX

δn(r)

∣∣∣∣∣
n=nα

ñc
α(r) . (4.64)

A critical component of the partition energy, is the single-particle kinetic energy,

X = Ts. Despite much effort is invested in finding approximations to the XC energy,

the kinetic energy functional is an important contribution to the total energy. The

explicit form of the LDA XC energy functional, and its interpretation, leads to a very

practical use of the KS equations where the kinetic energy functional is not needed.

Nonetheless, expressing Ts[n] as an explicit functional of the density is quite difficult

because the definition of Ts is a constrained minimization problem: Given a density,

we search for the best orbitals that yield n and minimize the kinetic energy. In few

words, the formula defining Ts[n] is an algorithm.

An explicit functional form of Ts for multi-electron systems is unknown. Here

I present a method to approximate the partition kinetic energy functional for ap-

plications in molecular dissociation: A simple approximation to Ts functional is

the Thomas-Fermi (TF), T [n] = CTF

∫
n7/3; CTF = (6π2/5)(3/8π)2/3. This func-

tional, however, is only suitable for the homogeneous, semi-classical, electron gas.

For molecules, the TF functional does not bind atoms. Roughly speaking, the elec-

trons gain too much momentum at “bonding” distances. For this reason, the coupling

strengths should be less than the unity.

The single-particle kinetic energy component of the partition energy under the

TF approximation is:

T p
kin[n] = C ′TF

∑
α

cα

∫
d3r ñ5/3

α (r)ñc(r) , (4.65)

where C ′TF = (7/3)CTF. Finally, the partial partition potential corresponding to Ts

is, ignoring the kinetic energy kernel:

vp
kin,α(r) = C ′TF

∑
β 6=α

cβñ
5/3
β (r) . (4.66)
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The computation of this potential is fast, as well as its corresponding matrix elements

over a basis set. Extending this functional to the spin-polarized only requires adding

the spin-label to the quantities involve and summation over the spin-up and spin-down

channels.

4.7 A Simple Illustration

4.7.1 An Electron in a Double-cosh Potential

Consider a one-dimensional electron under a double cosh potential (see Figure

4.1.a):

v(x) = V0

(
1

cosh2((x+ d/2)/a)
+

1

cosh2((x− d/2)/a)

)
, (4.67)

where V0 < 0 is the depth of each well, d is the distance between the wells, and a

is the width of each well. We can omit the spin subindex in the electronic densities

because there is only one electron under the effect of the above potential. We want

to find the ground state energy and density for this system. A partition scheme must

be introduced to solve this problem. An intuitive choice is:

v1(x) =
V0

cosh2((x+ d/2)/a)

v2(x) =
V0

cosh2((x− d/2)/a)
.

(4.68)

Given that this Equation represents a symmetric well and there is only one electron

then we can set the occupation numbers as one half for each well.

Assume that φ1 and φ2 are the KS orbitals of fragments 1 and 2, respectively.

Therefore the partition KS equations are:[
− 1

2

d2

dx2
+ v1(x) + up(x)

]
φ1(x) = ε1φ1(x)[

− 1

2

d2

dx2
+ v2(x) + up(x)

]
φ2(x) = ε2φ2(x) ,

(4.69)
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atomic units are used from now on. There is only two contributions to the partition

potential. The first one comes from the kinetic energy relaxation. In this case we can

use the von Weizsäcker functional and the local-Q approximation, thus

urk(r) = − 1

2
√
n(x)

∇2
√
n(x)+

1

2

n1(x)

n(x)

1√
n1(x)

∇2
√
n1(x)+

1

2

n2(x)

n(x)

1√
n2(x)

∇2
√
n2(x) .

(4.70)

The second contribution comes from the relaxation with the external field

urext(x) = v(x)− n1(x)

n(x)
v1(x)− n2(x)

n(x)
v2(x) , (4.71)

the density of this system is obtained by means of

n(x) = n1(x) + n2(x) =
1

2
|φ1(x)|2 +

1

2
|φ2(x)|2 . (4.72)

A reasonable initial estimation of the KS orbitals is necessary to solve these equa-

tions. The orbitals obtained by omitting the partition potential can be used initially,

then the density is calculated and an estimation to the partition potential is ob-

tained. If one solves the KS equations with such estimation one obtains a new set

of spin-densities which can be used to obtain another approximation to the partition

potential. This procedure is repeated until a desired convergence criterion is met.

To obtain the true density of the system we solve the Schrödinger equation with

the finite difference method, and calculate the “exact” density of the system. A

simple inversion algorithm was employed to obtain the exact partition potential:

First, the partition potential is estimated by solving the fragment KS equations with

the partition potential given by our local-Q approximation, then the KS equations

are solved iteratively. The partition potential generated by this calculation is used

as initial input to obtain a new approximation by means of the iterative scheme

[28]: v
(i+1)
p (x) = v

(i)
p (x) + γ(n(i)(x) − n(x)) where n0 and n are the estimated and

reference electronic density, repectively; and, γ is a positive constant. This procedure

is performed until a convergence criterion is satisfied. Despite it performs well for

our purposes, the formula shown above is rather slow, and might not be suitable for

large scale inversion problems.
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Figure 4.1. Results for one electron in a double-cosh potential,
parameter values: a = 2.0, V0 = 1.0, and d = 7.0. Dashed
lines: approximation, solid line: exact.
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Figure 4.1.a shows the potential employed to generate the densities, a box of

length 30 a.u. was set for the simulation and a grid of size 600 was used to solve

the KS equations. In Figure 4.1.b we show the electronic density of the system. The

densities obtained by our approximation and the inversion method are quite close.

The error in the density estimation is 0.01 % and in the energy is negligible, the

Schrödinger and PDFT equations predict the ground state energy as -0.698 a.u. If

we neglect the partition potential, which is equivalent to assume that the fragments

do not interact, then the energy of the system would be -0.690 a.u. In this case

the approximations work well because we are using exact functionals for the kinetic

energy and the density is low in the intermediate region. This is also confirmed in

Figure 4.1.c, which shows the partition potential. Qualitative agreement can be noted

between the exact partition potential and the local-Q approximation. In this case we

observe that the partition potential has a purely bonding character. The symmetry

of the potential in this case offers an intuitive method to equalize the fragments’

chemical potentials. By setting the occupation numbers on the left and right as 1/2,

it is obtained equal eigenvalues on both sides.

Figures 4.1.d and 4.1.e illustrate the fragment densities. As expected, they are

localized around their respective potential well. This relative localization of the den-

sities might help to approach the ground state problem from a divide-and-conquer

perspective. Finally, Figure 4.1.e shows the integrated response
∫

d3r′Q1(r, r′), this

function behaves like a step function. We note that the response of fragment 1 to

perturbations in the density is negligible on the right hand side well. This is correct

for positions that are far from the left hand side well. However, due to the local na-

ture of the approximation employed, the response might be higher in the intermediate

region. Thus non-local corrections are required to further improve the estimation of

the partition potential. This simple example shows that it is possible to estimate

the partition potential by means of intuitive approximations; improvement of these

approximations will be subject for future works.
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4.7.2 Application to 1d Contact-interacting Electrons

Now consider three electrons in an asymmetrical double cosh potential:

v(x) =
V0,a

cosh2((x+ d/2)/a)
+

V0,b

cosh2((x− d/2)/a)
. (4.73)

This potential is partitioned as in the previous case:

v1(x) =
V0,a

cosh2((x+ d/2)/a)

v2(x) =
V0,b

cosh2((x− d/2)/a)
.

(4.74)

The Hamiltonian of this system is:

Ĥ =
3∑
i=1

−1

2

∂2

∂x2
i

+ λ
∑
i>j

δ(xi − xj) +
∑
i

v(xi) . (4.75)

For the sake of the discussion we ignore the correlation and only include the electron-

exchange energy by means of the local approximation of Magyar and Burke [29]:

EX[n, ζ] = −λ
4

∫
dx n2(x)[1 + ζ2(x)] . (4.76)

The relaxation with the external field is approximated with Equation (4.47). The re-

laxation associated to the Hartree energy can be regarded as an electrostatic repulsion

between the fragments. This term is

Ep
H =

∫
dx dx′ n1(x)v(x− x′)n2(x′) , (4.77)

where v(x−x′) = λδ(x−x′). The above expression can also be obtained by employing

its definition. Given that the fragment densities present a small overlapping, some

exchange takes place in the bonding region. To account for this we used the definition

shown in Equation (4.45) along with the Magyar-Burke functional. In the previous

example we noted that the response of the fragments density might be higher than

that obtained with the local-Q approximation. To improve this response we approx-

imated the response function as Qσ′α,σ = δσ′σδ(r
′ − r). This approximation does

not satisfy the sum rule completely but it helps us to qualitatively predict the shape

of the partition potential for the spin-up channel. For the all the other terms we
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employed the local-Q approximation. Additionally, we neglected the kinetic parti-

tion functional because the von Weisäcker functional is valid for one electron or less,

whereas the spin-up channel is populated by two electrons.

It is also possible to obtain the partition potentials that yield the “exact” densities.

We emphasize that these partition potentials depend on the particular energy func-

tional that we have chosen, i.e. contacting-interacting electrons with local exchange

only in this case, and electronic correlation is ignored. These partition potentials can

be obtained by a simple inversion procedure that is quite similar to that shown in

the previous subsection. First we make an approximation to the partition potentials

and KS orbitals, the potentials are fixed until self consistency is achieved, if the total

density differs from the “exact” density then the following scheme is used to obtain

a new estimate of the partition potentials [30]:

v(i+1)
p,σ (x) = v(i)

p,σ(x) + γσ(n(i)
σ (x)− nσ(x)) . (4.78)

The procedure is repeated until the density converges. In this example we set the

convergence tolerance as 1.0× 10−5 for the estimation of the total density.

Table 4.1
Eigenvalues and energies of the pseudo HeH molecule. A box of length
30 a.u. and a grid of size 500 were employed. Dash lines: approxi-
mation, solid lines: exact. ∗ for the KS-SDFT results the fragment
subindex refers to energy level instead of fragment.

Method ε↑1 (a.u.) ε↑2 (a.u.) ε↓1 (a.u.) Energy (a.u.) EP (a.u.)

Local Q -0.9400 -0.3366 -0.1641 -1.6488 −1.9× 10−3

PSDFT -0.9127 -0.3531 -0.1635 -1.6473 −7.5× 10−4

KS-DFT∗ -0.9405 -0.3366 -0.1649 -1.6473 -
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Figure 4.2. Results for three contact-interacting electrons in a
double well potential; parameters: λ = 1.0, a = 0.4, d = 5.0,
V0,a = 2, V0,b = 1. A box of length 30 with a grid of size 500
was used. Dashed lines: approximation, solid line: exact.
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We found that there is essentially one spin-up electron on the left, one spin-up

electron on the right, and one spin-down electron on the left. This is consistent with

the physical picture obtained from applying the unrestricted Hartree-Fock method

to the HeH molecule. Moreover, this integer-occupation phenomenon has been found

to be persistent for fragments with large internuclear separation [31]. The numerical

results are shown in Table 4.1. As expected the approximation used here tends to

localize the densities around the corresponding potential wells. In Figures. 4.2.a and

4.2.b we show both the exact densities, and the densities obtained by our approx-

imation. It may be observed that the partition theory predicts the spin-densities

qualitatively. Moreover, the energies are close to one another, this suggests that it is

possible to apply this theory to 3d Coulombic systems for which dissociation can be

better described.

In Figures 4.2.c and 4.2.d the partition potentials are illustrated. The approxi-

mations work reasonably well. Nonetheless, the results with the approximation we

used for the kinetic term suggests that contributions from the spin-densities of the

whole molecule must be taken into account to improve the response function Q . The

estimation of vp,↑ might not be reliable enough in terms of accuracy but it predicts

qualitatively the behavior of the “exact” partition potential obtained from the in-

version in the bonding region. This potential shows a repulsive barrier for negative

positions and an attractive well for positive positions. This basically shrinks the zero

order spin-up density of the left fragment, and it spreads out the spin-up density of

the right fragment. By zero order density I refer to that density obtained by neglect-

ing the partition potentials while keeping fixed the occupation numbers. Therefore

the local approximation employed for the Q function might be suitable as a first esti-

mation in inversion procedure and on further refinements of the partition functional.

Moreover, this simple example suggests that it is possible to determine in practice the

partition potentials to obtain electron densities and energies than are size-consistent

(see Ref. [22]).
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Due to the non-differentiability of Ef , it is not possible to equalize the chemical

potentials on both spin channels. This is reflected in the numerical values of the KS

eigenvalues shown in Table 4.1. On the other hand, the partition energy was found

to be small compared to the energy values. This is due to the particular choice of

fragmentation energy, which includes the contributions from kinetic energy, electron-

electron repulsion, and electron-nucleus interaction. Other type of fragmentation

schemes may lead to higher values of partition energy, for example if we assume

that the electrons do not repel each other then the partition energy should be higher

because it would account for the electronic repulsion that takes place in the real

system.

4.8 Conclusions

In summary, a new approach to approximate the partition potential and also

extended PDFT to include electronic spin-densities has been proposed. The intro-

duction of the polarized partition functional guarantees the exactness of the theory

as long as the spin-densities are “vp representable”. The method presented here is

a candidate to address the problems of regular KS-DFT related to molecular disso-

ciation. It also offers flexibility to combine different XC energy functionals that are

available, and include nearest-neighbor approximations to vp. In the long term, these

approximations may also be useful to speed up the computational simulations of large

molecules. The cost and stability of these calculations will depend on the partition-

ing of the external potential, and the approximations to the XC and partition energy

functionals.
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5. ACTION FUNCTIONALS

The Dirac-Frenkel principle of stationarity to find equations of motion that yield

or approximate the time dependent Schrödinger equation is not applicable to time

dependent density functional theory. Such incorrect application can lead to causality

paradoxes in the interpretation of the Runge-Gross map. For example, a perturbation

of the density in the future influences the external potential of the molecule in the

past. In this chapter, I review and re-interpret recent solutions to this problem and

propose an alternative formulation based on the space of Keldysh that restores the

causality. I further show that conventional TD XC potentials can be obtained from

this formalism, and how other TD XC potentials can be derived as well.

5.1 Introduction

To study the dynamics of molecules, algorithms based on time dependent den-

sity functional theory are quite used. Methods derived from TDDFT [1–3] are very

flexible, improvable, and numerically efficient. The target objects to extract useful

properties are the TD electronic density, and the density-density response functions.

The methods of TDDFT are mainly used to study electronic excitation in the linear

regime (i.e., analysing the density response to short perturbations), and the ground-

state energy and density [4, 5].

The Runge-Gross (RG) [6] theorem is the pillar of TDDFT: Given the initial

state of the system, the TD electronic density of the system is uniquely determined,

up to a TD constant, by the TD external potential potential the system is subject

to. This theorem was later extended by van Leeuwen [7], who showed that the
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system of interacting electrons, whose equations of motion are extremely difficult

to solve, can be represented by a system of free electrons that are subject to an

effective TD potential, i.e., the KS equations. Some main challenges in TDDFT are

solving accurately: Double excitations [8], van der Waals interactions, charge transfer

excitations [9, 10], and electron-transfer rates of molecular junctions [11–13]. All the

observables of the molecule can be interpreted as density-functionals because the

wave function can be determined by a density-functional. The theorem of Runge and

Gross, however, is limited to TD external potentials that are Taylor-expandable with

respect to time. Eliminating such restriction is still ongoing research [?], as well as

calculations of TD external potentials corresponding to a given TD density [15–17].

The ground-state exchange-correlation (XC) potential is the functional derivative

of the XC energy in ground-state DFT. A similar relationship between the TD XC

potential and a proper functional is difficult to find. [18] proposed a Dirac-Frenkel

action functional with a variational principle for TDDFT. Following Ref. [18], Runge

and Gross [6] expressed the TD XC potential as a functional derivative of a XC action

functional with respect to the density. This assignment of XC potentials to actions led

to a problem: a disturbance of the density in the future induces a potential-response

in the past [19]. This implies that the inverse first order response functional violates

causality.

Several approaches addressing the violations of causality are available. For ex-

ample, an action functional based on the work of [20] in quantum field theory was

proposed by Rajagopal [21]. However, in this formalism the density is not the main

variable. A density-functional in the Keldysh contour obeying causality was intro-

duced by van Leeuwen [22]. A pseudo-density in the Keldysh space that becomes

the physical density upon a symmetry operation is the main variable in this case.

The van Leeuwen formalism requires expansion and truncation, while that of Runge

and Gross does not. [23] also resolved the causality violation by fixing a boundary

condition in the Runge-Gross formulation.



74

In this chapter I present an alternative solution to the problem of causality by

combining the formalisms of Vignale and Van Leeuwen, and does not require expan-

sion nor display a dependency on the upper limit of the propagation. The method

presented in this chapter also leads to a variational equation that relates the XC

potential with a well-behaved XC action functional. I show that the ALDA and the

optimized effective potential method are solutions of such variational equation.

5.2 Causality in TDDFT

Finding stationary values of the Dirac-Frenkel functional:

W [|ψ〉; v] =

∫ t1

t0

dt 〈ψ(t)|i ∂
∂t
− Ĥ[v](t)|ψ(t)〉 , (5.1)

not only allow us to derive the TDSE but also approximations to it. In this chapter

we only consider non-relativistic Hamiltonians of the form:

Ĥ[v](t) = T̂ + Ŵ +

∫
d3r v(rt)n̂(r) , (5.2)

where T̂ and Ŵ are the kinetic energy and electron-electron repulsion energy opera-

tors, respectively, and n̂(r) is the density operator. The domain of the Dirac-Frenkel

functional is the Hilbert space of antisymmetric wave-functions integrating to N elec-

trons. The TDSE is a solution to the problem: δW [|ψ〉; v] = 0 . The boundary

conditions are δ|ψ(t0)〉 = δ|ψ(t1)〉 = 0. The solution |ψ[v](t)〉, is a ket satisfying:

i∂t|ψ[v](t)〉 = Ĥ[v](t)|ψ[v](t)〉 . We say that |ψ[v](t)〉 is a v-representable ket in real-

time; its evolution is given by the unitary evolution operator applied to the initial

state:

|ψ[v](t)〉 = Û [v](t, t0)|ψ(t0)〉 , (5.3)

where

Û [v](t, t0) = T̂ exp
(
− i

∫ t

t0

ds Ĥ[v](s)
)
. (5.4)

T̂ is the time-ordering operator in real-time. The integral is taken over the interval

[t0, t): ∫ t

t0

ds Ĥ[v](s) := lim
ε→0

∫ t−|ε|

t0

ds Ĥ[v](s) . (5.5)
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The above definition, when inserted into Eq. (5.4) and the result is applied to the

initial state, determines the evolution of the system. The dependency on the potential

of Eq. (5.4) is referred to as the strict causality assumption. This assumption is to

be employed in the next section to simplify the formalism.

Our choice of integration is related to the question: Does a perturbation of the

form δv1(r′t′; t) = c(r′)δ(t − t′) cause a response in any observable at time t, i.e., at

the very moment when the perturbation occurs?. In this work I elect to postulate

that the instantaneous perturbation δv1 does only affect the system strictly after it

has occurred; enforcing the intuitive notion that the time delay between a cause and

its effect has to be greater than zero. This choice on how the integration in time is

taken excludes any response to δv1(r′t′; t) when t′ ≤ t.

From the strict causality assumption we can infer that δÛ(t, t0)/δv(r′t′) = 0 if

t = t′ and that the ket |ψ[v](t)〉 is a strictly causal functional of the potential: The

potential v at times less than t determines |ψ[v](t)〉. Additionally, all observables of

the form O[v](t) = 〈ψ(t0)|Û †[v](t, t0)ÔÛ [v](t, t0)|ψ(t0)〉 are also strictly causal func-

tionals of v, i.e.,
δO[v](t)

δv(r′t′)
= 0 t′ ≤ t. (5.6)

For example, the density of the system,

n[v](rt) = 〈ψ(t0)|Û †[v](t, t0)n̂(r)Û [v](t, t0)|ψ(t0)〉 , (5.7)

is determined by the evolution of v in the interval [t0, t) [3].

The potential v at times in [t0, t) uniquely determines n in the interval [t0, t), and

vice versa. If we denote as u[n] the external potential as a functional of the TD

density, then a first order variation in u is given by a variation of n over the interval

[t0, t):

δu[n](rt) =

∫ t

t0

dt′
∫

d3r′ χ−1[n](rt, r′t′)δn(r′t′) , (5.8)

where χ−1[n](rt, r′t′) = δu(rt)
δn(r′t′)

. Hence, δu(rt)/δn(r′t′) for t ≤ t′ is not defined because

it does not contribute to the integral of Eq. (5.8). For convenience we set:

χ−1[n](rt, r′t′) = 0 t ≤ t′ . (5.9)
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[23], however, employing the evolution equation of the current, showed that

δu(rt)/δn(r′t′) is related to δ(t − t′) and its first and second order time-derivatives

when t = t′. This result is obtained under two assumptions different from ours: First,

u(rt) is determined by n(r′t′) for t′ ≤ t. And secondly, the functional derivative of

the stress tensor with respect to the density vanishes at equal times. Our assumption

avoids this singularity in χ−1 and will be used to simplify our calculations in the

Keldysh space.

Consider the RG action functional:

Av[n] =

∫ t1

t0

dt 〈ψ[n](t)|i ∂
∂t
− Ĥ[v](t)|ψ[n](t)〉 , (5.10)

where |ψ[n](t)〉 = |ψ[u[n]](t)〉, v is some TD external potential, and t1 > t0. Note

that the ket |ψ[n](t)〉 is causal, i.e., it is determined by n in the interval [t0, t). [6]

imposed that δψ(t0) = δψ(t1) = 0 and δAv/δn(rt) = 0 , which leads to the following

alternative form of the variational principle:

δB[n]

δn(rt)
− v(rt) = 0 , (5.11)

where B[n] is the action functional: B[n] =
∫ t1
t0

dt 〈ψ[n](t)|i∂t − T̂ − Ŵ |ψ[n](t)〉 .
If Eq. (5.11) were valid then we could assert that [24]: u[n](rt) = δB[n]/δn(rt) .

Unfortunately, when the above function is further differentiated with respect to n,

χ(rt, r′t′) =
δ2B[n]

δn(r′t′)δn(rt)
, (5.12)

one finds an inconsistency because the above equation implies that χ(rt, r′t′) 6= 0 for

t < t′. This is known as the causality paradox [19]. The problem is the neglect of

the v-representability of kets and the boundary condition δ|ψ(t0)〉 = 0. We can only

set δ|ψ(t0)〉 = 0 because a perturbation δn(rt), in general, will induce a response

δψ(t1) 6= 0 [23].

The solution of Vignale [23] is a direct implementation of the causality principle

into the RG functional. For example, the internal action B[n], using the TDSE, can

be written as [3]: B[n] =
∫ t1
t0

dt u[n](rt)n(rt) . The density-functional u[n] is causal by
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the RG theorem. If we differentiate the above functional with respect to the density

and insert the result into the functional derivative of the RG action functional we

obtain

δAv
δn(rt)

= u[n](rt)− v(rt) +

∫ t1

t

dt′
∫

d3r′ χ−1[n](rt, r′t′)n(r′t′) . (5.13)

Now let nv be the TD density corresponding to v, then:

δAv
δn(rt)

∣∣∣∣∣
n=nv

=

∫ t1

t

dt′
∫

d3r′ χ−1[nv](rt, r
′t′)nv(r

′t′) . (5.14)

This last equation is an alternative form of the Vignale variational formulation that

shows that nv is not a stationary value of Av[n]. This is a consequence of constraining

the wave-functions of the RG functional to be density-functionals of the form ψ[u[n]].

[24] showed that not every TD wave-function can be associated with a TD external

potential (or a TD density). Hence the domain of the RG functional is just a subset

of the domain of the Dirac-Frenkel functional, explaining why the RG and the Dirac-

Frenkel functionals lead to different results.

5.3 Action Formalism in the Keldysh Space

Let us add a super index + or − to the time variable t. The Keldysh contour,

C, is expressed as C = C+ ∪ C−, where C+ = [t+0 , t
+
1 ] and C− = [t−0 , t

−
1 ]. We denote z

as a variable in the contour C, and let zi = t+0 and zf = t−1 . The arrow of time in C
points from t+0 to t+1 and from t−1 to t−0 (see Fig. 4.1). Thus, any z ∈ C− is said to

be later than any z′ ∈ C+. If z, z′ ∈ C− we say that z is later than z′ if t(z) < t(z′),

where t(z) is the real value of z. A ket in C is denoted as |ψc[uc](z)〉, where uc(rz)

is some potential in C. A physical potential in C is denoted as ūc and it satisfies

ūc(rt
+) = ūc(rt

−). Thus a potential in real-time is mapped to the Keldysh space

when setting ūc(rt
±) = u(rt) (t± we denotes evaluation at C+ or C−).

We now extend the unitary propagator Û to the Keldysh space as follows:

Ûc[uc](z, zi) = T̂C exp
[
− i

∫ z

zi

dz′ Ĥc[uc](z
′)
]
, (5.15)
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where T̂C is the path-ordering operator in C (for example, T̂C[B̂c(z
′)Âc(z)] = Âc(z)B̂c(z

′)

if z is later than z′). The Hamiltonian in the Keldysh space now reads Ĥc[uc](z) =

T̂ + Ŵ +
∫

d3r uc(rz)n̂(r). The integration over the pseudo-time is defined as:

∫ z

zi

dz′ fc(z
′) := lim

ε→0


∫ t−|ε|
t0

dt′ fc(t
′+), z = t+∫ t1

t0
dt′ fc(t

′+) +
∫ t+|ε|
t1

dt′ fc(t
′−), z = t−.

(5.16)

The above expresses, in analogy with the real-time case, that the end point of the

integral in Eq. (5.15) is not included by definition. This is the strict causality

assumption in the Keldysh contour.

A v-representable ket in C is thus expressed as |ψc[uc](z)〉 = Ûc[uc](z, zi)|ψc(zi)〉,
where |ψc(zi)〉 = |ψ(t0)〉 is the initial state of the system. Note that ψc(z) does not

depend on the potential uc at later times than z. We define the density in C as [25]:

nc[uc](rz) = 〈Û †c [uc](z, zi)n̂(r)Û [uc]c(z, zi)〉 , (5.17)

where 〈·〉 = 〈ψc(zi)| · |ψc(zi)〉. To prove that there is a one-to-one mapping between

nc and uc, it is sufficient to notice that ψc satisfies the Schrödinger equation in C+.

Therefore, if the potential can be expressed as a power series around zi, then the RG

theorem and its extension [14] including non-analytic potentials apply in this case.

Let us examine the action functional proposed by van Leeuwen [22]: AvL[uc] =

i ln〈Ûc[uc](zf , zi)〉 . The functional derivative of this functional with respect to the

potential uc yields the pseudo-density [22]:

nvL(rz) =
〈Ûc(zf , z)n̂(r)Ûc(z, zi)〉

〈Ûc(zf , zi)〉
. (5.18)

However, the above density is an average of the operator: n̂vL,H(r) = Ûc(zf , z)n̂(r)Ûc(z, zi) ,

which is not a Hermitian operator. Therefore
∫

d3r n̂vL,H(rz) = N̂Ûc(zf , zi) , where

N̂ is the particle-number operator. This implies that nvL does not integrate to N ;

except when the potential uc is physical [22]. The density nc, on the other hand,

integrates to N and is always positive.

It can be shown that the response function of the density in C is given by:

χc[uc](rz, r
′z′) =

δnc(rz)

δuc(r′z′)
= −i〈[n̂c,H[uc](rz), n̂c,H[uc](r

′z′)]〉 , (5.19)
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where the Heisenberg representation of the density operator n̂(r) is

n̂c,H[uc](rz) = Û †c [uc](z, zi)n̂(r)Ûc[uc](z, zi) . (5.20)

Eq. (5.19) is valid if z is later than z′, and we set χc(rz, r
′z′) = 0 if z′ is later than or

equal to z.

The inverse first order response function χ−1
c [nc](rz, r

′z′) = δuc(rz)/δnc(r
′z′), ac-

cording to the RG theorem extended to the C, must also satisfy causality in the con-

tour, e.g., χ−1
c (rz, rz′) = 0 if z = z′ or z′ is later than z. When a physical potential

is used, the Heinsenberg operators recover their usual form in real-time. Therefore,

we obtain a physical density n̄c(rt
±) = n(rt). From Eq. (5.19) we can show that the

first order response function satisfies the antisymmetry relationship:

χc(rt
+, r′t′+)

∣∣∣
uc=ūc

= −χc(r
′t′−, rt−)

∣∣∣
uc=ūc

, (5.21)

where uc = ūc denotes evaluation at the physical regime. Note that χc also satisfies

χc(rt
+, r′t′+) = χc(rt

−, r′t′+) and χc(r
′t′−, rt+) = χc(r

′t′−, rt−) if t > t′ and uc = ūc.

The response of the density in the Keldysh space is [22]:

δnc[uc](rz) =

∫ zf

zi

dz′
∫

d3r′ χc[uc](rz, r
′z′)δuc(r

′z′) . (5.22)

To obtain the response in real-time, the variation of a physical potential must satisfy

δūc(rt
+) = δūc(rt

−) = δu(rt). Using the aforementioned properties of χc to calculate

the above integral, the response of the density turns out to be independent of the time

location in the contour, i.e. δnc(rt
+) = δnc(rt

−) = δn(rt). Hence, it is determined

by:

δnc[ūc](rt) =

∫ t±

t0

dt′
∫

d3r′ χc[ūc](rt
±, r′t′+)δūc(r

′t′+) . (5.23)

This result allows us to identify the response in real-time χ(rt, r′t′) as χc(rt
±, r′t′+)|uc=ūc

or −χc(r
′t′−, rt−)|uc=ūc , which are causal. Exchanging variables in the integral of

χcχ
−1
c reveals that χ−1

c satisfies the same relationships of χc regarding exchange of

variables at physical densities.
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Let us extend the functional Av to the Keldysh space:

Av̄c [nc] = B[nc]−
∫ zf

zi

dz

∫
d3rnc(rz)v̄c(rz) , (5.24)

where B[nc] =
∫ zf
zi

dz 〈ψc[nc](z)|i∂z − T̂ − Ŵ |ψc[nc](z)〉 , v̄c is some external physical

potential, and ∂f(z)/∂z = ∂f(tσ)/∂t, where σ = +,−. Vignale equation in this case

reads:

δB
δnc(rz)

∣∣∣∣∣
nc=n̄c,v̄c

− v̄c(rz) = i〈ψc(zf)|
δψc(zf)

δnc(rz)
〉
∣∣∣∣∣
nc=n̄c,v̄c

=

∫ zf

z

dz′
∫

d3r′ n̄c,v̄c(r
′z′)χ−1

c [n̄c,v̄c ](r
′z′, rz) .

(5.25)

The left hand side of the above equation corresponds to δAv̄c/δnc(rz) evaluated at

the density that yields v̄c, n̄c,v̄c . Additionally, the above equation also gives the

functional derivative δB/δnc(rz) for an arbitrary density nc; in this case, we replace

v̄c by uc[nc](rz), n̄c,v̄c by nc, and the inverse response function has to be evaluated at

nc.

Let us introduce the KS action functional:

As,v̄c,s [nc] = Bs[nc]−
∫ zf

zi

dz

∫
d3r nc(rz)v̄c,s(rz) , (5.26)

where v̄c,s(rz) is some effective external potential and Bs[nc] =
∫ zf
zi

dz 〈Φc,s[nc](z)|i∂z−
T̂ |Φc,s[nc](z)〉 . The KS wave function is a Slater determinant of TD KS orbitals

{φc,i(rz)} that satisfy:

i
∂φc,i

∂z
=
(
− 1

2
∇2

r + uc,s[nc](rz)
)
φc,i(rz) , (5.27)

where uc,s[nc] is the KS potential that represents nc(rz). Thus, if we differentiate Bs

with respect to the TD density we obtain:

δBs

δnc(rz)
= uc,s[nc](rz) +

∫ zf

z

dz′
∫

d3r′ nc(r
′z′)χ−1

c,s [nc](r
′z′, rz) , (5.28)

where χ−1
c,s (rz, r′z′) = δuc,s(r

′z′)/δnc(rz).

Recall the Hartree functional:

AH[nc] =
1

2

∫ zf

zi

dz

∫
d3r

∫
d3r′

nc(r
′z)nc(rz)

|r− r′| . (5.29)
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Let us introduce the XC action functional:

AXC[nc] = Bs[nc]− B[nc]−AH[nc] . (5.30)

Using Eqs. (5.25) and (5.28) it is found that the functional derivative of the XC

action functional can be expressed as:

uc,xc(rz) +

∫ zf

z

dz′
∫

d3r′nc(r
′z′)[χ−1

c,s (r′z′, rz)

− χ−1
c (r′z′, rz)] =

δAXC

δnc(rz)
.

(5.31)

Here uc,xc(rz) = uc,s(rz)−uc(rz)−uc,H(rz), where the Hartree potential is uc,H[nc](rz) =∫
d3r′ nc(r

′z)/|r−r′|. Now introduce the XC kernel fc,xc(rz, r
′z′) = δuc,xc(rz)/δnc(r

′z′),

which satisfies:

χ−1
c,s (rz, r′z′) = χ−1

c (rz, r′z′) +
δc(z − z′)
|r− r′| + fc,xc(rz, r

′z′) . (5.32)

The delta function in C space is defined such that
∫ zf
zi

dz′fc(z
′)δc(z− z′) = fc(z). The

KS response function and the XC kernel satisfy the same properties of χc regarding

exchange of variables.

In order to simplify Eq. (5.31), suppose that the density is physical, nc = n̄c. This

imposes that the XC potential is the same in both C+ and C− spaces. For example,

if z = t+ then the integral in time can be split up into two integrals: The first one

runs from t+ to t−, and the second one from t− to t−0 . There is no contribution from

the first integral due to the symmetry properties of χ−1
c and χ−1

c,s at physical densities.

For the second integral we can use the antisymmetry relation to obtain in real-time

that:

uXC(rt) +

∫ t

t0

dt′
∫

d3r′ fXC(rt, r′t′)n(r′t′) =
δ̄AXC

δ̄n(rt)
, (5.33)

where uXC(rt) = ūc,xc(rt
±) and

δ̄AXC

δ̄n(rt)
=

δAXC

δnc(rt±)

∣∣∣∣∣
nc=n̄c

. (5.34)

Setting z = t− in Eq. (5.31) also leads to Eq. (5.33) when nc = n̄c; for this reason

we expressed the final result in real-time. Because fc,xc in the C space also has
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the same properties as χ−1
c we identify the XC kernel in real-time, fXC(rt, r′t′), as

fc,xc(rt
±, r′t′+)|nc=n̄c , or −fc,xc(r

′t′−, rt−)|nc=n̄c . Thus, the XC kernel is causal in real-

time.

Given that we assumed that the response functions χc and χc,s are strictly causal

in C, the integral in Eq. (5.31) is taken over the interval (z, zf ]. This implies that

the Hartree kernel δc(z− z′)/|r− r′| lies outside the integration limits and thus it has

no contribution to Eq. (5.33). Based on this, the integral in Eq. (5.33) is carried

out strictly over the past of t, i.e., [t0, t). Hence, our causality assumption avoids

singularities at equal-times and simplifies the transition to real-time.

Eq. (5.33) is the main result of this work. It is a variational equation that

establishes a causal connection between uXC in real-time with an XC action functional

in the Keldysh space, and the memory of the system. If an approximation to the XC

action functional is known, then Eq. (5.33) can be used to estimate the XC potential.

The potentials u(rt) and us(rt) also satisfy the same type of equation as that of uXC;

one has to replace fXC and AXC by χ−1 and B, or χ−1
s and Bs.

Note that the left-hand side of Eq. (5.33) is a functional of the density n̄c(rt
±), or

simply n(rt). This implies that the second functional derivative of AXC with respect

to the density in real-time is not symmetric, i.e.:

δ

δn(r′t′)

δ̄AXC

δ̄n(rt)
= 0 t′ ≥ t . (5.35)

Here, the symbol δ/δn(r′t′) represents regular functional differentiation in real-time

because the operation δ̄/δ̄n(rt) already involves evaluation at the physical regime.

The above result is a consequence of implementing causality in the C space explicitly

using the path-ordering operator. Furthermore, recursive differentiation of Eq. (5.33)

also allows us to express its solution as a series of functional derivatives of AXC. This

reads

uXC(x1) =
δ̄AXC

δ̄n(x1)
+ wXC(x1) (5.36)

where

wXC(x1) =
∞∑
m=2

(−1)m+1

m!

∫
dµ(x2) · · · dµ(xm)

δm−1

δn(xm) · · · δn(x2)

δ̄AXC

δ̄n(x1)
. (5.37)
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Here xm = rm, tm, m = 1, 2, . . . and dµ(xm) = n(xm)d4xm. The functional derivatives

in the integral are zero if, for any i > j, ti ≥ tj. This series shows that the XC

potential depends on perturbations of the XC potentials in all orders. However, in

order to achieve convergence the functional derivatives must decrease as their order

increases.

Now let us apply our variational equation to the derivation of the ALDA XC

potential:

AALDA
XC [nc] =

∫ zf

zi

dz

∫
d3r [εXC(n)n]

∣∣∣∣∣
n=nc(rz)

, (5.38)

where εXC is the local XC energy density. To solve Eq. (5.33) the memory term can

be neglected to yield

ūALDA
c,xc (rz) =

d

dn
[εXC(n)n]

∣∣∣∣∣
n=nc(rz)

. (5.39)

Further differentiation leads to the kernel formula:

fALDA
XC (rt, r′t′) = δ(r− r′)δ(t− t′) d

2

dn2
[εXC(n)n]

∣∣∣∣∣
n=n(rt)

. (5.40)

The singularity of the XC kernel does not contribute to the integral term of Eq. (5.33)

because the end point is not included, or in other words, the end point is approached

in a limiting procedure. Hence, the above equation satisfies Eq. (5.33) and thus it

is the solution of it. The singularity of the XC kernel arises from the definition of

the XC potential, which implies that at equal-times the XC kernel must cancel the

singularity of the Hartree kernel. However, the ALDA XC kernel does not cancel the

singularity of the Hartree kernel due to the self-interaction error.

Another application is the TDOPM. The exchange functional form remains the

same as the one proposed by [22]:

Ax[nc] =

∫ zf

zi

dz 〈Φc[nc](z)|Ŵ |Φc[nc](z)〉 − AH[nc] . (5.41)

To derive the TDOPM one has to assume that (for example, see [3]):

δAv̄c

δn(rz)
=
δAs,v̄c,s

δn(rz)
. (5.42)
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If we set Axc = Ax and expand Av̄c using Eq. (5.30) we find that the memory term

in Eq. (5.33) can be discarded. Hence we can write:

ux(rt) =
δ̄Ax

δ̄n(rt)
. (5.43)

The right hand side of the above equation can be calculated using the chain rule. If

the result is multiplied by χs and then integrated, the final result coincides with that

of [26].

Ground-state DFT is also accessible with this theory. We can introduce a slowly

varying density nTc (rz) = nc(rz/T ), where T → ∞. One can use the adiabatic

theorem to show that:

lim
T→∞

AXC[nTc ] = lim
T→∞

∫ zf

zi

dz EXC[nTc (·, z)] , (5.44)

where EXC is the XC energy functional of DFT. The above equation is local in time.

As in the previous case, the solution of Eq. (5.33) has to be of the form:

lim
T→∞

uXC[nT ](rt) = lim
T→∞

δEXC

δn(r)

∣∣∣∣∣
n=nT (rt)

. (5.45)

where nT = n̄Tc .

5.4 Conclusions

The RG action functional was revisited in this chapter. The problem leading to

the causality paradox is the misinterpretation of a composition of maps. To eliminate

the dependency of the functionals derivatives of the actions on the total time of the

propagation, I extended the RG action functional to the Keldysh space and found a

variational equation for the XC potential, from which the ALDA and the TDOPM

are suitable solutions.
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6. PARTITION CURRENT-DENSITY FUNCTIONALS

The electronic density is a variable that is sufficient to determine the external

potential of a molecule. Nevertheless, when a molecule is subject to a vector potential,

the electronic density is not the main variable to determine such vector potential but

the 1-particle current-density. The basic ideas of TDDFT can be extended to consider

current-densities and electromagnetic (EM) fields. However, some subtleties may arise

when studying the maps relating currents and EM fields.

The ALDA XC potential at a given space-time point only depends on the value of

the density at such point; the exact XC potential depends on the density at all points

in space and all previous times. It is quite challenging to include density-memory

without violating the zero force theorem [1], stating that the XC potential cannot

exert a net force on the system. This condition is met by the ALDA but not by the

generalized-gradient approximation. The density does not yield enough information

of the system locally (for example, not every current density is n-representable [2]).

There might be regions in space where the density does not yield information about

in what direction the density will displace [3]. Therefore, even in the absence of EM

fields, the current-density is an important observable.

Time-dependent Current-density-functional Theory (TDCDFT) is rooted on a

map relating vector potentials, that vary by more than gauge transformation, with

the current-density of the system [4–6]. The current-density is a quantity that depends

on time, and ground-state systems usually do not display a net current. Thus the

current-density is a suitable variable to study dynamics (although the ground-state

must accessible through an appropriate limiting procedure).



88

Most researchers on functional development in TDCDFT focus on approximating

the stress tensor of the system [7, 8], with quite elegant promising schemes proposed

in the field of quantum continuum mechanics [9]. The current, main approximation

in TDCDFT within its KS formulation is that of Vignale and Kohn [10]. This ap-

proximation is valid as long as the perturbations applied to the system are slowly

varying and the system is periodic. Hence Vignale-Kohn functional is reliable [11–15]

for solids and molecules with delocalized π-electron clouds.

The formulation to study the dynamics of molecular fragments within TDCDFT

is presented in this chapter. I assign each fragment in the molecule a Hamiltonian

including an auxiliary EM potential that represents the current-density of the system.

I show that there exists a map that uniquely associates a current-density with a family

of EM potential that only differ by a gauge transformation. The linear response

formulation of this theory and a numerical inversion methodology to study EM fields

is shown in this chapter as well.

6.1 Theory

This section is centered on the electronic dynamics of non-relativistic molecules

with fixed nuclei, where the electrons interact with classical electromagnetic fields.

The Hamiltonian representing the molecule is:

Ĥ(t) = T̂A(t) + Ŵ +

∫
d3r n̂(r)[v(rt)− φ(rt)] , (6.1)

where A and φ are the vector and scalar potentials, respectively. We refer to the pair

A, φ as the 4-potential. The operator T̂A(t) is defined as:

TA(t) =
1

2

∫
d3r ψ̂†(r)(−i∇+ A(rt))2ψ̂(r) . (6.2)

Define the paramagnetic current operator: ĵp(r) = 1
2i

(ψ̂†(r)∇ψ̂(r) − ∇ψ̂†(r)ψ̂(r)) ,

and the total current operator: ĵ(rt) = ĵp(r) + n̂(r)A(rt) . These operators allow us

to express the Hamiltonian as:

Ĥ(t) = T̂ + Ŵ +

∫
d3r {ĵp(r) ·A(rt) + n̂(r)[v(r)− φ(rt) +

1

2
A2(rt)]} . (6.3)
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Here we can regard the Hamiltonian as a functional of A, φ. These potentials are

related to electromagnetic field E, B by the following expressions:

E(rt) = −∇φ(rt)− ∂tA(rt) , (6.4)

and

B(rt) = ∇×A(rt) . (6.5)

Let us define the average of an operator Ô(rt) as

O(rt) = tr{Γ̂(t)Ô(rt)} , (6.6)

where Γ̂ is the density matrix of the system, which is the solution of the Liouville

equation:

i∂tΓ̂(t) = [Ĥ(t), Γ̂(t)] . (6.7)

The density matrix Γ̂(t) in general represents a mixed state in the fermionic Li-

ouville space. This ensures that states with any number of particles, including

real numbers, are considered in our formalism. The initial state is of the form:

Γ̂(t0) =
∑

M,k wM,k|ψM,k〉〈ψM,k| , where M is the number of electrons and k is a

label runing over states.

The density of the system satisfies the continuity Eq.:

∂tn(rt) = −∇ · j(rt) , (6.8)

where this equation is valid for states with a real number of particles. The current

density can be shown to satisfy the hydrodynamical-like equation:

∂tj(rt) = −q(rt)− n(rt)[E(rt) +∇v(r)]− j(rt)×B(rt) , (6.9)

where the term q(rt) is defined as:

q(rt) = −i tr{Γ̂(t0)[T̂ + Ŵ , ĵp(r)]} . (6.10)

This quantity can also be expressed as the gradient of the stress tensor, which causes

the non-classical behavior of the current.
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Ghosh and Dhara [5] proved there is a one-to-one mapping, up to a gauge transfor-

mation, between 4-potentials and current-densities. Their proof is quite analogous to

that of Runge and Gross [16]. First assume that the 4-potential A, φ can be written

as a power series around the initial time t = t0. Suppose that there is another ana-

lytic 4-potential A′, φ′, which differs from A, φ by more than a gauge transformation

and yields the current density j′(rt). Additionally, the initial conditions demand that

A′(rt0) = A(rt0). The proof requires that the power series exists. However, we just

need to find the lowest number l and k such that:

∂nt (A(rt)−A′(rt))
∣∣∣
t=t0

6= Const , n ≥ l (6.11)

∂nt (φ(rt)− φ′(rt))
∣∣∣
t=t0

6= Const , n ≥ k (6.12)

(6.13)

Ghosh and Dhara [5] showed that if the above holds then:

in∂nt [j(rt)− j′(rt)]
∣∣∣
t=t0

=
n(rt0)∇

[
ik∂kt (φ(rt)− φ′(rt))

∣∣∣
t=t0

]
, n = k + 1, l > k + 1

n(rt0)il∂lt(A(rt)−A′(rt))
∣∣∣
t=t0

, n = l, l < k + 1

−n(rt0)ik+1∂kt (E(rt)− E′(rt))
∣∣∣
t=t0

, n = k + 1, l = k + 1

(6.14)

This set of equations shows that if the power series of the 4-potentials differ by more

than a time-dependent constant then they cannot yield the same current density after

t = t0.

The above result suggests that the current-density is a fundamental variable that

determines the state of the system. This result is also valid for extended systems

because it only requires that the current densities of the unprimed and primed systems

differ locally. This is a useful feature for application in solid state theory and periodic

systems in general. However, the electron-electron interaction makes the solution of

Eq. (6.9) very difficult. Vignale [17] found that the van Leeuwen theorem can be

extended to the TDCDFT case as well. The theorem states that the current-density



91

of a system described by A, φ with particle interaction Ŵ and initial state Γ̂(t0)

can be reproduced exactly by another system under the influence of A′, φ′, where

the particle interaction is described by another operator W′ and the initial state is

Γ̂′(t0). Again, the 4-potential must vary from the original 4-potential by more than a

gauge transformation. The van Leeuwen theorem also requires the initial state of the

alternative system to be given such that the initial current in both cases coincide.

The van Leeuwen theorem is particularly useful when the particle interaction is

neglected, e.g. Ŵ ′ = 0, which is the Kohn-Sham system of non-interacting electrons.

For the sake of simplicity, let us choose a gauge in which the scalar field is dropped.

This facilitates the formulation for practical purposes because the vector potential A

and the current-density j are both 3-dimensional quantities. If we denote Γ̂(t0) and

As as the initial state and 4-potential, respectively, yielding the current density j,

then the evolution of the current density is given by:

∂tj(rt) = −qs(rt)− n(rt)[−∂As

∂t
(rt) +∇v(r)]− j(rt)×∇×As(rt) , (6.15)

where q(rt) = −i tr{Γ̂(t)[T̂ , jp(r)]} . Now let us introduce the splitting of As: As =

A + AH + AXC , where

∂tAH(rt) = −∇
∫

d3r′
n(r′t)

|r− r′| . (6.16)

If we subtract Eq. (6.9) from (6.15) and employ the above definition we find that:

n(rt)∂tAHXC(rt)− j(rt)×∇×AHXC(rt) = qs(rt)− q(rt) , (6.17)

where AHXC = AXC + AH. The solution of Eq. (6.17) determines the XC vector

potential as a functional of the current-density (note that the right hand side terms

are functionals of j ). If the HXC vector potential is expanded as a Taylor series

then the above equation can be shown to provide a recursive scheme to calculate the

coefficients of the Taylor expansion of the XC vector potential [17].
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6.2 Partition Current-density-functional Theory

An electron in a molecule, when the nuclei are fixed in space, is subject to the

influence of an external potential v(r) that is a sum of Coulomb potentials. Each of

these potentials corresponds to the interaction between an electron and a particular

nucleus. We can divide the set of nuclei into smaller subsets, or fragments. If we

labelled a fragment as α and its external potential as vα(r), then the latter quantity

describes the interaction between an electron and the nuclei in the subset α. If there

are Nf fragments then we require that v(r) =
∑

α vα(r). A fragment that is infinitely

separated from the molecule is isolated and its properties are not affected by the other

fragments. Hence, we can assume that the current-density around such fragment is

determined by its interaction with the 4-potential uniquely. Moreover, if the system

is always bound while it interacts with the 4-potential then the current-density, and

the electronic density, will remain localized around the fragment.

For molecules around their equilibrium distances we can also imagine that the

current-densities are localized as long as the 4-potential is not ionizing the electrons.

It is plausible to assume that the current-density can be split into current-densities

that are localized around their corresponding fragment. This requires to define a

fragment formally: It is a potential vα, a TD Hamiltonian Ĥα(t), and a density

matrix Γ̂α(t) that satisfies the Liouville Eq.:

i∂tΓ̂α(t) = [Ĥα(t), Γ̂α(t)] (6.18)

and its initial state is Γ̂α(t0). The Hamiltonian Ĥα of the fragment α is:

Ĥα(t) = T̂ + Ŵ +

∫
d3r

(
ĵp(r) ·AP(rt) + n̂(r)[vα(r)− φP(rt) +

1

2
A2

P(rt)]
)

(6.19)

An observable quantiy of a fragment, Oα(rt), is obtained by averaging over the frag-

ment’s ensemble:

Oα(rt) = tr{Ô(rt)Γ̂α(t)} (6.20)

For example the current-density of the fragment is ĵα(rt) = tr{Γ̂α(t)̂j(rt)}. Let us

denote AP, φP as the partition 4-potential, whose purpose is to enforce that j(rt) =∑
α jα(rt) where j(rt) is the current-density of the “real” molecule of interest.
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The motion equation for the current-density of a fragment satisfies:

∂tjα(rt) = −qα(rt)− nα(rt)[EP(rt) +∇vα(r)]− jα(rt)×BP(rt) (6.21)

where qα(rt) = −i tr{Γ̂α(t)[T̂ + Ŵ , ĵp(r)]} The quantities that define a fragment are

quite similiar to those that define a quantum system in Ghosh and Dhara proof. The

only difference is that the physical 4-potential has been replaced by the partition field.

Therefore ĵα uniquely determines the partition field up to a gauge transformation.

Note also that the motion Eq. of the current-densities can be added up, yielding:

∂tj(rt) = −
∑
α

(qα + nα∇vα)− (nEP + j×BP) (6.22)

again we find that the present formulation is analogous to that of Ghosh and Dhara.

Hence, there is a 1-1 correspondence between j and the partition EM, up to a gauge

transformation. The properties of this map are determined by those of the jα ↔
AP, φP maps.

It is also easy to show the van Leeuwen theorem: The current density of a frag-

mented molecule defined by Ŵ ,AP, φ can be represented by an alternative system

with Ŵ ′,A′P, φ
′. The initial state of the real system and the partition scheme are

fixed. The proof follows the same steps shown by Vignale [17] applied to the motion

equation of the current.

6.3 Extended Operators and the Partition 4-potential

The partitioned molecule can be thought of as a single object. One says that

the density matrix of a fragment belongs to the Liouville space L, and that the

density matrix operates on the fermionic Fock space of the fragment. We define

the space of the partitioned molecule as Lf = L ⊗ L⊗ · · · ⊗ L︸ ︷︷ ︸
Nf times

The density matrix:

Γ̂f(t) =
⊗Nf

α=1 Γ̂α(t) is the state of a partitioned molecule with Nf fragments and

contains all the information required to calculate the total current density of the

system. The Hamiltonian for such molecule is given by:

Ĥf(t) = Ĥ1(t)⊕ Ĥ2(t)⊕ · · · ⊕ ĤNf (t) (6.23)
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where Ĥα(t) is the Hamiltonian of fragment α. For example, for a system with two

fragments the operation Ĥf(t)Γ̂f(t) yields:

Ĥf(t)Γ̂f(t) = (Ĥ1(t)Γ̂1(t))⊗ Γ̂2(t) + Γ̂1(t)⊗ (Ĥ2(t)Γ̂2(t)) (6.24)

The role of the direct summation and product employed in our definition is to ensure

that the energy of the system remains always additive. Other quantities such as

the density and the current are also additive, e.g.: n̂f(r) =
⊕

α n̂α(r), ĵ(rt) =⊕
α ĵα(rt) . This allows us to write:

j(rt) = tr{Γ̂f(t)̂jf(r)} =
∑
α

jα(rt) (6.25)

The evolution of the system is thus described by the Liouville equation:

i∂tΓ̂f(t) = [Ĥf (t), Γ̂f(t)] (6.26)

Now, note that the Hamiltonian has the form:

Ĥf = T̂f + Ŵf+∫
d3r [̂jf(rt) ·AP(rt) + n̂(r)(v(r)− φP(rt)− 1

2
A2

P(rt)]
(6.27)

Where T̂f =
⊕

α T̂α and Ŵf =
⊕

α Ŵα, being T̂α and Ŵα operators that only apply

to the fermionic Fock space of fragment α.

Eq. (6.26) has the same form of the Liouville equation of the real system, Eq.

(6.7). Differentiation of tr{ĵ(rt)Γ̂f} with respect to time gives rise to the evolution

equation of the partitioned molecule as a whole. The evolution equation is the same

as that shown in Eq. (6.22), where the term in the summation over the fragments,∑
α qα +nα∇vα, is simply −i tr{Γ̂f(t)[̂jf(rt), Ĥ

0
f ], where Ĥ0

f is the Hamiltonian of the

partitioned molecule in absence of electromagnetic fields. The previous commutator

and the commutator −i tr{[̂j(rt), T̂ + Ŵ ]Γ̂(t)} are analogous: They are both free

of the EM field and they are determined by the initial state. This analogy is what

allows us to extend the Ghosh and Dhara proof to fragmented molecules in presence

of partition EM fields.
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Let us define the partition Kohn-Sham hamiltonian Ĥf,s(t) of the fragmented

molecule as follows:

Ĥf,s(t) =
⊕
α

(∫
d3r ψ̂†α(r)[−i∇+ As,α(rt)]2ψ̂α(r) +

∫
d3r n̂α(r)vα(r)

)
(6.28)

where As,α = AP + AH,α + Axc,α and

∂tAH,α(rt) = −∇
∫

d3r′
nα(r′t)

|r− r′| (6.29)

The state of the partition KS system evolves according to: i∂tΓ̂f,s(t) = [Ĥf,s(t), Γ̂f,s]

The initial state is chosen such that: tr{Γ̂s,α(0)̂jα(r0)} = jα(r0) The XC potential is

obtained by setting: tr{Γ̂s,α(t)∂tĵ(rt)} = tr{Γ̂α(t)∂tĵ(rt)} This yields:

jα ×∇×AHxc,α + nα∂tAHxc,α = qα − qs,α (6.30)

where qs,α = −itr{Γ̂s,α(t)[T̂α, ĵα]}. The above is the conventional Hxc vector potential

of TDCDFT and is a functional of jα, Γ̂α(0), Γ̂s,α(0). Now we can derive the equiv-

alent of the zero-force theorem: Our objective is to represent the evolution of the

current-density, Eq. 6.15, by means of the current-density shown in Eq. (6.22). As

a consequence, the total momentum P(t) =
∫

d3r j(rt) is represented by the parti-

tioned molecule as well. Suppose the current-density j is given and that we chose the

proper partition field, φ∗,A∗G that yields j; and, the EM field of the real system is

E∗ and B∗. Because the hydrodynamic-like quantities q and {qα} do not exert a net

external force on the system, comparison of total momentum obtained in Eqs. (6.15)

and (6.22) leads to the following exact condition for the partition potential:∫
d3r nE∗P + j×B∗P =

∫
d3r nE∗ + j×B∗ + n∇v −

∑
α

nα∇vα (6.31)

This last equation suggests that the partition potential must have two types of con-

tributions: one ensuring that the system is subject to the right external forces due

to the EM field, and another introducing the right nuclear forces correcting for the

fact that the system is partitioned. Other contribution to the partition field comes

from the internal forces, i.e., the difference between the stress tensor of the real and
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partitioned molecule. These internal forces do not contribute to Eq. (6.3) but they

are essential to reproduce the dynamics of the real molecule.

Our simple extension of the proof of Ghosh and Dhara allows us to regard the

partition 4-potential as a functional of the current for a given partition {vα}. The

EM field of the real system in Eq. () can be eliminated if we split the partition field

as follows:

(AP , φP )[j; Γ̂f (0), {vα}] = (A, φ)[j; Γ̂(0), v] + (AG, φG)[j; Γ̂(0), Γ̂f (0), v, {vα}] (6.32)

where (AG, φG) is the gluing 4-potential, a potential accounting for the time-dependent

correlation between the fragments. It depends on the current density, where the ini-

tial states and external potentials of the real and partitioned system are given. If we

evaluate the 4-potential at the current density j∗ and plug it into Eq. (6.3) we obtain

the condition: ∫
d3r nE∗G + j×B∗G =

∫
d3r

(
n∇v − nα

∑
α

∇vα
)

(6.33)

This equation can be regarded as a generalization of the zero force theorem of TD-

CDFT. In fact, if we only had one partition and eliminate the electron-electron repul-

sion from the only fragment’s Hamiltonian we would obtain that the partition vector

potential, in the Weyl Gauge, becomes the exact Hxc vector potential and the above

equation becomes the zero-force theorem.

The initial density matrix Γ̂f is chosen to represent the initial current-density of

the system j0 = j(rt0). We assumed it is given and found the properties that the

partition field satisfies. There are several methods to find the initial state. If the

molecule is initially in a stationary state (no current-density), then PDFT can be

used to find the initial state, which only needs to represent the density. In such case

we perform the operation

Ef [n(·, t0)] = min{Γ̂f ∈ L : tr[Γ̂fĤ
0
f ]|Γ̂f → n(rt0)} (6.34)

which requires only the introduction of the scalar partition potential φP (or a longi-

tudinal partition vector potential). On the other hand, if the system has an initial
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current density j0 then we replace the density n(·, t0) by the current-density j0 as

the constraint in Eq. (6.34). The density matrix that minimizes the right hand side

of Eq. (6.34) can then be used as initial state. In a similar fashion we obtain the

initial Kohn-Sham state for each fragment, we just apply the same procedure to each

fragment Hamiltonian, T̂α, which is the kinetic energy of non-interacting electrons.

In each minimization, the constraint to satisfy is that the Kohn-Sham system must

yield the initial fragment current-density jα(rt0) (or density nα(rt0) in case there is

no current-density).

6.4 Variational Formulation

Let us consider the Keldysh space, which is defined by a pseudo-time z a vector

of the form (t, σ), where σ only takes to values, + or −. Here we denote z as tσ. For

convenience let us employ the Weyl gauge (or temporal gauge), that is, we set φG = 0.

The Hamiltonian of the fragmented molecule Ĥf is a functional of the partition vector

potential AP. These two objects, Ĥf and AP, now depend on the pseudo-time z. In

general we assume that AP (rt+) 6= AP (rt−). Now define the functional:

FP[A] = i ln tr{Γ̂f (0)V̂f [A](zf , zi)} (6.35)

where zi = t+0 and zf = t−0 and

V̂ [AP](zf , zi) = T̂K exp
(
− i

∫ zf

zi

dz Ĥ[AP](z)
)

(6.36)

where the integration in Eq. (6.36) is taken over the K space is defined as:

∫ z

zi

dz′ Ĥ[AP](z′) :=


∫ t
t0

dt′ Ĥ[AP](t′+), z = t+∫ t1
t0

dt′ Ĥ[A]P(t′+) +
∫ t
t1

dt′ Ĥ[AP](t′−), z = t−.

(6.37)

t1 > t0 is the upper limit of the propagation in real time. T̂K is the path-ordering oper-

ator in the Keldysh space. If z2 is later than z1 in the contour then T̂K[Â(z1)Â(z2)] =

Â(z2)Â(z1). z2 = (t2, σ2) is later than z1 = (t1, σ1) if: i) t2 > t1 and σ2 = σ1 = +, or
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ii) t2 < t1 and σ2 = σ1 = −, or iii) σ2 = − and σ1 = + (regardless the value of t2 and

t1).

It can be shown that: δFP

δAP(rz)
= j̃(rz) where j̃ is pseudo-current:

j̃(rz) =
tr{Γ̂f (0)V̂f (zf , z)(̂jf (r) + n̂f (r)AP(rz))V̂f (z, zi)}

tr{Γ̂f (0)V̂f (zf , zi)}
(6.38)

The pseudo-current becomes the physical current of the fragmented molecule when

AP(rt+) = AP(rt−).

To relate the fragmented and real molecules’ vector potentials define the real

system’s action:

F [A] = i ln tr{Γ̂0V̂ [A](zf , zi)} (6.39)

Where V̂ has the same form V̂f , Ĥf is replaced by the Hamiltonian Ĥ in Eq. (6.36).

Let us define the current-density-functional by means of the Legendre-transformation:

L[̃j] = −F [A] +

∫
d3rdz j̃(rz) ·A(rz) (6.40)

The same transformation applied to the functional FP yields the current-density-

functional LP. Finally let LG be the gluing functional:

LG [̃j] = LP [̃j]− L[̃j] (6.41)

Functional differentiation of this functionals and insertion of Eq. (6.32) gives

δLG

δj̃(rz)
= AG [̃j](rz) (6.42)

This last equation relates the gluing vector potential with its action functional (the

dependency on the initial conditions are the same). The LG action accounts for

the interactions that take place in between the fragments without considering the

external perturbation A. The last step to obtain the gluing vector potential of the

physical system is to evaluate at the physical current of the system, that is when

j̃(rt+) = j̃(rt−).

Further differentiation of Eq. (6.40) and evaluation at the physical regime leads

us to the equation:

χ−1
µν (rt, r′t′) = χ−1

µν,P (rt, r′t′)− χ−1
µν,G(rt, r′t′) (6.43)
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where χ−1
µν is the inverse first order response tensor of the super molecule, where

χµν(rt, r
′t′) =

δAµ(rt)

δjν(r′t′)
(6.44)

Similar equations define χµν,P and χµν,G, A has to be replaced by AP and AG respec-

tively. One can derive Eq. (6.43) using only the above definition, avoiding the use of

the Keldysh formalism. Eq. (6.43) can be recast in the form:

χ = χ
P

+ χ
P
χ−1

G
χ (6.45)

Where χ refers to the matrix form of the tensor(s). This equation can be used within

the linear response regime to obtain the excitation energies of the super molecule. An

interesting property of χ−1
P is that it is additive:

χ−1

P
=
∑
α

χ−1

P,α
(6.46)

where χ−1
P,α = δjα/δAP. However, in Eq. (6.45), the gluing linear response func-

tion must correct χ
P

so the poles (excitation frequencies) of the super molecule are

recovered.

6.5 Charged Particle in a Ring

To illustrate the existence of the partition field, let us consider the case of a charged

particle in a ring under a external periodic potential. The particle is prepared in a

linear combination of its ground state and second excited state. Later this state is

propagated, and the partition field is found solving the inverse problem, that is, given

the current-density find the partition field. The Hamiltonian of the system is:

Ĥ =
1

2mR2
L̂2
z + V (ϕ) (6.47)

where the external potential in this case is: V (ϕ) = −V0 cos(2ϕ − π) Define two

fragments, left (L) and right (R), which are described by:

Ĥα(t) =
1

2mR2
(L̂z − λ(ϕ, t)Θ(t))2 + Vα(ϕ) + vP (ϕ) (6.48)
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where α = L,R, L̂z = i∂/∂φ, λ = BzR
2/2, and Θ(t) is the Heaviside function:

Θ(t) =

1 if t > 0

0 otherwise

(6.49)

The potentials defining the partition are

VL(φ) =

V (φ), 0 ≤ φ < π

0, otherwise

(6.50)

and VR(φ) = VL(φ− π), 0 ≤ φ ≤ 2π.

We begin by finding the eigenvalues of the Hamiltonian shown in Eq. (6.47), that

is Ĥ|ψi〉 = Ei|ψi〉, using the finite differences method. The objective is to reproduce

the time-dependent density generated by the following linear combination:

|ψ(t)〉 = c0|ψ0〉e−iE0t + c2|ψ2〉e−iE2t (6.51)

where c0 =
√

0.98 and c2 =
√

0.02. PDFT is used to obtain the initial state of the

system: The density nref(ϕ, t = 0) = |ψ(ϕ, t = 0)|2 is used as a reference to minimize

the error:

e[vP]2 = ‖nref(·, t = 0)− n0[vP]‖2
2 (6.52)

by varying the partition potential vP where n0[vP] = νL|ψL[vP]|2 + νR|ψR[vP]|2 the

error is minimized using sequential least-squares quadratic programming. The wave-

functions ψL and ψR are functionals of the partition potential and are obtained by

solving the eigenvalue problem Ĥα(t = 0)[vP]|ψα[vP]〉 = Eα|ψα[vP]〉. The wavefunc-

tions ψL and ψR are propagated by solving the Schrodinger equation i∂ψα(ϕ, t)/∂t =

Ĥα(t)ψα(ϕ, t) with the Crank-Nicholson method. At each time step the following

error functional is minimized:

e2[λ] = ‖jref(·, t)− j[λ](·, t)‖2
2 (6.53)

To reproduce the TD current-density of the system, jref = Re(i−1ψ∗∂ϕψ), the above

functional was minimized using the MINPACK routine lder. Even though the current
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density is nearly constant, the λ field varies significantly. An advantage of employing

λ to reproduce the current is the explicit dependence of the latter on the former, i.e.:

j(ϕ, t) = jp(ϕ, t) + n(ϕ, t)λ(ϕ, t) (6.54)

Fig 1.a. shows the external potential of the system and the partition potential required

to represent the initial density of the system. The partition potential has two wells:

one around φ = π/2, and another one at the boundaries. The partitioning scheme we

chose localizes the current-densities of the fragments. The left fragment is isolated

from the right fragment. Therefore, the partition potential must allow for some

spreading of the left fragment density into the right fragments region. The depth

of the partition potential depends on how high the barrier separating the fragment

potentials is. If it is higher then the the partition potential depth should be higher

as well. Fig. 1.b. shows the initial electronic densities of each fragment. In this case

the addition of the second excited state adds some extra charge to the right fragment

density.

In Fig 2.a the partition magnetic field is shown, initially it is zero because we used

the scalar partition potential to represent the initial density and there is no current-

density in the initial state. The partition magnetic potential is unique: There is no

another one with the same initial condition that yields the current-density of the

system. Similarly, for the partition chosen, the current densities shown in Fig 2.b are

unique, and in this case they are localized around their respective fragments. Each

fragments’ current-density is in a 1-1 correspondence with the partition potential.

However, in practice, the map between the total current-density and the partition

magnetic field (or the partition 4-potential in general) is more useful. The reason is

the following: If the current-density of a fragment is localized around the fragment,

then it is not sensitive to variations 4-potential in regions far from the fragment nuclei,

while the total-current density is sensitive far the fragment’s nuclei, if it is close to

the center of another fragment.
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6.6 Concluding Remarks

In this chapter I presented the framework of quantum dynamics, based on the prin-

ciples of DFT, of electronic fragments under scalar or vector potentials. A fictitious

4-potential that quantifies the correlation between the fragments was introduced. The

properties that this potential satisfies were also derived in this chapter. For future

work, new functionals for this framework are required, some directions are shown in

chapter 7.
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7. FRAGMENT-BASED TIME-DEPENDENT DENSITY FUNCTIONALS

7.1 Introduction

Simple and productive methods to investigate dynamical features of solids and

molecules are offered by Time-dependent Density-functional Theory (TDDFT) [1].

This theory embodies many concepts and formal exact results, but its core is the

1-1 correspondence [2] between time-dependent (TD) external potentials and TD

electronic densities, provided the initial state of the system is given. Through the use

of the TD Kohn-Sham (KS) equations [3], every observable of the system is expressed

as a TD density-functional. The TD KS equations are single-particle Schrödinger

equations that require an approximation to the exchange-correlation (XC) potential,

a density-functional.

The adiabatic local density approximation (ALDA) [4] to the TD XC potential

is, perhaps, the simplest, useful approximation to study the dynamics of atoms and

solids. However, when applied to molecules, especially when the distance between

atoms is large, ALDA yields unphysical results. For example, atoms with fractional

charges, undersestimated charge transfer excitation energies, missing double excita-

tions, among others. Alternative TD XC potentials are obtained by careful intro-

duction of functions that depend on KS orbitals, and, sometimes, fitting parameters.

However, it is very challenging to enhance the performance of ALDA while preserving

computational simplicity and elegance.

The TD KS equations describe all the electrons as part of a single entity, impos-

ing a limit on the number of atoms that can be simulated in a reasonable amount

of time. This limit can be increased dividing a molecule into fragments to perform

calculations on each individual fragment. Several approximated methods to investi-
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gate the electron dynamics of molecules are available [5–8]. These consist in assigning

every fragment in the molecule a set of TD single-particle Schrödinger equations (not

necessarily TD KS equations) in which the electrons are subject to a potential repre-

senting the interactions between the electrons of the fragment, and an extra potential

accouting for the interaction between the fragments is added. Successful applications

to the calculation of solvachromatic shifts [9, 10] and excitation energy of monomers

[6] are reported.

A rigurous extension of TDDFT, fragment-based TDDFT, for molecules made of

chemical fragments is presented in Ref. [11]. In this extension a molecule is divided

into fragments, each one is a set of atoms. Every fragment is assigned an initial state,

and a Hamiltonian including a global, auxiliary potential, termed partition potential

(partition potential), which enforces that the total electronic density is the true TD

electronic density of the molecule. We proved that the partition potential is uniquely

determined by the TD electronic density of the system; thus, it can be expressed as

a density-functional. The linear response and extension to consider electromagnetic

fields is presented in Ref. [12].

The Hamiltonians used in Refs. [11] and [12], and the aforementioned approxi-

mated methods, are particle-conserving, i.e., the average number of electrons in a

fragment is time-independent. The purpose of this paper is to extend fragment-based

TDDFT to allow for variable number electrons in each fragment, and preserving the

uniqueness of observables as density-functionals. The formalism introduced in this

paper can serve as a theoretical foundation for the development of methods account-

ing for electronic excitations and processes of electron-transfer, without sacrificing

the use of the ALDA and computational efficiency.
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7.2 Fragment-based TDDFT

7.2.1 Formulation

An electron in a fragment, labeled α, is subject to a 1-body external potential,

denoted as vα. For example, vα(r) =
∑

i∈Iα −Zi/|r −Ri|. Iα is a set of the indeces

corresponding to the atoms composing fragment α. We assign each fragment in

the molecule a Hamiltonian, including an auxiliary potential, here dubbed, partition

potential:

Ĥα[vp](t) = Ĥ0
α +

∫
d3r n̂(r)vp(rt) , (7.1)

where Ĥ0
α = T̂ + Ŵ +

∫
d3r n̂(r)vα(r), T̂ and Ŵ are the kinetic, and coulombic re-

pulsion energy operators, respectively, and n̂(r) is the density operator. This Hamil-

tonian is in absence of any external driving force besides that due to the nuclei of

the fragment α. TD displacement of the positions of the nuclei can be described by

introducing a time-dependent Hamiltonian where vα is replaced by the corresponding

TD fragment-potential,
∑

i∈Iα −Zi/|r−Ri(t)|.
The state of a fragment is described by the evolution of the ket |ψα[vp](t)〉 in Fock

space, which satisfies the TD Schrödinger equation:

i∂t|ψα[vp](t)〉 = Ĥα[vp](t)|ψα[vp](t)〉 , (7.2)

where

|ψα(t)〉 =
∑
M

να,M |ψα,M(t)〉 . (7.3)

{ψα,M} are kets corresponding to states with integer number of particles and να,M

is the weight amplitude of that state. Kets with different number of electrons are

orthogonal, 〈ψα,M |ψα,M ′〉 = 0 ,M 6= M ′. The total density is defined as

n(rt) =
∑
α

nα(rt) , (7.4)

and nα(rt) = 〈ψα(t)|n̂(r)|ψα(t)〉 . In Ref. [11], the following theorem was proved: given

a set {ψα,0, vα}, two potentials vp and v′p that differ by more than a TD constant
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cannot give rise to the same density. A corollary of this theorem is that there is a

TD density-functional that, when evaluated at a given TD electronic-density, gives

the corresponding TD partition potential.

The partition potential represents the TD electronic density of the supermolecule,

it is decomposed as follows [12]:

vp(rt) = vG(rt) + vd(rt) . (7.5)

vG is the gluing potential, accounting for the correlation between the fragments, and

vd is the driving potential the molecule is subject to (e.g. laser field). The gluing

potential yields the shape of the potential such that the TD electronic density is

recovered. The formal expression defining the gluing potential is:

1

i
∇ · n(rt)∇vG(rt) = 〈ψ(t)|[Ĥ0,∇ · ĵ(r)]|ψ(t)〉

−
∑
α

〈ψα(t)|[Ĥ0
α,∇ · ĵ(r)]|ψα(t)〉 .

(7.6)

The right hand side terms of the above equation are TD density-functionals. Approx-

imation to the terms on the r.h.s of the above equation and solution to the resulting

differential equation renders an estimation to the gluing potential. Another way of ap-

proximating vG is assuming that the system evolves adiabatically through its ground

states, driven by a very slowly-varying field. In such case the potential vG is obtained

from the adiabatic approximation in ground-state Partition DFT [13,14]:

vAd
G [n(t)] = vAd

p [n(t)]− vHK[n(t)] , (7.7)

where vHK[n(t)] is the external perturbation the interacting electrons are subject to in

their ground-state in order to yield the density n(rt) (vHK follows from the Hohenberg-

Kohn theorem). The partition potential, vAd
p [n(t)], is the Lagrange multiplier required

to solve the minimization:

min
{ψα}→n(t)

∑
α

〈ψα|Ĥ0
α|ψα〉 . (7.8)

The Lagrange multiplier for this problem is unique, up to an arbitrary constant [15].
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For practical applications, the TD partition KS equations are:

i∂tφi,α(r, t) =
(
− 1

2
∇2 + vHxc[nα](r, t)

+ vα(r) + vG[n](r, t) + vd(r, t)
)
φi,α(r, t) .

(7.9)

The density is obtained by means of: n(r, t) =
∑

iα fiα|φiα(r, t)|2 , where {fiα} are

the occupation numbers (time-independent), chosen from a proper ensemble [11].

7.3 Classical Interpretation of the Partition Potential

We now show that, when the system is split into a subsystem made of a single

massive particle, and bath formed by particles much smaller than the massive one,

the partition potential is responsible for the Langevin dynamics. The evolution of the

subsystem particle, labeled S, is dictated by Eq. (7.2). The average position of the

particle is r̄S(t) =
∫

d3r r|ψS|2(r, t). By the Ehrenfest theorem and correspondence

principle we have

mS
d2r̄S

dt2
= −Fp,S(t) , (7.10)

where Fp,S(t) = −
∫

d3r |ψS|2(r, t)∇vp(r, t), and mS is the mass of the particle. In

the classical limit, comparison with the equation of motion of the real system indi-

cates that −(∇vp)(r̄S(t)) = −(∇Uint)(r̄S(t), r̄B(t)), where Uint is the total interaction

potential between the particles.

As the mass of the subsystem particle is increased, the density tends to the classical

Dirac distribution. Thus, the shape of the partition potential for any point but that of

the particles is undefined. However, for given initial momenta and coordinates of the

particles and bath, the evolution of the momenta of the total system is in a one-to-one

correspondence with the partition forces exerted on each particle. Furthermore, if the

assumptions of Langevin dynamics are applicable, the partition force of the massive

particle can be interpreted as Fp,S(t) = −γvS(t) + Fran(t). Where vS(t) = −dr̄S/dt,

γ is the friction coefficient, and Fran is the random force.
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7.4 Numerial TD Potentials

TDDFT, which our formulation is built upon, concerns about the simplication of

the problem:

(i∂t − Ĥλ[v](t))|ψ(t)〉 = 0, |ψ(0)〉 = |ψ0〉 , (7.11)

where

Ĥλ[v](t) = T̂ + λŴ +

∫
d3 rn̂(r)v(rt) . (7.12)

Runge and Gross [2] showed that if v is Taylor-expandable and does not display phys-

ical anomalies in the boundaries, then v determines n uniquely, up to a TD constant

in the potential (this theorem can be extended to include non-analytic potentials

[16]). Let us denote the RG map as Λλ
ψ0

; thus, n(t) = Λλ
ψ0

[v](t). The operator Ŵ can

be representative of different types of electron-electron interactions, such as screened

coulombic repulsion. If λ = 0, then the electrons are free.

Suppose a well behaved density, nref , and a initial state ψ0 are known. If v1 and v0

exist, where vλ(t) = (Λλ
ψ0

)−1[nref ](t), then, the Hartree-exchange-correlation potential

for the system, by definition, reads vHXC = v0− v1. For the exact TDDFT, one needs

the map Λψ0 , i.e., the TD Schrödinger equations has to be solved, which is what is

to be avoided in practical calculations.

For the development of functionals, exploration of the map Λλ
ψ0

is fruitful; this

map could be investigated by solving the problem nref(t)− Λλ
ψ0

[v](t) = 0, which is a

root-finding problem. The first order response of the density for some perturbation

δv is δn(rt) =
∫

d3rdt χ−1(rt, r′t′)δv(r′t′). The response function χ−1 should decay

in the asymptotics. Hence, large perturbations of v in the asymptotics have little

response in n. In the ground-state case this problem can be alleviated by enforcing

satisfaction of eigenvalue constraints. For three dimensional applications, capturing

the asymptotic region is difficult if the Gaussian basis sets are used because they do

not display the right asymptotic behavior. In practice, the root-finding problem is

quite unstable.
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Instead of solving the exact root-finding problem, one can solve a minimization

problem:

min
v∈V

∫ T

0

‖nref(s)− Λλ
ψ0

[v](s)‖2
µ ds . (7.13)

This problem is still theoretical because the quantities nref(t) and 〈ψ[v](t)|n̂(r)|ψ[v](t)〉
need to be approximated. Instead, we now write nref(t) − Λλ

ψ0
[v](t) = ñref(t) −

Λ̃λ
ψ0

[v](t) + ε[nref , v]. ñref(t) is the approximation to nref(t) and Λ̃λ
ψ0

[v] is the ap-

proximation to Λλ
ψ0

. If v∗ is the exact potential representing nref , then the problem

becomes ñref = Λ̃λ
ψ0

[v∗] + ε. Because we cannot use exact methods to determine nref

and Λλ
ψ0

, we assume that ε is a random function. Moreover, one would expect that

ñref and Λλ
ψ0

have smooth timespace gradients, and that ε displays autocorrelation

because the spacing between points is arbitrarily small.

7.4.1 Estimation of the Partition Potential

Let Vp be a space of TD partition potentials, and D a space of TD densities and

define the map:

ΛS0 : Vp → D , (7.14)

where S0 = {ψα,0, vα}. For a given TD partition potential, the density is obtained

by evaluation of the above map at the given partition potential, in other words,

n(t) = ΛS0 [vp](t). This map depends on the history of the partition potential, i.e., it

has memory dependence [11].

Let v∗p be the true partition potential. We assume that, due to numerical errors,

the estimation to the reference density ñref is of the form ñref = Λ̃S0 + ε, where ε

is a random function. To estimate the partition potential corresponding to ñref we

minimize:

‖e[vp]‖2
µ = ‖ñref − Λ̃S0 [vp]‖2

µ , (7.15)

where dµ(r, t) is the measure.
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Given ε is a function, its probability density function (PDF) is a functional. The

PDF depends on parameters, we denote them as Θ, and the PDF as D([ε]|Θ). The

probability that ε is observed in a set U is given by the path integral:

P (ε ∈ U|Θ) =

∫
U

dmL[ε] D([ε]|Θ) , (7.16)

Where the measure over the space of errors is mL. The traditional methods of non-

linear regression can be applied to estimate the best parameters of the distribution,

Θ∗, for a given set of observations. Then a Taylor expansion in terms of the parameters

can be used to generate the PDF of the parameters, which can then be used to

estimate the error in the parameters. In this case, the parameters are: The variance

and the partition potential.

In the next section, we will expand the partition potential in a spline basis set.

In this method the parameters are the values of the partition potential at the knots.

The parameters are correlated: A perturbation of the partition potential at one knot

affects the response of the density in other knots. Hence, we must employ a model

of correlated errors. Finding the correct model is a quite demanding task, perhaps,

beyond the scope of this work. For this reason, I choose a biased model based on

the following observations: i) A measure of the error of the form
∫

d3rdt (ñref(r, t)−
Λ̃S0 [vp])2 suffers of autocorrelation. ii) Far from the molecule, the partition potential

has little influence on the density. iii) Estimating the density is not sufficient, its

spatio-temporal gradient is an important quantity. An error measure accounting for

these observations is:

‖e[vp]‖2
µ =

∫
dµ(r, t){|∇e(r, t)|2 + (∂te(r, t))

2} . (7.17)

Based on ii), we choose a measure of the form dµ(r, t) = d3rdt
∑

i ñ
ref(ri, t)δ(r− ri).

Where {ri} are points selected in such a way that |∇e|2 + (∂te)
2 resembles a χ2-

distribution. To apply this measure of error in the next section, we need to transform

the above measure into a vector norm. Then, the resultant distribution is expanded

in terms of the gradient of the partition potential and asymptotic analysis is applied,
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leading to the random variables required to reproduce the density within a small error

tolerance.

7.4.2 1d Electron in a Double-well Potential

Let us consider the following example: a one dimensional electron in a double well

potential:

i∂tφα(x, t) =
(
− 1

2
∂2
x + vα(x) + vp(x, t)

)
φα(x, t) , (7.18)

where α = L,R. The potentials are vα(x) = v0/
√

(x− xα)2 + a; the parameters are:

v0 = −1, xR − xL = 4, and a = 1. The density is obtained by averaging over the

orbital densities of each well:

n(x, t) =
1

2
|φL(x, t)|2 +

1

2
|φR(x, t)|2 . (7.19)

Suppose that the supermolecule evolves from the ground-state driven by a monochro-

matic laser, the evolution of the system is thus dictated by the solution of:

i∂tψ(x, t) =
(
− 1

2
∂2
x + v(x) + vd(x, t)

)
ψ(x, t) , (7.20)

where vd(xt) = Ex sinωt, and the external potential is v = vL + vR. The density

obtained from the above evolution equation is nref(xt) = |ψ|2(xt), which is the target

density we wish to represent.

The laser parameters are ω = 0.3, E0 = 0.05. We propagate the states of the sys-

tem using the Crank-Nicholson method; time step is 0.1, box length is 20, spatial step

is 0.17, and total propagation time is 10 units. The partition potential is represented

in a spline basis set with 40 knots equally spaced in the box. The initial partition po-

tential is estimated by minimizing the error using sequential quadratic programming

(as shown in Chapter 6). First the problem (−1/2∇2 + vα + v0
p)φn,α = εn,αφn,α is

solved for both wells with some estimation of v0
p; then, the density is compared with

that of the system of reference in order to propose the next estimation in the iterative

procedure of sequentional quadratic programming. The TD partition potential is also

found using the steps shown chapter 6.
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Figure 7.1. Snapshots of the partition potential. In a), solid line: To-
tal external potential, dashed line: Left fragment external potential,
dashed-dotted line: Right fragment potential. In b), c), and d), solid
lines: Left electron-fragment density, dashed lines: Right electron-
fragment density. In c) and d) the dashed-dotted line is the total
density.
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Figure 7.2. Error estimation of the partition potential at t = 6.2. The
dashed and dashed-dotted lines correspond to two random-trajectory
simulations.

Figure 1.a. shows the initial partition potential and external potentials of each

well. The initial fragment densities that add up to the ground-state density of the

supermolecule are displayed in Figure 1.b. Figure 1.c. shows the partition potential

at t = 1.0; it is localized in the intermediate region between the fragments. The

electron-fragment densities (Figure 1.d) are also well localized at t = 1.0. Because

in absence of the partition potential the fragment-densities would just be localized

around their wells, the partition potential must be such that it induces the transfer

of charge from the right fragment into the left fragment (Figure 1.e). However, as

we note in Figure 1.f, the charge transfer in this case is represented by the spreading

of the right fragment’s density into the left one. Two observations: i) if one were

to assign a grid that is fine around the center of the wells and then coarse as one

moves away from the wells, then to describe the density spreading, the grid should

be time-dependent to account for this. ii), The partition potential must induce the

charge transfer and act like a “spoon”.

The result of the error estimation in the partition potential at t = 6.2 is shown

in Figure 2. As expected the error is quite significant in the boundary regions of

the system. This implies that the shape of the potential in these regions is not

reliable. Besides, since all space-time points obeying causality are coupled, the error

will indeed spread to regions were the density is non-negligible. Despite the error

shows large derivative fluctuations in the estimation, these can cause instabilities in
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the minimization procedure, for this reason we recommend that the resulting potential

should be smoothed using the local error as a smoothing paramater.

7.5 Variable Occupation Numbers

To avoid the physical and numerical problems described in the previous section,

let us assign variable electron-occupation numbers to the fragments. First, divide the

propagation time into blocks [0, τ) ∪ [τ, 2τ) ∪ . . . ∪ [(m − 1)τ,mτ), where mτ is the

total time of the propagation, and let

Xα = {|ξ0
α〉, |ξ1

α〉, . . . , |ξmα 〉} , (7.21)

be a set of kets for fragment α. At a single time t = kτ , the following minimization is

performed to obtain the set of kets describing the density of the fragmented molecule:

{|ξkα〉}
Nfrag

α=1 = arg min
{∑

α

〈ψkα|Ĥ0
α|ψkα〉 s.t.

{|ψkα〉} → n(kτ−), j(kτ−)
}
,

(7.22)

the occupation numbers of fragment α are formally expressed as |να,M(kτ)|2 = |〈ξkα,M |ξkα〉|2 .
These numbers, and j (the current-density) as well, are density-functionals.

The evolution operator of fragment α is: Ûα[vp](t1, t2) = T exp(−i
∫ t1
t0

ds Ĥα[vp]) .

Introduce the displaced set of kets:

X̃α = {Ûα(τ, 0)|ξ0
α〉,

Ûα(2τ, τ)|ξ1
α〉, . . . Ûα(mτ, (m− 1)τ)|ξm−1

α 〉} .
(7.23)

Now let us define the following dyadic product: (XαX̃
†
α)(k) = |ξkα〉〈ξ̃k−1

α |. The symbol

XαX̃
†
α is the set of dyadic products where the k-th component is the dyadic product

between the ket at the beginning of the k-th block and the displaced ket from the

k − 1-th block. Now, let B̂α be the TD operator:

B̂α(t) = (Xτ ∗ lnXαX̃
†
α)(t)

=
m∑
k=1

δ(t− kτ) ln |ξkα〉〈ξ̃k−1
α | .

(7.24)
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where Xτ is the Dirac-Comb kernel. Addition of the operator B̂α to the Hamiltonian

Ĥα(t) yields the non-Hermitian operator:

Ĥc,α[vp](t) = Ĥα[vp](t) + iB̂α[vp](t) . (7.25)

The evolution of the system is now determined by |ψα[vp]〉, which obeys

i∂t|ψα[vp](t)〉 = Ĥc,α[vp](t)|ψα[vp](t)〉 , (7.26)

the total density is n(rt) =
∑

α〈ψα(t)|n̂(r)|ψα(t)〉 and the number of particles in

fragment α is Nα(t) = 〈ψα(t)|N̂ |ψα(t)〉. In general, any observable, Ô(t), is expressed

as a functional of the partition potential, 〈ψα[vp](t)|Ô(t)|ψα[vp]〉.
Given the partition potential and occupation numbers as density-functionals, the

scheme to determine the evolution of the molecule is: First the kets {|ψα〉} are prop-

agated in the interval [0, τ) with fixed populations on each fragment. Then, at t = τ

new occupation numbers are obtained from Eq. (7.22) as well as new states to prop-

agate, and the propagation continues in the block [τ, 2τ). The procedure continues

similarly for the rest of the propagation. The density of the system is then obtained

as n(r, t) =
∑

α〈ψα(t)|n̂(r)|ψα(t)〉. The theorem discussed in section 2 also applies in

this case. Therefore, the partition potential for this scheme is uniquely determined

by the TD electronic density, up to an arbitrary constant.

The partition potential is discontinuous at the relaxation nodes (points where

t is an integer multiple of τ). Discontinuities in time can be eliminated by using

an integral transformation that smooths the observable at the relaxation nodes. In

practice, however, it is convenient to propagate the occupation numbers and gluing

potential assuming that they are continuously differentiable functions of time. It can

be shown, assuming that the dynamics of the occupation numbers is much slower than

that of the partition potential, that the 1-1 map between the former and the density

still holds. This follows from the scheme we have shown here because the electronic

populations are fixed in the first block, allowing us to apply the Runge-Gross theorem

in such block.
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Figure 7.3. Evolution of the fragments with TD electron populations.
In a) the solid line is the result from the inversion, and the dashed
line is the result from the two-state approximation. In c), e), and g),
solid line: nL, dashed line: nR, dashed-dotted: n.

A density-functional approximation to the occupation numbers is the last step to

apply the theory illustrated in this chapter. The dynamics of the occupation numbers

can be investigated using master equations, where the rate coefficients are determined

by Dirac’s golden rule, or transition elements that couple the fragments. Here, we

illustrate a simple approach: A trial wave function to investigate the evolution of the

occupation numbers is |η(t)〉 = ξL(t)|ϕL〉+ ξR(t)|ϕR〉, where |ϕα〉 is the ground-state

of the electron described only by Ĥ0
α (This hamiltonian in coordinate represtation is
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−1/2∂2
x + vα(x)). The dynamics of electron transfer is governed by a two-component

wave-function ξ = (ξL, ξR)T. We assume that the Hamiltonian coupling that relates

the two fragments is of the form:

Ĥ(t) = Ĥf +

∫
dx (vG(x, 0) + vd(x, t))n̂(x) (7.27)

where Ĥf = ĤL ⊕ ĤR, is the uncoupled Hamiltonian; Ĥα|ϕβ〉 = 0 if α 6= β. Here we

further assume, for the sake of the illustration, that the gluing field is frozen; hence,

it serves as a “bridge” for the charge to be transferred from one well into the other.

From the evolution Eq. i∂t|η(t)〉 = Ĥ(t)|η(t)〉 we infer that the state vector, ξ,

satisfies:

i∂tξ(t) = S−1(ε0 + ∆(t))ξ(t) (7.28)

where Sαβ =
∫

dx ϕ∗α(x)ϕβ(x), ε0 = diag(ε0, ε0), and

∆αβ(t) =

∫
dx ϕ∗α(x)(vG(x, 0) + vd(x, t))ϕβ(x) . (7.29)

The occupation numbers are obtained from the “density” of ξ: Nα(t) = |ξ̃α|2(t) +

Re(ξ∗L(t)ξR(t)SLR). The last term arises from the overlap of the functions ϕL and ϕR,

guaranteeing that NL +NR = 1.

Let us revisit the example of section 7.4.2. The parameters for the propagation

now are τ = 2, ∆t = 1, ω = 0.3, E0 = 0.02. The exact dependency of the average

number of electrons of the left fragment on time is shown in Figure 3.a. The two-state

approximation works very well at short times, and displays deviations after t = 20.

The dynamics of the two-state approximation would be quite challenging to capture

by fixing the occupation numbers and finding the corresponding partition potential.

Improvements over the two-state approximation can proceed by either refining the

gluing potential (going beyond the frozen approximation) or increasing the number of

states considered to couple the fragments. The first alternative has the advantage that

the equations can be solved very fast. Nonetheless, it must remarked, for functional

development, that the gluing potential is also a determinant factor for the evolution

of the shape of the electronic fragment-density (
∫
nα/Nα).
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Figure 3.b shows a snapshot of the “exact” partition potential at t = 10. In

constrast with the results of section 3.2, the partition potential now remains well lo-

calized (Figures 3.d and 3.f). This suggests that the standard methods of ground-state

PDFT can be used to estimate the partition potential through the use of the adia-

batic approximation (a report on a complete framework to apply PDFT in molecules

in underway). The fragment densities also remain localized (Figure 3.c, 3.e, and

3.g). Qualitatively, the partition potential is in charge of the shape of the electronic

densities of the fragments, while the occupation numbers are responsible for their

height.

7.6 Conclusions

We formulated a TDDFT for treating a molecule as composed of smaller composite

units. To successfully apply these theories we need approximations to the partition

potential and the occupation numbers, this can be accomplished by a proper ap-

proximation to the Hamiltonians {Ĥc(t)}, or the auxiliary evolution equations of the

electron populations in the fragments; the approximations I discussed in chapter 4

will assist the estimation of gluing potentials. The error analysis was also presented.

It leads to a simple form of estimating the errors in the potentials. In agreement with

the classical interpretation, the problem is ill-posed for regions where the density is

small. However, as time increases, the error might propagate from the boundaries

into the regions were the density is high.
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8. CONCLUDING REMARKS

The formulation of the principles and mathematical framework to study the quan-

tum mechanics of molecular fragments has been completed in this thesis. Future work

requires attention to the numerics for applications in large molecules. The machinery

developed here is sufficient to develop methods that are applicable to systems with

large number of atoms.

The author believes that the local spin-density approximation must be conserved

for large systems. For example, better approximation to the kinetic partition energy

can be useful for calculations. There is great flexibility in the formalism of partition

density functional theory to “rescue” local approximations to the XC energy and TD

potential.
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Partition density functional theory (PDFT) [P. Elliott, K. Burke, M.H. Cohen, and A. Wasserman, Phys. Rev. A
82 (2), 024501 (2010)] is a formally exact method for obtaining molecular properties from Kohn–Sham
calculations on isolated fragments. Here, we express the partition energy of PDFT as an implicit functional of the
molecular spin-densities for a given choice of fragmentation, and use the principle of von Barth and Hedin to
formulate the spin-decomposed version of PDFT. We introduce a partition energy functional of the spin-up and
spin-down electronic densities and derive the associated polarized partition potentials, which are found to be
global quantities that influence every fragment in the molecule. Along with the formal theory, we propose a
simplified approach to computing the spin-partition potentials, and illustrate its utility and accuracy with two
simple examples. Finally, we propose a viable approach to including external electric and magnetic fields in the
framework of spin-PDFT.
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1. Introduction

The success of Density Functional Theory (DFT) to
describe the ground-state properties of many-electron
systems has positioned it as one of the top choices for
quantum chemistry calculations of molecules and
materials. The extension of ground-state DFT to the
spin-dependent case was first proposed by von Barth
and Hedin [1]. They showed that in the presence of a
static magnetic field there is an energy functional of the
spin-densities which yields the correct energy of the
system when it is minimized with respect to variations
of the spin-densities. Even if the external potential is
spin independent, the principle of von Barth and Hedin
[1] (BH) holds, thus subsuming the original principle of
Hohenberg and Kohn [2] (HK), which did not initially
consider spin-dependent external fields. A comparison
of these two variational principles, HK and BH,
reveals that the HK principle offers a direct minimi-
zation with respect to the electronic density, whereas
the BH principle entails a two-step energy minimiza-
tion. One reason to choose SDFT in practice is that the
correlation of electrons with anti-parallel spins is a
significant contribution to the correlation energy [3],
making the explicit functional dependence on the spin-
densities a useful one. However, both HK and BH
principles are equivalent in the absence of magnetic
fields. Both lead to the correct ground state energy.

The applications of these ground-breaking princi-
ples to physics and chemistry have been made possible

through the Kohn–Sham (KS) method [4], in which the

real system of particles is mapped into a fictitious

system of non-interacting particles. This method

introduces the exchange-correlation functional, whose

accurate approximation has been a major challenge for

the theoretical community during the last 50 years.
The scaling of the computational cost tends to be a

limiting issue in quantum-chemical simulations. Even
an approximate DFT calculation may be expensive for
systems with hundreds of atoms. For this reason,
several theories of molecular fragmentation have been
proposed, whose purpose is to allow for a divide-and-
conquer approach [5] (for example, see recent special
issue of Phys. Chem. Chem. Phys. on fragment and
localized orbital methods in electronic-structure theory
[6]); this also permits one to assign electrostatic charges
to individual fragments. The key is the division of a
large molecular system into simpler and smaller
subsystems for which arbitrarily accurate calculations
are feasible. The division of a molecule into its atomic
fragments is one of the most natural choices, and DFT
offers several appealing ways to define ‘atoms in
molecules’ [7–10]. The basic idea is to take advantage
of the fact that the external potential is the sum of
nuclear attractive potentials. An energy functional can
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then be defined for an electron density associated with
each individual nucleus; such an energy functional only
depends on a localized density corresponding to that
fragment and (ideally) tends to localize around the
fragment’s nucleus. Two constraints are imposed:
(i) the total number of electrons must be conserved;
and (ii) the sum of localized densities must coincide
with the total molecular density. The first constraint
gives rise to the well-known chemical potential, and the
second one yields a Lagrange multiplier which is a
function of the position [9].

A mathematical formulation of the above ‘Partition
Theory’ (PT) was proposed in a series of papers by
Cohen and Wasserman [11]. By merging PT with
Kohn–Sham DFT, Elliott et al. [12] then found a
method to obtain ground-state molecular properties by
carrying out self-consistent calculations on isolated
fragments. They introduced an energy functional Ef

which is the minimum sum of the energies of the
isolated fragments under the constraint that the sum of
the fragments’ electronic densities add up to the total
molecular density. In order to match Ef with the true
energy functional, a residual functional was intro-
duced, the ‘partition energy’, Ep. Its associated poten-
tial, the partition potential, is a global potential in the
sense that every fragment is influenced by it. This
Partition Density Functional Theory (PDFT) is an
exact reformulation of the ground state problem. It is
consistent with the density-partitioning ideas of Parr
and co-workers [7–10], close to embedding methods
whose original purpose was to treat a particular region
within a larger system [13–17], and also similar in
practice to the self-consistent atomic deformation
theory of Mehl and co-workers [18–21]. Some similar-
ities and differences have been discussed elsewhere
[12,22], and a more detailed and extensive comparative
analysis is forthcoming.

In this paper we do three things: (1) express the
partition energy of [12] as an implicit functional of the
molecular density for a given choice of fragmentation
(Section 2); (2) use the BH principle to formulate
Partition Spin Density Functional Theory (Section 3),
along with a simplified approach to computing the spin-
partition potentials (Section 3.2), which we illustrate
with two simple examples (Section 3.3); and (3) propose
a viable approach to including external electric and
magnetic fields in the PDFT formalism (Section 3.4).

2. Partition energy as an implicit density functional

The algorithm proposed in [12] (PDFT) provides a way
to find the ground-state energy Ev and density nðrÞ for
a system of N interacting electrons moving under the

influence of an external potential vðrÞ, without having
to solve the problem directly for vðrÞ but indirectly

via fragment calculations. Paving the way for the

developments of the next sections, we start by unveil-

ing an important aspect of PDFT that was not made

explicit in the presentation of [12].
To find Ev, the functional

Ev½n� ¼ F½n� þ
Z

dr vðrÞnðrÞ ð1Þ

needs to be minimized with respect to density varia-

tions subject to the constraint that the density inte-

grates to N electrons:

Ev ¼ min
n

Ev½n� s:t:

Z
dr nðrÞ ¼ N: ð2Þ

In Equation (1), F ½n� is the Levy–Lieb universal

functional [23]. Now choose Nf fragments by parti-

tioning the external potential as

vðrÞ ¼
XNf

�

v�ðrÞ, ð3Þ

and define ~Ep½n; fn�g� as
~Ep½n; fn�g� ¼ Ev½n� � ~Ef½fn�g�, ð4Þ

where ~Ef½fn�g� is the sum of fragment energies, an

explicit functional of a set of Nf fragment densities

fn�g,

~Ef½fn�g� ¼
XNf

�

Ev� ½n��: ð5Þ

The prescription of [11,12] minimizes ~Ef½fn�g� subject to
the constraint that the sum of fragment densities equals

the total molecular density. The corresponding Euler–

Lagrange equation is:

� ~Ef½fn�g�
�n�ðrÞ þ ~vpðrÞ � � ¼ 0, ð6Þ

where the potential ~vpðrÞ enters as the Lagrange

multiplier guaranteeing satisfaction of the density

constraint, and is thus �-independent. The chemical

potential � also enters here as a Lagrange multiplier to

ensure that the sum of fragment occupations equals the

total number of electrons. Inserting Equation (5) into

Equation (6):

�Ev� ½fn�g�
�n�ðrÞ þ ~vpðrÞ � � ¼ 0: ð7Þ

Although Equation (7) can be solved for all � to find

the optimum set of fragment densities f �n�g yielding a

pre-set density, the goal PDFT sets itself is to find the
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unique vpðrÞ � ~vpðrÞ� nðrÞ [24] that yields the correct
ground-state density nðrÞ. To achieve this, recast
Equation (2) as:

Ev ¼ min
n

Ef½n� þ Ep½n�
� �

s:t:

Z
dr nðrÞ ¼ N, ð8Þ

where we have defined

Ef½n� ¼ min
fn�g� n

~Ef½fn�g�, ð9Þ

Ep½n� ¼ min
fn�g� n

~Ep½n; fn�g� ð10Þ

as implicit functionals of the total density, with the
symbol fn�g� n indicating that

PNf

� n�ðrÞ ¼ nðrÞ.
The search in Equations (9) and (10) is carried out
over all ensemble v-representable (EVR) densities, and
the search of Equation (8) over all EVR-decomposable
densities, those that can be expressed as a sum of
EVR fragments [24]. The Euler–Lagrange equation
associated with the minimization procedure of
Equation (8) is:

�Ef½n�
�nðrÞ þ �Ep½n�

�nðrÞ � � ¼ 0: ð11Þ

The proofs of [25–27] indicating that all densities are
EVR suggest that the search above is not problematic.
Furthermore, the need for v-representability could be
circumvented by reformulating the method in terms of
Legendre transforms [27,28] or via potential func-
tionals [29–32]. From Equation (9), one can see that
the functional derivative of Ef½n� with respect to the
n�ðrÞ must vanish if the total density is held fixed, but if
it is allowed to vary as �nðrÞ ¼ �n�ðrÞ, then Equations
(5) and (11) lead to:

�Ev� ½n��
�n�ðrÞ þ �Ep½n�

�n�ðrÞ � � ¼ 0, ð12Þ

where the second term on the left is independent of �,
in spite appearances, because

�Ep½n ¼P
� n��

�n�ðrÞ ¼
Z

dr0
�Ep½n�
�nðr0Þ

�nðr0Þ
�n�ðrÞ ¼

�Ep½n�
�nðrÞ : ð13Þ

The unique partition potential vpðrÞ � ~vpðrÞ� nðrÞ is,
from Equations (7) and (12):

vpðrÞ ¼ �Ep½n�
�nðrÞ

����
min

: ð14Þ

Although vp, �ðrÞ � �Ep½n�=�n�ðrÞ is �-independent
for the exact Ep½n� at convergence, vp, �ðrÞ may
depend on � at intermediate steps of any iteration
procedure used to solve Equation (12). It may also
depend on � at convergence when employing approx-
imate functionals for Ep½n�. Thus, we will find it

convenient to define the Q-functions of Section 3.2.
They measure the response of the fragment densities to
variations of the total density, and will allow us to
propose a practical expression for calculating vpðrÞ.

3. Partition spin density functional theory

3.1. Scalar external fields

In the absence of external electric or magnetic fields,
and when the external potential vðrÞ is spin indepen-
dent, the extension of PDFT to spin-densities is
straightforward. We only need to add a new index to
the densities of the previous section. Under the BH
variational principle we need to minimize the following
functional to obtain the ground state energy and spin-
densities:

Ev½n", n#� ¼ F½n", n#� þ
Z

dr vðrÞnðrÞ, ð15Þ

where F is:

F½n", n#� ¼ min
Ĝ!n", n#

TrfĜðT̂þ V̂eeÞg: ð16Þ

Here Ĝ is the zero-temperature density matrix of the
molecular system, and T̂ and V̂ee are the total kinetic
and electron–electron interaction operators. The exter-
nal potential is again partitioned as shown in Equation
(3). Now, however, each fragment has two spin-
densities associated with it. We denote the electronic
density of fragment � as n�ðrÞ ¼ n"�ðrÞ þ n#�ðrÞ. Hence,
the total spin-density n�ðrÞ is expressed as:

n�ðrÞ ¼
XNf

�

n��ðrÞ: ð17Þ

Now, let us define the partition energy functional as an
implicit functional of the total spin-densities:

Ep½n", n#� ¼ Ev½n", n#� � Ef½n", n#�, ð18Þ
where

Ef½n", n#� ¼ min
fn��g!n�

X
�

Ev� ½n"�, n#��: ð19Þ
To minimize ~Ef½fn��g� ¼

P
� Ev� ½n"�, n#�� subject to the

constraint that the fragment spin-densities add up to
the molecular spin-densities, we introduce the follow-
ing Lagrangian functional:

L½fn��g, fn�g� ¼ ~Ef½fn��g�

þ
X
�

Z
dr ~vp,�ðrÞ

X
�

n��ðrÞ � n�ðrÞ
( )

þ � N�
Z

dr
X
��

n��ðrÞ
( )

:

ð20Þ
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Unconstrained minimization of L½fn��g, fn�g� with
respect to the fragment densities yields the equation
of motion:

�Ev� ½n���
�n��ðrÞ þ vp,�ðrÞ ¼ �, ð21Þ

vp, �ðrÞ ¼ �Ep½n", n#�
�n�ðrÞ

����
min

: ð22Þ

The fact that ~vp,�ðrÞ ¼ vp, �ðrÞ in Equation (21) follows
from comparing it with the Euler equation obtained
when minimizing Ev½n", n#� ¼ Ep½n", n#� þ Ef½n", n#�
subject to the number constraint. The spin-fragment
densities n��ðrÞ integrate in general to a non-integer
number of electrons N��. The energy functionals
Ev� ½n"�, n#�� should therefore be taken to be of the
PPLB form [33]:

Ev� ½n"�, n#�� ¼ ð1� ��ÞEv� ½np"� , np#� �
þ ��Ev� ½np"�þ1, np#�þ1�,

ð23Þ

where p�� and p��þ1 are the bordering integers of
N�� ¼ p�� þ ���, and �� ¼ �"� þ �#�. Here, however,
for simplicity, we follow the recent approach of Huang
and Carter [34] and fractionally occupy the fragment
Kohn–Sham orbitals of the ð p�� þ 1Þ-electron system,
defined as those that minimize the non-interacting
kinetic energy for each fragment. The non-interacting
kinetic energy functional of fragment � is defined as:

Ts,�½n"�, n#�� ¼ min
f���g!n��

X
i�

fi��h�i��jt̂j�i��i, ð24Þ

where t̂ is the one-electron kinetic energy operator, and
the occupation numbers ffi��g can be chosen to match
those that would be obtained from PPLB.
Consequently, the localized spin-densities are
expressed by:

n��ðrÞ ¼
X
i

fi��j�i��ðrÞj2: ð25Þ

The total number of orbitals in PSDFT is approxi-
mately the same as that in standard SDFT. For
example, suppose we have a molecule with three spin-
up electrons and a partition with two fragments has
been chosen such that there are 1.5 electrons in each
fragment. In SDFT we would need three spin-up
orbitals to describe these electrons, while four orbitals
are required in PSDFT. Hence, in terms of number of
orbitals, the amount of computation does not increase
significantly.

If the fragment spin-densities are non-interacting v-
representable, then these can be obtained from the KS
equations (atomic units used throughout):h

� 1

2
r2
r þ vs,��ðrÞ

i
�i��ðrÞ ¼ 	i���i��ðrÞ, ð26Þ

which follow from

�Ts,�½n",�, n#,��
�n��ðrÞ þ vs,��ðrÞ ¼ �: ð27Þ

Writing the fragment energies in terms of Kohn–Sham

quantities,

Ev� ½n",�, n#,�� ¼ Ts,�½n",�, n#,�� þ EHXC½n",�, n#,��
þ
Z

dr n�ðrÞv�ðrÞ
ð28Þ

and differentiating with respect to the spin fragment

densities, comparison of Equations (21) and (27)

leads to:

vs,��ðrÞ ¼ vH½n��ðrÞ þ v�ðrÞ
þ vXC, �½n"�, n#��ðrÞ þ vp, �ðrÞ:

ð29Þ

Thus, vs,��ðrÞ differs from its usual expression only by

the polarized partition potential. These effective poten-

tials are input into the corresponding KS equations of

each fragment which can be solved self-consistently.

First, a reasonable approximation to the KS orbitals

f�i��g is required, for which we calculate all the

relevant densities to make a first estimation of the

KS potentials; the resulting potentials are then used to

generate a new approximation to the densities and the

KS potentials as well. If a tolerance in the spin-

densities estimation has not been achieved then the

procedure is repeated.

3.2. Local-Q approximation

Let us denote as f �n��g the set of fragment densities that

minimizes Ef½fn��g� for a given spin-density pair n", n#.
Each one of these fragment spin-densities is a func-

tional of the total spin-densities, i.e. �n",� ¼ �n",�½n", n#�.
In order to investigate the mutual influence of

fragments we define the ‘Q’ function:

Q�0�, �ðr0, rÞ ¼ � �n�0�ðr0Þ
�n�ðrÞ , ð30Þ

which satisfies the rule:X
�

Q�0�, �ðr0, rÞ ¼ ��,�0�ðr� r0Þ: ð31Þ

Let A be a functional that can be written as an explicit

functional of the set of fragment densities f �n�,�g, and
therefore as an implicit functional of n" and n#,
A½f �n��½n", n#�g�. Invoking the chain rule,

�A

�n�ðrÞ ¼
X
�0�

Z
dr0

�A

� �n�0�ðr0ÞQ�0�, �ðr0, rÞ: ð32Þ
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For example, applying this formula to the polarized

partition potential:

vp, �ðrÞ ¼
X
�0�

Z
dr0 vp, �0�ðr0ÞQ�0�, �ðr0, rÞ, ð33Þ

where vp, �0�ðrÞ is a spin-fragment partition potential:

vp, ��ðrÞ ¼ �Ep

� �n��ðrÞ : ð34Þ

Because n�ðrÞ ¼
P

� �n�ðrÞ, again by the chain rule we
obtain:

vp, ��ðrÞ ¼ vp, ��ðrÞ 8�,�, ð35Þ
as discussed in Section 1.

We now propose a useful approximation for Q.
Consider an idealized system in which a perturbation

of the form �n�ðrÞ ¼ �ðr� zÞn�ðrÞ induces a similar

response in the ��-fragment as � �n��ðr0Þ ¼
�ðr0 � zÞ �n��ðr0Þ. Given that

� �n��ðr0Þ ¼
Z

drQ��,�ðr0, rÞ�n�ðrÞ, ð36Þ

then we obtain the crude approximation to Q:

Q�0�, �ðr0, rÞ � ���0�ðr0 � rÞ �n�0�ðr
0Þ

n�ðrÞ , ð37Þ

in which ‘Q’ plays the role of a weighting factor,

analogous to a molar fraction. Also note that this

approximation is consistent with the rule shown in
Equation (31). To avoid confusion and for convenience

we refer to Equation (37) as the local-Q approximation.
Although in light of Equation (35) it is not

necessary to apply Equation (32) for the partition
energy (setting A ¼ Ep in Equation (32)), doing so

turns out to be convenient in practice to keep vp, �ðrÞ
independent of � at each step throughout the iteration

process. Moreover, the fragment densities used during

the iterative procedure are not the same as the f �n��g. In
other words, during the iterations, we set the partition

potentials to be of the form shown in Equation (33)

where they depend on the fragments’ densities instead
of the total density. We define such partition potential

as follows:

up,�½fn��g�ðrÞ¼
X
�0�

Z
dr0

�Ep

� �n�0�ðr0Þ

�����
�n��¼n��

Q�0�,�ðr0,rÞ
���
�n��¼n��

ð38Þ
and

up,��ðrÞ ¼ �Ep

� �n�0�ðrÞ

�����
�n��¼n��

: ð39Þ

For example, under the local-Q approximation we get:

up,� ½fn��g�ðrÞ ¼
X
�

up,��ðrÞ �n��ðrÞ
n�ðrÞ : ð40Þ

Once self-consistency has been achieved then all the
fragment partition potentials for the channel � become
identical (up,� ! vp, �).

Now introduce the spin-fragment average:

hf�0, �isfðrÞ ¼
X
�0�

Z
d3r0f�0, �ðr0ÞQ�0�, �ðr0, rÞ: ð41Þ

Therefore up,�ðrÞ ¼ hup,�0�isfðrÞ, i.e. the polarized parti-
tion potential is an average over fragments and spins,

and the Q function plays the role of weighting factor. It
is plausible to conceive a fragment-localized approxi-
mation in which the spin-fragment partition potential
is averaged only over its closest neighbours. This might
be used to save computing time in practical

calculations.
Using the expression of Equation (28) for Ev� ½n",�,

n#,��, and the definitions of Equations (18)–(19), the
local-Q expression to the partition potential, Equation
(40), leads to a sum of three terms arising from the
usual kinetic, Hartree-exchange-correlation, and exter-
nal potential contributions:

up,�ðrÞ ¼ upk,�ðrÞ þ upHXC, �ðrÞ þ upextðrÞ, ð42Þ
where:

upk,�ðrÞ ¼
�Ts½n", n#�
�n�ðrÞ �

X
�

n�,�ðrÞ
n�ðrÞ

�Ts½ �n",�, �n#,��
� �n�,�ðrÞ

����
n",�, n#,�

,

ð43Þ

upHXC,�ðrÞ ¼
�EHXC½n",n#�

�n�ðrÞ
�
X
�

n�,�ðrÞ
n�ðrÞ

�EHXC½ �n",�, �n#,��
� �n�,�ðrÞ

����
n",�,n#,�

,
ð44Þ

upextðrÞ ¼ vðrÞ �
X
�

n�,�ðrÞ
n�ðrÞ v�ðrÞ: ð45Þ

We emphasize that the bar on the �n�,� indicates that
these fragment densities are implicit functionals of n",
n# as explained at the beginning of Section 3.2.

At first sight this method seems to be difficult to
implement computationally because it is a more

involved formulation of DFT than the original KS
theory. However, its rigorous focus on fragments
permits one to develop approximations that might
help decreasing the computing time even below stan-
dard approximate DFT calculations. Another advan-

tage of the partition method is that the SIE can be
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treated locally by selecting those fragments for which

the SIE is relevant. Also, note that different levels of

theory can be employed for different fragments.
In some respects, this method follows the philos-

ophy of the generalized KS method [35], extending the
non-interacting KS system such that an alternative

fictitious system with interactions can be included.

In principle any type of interaction can be introduced

in the fictitious system, e.g. one may include a system
defined within Hartree–Fock only, where the electron–

electron interactions are described by Coulomb and

exchange operators, or a system of fictitious electrons

interacting via screened Coulomb potentials.
To impose the restriction that the sum of squared

modulus of each orbital yields the density one needs a

local multiplicative potential. In analogy with the

partition potential, the residual potential of Seidl et al.
[35] turns out to be the functional derivative of a

residual functional with respect to the electronic

density. If the energy of the fictitious system is close

enough to the actual energy, then the residual potential
should have a small contribution to the ground state

energy.
The chemical potential equalization determines the

occupation numbers for the fragments when the energy

functionals are differentiable with respect to their
corresponding spin-densities. If the energy of a frag-

ment is defined by means of the PPLB functional, then

its energy is not differentiable when the number of

electrons is an integer because the fragment does not
have a definite chemical potential. To overcome this

difficulty the energy has to be minimized with respect

to the fragment occupations without resorting to the

chemical potential equalization. This requires a deri-
vative-free algorithm to minimize the energy. Despite

this, the fragment KS equations remain valid.

3.3. Simple illustrations

3.3.1. One electron

Consider one electron moving in one dimension under

the double-well potential (see Figure 1a):

vðxÞ ¼ V0

 
1

coshððxþ d=2Þ=aÞ þ
1

coshððx� d=2Þ=aÞ

!
,

ð46Þ
where V05 0 is the depth of each well, d is the distance
between the wells, and a is the width of each well. We

omit in this example the spin subindex in the electronic

densities because there is only one electron. We want to

find the ground state energy and density for this

system. The more intuitive choice for the fragment

potentials is:

v1ðxÞ ¼ V0

coshððxþ d=2Þ=aÞ ,

v2ðxÞ ¼ V0

coshððx� d=2Þ=aÞ :
ð47Þ

Since there is only one electron and the double-well

potential is symmetric around x¼ 0, we can set the

occupation numbers as 1/2 for each well. Denoting by

�1 and �2 the KS orbitals of fragments 1 and 2,

respectively, the partition KS equations (26) are:

h
� 1

2

d2

dx2
þ v�ðxÞ þ upðxÞ

i
��ðxÞ ¼ 	���ðxÞ,� ¼ 1, 2:

ð48Þ

There are in this case only two contributions to the

partition potential, upðxÞ ¼ upkðxÞ þ upextðxÞ. The first

one comes from the kinetic energy relaxation, which we

can calculate exactly using the 1d-von Weizsäcker

functional TVW
s ½n� ¼ 1

8

R
dx½jdnðxÞ=dxj2=nðxÞ�. From

Equation (43):

upkðxÞ ¼ � 1

2 ðnðxÞ�1=2 r2 ðnðxÞ�1=2

þ 1

2nðxÞ
X2
�¼1

ðn�ðxÞ
�1=2r2 ðn�ðxÞ

�1=2
:

ð49Þ

The second contribution comes from the relaxation

with the external field. From Equation (45):

urextðxÞ ¼ vðxÞ � n1ðxÞ
nðxÞ v1ðxÞ �

n2ðxÞ
nðxÞ v2ðxÞ: ð50Þ

The density is:

nðxÞ ¼ n1ðxÞ þ n2ðxÞ ¼ 1

2
j�1ðxÞj2 þ 1

2
j�2ðxÞj2: ð51Þ

Equations (48)–(51) were solved self-consistently

and the results for the the density and partition

potential are shown with dashed lines in Figure 1.

The solid lines indicate an alternative numerically exact

solution found by solving directly the Schrödinger

equation via the finite difference method. A simple

inversion algorithm was employed to obtain the exact

partition potential from the exact density: first, the

partition potential is estimated by solving the fragment

KS equations with the partition potential given by our

local-Q expression, then the KS equations are solved

iteratively. The partition potential generated by this
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calculation is used as initial input to obtain a new
approximation by means of the iterative scheme [36]:

uðiþ1Þ
p ðxÞ ¼ uðiÞp ðxÞ þ 
ðnðiÞðxÞ � nðxÞÞ, ð52Þ

where n0 and n are the estimated and reference
electronic density respectively, and 
 is a positive
constant. This procedure is performed until a conver-
gence criterion is satisfied. The formula shown above is
rather slow, and might not be suitable for large scale
inversion problems, but it performs well for our
purposes.

Figure 1(a) shows the potential employed to
generate the densities; a box of length 30 au was set
for the simulation and a grid of size 600 was used to
solve the KS equations. The convergence criterion to
stop the inversion iterations was nðiþ;1Þ � nðiÞ1 5 10�5.

The electronic density is shown in Figure 1(b). Note
that the local-Q PDFT density and partition potential
are indistinguishable from the exact quantities. The
numerical error in the density estimation is 0.01% and
the error in the energy is negligible; both local-Q
PDFT and the exact solution yield a ground state
energy of �0.698 au. If we neglect the partition
potential, which is equivalent to assuming that the
fragments do not interact, then the energy rises to
�0.690 au. By having set the occupation numbers on
the left and right as 1/2 we obtain equal eigenvalues on
both sides. Figure 1(c) and (d) display the fragment
densities. As expected, they are localized around their
respective potential well. Figure 1(e) shows the inte-
grated response

R
dxQ1ðx, x0Þ, which behaves like a

step function.

(a) (b)

(d)(c)

(e) (f)

Figure 1. Results for one electron in a double-cosh potential, parameter values: a¼ 2.0, V0 ¼ �1:0, and d¼ 7.0. Dashed
lines: local-Q PDFT, solid line: direct solution. (a) Symmetric double-cosh potential; (b) exact density; (c) density of fragment 1;
(d) density of fragment 2; (e) partition potential; and (f) integrated density–density response of fragment 1.

132



512 M.A. Mosquera and A. Wasserman

3.3.2. Three interacting electrons

Now consider three contact-interacting electrons in an

asymmetrical double-well potential:

vðxÞ ¼ V0,a

coshððxþ d=2Þ=aÞ þ
V0,b

coshððx� d=2Þ=aÞ , ð53Þ

and the three-electron Hamiltonian:

Ĥ ¼
X3
i¼1

� 1

2

@2

@x2i
þ �

X
i4j

�ðxi � xj Þ þ
X
i

vðxiÞ: ð54Þ

The potential of Equation (53) is partitioned as in the

previous case:

v1ðxÞ ¼ V0,a

coshððxþ d=2Þ=aÞ ,

v2ðxÞ ¼ V0,b

coshððx� d=2Þ=aÞ :
ð55Þ

We solved this problem in three different ways: (1) by

directly solving the Kohn–Sham equations using the

exchange-only Magyar–Burke functional (MB) [37] for

contact-interacting electrons; (2) by exact PSDFT with

the same MB functional; (3) by neglecting the kinetic

term vpkðrÞ of Equations (42)–(43) within the local-Q

approximation (we refer to this as the local-Q* results

in Table 1).
In the MB functional [37],

Ex½n, �� ¼ ��
4

Z
dx n2ðxÞ½1þ �2ðxÞ�, ð56Þ

where � is the magnetization density

�ðxÞ ¼ ðn"ðxÞ � n#ðxÞÞ=nðxÞ. The contribution from

the external field to the partition potential is approx-

imated with Equation (45). The partition term associ-

ated with the Hartree energy can be regarded as

electrostatic repulsion between the fragments:

Ep
H ¼

Z
dxdx0 n1ðxÞvðx� x0Þn2ðx0Þ, ð57Þ

where vðx� x0Þ ¼ ��ðx� x0Þ. Given that the fragment

densities overlap, some exchange takes place in the

contacting region. The MB partition potentials were

obtained by a simple inversion procedure similar to

that shown in the previous subsection. First we make

an approximation to the partition potentials and KS

orbitals; the potentials are fixed until self-consistency is

achieved; if the total density differs from the ‘exact’

density then the following scheme is used to obtain a

new estimate of the partition potentials [38]:

uðiþ1Þ
p,� ðxÞ ¼ uðiÞp,�ðxÞ þ 
�ðnðiÞ� ðxÞ � n�ðxÞÞ, ð58Þ

and the procedure is repeated until the density

converges. In this example we set the convergence

tolerance as 1:0� 10�5 for the estimation of the total

density.
We found that there is essentially one spin-up

electron on the left, one spin-up electron on the right,

and one spin-down electron on the left. This is

consistent with the physical picture obtained from

applying the unrestricted Hartree–Fock method to the

HeH molecule. Moreover, this integer-occupation

phenomenon has been found to be persistent at both

small and large internuclear separations [39].

As expected the approximation used here tends to

localize the densities around the corresponding poten-

tial wells.
Table 1 and Figure 2 show the results.

They demonstrate that PSDFT is exactly equivalent

to KS-SDFT as it yields identical total energy and

spin-densities. The partition potentials are shown in

Figure 2(c) and (d). Although the approximation

employed for the spin-up vp," might not be quantita-

tive, it reproduces qualitatively the behaviour of the

‘exact’ partition potential obtained from the inversion

in the bonding region. This potential shows a repulsive

barrier for negative positions and an attractive well for

positive positions. This basically shrinks the zero-order

spin-up density of the left fragment, and it spreads out

the spin-up density of the right fragment. By

zero-order density we refer to that density obtained

by neglecting the partition potentials while keeping the

occupation numbers fixed. Therefore the local approx-

imation employed for the Q function might be suitable

as a first estimation in the inversion procedure and on

further refinements of the partition functional.

Table 1. Eigenvalues and energies of the pseudo HeH molecule, Equation (54). A box of length 30 au and a
grid of size 500 were employed. In the case of PDFT and local-Q*, the subindices ‘1’ and ‘2’ label the
fragments. In the case of KS-DFT, they label the molecular orbital eigenvalues.

Method Energy (au) 	"1 (au) 	"2 (au) 	#1 (au) Ep (au)

KS-SDFT �1.6473 �0.9405 �0.3366 �0.1649 –
PSDFT �1.6473 �0.9127 �0.3531 �0.1635 �7.5�10�4

Local-Q* �1.6488 �0.9400 �0.3366 �0.1641 �1.9�10�3
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Due to the non-differentiability of Ef, it is not
possible to equalize the chemical potentials on both spin
channels. This is reflected in the numerical values of the
KS eigenvalues shown in Table 1. On the other hand,
the partition energy was found to be small compared to
the energy values. This is due to the particular choice of
fragmentation energy, which includes the contributions
from kinetic energy, electron–electron repulsion, and
electron–nucleus interaction.

3.4. Inclusion of static electric and magnetic fields

We now propose a way to extend PSDFT to
include other global fields such as static electric and

magnetic fields. It might not be convenient to partition

an external electric potential of the form

vEðrÞ ¼ ��ðrÞ � EðrÞ as shown in Equation (3) because

that would introduce unphysical spatial discontinu-

ities. A simpler and more physical alternative is to

allow each fragment (which is defined by means of

Equation (3)) to interact with the electric field. Thus,

the electrons in fragment � are now subject to the

external potential:

�v�ðrÞ ¼ v�ðrÞ þ vEðrÞ: ð59Þ

Note that Equation (3) does not hold for this type of

partitioning because of the global character of the

electric field.

(a) (b)

(d)(c)

(e)

Figure 2. Results for three contact-interacting electrons in a double well potential; parameters: �¼ 1.0, a¼ 0.4, d¼ 5.0,
V0,a ¼ �2, V0,b ¼ �1. A box of length 30 with a grid of size 500 was used. Dashed lines: local-Q* PSDFT; solid line: ‘exact’
(PSDFT and direct solution). (a) Spin-up densities; (b) spin-down densities; (c) spin-up partition potential; (d) spin-down
partition potential]; and (e) potential.
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The energy of a fragment now reads

E �v� ½n"�, n#�� ¼ F½n"�, n#�� þ
Z

d3r �v�ðrÞn�ðrÞ: ð60Þ

Given that the electric potential is global as well, then
the partition energy functional, which is a difference

between the ‘true’ energy and the fragmentation
energy, does not depend on the electric field explicitly.
The spin-polarized KS potentials turn into

vs,��ðrÞ ¼ vH½n��ðrÞ þ v�ðrÞ þ vEðrÞ
þ vxc, �½n"�, n#��ðrÞ þ vp, �ðrÞ:

ð61Þ

This scheme enables one to calculate the polarizability
of the ground state. A simple approximated approach
is to calculate the ground state and find the partition
potential; then this can be fixed and the density of the
system estimated by solving the KS equations under

the influence of the electric field.
The inclusion of magnetic fields is somewhat more

involved. For example consider the Hamiltonian:

Ĥv,B ¼ T̂þ V̂ee þ
Z

dr m̂ðrÞ � BðrÞ þ
Z

dr n̂ðrÞvðrÞ,
ð62Þ

where m̂ and B are the local magnetization and
magnetic field, respectively. It is known that there is
no one-to-one correspondence between v, B and the

local magnetization-density pair [1]. Capelle and
Vignale [40] showed that if j i satisfies
Ĥv,Bj i ¼ Ej i, then it is possible to find perturbations
DvðrÞ and DBðrÞ such that:Z

dr ðn̂ðrÞDvðrÞ þ m̂ðrÞDBðrÞÞj i ¼ DEj i, ð63Þ

valid as long as there is no level-crossing induced by
the magnetic field. This poses a fundamental difficulty
in applying PSDFT to the Kohn–Sham formalism of
von Barth and Hedin [1] and Rajagopal and Callaway
[41]. A simple solution is to regard the magnetic field as
a fixed variable [42], thus the energy

Ev,B½n", n#� ¼ GB½n", n#� þ
Z

dr nðrÞvðrÞ ð64Þ

is a functional of the spin-densities. The functional G is
defined in the above equation as follows:

GB½n", n#� ¼ min
 !n", n#

h jT̂þ V̂ee þ
Z

d3r m̂ðrÞBðrÞj i:

ð65Þ
Our partitioning approach is easily applicable to the
functional given by Equation (64). If the energy of a
fragment is written as

E �v�,B½n"�, n#�� ¼ GB½n"�, n#�� þ
Z

d3r nðrÞ �v�ðrÞ, ð66Þ

where the search is now over density matrices, then
one may now define the analogue of ~Ef, Equation (5),
as the sum of all such fragment energies. And the
partition energy functional can be defined as the
difference between the true energy functional and ~Ef.
The partition energy functional can thus be expanded
in terms of the corresponding Kohn–Sham contribu-
tions, which include a new term due to the presence
of the magnetic field. This procedure avoids the
non-uniqueness problems mentioned before. However
it introduces more complexity to the energy functional
because the magnetic field is treated as an inherent
property of the system.

In summary, we highlighted the importance of
viewing the partition energy as an implicit functional
of the total density for a given choice of fragmentation.
Based on this, we proposed an approach to construct
the partition potential of PDFT, and extended PDFT
to include electronic spin-densities in the absence and
presence of external electric and magnetic fields.
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The Runge-Gross [E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984)] action functional of
time-dependent density-functional theory leads to a well-known causality paradox; that is, a perturbation of the
electronic density in the future affects the response of the system in the present. This paradox is known to be
caused by an inconsistent application of the Dirac-Frenkel variational principle. In view of the recent solutions
to this problem, the action functional employed by Runge and Gross in their formulation of time-dependent
density-functional theory is analyzed in the context of the Keldysh contour technique. The time-dependent
electronic density and the concept of causality are extended to the contour. We derive a variational equation that
obeys causality and relates the exchange-correlation potential with its kernel and the functional derivative of the
exchange-correlation action functional with respect to the density. It is shown that the adiabatic local-density
approximation is a consistent solution of this equation and that the time-dependent optimized potential method
can also be derived from it. The formalism presented here can be used to find new approximation methods for
the exchange-correlation potential and to avoid the causality dilemma.

DOI: 10.1103/PhysRevA.88.022515 PACS number(s): 31.15.ee

I. INTRODUCTION

Time-dependent density-functional theory (TDDFT) [1–3]
establishes the time-dependent (TD) electronic density as
the primary object of study to understand the dynamics
of molecular systems. TDDFT is widely used to calculate
spectroscopic properties of molecules and solids, especially
when TD perturbation theory is not applicable [4]. However,
TDDFT can also be used to study electronic excitations
in the linear regime or predict the electronic ground-state
energy and density [5,6]. The foundation of TDDFT is the
theorem of Runge and Gross (RG) [7] stating that there is a
one-to-one mapping, given an initial state, between electronic
TD densities and TD external potentials. Later, van Leeuwen
[8] showed that it is possible to reproduce the TD electronic
density of the system of interacting electrons by a system of
noninteracting electrons, which makes possible the use of the
TD Kohn-Sham (KS) equations. Challenges in TDDFT include
the correct description of charge-transfer excitation [9,10],
electronic transport through a molecule connected to metallic
leads under a bias [11–13], high-order-harmonic generation
[14], double excitations [15], and van der Waals interactions,
among others [16].

In TDDFT, the prediction of the evolution of the electronic
density is reformulated in terms of the TD KS equations,
which are easier to solve than the time-dependent Schrödinger
equation (TDSE). Moreover, every observable of the system
can be expressed as a functional of the density because the
wave function is a density functional as well. However, Runge
and Gross [7] proved that the one-to-one mapping between
TD densities and TD potentials is valid under the restriction
that the TD external potential is Taylor expandable in terms
of the time variable. The question as to how vast the set of
TD potentials (or TD densities) of the RG theorem should be
is still an open question. The proof shown by Ruggenthaler
and van Leeuwen [17] and Ruggenthaler etal. [18] suggests

*mmosquer@purdue.edu

that the Runge-Gross theorem can be extended to a wider set
of TD potentials, including those that are nonanalytic in time.
Although it is known that this map exists and there is a formal
procedure to construct KS potentials, it is still a challenge to
calculate the TD potential from a given TD density [18–20].

In ground-state density-functional theory (DFT), the
exchange-correlation (XC) potential is expressed as the func-
tional derivative of the XC energy functional with respect to the
time-independent electronic density. In TDDFT, an analogous
variational relation between the TD XC potential and its action
functional has been sought for the last three decades. Peuckert
[21] first suggested that the Dirac-Frenkel action functional
and its variational principle should be used in TDDFT. Later,
Runge and Gross [7] showed that the Dirac-Frenkel action
functional extended to TDDFT leads to identifying the TD XC
potential as a functional derivative of the XC action functional
with respect to the density. However, it was later found by
Gross etal. [22] that this gives rise to a paradox in which a
variation of the density in the future induces a perturbation
of the potential in the past. According to this, the inverse
first-order response functional would not be causal. Gross
etal. [22] conjectured that the paradox could be solved by
incorporating the causality principle explicitly into the action
formalism.

To resolve this causality paradox several works have been
published. Rajagopal [23] introduced an action based on the
work of Jackiw and Kerman [24] in quantum field theory.
However, this formalism does not use the density as a basic
variable but as a transition density that can be negative valued;
this quantity is unsuitable as a basic quantity for TDDFT.

van Leeuwen [25] proposed a functional in the Keldysh
contour with similar properties to that of a free energy. This
functional depends on a pseudo-density in the Keldysh space
that reduces to the density of the system when the potential
in the Keldysh space corresponds to a physical potential. Due
to the symmetry properties of the first-order response function
of the pseudo-density, the causality is restored when the density
is mapped to the real-time regime. However, the van Leeuwen

022515-11050-2947/2013/88(2)/022515(6) ©2013 American Physical Society

137
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formalism requires expansion of the action functional in terms
of Feynman diagrams, while the functional of RG does not
require such expansion. Furthermore, the operator used in this
formalism for the pseudodensity is not Hermitian in general,
and thus the pseudodensity does not integrate to the total
number of electrons of the system, except when the density is
physical.

Recently, Vignale [26] solved the causality paradox in real
time by showing that the source of the problem in the RG
formulation is a boundary condition. He showed that only the
initial condition is necessary in the Runge-Gross functional
to recover the causality restriction in general and derived an
expression for the XC potential that is causal.

In this paper I review Vignale’s solution of the causality
paradox in real time from the perspective of unitary propa-
gation and later use Vignale’s theory to extend the RG action
functional to the Keldysh contour. The RG action functional in
the Keldysh space, unlike the van Leeuwen functional, does not
require diagrammatic expansion and uses an electronic density
that is a causal functional of the potential in the Keldysh space.
By the RG theorem applied to the Keldysh space and under the
assumption that the density is a strictly causal functional of
the potential in the contour, I show that a variational equation
relating the XC potential to the XC action functional arises.
This equation shows an explicit dependence on the memory of
the system through the XC kernel. I show that the adiabatic
local-density approximation (ALDA) is consistent with this
equation, how the TD optimized potential method (TDOPM)
can be obtained, and also how the ground-state XC potential
can be recovered.

II. REAL-TIME ANALYSIS

The Dirac-Frenkel variational principle provides a method
to derive the TDSE and its approximations by finding a
stationary value of the action functional:

W [ψ ; v] =
∫ t1

t0

dt〈ψ(t)|i ∂

∂t
− Ĥ [v](t)|ψ(t)〉. (1)

In this work we consider Hamiltonians of the form

Ĥ [v](t) = T̂ + Ŵ +
∫

d3rv(rt)n̂(r), (2)

where T̂ and Ŵ are the kinetic energy and electron-electron
repulsion energy operators, respectively, and n̂(r) is the density
operator. The Dirac-Frenkel functional is defined over a
Hilbert space of antisymmetric wave functions representing
bound systems of N electrons. The TDSE is thus obtained by
setting

δψW [ψ ; v] = 0. (3)

This variational principle supposes that δψ(t0) = δψ(t1) = 0.
The solution of the above equation, denoted as ψ[v](t), is the
solution of the TDSE:

i
∂

∂t
|ψ[v](t)〉 = Ĥ [v](t)|ψ[v](t)〉. (4)

|ψ[v](t)〉 is said to be a v-representable ket in real time, which,
expressed in terms of the unitary evolution operator, is

|ψ[v](t)〉 = Û [v](t,t0)|ψ(t0)〉, (5)

where

Û [v](t,t0) = T̂ exp

(
− i

∫ t

t0

dsĤ [v](s)

)
. (6)

Here T̂ is the time-ordering operator in real time. In this work
we interpret the integral determining the unitary evolution in
the above equation to be taken over the interval [t0,t); that is,
we define it as∫ t

t0

dsĤ [v](s) := lim
ε→0

∫ t−|ε|

t0

dsĤ [v](s). (7)

The above definition, when inserted into Eq. (6) and the result
is applied to the initial state, determines the evolution of the
system. We refer to the dependency on the potential of Eq. (6)
as the strict causality assumption, which will be used in the
next section to simplify the corresponding calculations.

Our choice of integration is related to the question, Does
a perturbation of the form δv1(r′t ′; t) = c(r′)δ(t − t ′) cause a
response in any observable at time t , i.e., at the very moment
when the perturbation occurs? In this work I elect to postulate
that the instantaneous perturbation δv1 does only affect the
system strictly after it has occurred, enforcing the intuitive
notion that the time delay between a cause and its effect has
to be greater than zero. This choice on how the integration in
time is taken excludes any response to δv1(r′t ′; t) when t ′ � t .

We may state, under the strict causality assump-
tion, that δÛ (t,t0)/δv(r′t ′) = 0 if t = t ′ and that the ket
|ψ[v](t)〉 is a strictly causal functional of the potential:
It is determined by the potential v at times less than
t . Furthermore, every observable of the form O[v](t) =
〈ψ(t0)|Û †[v](t,t0)ÔÛ [v](t,t0)|ψ(t0)〉 is also a strictly causal
functional of v, i.e.,

δO[v](t)

δv(r′t ′)
= 0 t ′ � t. (8)

For example, the density of the system,

n[v](rt) = 〈ψ(t0)|Û †[v](t,t0)n̂(r)Û [v](t,t0)|ψ(t0)〉, (9)

is determined by the evolution of v in the interval [t0,t) [3].
By the RG theorem, given a fixed initial state, the potential

v at times in [t0,t) uniquely determines n in the interval [t0,t)
and vice versa. If we denote as u[n] the external potential as
a functional of the TD density, then a first-order variation in u

is given by a variation of n over the interval [t0,t):

δu[n](rt) =
∫ t

t0

dt ′
∫

d3r′χ−1[n](rt,r′t ′)δn(r′t ′), (10)

where

χ−1[n](rt,r′t ′) = δu(rt)
δn(r′t ′)

. (11)

This indicates that δu(rt)/δn(r′t ′) for t � t ′ is not defined
because it does not contribute to the integral of Eq. (10).
However, for convenience we set

χ−1[n](rt,r′t ′) = 0 t � t ′. (12)

Vignale [26], however, employing the evolution equation of
the current, showed that δu(rt)/δn(r′t ′) is related to δ(t − t ′)
and its first- and second-order time derivatives when t = t ′.
This result is obtained under two assumptions different from
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ours: First, u(rt) is determined by n(r′t ′) for t ′ � t . Second,
the functional derivative of the stress tensor with respect to the
density vanishes at equal times. Our assumption avoids this
singularity in χ−1 and will be used to simplify our calculations
in the Keldysh space.

Now let us consider the Runge-Gross action functional:

Av[n] =
∫ t1

t0

dt〈ψ[n](t)|i ∂

∂t
− Ĥ [v](t)|ψ[n](t)〉, (13)

where |ψ[n](t)〉 = |ψ[u[n]](t)〉, v is some TD external poten-
tial, and t1 > t0. Note that the ket |ψ[n](t)〉 is causal; that
is, it is determined by n in the interval [t0,t). Runge and
Gross [7], based on the Dirac-Frenkel variational principle,
imposed δψ(t0) = δψ(t1) = 0 and

δAv

δn(rt)
= 0, (14)

which leads to the following alternative form of the variational
principle:

δB[n]

δn(rt)
− v(rt) = 0, (15)

where B[n] is the internal action:

B[n] =
∫ t1

t0

dt〈ψ[n](t)|i ∂

∂t
− T̂ − Ŵ |ψ[n](t)〉. (16)

If Eq. (15) were valid, then we could assert that [27]

u[n](rt) = δB[n]

δn(rt)
. (17)

Unfortunately, when the above function is further differenti-
ated with respect to n,

χ (rt,r′t ′) = δ2B[n]

δn(r′t ′)δn(rt)
, (18)

one finds an inconsistency because the above equation implies
that χ (rt,r′t ′) �= 0 for t < t ′. This is known as the causality
paradox [22]. The solution to the paradox was found by
Vignale [26], who pointed out that, according to the definition
of the v-representable wave function, we can only set δψ(t0) =
0 because a perturbation δn(rt), in general, will induce a
response δψ(t1) �= 0.

The solution of Vignale [26] can be viewed as a direct im-
plementation of the causality principle into the RG functional.
For example, the internal action B[n], using the TDSE, can be
written as [3]

B[n] =
∫ t1

t0

dtu[n](rt)n(rt). (19)

The density functional u[n] is causal by the RG theorem. If we
differentiate the above functional with respect to the density
and insert the result into the functional derivative of the RG
action functional, we obtain

δAv

δn(rt)
= u[n](rt) − v(rt)

+
∫ t1

t

dt ′
∫

d3r′χ−1[n](rt,r′t ′)n(r′t ′). (20)

Now let nv be the TD density corresponding to v; then

δAv

δn(rt)

∣∣∣∣
n=nv

=
∫ t1

t

dt ′
∫

d3r′χ−1[nv](rt,r′t ′)nv(r′t ′). (21)

This last equation is an alternative form of the Vignale
variational formulation that shows that nv is not a stationary
value of Av[n]. This is a consequence of constraining the
wave functions of the RG functional to be density functionals
of the form ψ[u[n]]. Ruggenthaler and Leeuwen [27] showed
that not every TD wave function can be associated with a
TD external potential (or a TD density). Hence the domain
of the RG functional is just a subset of the domain of the
Dirac-Frenkel functional, explaining why the RG and the
Dirac-Frenkel functionals lead to different results.

III. KELDYSH-SPACE ANALYSIS

Let us add a superscript index + or − to the time variable
t . The Keldysh contour C is expressed as C = C+ ∪ C−, where
C+ = [t+0 ,t+1 ] and C− = [t−0 ,t−1 ]. We denote z as a variable in
the contour C and let zi = t+0 and zf = t−1 . The arrow of time
in C points from t+0 to t+1 and from t−1 to t−0 (see Fig. 1). Thus,
any z ∈ C− is said to be later than any z′ ∈ C+. If z,z′ ∈ C−, we
say that z is later than z′ if t(z) < t(z′), where t(z) is the real
value of z. A ket in C is denoted as |ψc[uc](z)〉, where uc(rz) is
some potential in C. A physical potential in C is denoted as ūc,
and it satisfies ūc(rt+) = ūc(rt−). Thus a potential in real time
is mapped to the Keldysh space when setting ūc(rt±) = u(rt)
(t± denotes evaluation at C+ or C−).

We now extend the unitary propagator Û to the Keldysh
space as follows:

Ûc[uc](z,zi) = T̂C exp

[
−i

∫ z

zi

dz′Ĥc[uc](z′)
]
, (22)

where T̂C is the path-ordering operator in C (for example,
T̂C[B̂c(z′)Âc(z)] = Âc(z)B̂c(z′) if z is later than z′). The
Hamiltonian in the Keldysh space now reads Ĥc[uc](z) = T̂ +
Ŵ + ∫

d3ruc(rz)n̂(r). The integration over the pseudotime is
defined as∫ z

zi

dz′fc(z′) := lim
ε→0

{∫ t−|ε|
t0

dt ′fc(t ′+),z = t+∫ t1
t0

dt ′fc(t ′+) + ∫ t+|ε|
t1

dt ′fc(t ′−),z = t−.

(23)

The above expresses, in analogy with the real-time case, that
the end point of the integral in Eq. (22) is not included by
definition. This is the strict causality assumption in the Keldysh
contour.

A v-representable ket in C is thus expressed as
|ψc[uc](z)〉 = Ûc[uc](z,zi)|ψc(zi)〉, where |ψc(zi)〉 = |ψ(t0)〉
is the initial state of the system. Note that ψc(z) does not
depend on the potential uc at later times than z. We define the

FIG. 1. Keldysh contour.
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density in C as [28]

nc[uc](rz) = 〈Û †
c [uc](z,zi)n̂(r)Û [uc]c(z,zi)〉, (24)

where 〈Ô〉 = 〈ψc(zi)|Ô|ψc(zi)〉. To prove that there is a
one-to-one mapping between nc and uc, it is sufficient to notice
that ψc satisfies the Schrödinger equation in C+. Therefore,
if the potential can be expressed as a power series around
zi, then the RG theorem and its extension [17] including
nonanalytic potentials apply in this case.

Let us examine the action functional proposed by van
Leeuwen [25], which reads

AvL[uc] = i ln〈Ûc[uc](zf,zi)〉. (25)

The functional derivative of this functional with respect to the
potential uc yields the pseudodensity [25]:

nvL(rz) = 〈Ûc(zf,z)n̂(r)Ûc(z,zi)〉
〈Ûc(zf,zi)〉

. (26)

However, the above density is an average of the operator:

n̂vL,H(r) = Ûc(zf,z)n̂(r)Ûc(z,zi), (27)

which is not a Hermitian operator. Therefore∫
d3rn̂vL,H(rz) = N̂Ûc(zf,zi), (28)

where N̂ is the particle-number operator. This implies that
nvL does not integrate to N , except when the potential uc is
physical [25]. The density nc, on the other hand, integrates to
N and is always positive.

It can be shown that the response function of the density in
C is given by

χc[uc](rz,r′z′) = δnc(rz)

δuc(r′z′)
= −i〈[n̂c,H[uc](rz),n̂c,H[uc](r′z′)]〉, (29)

where the Heisenberg representation of the density operator
n̂(r) is

n̂c,H[uc](rz) = Û †
c [uc](z,zi)n̂(r)Ûc[uc](z,zi). (30)

Equation (29) is valid if z is later than z′, and we set
χc(rz,r′z′) = 0 if z′ is later than or equal to z.

The inverse first-order response function
χ−1

c [nc](rz,r′z′) = δuc(rz)/δnc(r′z′), according to the
RG theorem extended to C, must also satisfy causality in
the contour, e.g., χ−1

c (rz,rz′) = 0 if z = z′ or z′ is later
than z. When a physical potential is used, the Heisenberg
operators recover their usual form in real time. Therefore we
obtain a physical density n̄c(rt±) = n(rt). From Eq. (29) we
can show that the first-order response function satisfies the
antisymmetry relationship:

χc(rt+,r′t ′+)
∣∣
uc=ūc

= −χc(r′t ′−,rt−)
∣∣
uc=ūc

, (31)

where uc = ūc denotes evaluation at the physical regime.
Note that χc also satisfies χc(rt+,r′t ′+) = χc(rt−,r′t ′+) and
χc(r′t ′−,rt+) = χc(r′t ′−,rt−) if t > t ′ and uc = ūc.

The response of the density in the Keldysh space is [25]

δnc[uc](rz) =
∫ zf

zi

dz′
∫

d3r′χc[uc](rz,r′z′)δuc(r′z′). (32)

To obtain the response in real time, the variation of a physical
potential must satisfy δūc(rt+) = δūc(rt−) = δu(rt). Using
the aforementioned properties of χc to calculate the above
integral, the response of the density turns out to be independent
of the time location in the contour, i.e., δnc(rt+) = δnc(rt−) =
δn(rt). Hence it is determined by

δnc[ūc](rt) =
∫ t±

t0

dt ′
∫

d3r′χc[ūc](rt±,r′t ′+)δūc(r′t ′+).

(33)

This result allows us to identify the response in real time
χ (rt,r′t ′) as χc(rt±,r′t ′+)|uc=ūc or −χc(r′t ′−,rt−)|uc=ūc , which
are causal. Exchanging variables in the integral of χcχ

−1
c

reveals that χ−1
c satisfies the same relationships of χc regarding

exchange of variables at physical densities.
Let us extend the functional Av to the Keldysh space:

Av̄c [nc] = B[nc] −
∫ zf

zi

dz

∫
d3r nc(rz)v̄c(rz), (34)

where

B[nc] =
∫ zf

zi

dz 〈ψc[nc](z)|i ∂

∂z
− T̂ − Ŵ |ψc[nc](z)〉, (35)

v̄c is some external physical potential, and ∂f (z)/∂z =
∂f (tσ )/∂t , where σ = +,−. The Vignale equation in this case
reads

δB
δnc(rz)

∣∣∣∣
nc=n̄c,v̄c

− v̄c(rz)

= i〈ψc(zf)

∣∣∣∣δψc(zf)

δnc(rz)

〉 ∣∣∣∣
nc=n̄c,v̄c

=
∫ zf

z

dz′
∫

d3r′n̄c,v̄c (r
′z′)χ−1

c [n̄c,v̄c ](r
′z′,rz). (36)

The left-hand side of the above equation corresponds to
δAv̄c/δnc(rz) evaluated at the density that yields v̄c, n̄c,v̄c .
Additionally, the above equation also gives the functional
derivative δB/δnc(rz) for an arbitrary density nc; in this case,
we replace v̄c by uc[nc](rz) and n̄c,v̄c by nc, and the inverse
response function has to be evaluated at nc.

Let us introduce the KS action functional:

As,v̄c,s [nc] = Bs[nc] −
∫ zf

zi

dz

∫
d3rnc(rz)v̄c,s(rz), (37)

where v̄c,s(rz) is some effective external potential and

Bs[nc] =
∫ zf

zi

dz 〈�c,s[nc](z)|i ∂

∂z
− T̂ |�c,s[nc](z)〉. (38)

The KS wave function is a Slater determinant of TD KS orbitals
{φc,i(rz)} that satisfy

i
∂φc,i

∂z
= ( − 1

2∇2
r + uc,s[nc](rz)

)
φc,i(rz), (39)

where uc,s[nc] is the KS potential that represents nc(rz). Thus,
if we differentiate Bs with respect to the TD density, we obtain

δBs

δnc(rz)
= uc,s[nc](rz)

+
∫ zf

z

dz′
∫

d3r′nc(r′z′)χ−1
c,s [nc](r′z′,rz), (40)
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where χ−1
c,s (rz,r′z′) = δuc,s(r′z′)/δnc(rz).

Recall the Hartree functional:

AH[nc] = 1

2

∫ zf

zi

dz

∫
d3r

∫
d3r′ nc(r′z)nc(rz)

|r − r′| . (41)

Let us introduce the XC action functional:

Axc[nc] = Bs[nc] − B[nc] − AH[nc]. (42)

Using Eqs. (36) and (40), it is found that the functional
derivative of the XC action functional can be expressed as

uc,xc(rz) +
∫ zf

z

dz′
∫

d3r′nc(r′z′)[χ−1
c,s (r′z′,rz)

−χ−1
c (r′z′,rz)] = δAxc

δnc(rz)
. (43)

Here uc,xc(rz) = uc,s(rz) − uc(rz) − uc,H(rz), where the
Hartree potential is uc,H[nc](rz) = ∫

d3r′ nc(r′z)/|r − r′|.
Now introduce the XC kernel fc,xc(rz,r′z′) =
δuc,xc(rz)/δnc(r′z′), which satisfies

χ−1
c,s (rz,r′z′) = χ−1

c (rz,r′z′) + δc(z − z′)
|r − r′| + fc,xc(rz,r′z′).

(44)

The δ function in C space is defined such that∫ zf

zi
dz′fc(z′)δc(z − z′) = fc(z). The KS response function and

the XC kernel satisfy the same properties of χc regarding
exchange of variables.

In order to simplify Eq. (43), suppose that the density is
physical, nc = n̄c. This imposes that the XC potential is the
same in both C+ and C− spaces. For example, if z = t+ then
the integral in time can be split up into two integrals: The first
one runs from t+ to t−, and the second one runs from t− to
t−0 . There is no contribution from the first integral due to the
symmetry properties of χ−1

c and χ−1
c,s at physical densities. For

the second integral we can use the antisymmetry relation to
obtain in real time that

uxc(rt) +
∫ t

t0

dt ′
∫

d3r′fxc(rt,r′t ′)n(r′t ′) = δ-Axc

δ-n(rt)
, (45)

where uxc(rt) = ūc,xc(rt±) and

δ-Axc

δ-n(rt)
= δAxc

δnc(rt±)

∣∣∣∣
nc=n̄c

. (46)

Setting z = t− in Eq. (43) also leads to Eq. (45) when nc =
n̄c; for this reason we expressed the final result in real time.
Because fc,xc in the C space also has the same properties as
χ−1

c , we identify the XC kernel in real time fxc(rt,r′t ′) as
fc,xc(rt±,r′t ′+)|nc=n̄c or −fc,xc(r′t ′−,rt−)|nc=n̄c . Thus, the XC
kernel is causal in real time.

Given that we assumed that the response functions χc and
χc,s are strictly causal in C, the integral in Eq. (43) is taken
over the interval (z,zf]. This implies that the Hartree kernel
δc(z − z′)/|r − r′| lies outside the integration limits, and thus
it has no contribution to Eq. (45). Based on this, the integral
in Eq. (45) is carried out strictly over the past of t , i.e., [t0,t).
Hence, our causality assumption avoids singularities at equal
times and simplifies the transition to real time.

Equation (45) is the main result of this work. It is a vari-
ational equation that establishes a causal connection between

uxc in real time with an XC action functional in the Keldysh
space and the memory of the system. If an approximation to
the XC action functional is known, then Eq. (45) can be used
to estimate the XC potential. The potentials u(rt) and us(rt)
also satisfy the same type of equation as that of uxc; one has
to replace fxc and Axc by χ−1 and B or χ−1

s and Bs.
Note that the left-hand side of Eq. (45) is a functional of the

density n̄c(rt±), or simply n(rt). This implies that the second
functional derivative of Axc with respect to the density in real
time is not symmetric, i.e.,

δ

δn(r′t ′)
δ-Axc

δ-n(rt)
= 0 t ′ � t. (47)

Here, the symbol δ/δn(r′t ′) represents regular functional
differentiation in real time because the operation δ-/δ-n(rt)
already involves evaluation at the physical regime. The above
result is a consequence of implementing causality in the C
space explicitly using the path-ordering operator. Furthermore,
recursive differentiation of Eq. (45) also allows us to express
its solution as a series of functional derivatives of Axc. This
reads

uxc(x1) = δ-Axc

δ-n(x1)
+ wxc(x1), (48)

where

wxc(x1) =
∞∑

m=2

(−1)m+1

m!

∫
dμ(x2) · · · dμ(xm)

× δm−1

δn(xm) · · · δn(x2)

δ-Axc

δ-n(x1)
. (49)

Here xm = rm,tm, m = 1,2, . . . and dμ(xm) = n(xm)d4xm.
The functional derivatives in the integral are zero if, for any
i > j , ti � tj . This series shows that the XC potential depends
on perturbations of the XC potentials in all orders. However, in
order to achieve convergence the functional derivatives must
decrease as their order increases.

Now let us apply our variational equation to the derivation
of the ALDA XC potential. The ALDA XC action functional
is:

AALDA
xc [nc] =

∫ zf

zi

dz

∫
d3r[εxc(n)n]

∣∣∣∣
n=nc(rz)

, (50)

where εxc is the local XC energy density. To solve Eq. (45) the
memory term can be neglected to yield

ūALDA
c,xc (rz) = d

dn
[εxc(n)n]

∣∣∣∣
n=nc(rz)

. (51)

Further differentiation leads to the kernel formula:

f ALDA
xc (rt,r′t ′) = δ(r − r′)δ(t − t ′)

d2

dn2
[εxc(n)n]

∣∣∣∣
n=n(rt)

. (52)

The singularity of the XC kernel does not contribute to the
integral term of Eq. (45) because the end point is not included,
or in other words, the end point is approached in a limiting
procedure. Hence the above equation satisfies Eq. (45), and
thus it is the solution of it. The singularity of the XC kernel
arises from the definition of the XC potential, which implies
that at equal times the XC kernel must cancel the singularity
of the Hartree kernel. However, the ALDA XC kernel does
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not cancel the singularity of the Hartree kernel due to the
self-interaction error.

Another application is the TDOPM. The exchange func-
tional form remains the same as the one proposed by van
Leeuwen [25]:

Ax[nc] =
∫ zf

zi

dz〈�c[nc](z)|Ŵ |�c[nc](z)〉 − AH[nc]. (53)

To derive the TDOPM one has to assume that (for example,
see [3])

δAv̄c

δn(rz)
= δAs,v̄c,s

δn(rz)
. (54)

If we set Axc = Ax and expand Av̄c using Eq. (42), we find
that the memory term in Eq. (45) can be discarded. Hence we
can write

ux(rt) = δ-Ax

δ-n(rt)
. (55)

The right-hand side of the above equation can be calculated
using the chain rule. If the result is multiplied by χs and
then integrated, the final result coincides with that of Ullrich
et al. [29].

Ground-state DFT is also accessible with this theory. We
can introduce a slowly varying density nT

c (rz) = nc(rz/T ),
where T → ∞. One can use the adiabatic theorem to show that

lim
T →∞

Axc
[
nT

c

] = lim
T →∞

∫ zf

zi

dzExc
[
nT

c (·,z)
]
, (56)

where Exc is the XC energy functional of DFT. The above
equation is local in time. As in the previous case, the solution
of Eq. (45) has to be of the form

lim
T →∞

uxc[nT ](rt) = lim
T →∞

δExc

δn(r)

∣∣∣∣
n=nT (rt)

, (57)

where nT = n̄T
c .

IV. CONCLUSIONS

To summarize, we examined the RG action functional and
the solution of the causality paradox by Vignale [26] from
the point of view of unitary evolution. We extended this
solution to the Keldysh space, and under the strict causality
assumption, we found a variational equation for the XC
potential that involves an XC memory term. The solution
of this variational equation is a series in terms of functional
derivatives of the XC action functional in the Keldysh space.
We showed that it is possible to derive the ALDA XC and
TDOPM exchange potentials from the present theory and
that ground states are also accessible using the adiabatic
theorem.
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Using the Runge-Gross theorem that establishes the foundation of time-dependent density functional

theory, we prove that for a given electronic Hamiltonian, choice of initial state, and choice of

fragmentation, there is a unique single-particle potential (dubbed time-dependent partition potential)

which, when added to each of the preselected fragment potentials, forces the fragment densities to evolve

in such a way that their sum equals the exact molecular density at all times. This uniqueness theorem

suggests new ways of computing the time-dependent properties of electronic systems via fragment-time-

dependent density functional theory calculations. We derive a formally exact relationship between the

partition potential and the total density, and illustrate our approach on a simple model system for binary

fragmentation in a laser field.

DOI: 10.1103/PhysRevLett.111.023001 PACS numbers: 31.15.E�, 71.15.Mb

Time-dependent density functional theory (TDDFT)
[1,2] allows one to predict, in principle, the evolution of
the nonrelativistic density nðrtÞ of a system of interacting
electrons subject to a time-dependent external potential
vðrtÞ. Given an initial wave function, the time-dependent
electron density determines the external potential up to a
time-dependent constant (Runge-Gross theorem [1]) and
the density may be found by solving the time-dependent
Kohn-Sham (TDKS) equations. These equations make it
possible to perform practical calculations to propagate
the electronic density and its related quantities such as
linear-response functions. Because of its wide range of
applications, TDDFT is expected to continue being a
workhorse in the coming years for chemistry, physics,
and materials engineering [3].

Although the computational cost of TDKS calculations
is low compared to that of other many-body techniques,
new ideas are needed to enable the study of larger systems
with improved efficiency and accuracy. For the ground-
state problem, ‘‘divide-and-conquer’’ fragmentation tech-
niques have been developed [4] and applied successfully
through the use of readily available parallel computers.
Related strategies have also been developed recently
for the time-dependent problem within TDDFT [5]. For
example, Casida and Wesołowski [6] introduced a meth-
odology to perform time-dependent calculations within
frozen-density embedding theory. It has been shown that
this method yields better results than ‘‘supermolecular’’
techniques to estimate excitation shifts of molecules due
to complexation [7,8]. Other extensions include linear-
response TDDFT for molecules in solvents [9] and
TDDFT for interacting chromophores [10]. Additionally,
time-dependent calculations within subsystem DFT have
been reported, proving it useful for excitation energy trans-
fer and chromofore absorption (see Ref. [11] and referen-
ces therein). Neugebauer formulated this theory within

linear response in the frequency domain and showed that
it yields results consistent with conventional TDDFT [12].
Another method available is fragment-molecular-orbital
TDDFT [13], which combines wave-function methods
for each individual fragment and calculates the excita-
tions of each of them using linear-response TDDFT. This
method shows agreement with supermolecular TDDFT
approximations and also was used to predict the first
excitation energy of a yellow protein accurately. For the
case of dissipative dynamics, Zhou et al. [14] showed how
the Runge-Gross theorem can be applied and Kohn-Sham
equations developed for open systems, given an initial
state, memory kernel, and system-bath correlation.
Among density-based ground-state fragmentation tech-

niques, partition density functional theory (PDFT) [15] is
a reformulation of density functional theory that allows one
to find the solution to the KS equations without solving the
total molecular problem directly. The idea is to partition
the external potential into an arbitrary number of fragment
potentials. The total energy of the isolated systems is
minimized under the constraint that the fragment densities
sum to the correct molecular density. The Lagrange multi-
plier associated with the constraint (i.e., the partition
potential) can be found by inversion if the total density is
known [16] or via the self-consistent procedure of Ref. [15]
if it is not. Every fragment is subject to the same partition
potential. In contrast with quantum mechanical embedding
theories (except for the latest version of quantum embed-
ding [17]) and with subsystem DFT, this potential is global
and unique [18]. The set of fragment densities obtained
for a given choice of external-potential partitioning is
also unique. As Pavanello [19] recently suggested, this
uniqueness feature of PDFT makes it a suitable candidate
to simplify the formulation of subsystem DFT. This Letter
reports on foundational work for such developments. We
extend PDFT to the time-dependent regime and show how
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the time-dependent external field can be partitioned. A new
potential termed the time-dependent partition potential is
introduced in the formalism in order to represent the exact
time-dependent electronic density.

To extend PDFT to the time-dependent domain, we
recall that there is no minimum principle from which the
TDKS equations can be derived [20,21]. In view of this, we
follow a deductive approach to define our TDKS equations.
Our goal is to provide a fragment-based solution to the
Liouville equation (we use atomic units throughout)

i
@�̂ðtÞ
@t

¼ ½ĤvðtÞ; �̂ðtÞ�: (1)

If �̂ is a pure density matrix, then Eq. (1) is equivalent to
the time-dependent Schrödinger equation. We suppose that

the initial state �̂ðt0Þ is given. In standard DFT notation, the

Hamiltonian is given by ĤvðtÞ¼T̂þV̂eeþ
R
d3rvðrtÞn̂ðrÞ.

It is convenient to express the external potential vðrtÞ as
the sum of the potential ~vðrÞ due to the M nuclei ~vðrÞ ¼
�P

M
� Z�=jr�R�j, which is not explicitly time depen-

dent, and an additional potential vEðrtÞ containing all of
the explicit time dependence due to external fields:

vðrtÞ ¼ ~vðrÞ þ vEðrtÞ: (2)

Our task is to divide the quantum system intoNf fragments

of interacting electrons. This is done by assigning an

external potential v�ðrtÞ, Hamiltonian Ĥ�ðtÞ, and initial

state �̂�ðt0Þ to each fragment. Out of the infinitely many
ways to choose the fragment potentials, there are at least
two cases that are physically relevant. (i) Direct partition-
ing of the time-dependent external potential in analogy

to ground-state PDFT: vðrtÞ ¼ PNf
� v�ðrtÞ. For example,

if Nf ¼ M, there are cases of interest where we could

define v�ðrtÞ ¼ �Z�=jr�R�ðtÞj. In such cases, the elec-
tronic density of fragment � would be an output variable
of the dynamics of nucleus �. (ii) If the system is driven by
an electric field or other global potential [22], we find it
more convenient to fragment only the static electron-nuclei
interaction potential

~vðrÞ ¼ X
�

~v�ðrÞ (3)

because partitioning of the external perturbation is
avoided. We define the time-dependent fragment potential
v�ðrtÞ by adding the total time-dependent potential vEðrtÞ
to each of the ~v�ðrÞ’s:

v�ðrtÞ ¼ ~v�ðrÞ þ vEðrtÞ: (4)

Now, define the many-electron fragment-� Hamiltonian as

Ĥ�ðtÞ ¼ T̂ þ V̂ee þ
Z

d3r½v�ðrtÞ þ vpðrtÞ�n̂ðrÞ: (5)

The evolution of the state of this particular fragment is
governed by the Liouville equation

i
@

@t
�̂�ðtÞ ¼ ½Ĥ�ðtÞ; �̂�ðtÞ�: (6)

The time-dependent electronic density of fragment � is

given by n�ðrtÞ ¼ Trf�̂�ðtÞn̂ðrÞg, and the time-dependent
partition potential vpðrtÞ of Eq. (5) is defined by requiring

that the sum of fragment densities reproduces the total
molecular density at all times:

XNf

�¼1

n�ðrtÞ ¼ nðrtÞ: (7)

Just like traditional TDDFT is based on a one-to-one
mapping between the Kohn-Sham potential vsðrtÞ and
the electronic density nðrtÞ, we now prove an analogous
one-to-one mapping between nðrtÞ and vpðrtÞ. The latter is
therefore sharply defined by Eqs. (1)–(7).

Theorem 1.—For a given set of initial states f�̂�ðt0Þg, the
map between the density and the partition potential is
invertible up to a time-dependent constant in the potential.
Proof.—The proof uses the Runge-Gross theorem [1]

and is analogous to it. Suppose there is a minimum integer
k � 0 such that

@m

@tm
½v0

pðrtÞ � vpðrtÞ�jt¼t0

�¼ const m< k

� const m ¼ k:
(8)

Also assume that vp and v0
p correspondingly have the

associated densities fn�g and fn0�g. Suppose Ĥ�ðtÞ and

Ĥ0
�ðtÞ are the Hamiltonians of fragment � that correspond

to vp and v0
p, respectively. The key for the proof is the

continuity equation

@n�ðrtÞ
@t

¼ �r � j�ðrtÞ (9)

and the Liouville equation for the fragment current den-
sities

i
@j�ðrtÞ

@t
¼ Trf�̂�ðtÞ½ĵðrÞ; Ĥ�ðtÞ�g: (10)

Define

wp;kðrÞ ¼ @k

@tk
½v0

pðrtÞ � vpðrtÞ�jt¼t0 : (11)

In virtue of the Runge-Gross theorem [1] and its general-
ization to ensembles [23], it is easy to show that

@kþ2

@tkþ2
½n0�ðrtÞ�n�ðrtÞ�jt¼t0 ¼�r�½n�ðrt0Þrwp;kðrÞ�: (12)

Summing over all fragments gives

@kþ2

@tkþ2
½n0ðrtÞ � nðrtÞ�jt¼t0 ¼ �r � ½nðrt0Þrwp;kðrÞ�: (13)

Now, we show that the right-hand side of this equation
cannot be zero. Assume r � ½nðrt0Þrwp;kðrÞ� ¼ 0 and

rwp;k � 0. Now, invoke Green’s identity to find
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Z
d3rwp;kðrÞr½nðrt0Þrwp;kðrÞ�

¼ �
Z

d3rnðrt0Þ½rwp;kðrÞ�2

þ 1

2

I
dS � nðrt0Þrðwp;kÞ2ðrÞ ¼ 0: (14)

If the total electronic density falls off enough to make the
surface term negligible, then rwp;kðrÞ ¼ 0, which is a

contradiction. Therefore, the right-hand side of Eq. (13)
cannot be zero. This leads to the conclusion that if v0

p and

vp differ by more than a time-dependent constant, then

they cannot yield the same density in time.

The above theorem shows that if f�̂�ðt0Þg and vpðrtÞ are
given, then one obtains a unique set of fragment densities
fn�ðrtÞg and total density nðrtÞ. The fragment density
n�ðrtÞ can be assumed to be noninteracting v representable
in time. Then, we can associate a TDKS potential vs;�ðrtÞ
and initial state �̂s;�ðt0Þ to describe the evolution of n�ðrtÞ
by means of the TDKS equations

i
@

@t
’i�ðrtÞ ¼

�
� 1

2
r2 þ vs;�ðrtÞ

�
’i�ðrtÞ; (15)

where

nðrtÞ ¼ X
�

n�ðrtÞ ¼
X
i�

fi�j’i�ðrtÞj2: (16)

The fragments are allowed to have noninteger average
electron numbers that are set by the initial state [18]. Since
the Hamiltonians are particle conserving, the occupation
numbers fi� remain fixed during the propagation.

In analogy with PDFT, we define the exchange-
correlation (xc) potential by means of

vxc;�½n�; �̂�ðt0Þ; �̂s;�ðt0Þ�ðrtÞ
¼ vs;�½n�; �̂s;�ðt0Þ�ðrtÞ � v�½n�; �̂�ðt0Þ�ðrtÞ

� vH½n��ðrtÞ � vp½n; f�̂�ðt0Þg�ðrtÞ; (17)

where vHðrtÞ is the time-dependent Hartree potential. By
comparing the fragment continuity equations for the inter-
acting and noninteracting (Kohn-Sham) systems, we find
that the above definition of the xc potential is consistent
with (for example, see Ref. [24])

r �
�
n�ðrtÞr

�Z
d3r

n�ðr0tÞ
jr0 � rj þ vxc;�ðrtÞ

��
¼ r � ½Q�ðrtÞ �Qs;�ðrtÞ�; (18)

where the right-hand sides are hydrodynamical terms

given by Qs;�ðrtÞ ¼ �iTrf�s;�ðtÞ½ĵðrÞ; T̂�g and Q�ðrtÞ ¼
�iTrf��ðtÞ½ĵðrÞ; T̂ þ V̂ee�g. This indicates that the conven-
tional xc potential of TDDFTand family of approximations
can be used for the fragments’ TDKS equations, a direct
consequence of van Leeuwen’s theorem [25].

Furthermore, from the continuity equations for the total
current and fragment current densities, and from Eq. (18),
we find a formally exact relationship between the time-
dependent partition potential and the total density:

r � ½nðrtÞrvpðrtÞ� ¼ @2nðrtÞ
@t2

þX
�

ðr �Qs;�½vp�ðrtÞ

� r � fn�½vp�ðrtÞr �vs;�½vp�ðrtÞgÞ;
(19)

where �vs;�½vp� ¼ vHxc;�½vp� þ v�. In principle, evalu-

ation of Eq. (19) at t ¼ t0 yields a Sturm-Liouville linear
differential equation where vpðr; t ¼ t0Þ is the unknown

variable. If we assume that the density is Taylor expand-
able at t ¼ t0, then it is easy to show that consecutive
differentiation of Eq. (19) and evaluation at t ¼ t0 leads
to a family of equations from which the Taylor coefficients
of vpðrtÞ can be constructed in increasing order. This

suggests that a given density is vp-representable as long

as the conditions of the Sturm-Liouville theory are met.
To illustrate our fragmentation approach, consider the

simplest nontrivial model system consisting of a one-
dimensional ‘‘electron,’’ two fragments, and an oscillating
electric field of fixed frequency. For the frozen part of the
external potential, we choose a sum of soft-Coulomb
potentials of equal strength V0, a distance l apart:

~vðxÞ ¼ V0

 
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxþ l=2Þ2 þ a

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx� l=2Þ2 þ a
p

!
: (20)

For the laser field, we choose vEðx; tÞ ¼ xE sinð!tÞ, with
E ¼ 0:1 and ! ¼ 0:3.
We partition the system by defining v1ðx; tÞ ¼ V0=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxþ l=2Þ2 þ a

p þ vEðx; tÞ and v2ðx; tÞ ¼ V0=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx� l=2Þ2 þ a
p þ vEðx; tÞ. The time-dependent fragment
equations are (for � ¼ 1, 2)

i
@

@t
’�ðxtÞ ¼

�
� 1

2

d2

dx2
þ v�ðxtÞ þ vpðxtÞ

�
’�ðxtÞ: (21)

The initial states of the fragments are obtained by
solving the ground-state PDFT equations as prescribed in
Ref. [22]. This procedure generates the initial fragment
Kohn-Sham orbitals needed to solve Eq. (21). The distance
between the wells was chosen to allow for a significant
overlap between the initial fragments’ densities.
Even though the principle to construct vpðrtÞ is simple,

note that Eq. (19) can also be written as vp ¼ Fvp, where

the operator F computes the right-hand side of the equa-
tion, solves the differential equation, and finally outputs
vpðrtÞ. One could employ this formula recursively, i.e.,

vkþ1
p ¼ Fvk

p. We observed in our example that the term

Qs;� becomes noisy even after short times if the simulation

box is discretized with large spatial steps. This noise is
received by the partition potential during the propagation,
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and then it is received again byQs;�. This feedback process

turns the algorithm unstable. The problem is reminiscent
to what happens in traditional TDDFT when one wants to
find the exchange-correlation potential corresponding to a
given density, even for only two electrons [26]. To solve
this problem in TDDFT, Ref. [27] recently suggested an
algorithm to control the feedback. They obtained encour-
aging results for a periodic system, but the methodology
has not been tested for nonperiodic systems.

Instead, we found the exact time-dependent partition
potential by using the following optimization procedure:
The density and current density of the total system are
found at each time step using the Crank-Nicolson propa-
gator. (Other propagation methods may also be used.)
A guess is made for the partition potential at the next
unknown time, and the fragment wave functions are propa-
gated forward in time using this guess. (For small time
steps, the value of the partition potential at the previous
time step works well.) The fragment densities (fn�g, fj�g)
are found using these fragment wave functions and added
together to form an approximation to the total densities
(n, j). The errors nerr ¼ n� nexact and jerr ¼ j� jexact
are computed and the residual norm ðnerr=nexactÞ þ
norm ðjerr=jexactÞ is used in the optimizer of Ref. [28],

with the L2 norm. The division by nexact and jexact weights
the error in the asymptotic regions to help increase the
convergence rate, similar to the weighting used in
Ref. [29].
The right panel of Fig. 1 displays the resulting partition

potential. The left panel shows the corresponding fragment
densities at the initial time and at 1=4 of a period. The
importance of memory effects [30] is evident from Fig. 2,
where the dash-dotted lines labeled ‘‘Instantaneous’’ show
the fragment densities obtained by solving the ground-state
PDFT equations for the instantaneous vðrtÞ at 1=4 of a
period. Clearly, the correct partition potential is needed.
Only when the electric field strength is reduced by a factor
of 103 (keeping all other parameters fixed) does the instan-
taneous partition potential produce a molecular density
that is visibly indistinguishable from the exact molecular
density at time t � T=4. Interestingly, the approximation
vpðrtÞ � vpðrt0Þ (labeled ‘‘Frozen’’ in Fig. 2) works quali-
tatively well for short times, certainly much better than
the instantaneous approximation. The inset on the right
panel of Fig. 2 shows how the frozen-vp approximation

reproduces the correct dipole for short times. Charge trans-
fer is interpreted in our theory as spreading of the donor
density, where a portion of it displaces toward the acceptor.
This requires introducing an imaginary boundary around
the donor and acceptor fragments. In our example, if we
imagine a line dividing the left and right fragments, we
note that after one fourth of a period, some charge has been
transferred from left to right.
In practice, successful application of our approach to

large systems will ultimately rely on the quality of approx-
imations to the time-dependent partition potential. The
frozen approximation might be useful for short times.
Furthermore, for problems whose physics is best described
by invoking fragments (such as charge-transfer excitations),
we believe that physically meaningful approximations of
vpðrtÞ will be simpler to construct than approximations

of the highly nonlocal exchange-correlation potential and

FIG. 1 (color online). Left: Fragment densities at times t ¼ 0
and t � T=4 along with the total molecular density. Right:
Exact partition potential vpðx; tÞ. Parameters: l ¼ 4, a ¼ 1,

V0 ¼ �1, E ¼ 0:1, and ! ¼ 0:3. A box of length 20 with 401
points was used.

FIG. 2 (color online). Left: Fragment densities at time t � T=4 along with the total molecular density (thick solid line) calculated: with
the exact vpðxtÞ (thin solid line), frozen vpðxtÞ ¼ vpðxt0Þ (dashed line), and instantaneous vpðxtÞ ¼ vPDFT

p ½nðxtÞ� (dash-dotted line).

Right: Corresponding partition potentials and external potential (dotted line) at t � T=4. Parameters: l ¼ 4, a ¼ 1, V0 ¼ �1, E ¼ 0:1,
and! ¼ 0:3. The inset compares the dipolemoment obtained from the exact (solid line) and frozen approximation tovpðxtÞ (dotted line).
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kernel of TDDFT. Work along these lines, as well as on the
linear-response formalism, is ongoing.
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We adapt time-dependent current density functional theory to allow for a fragment-based solution
of the many-electron problem of molecules in the presence of time-dependent electric and magnetic
fields. Regarding a molecule as a set of non-interacting subsystems that individually evolve under
the influence of an auxiliary external electromagnetic vector-scalar potential pair, the partition 4-
potential, we show that there are one-to-one mappings between this auxiliary potential, a sharply-
defined set of fragment current densities, and the total current density of the system. The partition
electromagnetic (EM) 4-potential is expressed in terms of the real EM 4-potential of the system
and a gluing EM 4-potential that accounts for exchange-correlation effects and mutual interaction
forces between fragments that are required to yield the correct electron dynamics. We prove the
zero-force theorem for the fragmented system, establish a variational formulation in terms of action
functionals, and provide a simple illustration for a charged particle in a ring. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4867003]

I. INTRODUCTION

Time-dependent current density functional theory
(TDCDFT)1–3 provides a formally exact method to calculate
the electronic properties of molecules, clusters, and solids
in time-dependent electric and magnetic fields. By using the
current density as the main variable, TDCDFT is amenable
to non-adiabatic local approximations to the exchange-
correlation (XC) potential, a feature that is difficult to achieve
using the time-dependent density as the main variable.3–5

TDCDFT relies on a one-to-one mapping between time-
dependent vector potentials and time-dependent current den-
sities, up to a gauge transformation in the potentials. This
mapping was first discussed by Xu and Rajagopal,6 Ghosh
and Dhara,1 and then further explored by Vignale.2 An exten-
sion of TDCDFT to open quantum systems was more recently
developed by Yuen-Zhou, Rodriguez-Rosario, and Aspuru-
Guzik.7

The first rigorous approximation to the XC vector po-
tential was developed by Vignale and Kohn8 (VK) under the
condition that the density and the frequency-dependent per-
turbation applied to the system are slowly varying in space.
Further developments to the XC vector potential benefit from
approximations to the stress tensor,9, 10 which can be found
by means of quantum continuum mechanics.11, 12 TDCDFT
has been useful in the linear-response regime to calculate the
optical spectra of semiconductors,13–17 atomic and molecular
excitation energies,18 polarizabilities of π -conjugated molec-
ular chains,14 electronic properties of quantum dots,19 and
nanoscale electronic transport.20

It is often the case that the magnetic properties of a com-
plex molecule or material can be best described qualitatively

a)awasser@purdue.edu

by considering that it is composed of fragments or subdo-
mains, each of which can sustain well-localized current densi-
ties. The existing framework of TDCDFT, however, employs
the current density of the entire system (or paramagnetic cur-
rent density in the case of current-DFT21), without exploiting
the fragmented nature of the problem. Something analogous
is true for DFT, which targets the full ground-state density of
the system even when this density can be seen as composed
of smaller fragment densities. How to best define those frag-
ments in such a way that the sum of their properties exactly
reproduces the properties of the full system is a challeng-
ing problem. The partition theory (PT) proposed in Ref. 22
achieves this for the ground state density. When merged with
Kohn-Sham DFT,23 PT leads to partition density functional
theory (PDFT), a method to solve the Kohn-Sham equations
via self-consistent calculations on isolated fragments. PDFT
has been adapted to allow for external electric and magnetic
fields,24 and has also been extended to the time-dependent
regime.25

By analogy with PDFT and its time-dependent extension,
in this paper we adapt TDCDFT to allow for the partitioning
of a system into isolated subsystems, preserving the correct
current density. The resulting framework can be used to make
quantitative something that is qualitatively obvious: The to-
tal current density is “made of” of fragment current densities.
The method is amenable to parallel implementations to simu-
late large systems, and it is also useful for finding new condi-
tions that the XC potentials of TDCDFT should satisfy.

First, the necessary background on TDCDFT is provided
in Sec. II. We then show in Sec. III that there exists an elec-
tromagnetic 4-potential that can be used to represent the to-
tal current of the system. Section IV discusses formal aspects
of the theory and introduces new potentials that do the job
of gluing the fragments in just the right way to achieve the

0021-9606/2014/140(18)/18A525/8/$30.00 © 2014 AIP Publishing LLC140, 18A525-1
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additivity we seek for the currents. A zero-force theorem sat-
isfied by the fragments is also derived in the same section.
A variational formulation of our theory is then derived in
Sec. V by using the Keldysh space technique of van
Leeuwen,26 and we end in Sec. VI by providing a simple il-
lustration for a charged particle in a ring.

II. BACKGROUND

In preparation for the new developments of Sec. III,
we first review the required formalism to describe the non-
relativistic electron dynamics of molecules with fixed nu-
clei when the electrons interact with classical electromagnetic
fields. We use second-quantized notation and atomic units
throughout.

The Hamiltonian representing the molecule has the form

Ĥ (t) = T̂A(t) + Ŵ +
∫

d3rn̂(r)[v(rt) − φ(rt)], (1)

where A and φ are the vector and scalar potentials, respec-
tively. We refer to the pair A, φ as the 4-potential. The oper-
ator Ŵ represents the electron-electron interaction, and T̂A(t)
is defined as

T̂A(t) = 1

2

∫
d3rψ̂†(r)(−i∇ + A(rt))2ψ̂(r). (2)

Define the paramagnetic current operator

ĵp(r) = 1

2i
(ψ̂†(r)∇ψ̂(r) − ∇ψ̂†(r)ψ̂(r)), (3)

and the total current operator

ĵ(rt) = ĵp(r) + n̂(r)A(rt). (4)

Here we can regard the Hamiltonian as a functional of A, φ.
These potentials are related to the electromagnetic field E, B
by the following equations: E(rt) = −∇φ(rt) − ∂tA(rt) and
B(rt) = ∇ × A(rt).

Let us define the average of an operator Ô(rt) as:
O(rt) = Tr{�̂(t)Ô(rt)}, where �̂ is the density matrix of the

system, which is the solution of the Liouville equation

i∂t �̂(t) = [Ĥ (t), �̂(t)]. (5)

The density matrix �̂(t) in general represents a mixed state in
the Fermionic Liouville space. This ensures that states with
any number of particles, including positive real numbers, are
considered in our formalism. The initial state is of the form:
�̂(t0) = ∑

M,k wM,k|ψM,k〉〈ψM,k|, where {M, k} refers to the
kth level of the system with M electrons.

The density of the system satisfies the continuity equa-
tion: ∂tn(rt) = −∇ · j(rt), which is valid for states with a real
number of particles. The current density can be shown to sat-
isfy the hydrodynamical-like equation2

∂t j(rt) = −q(rt) − n(rt)[E(rt) + ∇v(r)] − j(rt) × B(rt),
(6)

with q(rt) defined as: q(rt) = −iTr{�̂(t)[T̂ + Ŵ , ĵp(r)]}.
This quantity can also be expressed as the gradient of the
stress tensor, which causes the non-classical behavior of the
current.

Ghosh and Dhara1 proved that there is a one-to-one map-
ping, up to a gauge transformation, between 4-potentials and
current-densities. Their proof is analogous to that of Runge
and Gross.4 First assume that the 4-potential A, φ can be writ-
ten as a power series around the initial time t = t0. Suppose
that there is another analytic 4-potential A′, φ′, which differs
from A, φ by more than a gauge transformation and yields the
current density j′(rt). Additionally, the initial conditions de-
mand that A′(rt0) = A(rt0). The proof requires that the power
series exists. However, we just need to find the lowest num-
bers l and k such that

∂n
t (A(rt) − A′(rt))

∣∣
t=t0

�= Const, n ≥ l, (7)

∂n
t (φ(rt) − φ′(rt))

∣∣
t=t0

�= Const, n ≥ k. (8)

Ghosh and Dhara1 showed that if the above holds
then

in∂n
t [j(rt) − j′(rt)]

∣∣
t=t0

=

⎧⎪⎪⎨
⎪⎪⎩

n(rt0)∇[
ik∂k

t (φ(rt) − φ′(rt))
∣∣
t=t0

]
, n = k + 1, l > k + 1

n(rt0)il∂ l
t (A(rt) − A′(rt))

∣∣
t=t0

, n = l, l < k + 1

−n(rt0)ik+1∂k
t (E(rt) − E′(rt))

∣∣
t=t0

, n = k + 1, l = k + 1.

(9)

It follows from Eq. (9) that if the power series of the 4-
potentials differs by more than a TD constant, then they
cannot yield the same current density for t > t0. This re-
sult provides solid ground for using the current density as
the fundamental variable in TDCDFT. It is also valid for
extended systems because it only requires that the current-
densities of the unprimed and primed systems differ locally.
This is a useful feature for applications in solid state the-
ory and periodic systems in general. However, the electron-

electron interaction makes the solution of Eq. (6) very dif-
ficult. Vignale27 found that the van Leeuwen theorem28 can
be extended to the case of TDCDFT. The theorem states
that the current density of a system described by A, φ with
particle interaction Ŵ and initial state �̂(t0) can be repro-
duced exactly by another system under the influence of A′, φ′,
where the particle interaction is described by another opera-
tor Ŵ ′ and the initial state is �̂′(t0). Again, the 4-potential
must vary from the original 4-potential by more than a gauge
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transformation. The van Leeuwen theorem also requires the
initial state of the alternative system to have the correct initial
current.

The van Leeuwen theorem is particularly useful when ap-
plied to the non-interacting case, i.e., setting Ŵ ′ = 0. For the
sake of simplicity, it is convenient to choose a gauge in which
the scalar field is set to zero.

Denoting by As the Kohn-Sham 4-potential that yields
the current density j, then its evolution is given by

∂t j(rt) = −qs(rt) − n(rt)
[
−∂As

∂t
(rt) + ∇v(r)

]
−j(rt) × ∇ × As(rt), (10)

where q(rt) = −iTr{�̂(t)[T̂ , jp(r)]}. Now decompose As in
the usual Kohn-Sham manner: As = A + AH + AXC, where

∂tAH(rt) = −∇
∫

d3r′ n(r′t)
|r − r′| . (11)

Subtracting Eqs. (6) from (10) and employing the above defi-
nition, we find that

n(rt)∂tAHXC(rt) − j(rt) × ∇ × AHXC(rt) = qs(rt) − q(rt),
(12)

where AHXC = AXC + AH. The solution of Eq. (12) deter-
mines the XC vector potential as a functional of the current
density (note that the right-hand-side terms are functionals of
j). If the HXC vector potential is expanded as a Taylor series
then Eq. (12) can be used recursively to calculate the expan-
sion coefficients.27

III. PARTITIONING THE CURRENT DENSITY

As in PDFT,23 we fragment the external potential v(r)
due to the nuclei into Nf fragment potentials {vα(r)} such that
v(r) = ∑Nf

α vα(r). Our task is to associate a fragment current
density jα(rt) to each of the vα(r) in such a way that

Nf∑
α

jα(rt) = j(rt), (13)

where j(rt) is the correct current density of the total molecular
system.

Considering that: (i) a fragment that is infinitely far from
the molecule is not affected by the other fragments, (ii) the
current density around such isolated fragment is determined
only by its interaction with the external 4-potential, and (iii)
the current density remains localized around the fragment as
long as the system is not ionized by the 4-potential; we pro-
pose to emulate these properties for finite separations between
fragments by defining the fragment current densities jα(rt) as

jα(rt) = Tr{�̂α(t)ĵ(rt)}, (14)

where the fragment density matrix �̂α(t) satisfies the Liou-
ville equation

i∂t �̂α(t) = [Ĥα(t), �̂α(t)], (15)

and the α-fragment Hamiltonian Ĥα is given by

Ĥα(t) = T̂ + Ŵ +
∫

d3r
(

ĵp(r) · AP(rt)

+ n̂(r)

[
vα(r) − φP(rt) + 1

2
A2

P(rt)
])

. (16)

Here, AP, φP is the partition 4-potential whose purpose,
in analogy to the partition potentials of static DFT22 and
TDDFT,25 is to ensure satisfaction of Eq. (13).

The equation of motion for the α-fragment current den-
sity satisfies

∂t jα(rt) = −qα(rt) − nα(rt)[EP(rt) + ∇vα(r)]

−jα(rt) × BP(rt), (17)

where

qα(rt) = −iTr{�̂α(t)[T̂ + Ŵ , ĵp(r)]}. (18)

(Note: the subindex “p” for the paramagnetic current in
Eqs. (16) and (18) should not be confused with the subindex
“P” labeling the partition fields). All quantities that appear in
the definition of a fragment are similar to those that define a
quantum system in the proof of Ghosh and Dhara.1 The only
difference is that the physical 4-potential has been replaced
by the partition field. Therefore, each jα uniquely determines
the partition field up to a gauge transformation. Note also that
the equations of motion for the current-densities can be added
to yield

∂t j(rt) = −
∑

α

[qα(rt) + nα(rt)∇vα(rt)]

−[n(rt)EP(rt) + j(rt) × BP(rt)]. (19)

Again, we find that the present formulation is analogous to
that of Ghosh and Dhara.1 Hence, there is a 1-1 correspon-
dence between j and the partition elecromagnetic (EM) field,
up to a gauge transformation. The properties of this map are
determined by those of the jα ↔ AP, φP maps.

It is also straightforward to show that the van Leeuwen
theorem applies in this case: The current density of a frag-
mented molecule defined by Ŵ , AP, φ can be represented by
an alternative system with Ŵ ′, A′

P, φ
′. The initial state of the

real system and the set of Nf fragment potentials are fixed, so
the proof follows the same steps shown by Vignale27 applied
to the equation of motion for the current density.

IV. EXTENDED OPERATORS AND THE PARTITION
4-POTENTIAL

The partitioned molecule can be thought of as a single
object. One then says that the density matrix of a fragment
belongs to the Liouville space L, and that it operates on the
Fermionic Fock space of the fragment. We define the space of
the partitioned molecule as

Lf = L ⊗ L ⊗ · · · ⊗ L︸ ︷︷ ︸
Nf times

. (20)
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The density matrix

�̂f(t) =
Nf⊗

α=1

�̂α(t) (21)

represents the state of a partitioned molecule with Nf frag-
ments and contains all the information required to calculate
the total current density of the system. The Hamiltonian for
such molecule is given by

Ĥf(t) = Ĥ1(t) ⊕ Ĥ2(t) ⊕ · · · ⊕ ĤNf (t), (22)

where Ĥα(t) is the Hamiltonian of fragment α. For exam-
ple, for a system with two fragments the operation Ĥf(t)�̂f(t)
yields

Ĥf(t)�̂f(t) = [Ĥ1(t)�̂1(t)] ⊗ �̂2(t) + �̂1(t) ⊗ [Ĥ2(t)�̂2(t)].
(23)

The role of the direct summation and product employed in our
definition is to ensure that the energy of the system remains
always additive. Other quantities as the density and current
are also additive, e.g.,

n̂f(r) =
⊕

α

n̂α(r), ĵf(rt) =
⊕

α

ĵα(rt), (24)

where n̂α(r) is the density operator applying on fragment
α, and ĵα(rt) = ĵp,α(r) + n̂α(r)AP(rt), being ĵp,α the current
density operator for fragment α. These definitions allow us to
write

j(rt) = Tr{�̂f(t)ĵf(rt)} =
∑

α

jα(rt). (25)

The evolution of the system is thus described by the Liouville
equation

i∂t �̂f(t) = [Ĥf(t), �̂f(t)]. (26)

Now, note that the Hamiltonian has the form

Ĥf(t) = T̂f + Ŵf +
∫

d3r
[

ĵp,f(rt) · AP(rt)

+n̂f(r)

(
v(r) − φP(rt) − 1

2
A2

P(rt)
)]

, (27)

where T̂f = ⊕
α T̂α and Ŵf = ⊕

α Ŵα , and ĵp,f is the param-
agnetic current density operator of the fragmented molecule.
The operators T̂α and Ŵα only apply to the Fermionic Fock
space of fragment α.

Equation (26) has the same form of the Liouville
equation of the real system, Eq. (5). Differentiation of
Tr{ĵf(rt)�̂f(t)} with respect to time gives rise to the evolution
equation of the partitioned molecule as a whole. The evolu-
tion equation is the same as that shown in Eq. (19), where the
term in the summation over the fragments,

∑
α qα + nα∇vα ,

is simply −iTr{�̂f(t)[Ĥ 0
f , ĵp,f(rt)]}; Ĥ 0

f is the Hamiltonian
of the partitioned molecule in the absence of electromag-
netic fields. The previous commutator and the commutator
−iTr{[T̂ + Ŵ , ĵp(rt)]�̂(t)} are analogous: They are both free
of the EM field and they are determined by the initial state.
This analogy is what allows us to extend the proof of Ghosh
and Dhara1 to fragmented molecules in the presence of parti-
tion EM fields.

Let us define the partition Kohn-Sham Hamiltonian
Ĥf,s(t) of the fragmented molecule as follows:

Ĥf,s(t) =
⊕

α

(∫
d3rψ̂†

α(r)[−i∇ + As,α(rt)]2ψ̂α(r)

+
∫

d3rn̂α(r)vα(r)

)
, (28)

where

As,α = AP + AH,α + AXC,α (29)

and

∂tAH,α(rt) = −∇
∫

d3r′ nα(r′t)
|r − r′| . (30)

The state of the partition KS system evolves according to

i∂t �̂f,s(t) = [Ĥf,s(t), �̂f,s(t)]. (31)

The initial state is chosen such that:

Tr{�̂s,α(t0)ĵα(rt0)} = jα(rt0). (32)

The XC potential is obtained by setting

Tr{�̂s,α(t)∂t ĵ(rt)} = Tr{�̂α(t)∂t ĵ(rt)}. (33)

This yields

nα(rt)∂tAHXC,α(rt) − jα(rt) × ∇ × AHXC,α(rt)

= qs,α(rt) − qα(rt), (34)

where qs,α = −iTr{�̂s,α(t)[T̂α, ĵα]}. The above is the conven-
tional HXC vector potential of TDCDFT and is a functional
of jα, �̂α(t0), and �̂s,α(t0). Now we can derive the equivalent
of the zero-force theorem.29 Our objective is to represent the
evolution of the current density, Eq. (10), by means of the
current density shown in Eq. (19). As a consequence, the to-
tal momentum P(t) = ∫

d3rj(rt) is represented by the parti-
tioned molecule as well. Suppose that the current density j
is given and that we choose the proper partition field, φ, AP,
that yields j, and the EM field of the real system is E and B.
Because the hydrodynamic-like quantities q and {qα} do not
exert a net external force on the system, comparison of the to-
tal momentum obtained from Eqs. (10) and (19) leads to the
following exact condition for the partition potential:∫

d3r(n(rt)EP(rt) + j(rt) × BP(rt))

=
∫

d3r
(
n(rt)E(rt) + j(rt) × B(rt) + n(rt)∇v(rt)

−
∑

α

nα(rt)∇vα(rt)
)
. (35)

This last equation suggests that the partition potential must
have two types of contributions: one ensuring that the sys-
tem is subject to the right external forces due to the EM field,
and another introducing the correct nuclear forces correct-
ing for the fact that the system is partitioned. Other contri-
butions to the partition field come from the internal forces,
i.e., the difference between the stress tensor of the real and
partitioned molecule. These internal forces do not contribute
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to Eq. (35) but are essential to reproduce the dynamics of the
real molecule.

Our simple extension of the proof of Ghosh and Dhara1

allows us to regard the partition 4-potential as a functional of
the current for a given set of fragment potentials {vα}. The
EM field of the real system in Eq. (35) can then be eliminated
if the partition field is split as follows:

(AP, φP)[j; �̂f(t0), {vα}]
= (A, φ)[j; �̂(t0), v] + (AG, φG)[j; �̂(t0), �̂f(t0), v, {vα}].

(36)

The “gluing” 4-potential (AG, φG) accounts for the TD cor-
relation between the fragments and is a major component of
the partition 4-potential (AP, φP). It depends on the current
density, where the initial states and external potentials of the
real and partitioned system are given. If we evaluate the 4-
potential at the current density j and plug it into Eq. (35) we
obtain the condition∫

d3r(n(rt)EG(rt) + j(rt) × BG(rt))

=
∫

d3r
(
n(rt)∇v(rt) − nα(rt)

∑
α

∇vα(rt)
)
. (37)

This equation can be regarded as a generalization of the zero-
force theorem of TDCDFT. In fact, if we only had one frag-
ment and eliminated the electron-electron repulsion from the
only fragment Hamiltonian we would obtain that the gluing
vector potential, in the Weyl Gauge, becomes precisely the
HXC-vector potential, and Eq. (37) becomes the zero-force
theorem.

The initial density matrix �̂f(t0) is chosen to represent the
initial current density of the system j0 = j(rt0). We assumed it
is given and found the properties that the partition field must
satisfy. There are several methods to find the initial state. If the
molecule is initially in a stationary state (no current density),
then PDFT can be used to find the initial state, which only
needs to represent the density. In such a case, we perform the
operation

Ef[n(t0)] = min
{
�̂f ∈ Lf : Tr

[
�̂fĤ

0
f

]|�̂f → n(rt0)
}
, (38)

which requires only the introduction of the scalar partition po-
tential φP (or a longitudinal partition vector potential). On the
other hand, if the system has an initial current density j0 then
we replace the density n(r, t0) by the current density j(rt0) as
the constraint in Eq. (38). The density matrix that minimizes
the right-hand-side of Eq. (38) can then be used as the initial
state. In a similar fashion, we obtain the initial Kohn-Sham
state for each fragment. We simply need to apply the same
procedure to each fragment Hamiltonian. In each minimiza-
tion the constraint to satisfy is that the Kohn-Sham system
must yield the initial fragment current density jα(rt0) (or den-
sity nα(rt0) if there is no current density).

V. VARIATIONAL FORMULATION

It is convenient to use the formalism of van Leeuwen26 to
express the partition and gluing fields as functional derivatives
of suitable action functionals. Let us consider the Keldysh

space, which is defined by a pseudo-time z, a vector of the
form (t, σ ), where σ only takes on the values + or −. We
denote z as tσ . For convenience, we employ the Weyl gauge
(or temporal gauge, i.e., φG = 0). The Hamiltonian of the
fragmented molecule Ĥf is a functional of the partition vec-
tor potential AP. These two objects, Ĥf and AP, now depend
on the pseudo-time z. In general, we assume that AP(rt+)
�= AP(rt−). Now define the action functional

FP[A] = i ln Tr{�̂f(t0)V̂f[AP](zf, zi)}, (39)

where zi = t+0 and zf = t−0 and

V̂f[AP](zf, zi) = T̂K exp

(
−i

∫ zf

zi

dzĤ [AP](z)

)
, (40)

where the integration in Eq. (40) over the K space is defined
as∫ z

zi

dz′Ĥ [AP](z′)

:=
{∫ t

t0
dt ′Ĥf[AP](t ′+), z = t+∫ t1

t0
dt ′Ĥf[AP](t ′+) + ∫ t

t1
dt ′Ĥf[AP](t ′−), z = t−.

(41)

Here t1 > t0 is the upper limit of the propagation in real
time. T̂K is the path-ordering operator in the Keldysh space.
If z2 is later than z1 in the contour, then T̂K[Â(z1)Â(z2)]
= Â(z2)Â(z1). z2 = (t2, σ 2) is later than z1 = (t1, σ 1) if: (i)
t2 > t1 and σ 2 = σ 1 = +, or (ii) t2 < t1 and σ 2 = σ 1 = −, or
(iii) σ 2 = − and σ 1 = + (regardless of the value of t2 and t1).

It can be shown that
δFP

δAP(rz)
= j̃(rz), (42)

where j̃ is the pseudo-current

j̃(rz) = Tr{�̂f(t0)V̂f(zf, z)(ĵp,f(r) + n̂f(r)AP(rz))V̂f(z, zi)}
Tr{�̂f(t0)V̂f(zf, zi)}

.

(43)
The pseudo-current becomes the physical current of the frag-
mented molecule when AP(rt+) = AP(rt−).

To relate the vector potentials of the fragmented and real
molecule, define the action of the real system as

F [A] = i ln Tr{�̂(t0)V̂ [A](zf, zi)}, (44)

where V̂ has the same form as V̂f, and Ĥf is replaced by the
Hamiltonian Ĥ in Eq. (40). We now carry out the following
Legendre-transformation

L[j̃] = −F [A] +
∫

d3rdzj̃(rz) · A(rz). (45)

The same transformation applied to the functional FP yields
the current density-functional LP[j̃]. Finally, let LG[j̃] be the
gluing functional:

LG[j̃] = LP[j̃] − L[j̃]. (46)

Functional differentiation, and insertion of Eq. (36), yields

δLG

δj̃(rz)
= AG[j̃](rz). (47)

This last equation relates the gluing vector potential with its
action functional (the dependency on the initial conditions is
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the same). The LG action accounts for the interactions that
take place between the fragments without considering the ex-
ternal perturbation A. The last step to obtain the gluing vector
potential of the physical system is to evaluate it at the physical
current of the system, that is when j̃(rt+) = j̃(rt−).

Further differentiation of Eq. (45) and evaluation at the
physical regime leads to the interesting relation

χ−1
μν (rt, r′t ′) = χ−1

μν,P(rt, r′t ′) − χ−1
μν,G(rt, r′t ′), (48)

where χ−1
μν is the inverse first-order response tensor of the su-

per molecule, where

χμν(rt, r′t ′) = δAμ(rt)
δjν(r′t ′)

. (49)

Similar equations define χμν, P and χμν, G, but of course A has
to be replaced by AP and AG, respectively. Equation (48) can
be recast in the form

χ = χ
P
+ χ

P
χ−1

G
χ, (50)

where χ refers to the matrix form of the tensor(s). This equa-
tion can be used within the linear response regime to obtain
the excitation energies of the super molecule. An important
property of χ−1

P is that it is additive

χ−1
P

=
∑

α

χ−1
P,α

, (51)

where χ−1
P,α = δjα/δAP. However, in Eq. (50), the gluing lin-

ear response function must correct χ
P

so that the poles (exci-
tation frequencies) of the super molecule are recovered.

VI. CHARGED PARTICLE IN A RING

To illustrate the existence of the partition field, con-
sider the case of a charged particle in a ring under a time-
independent external periodic potential. The particle is pre-
pared in a linear combination of its ground state and second
excited state. We propagate the particle’s state in time and find
the partition field by solving the inverse problem (we first find
the current density and then the partition field giving rise to
it). The Hamiltonian of the system is

Ĥ = 1

2mR2
L̂2

z + V (ϕ), (52)

with the external potential chosen as

V (ϕ) = −V0 cos(2ϕ − π ). (53)

Define two fragments, left (L) and right (R), described by

Ĥα[λ](t) = 1

2mR2
(L̂z − λ(ϕ, t)�(t))2 + Vα(ϕ) + vP(ϕ),

(54)
where α = L, R, L̂z = i∂/∂ϕ. The function �(t) is the Heav-
iside function

�(t) =
{

1 if t > 0
0 otherwise.

(55)

The function λ is defined as

λ(ϕ, t) = BP,z(ϕ, t)
R2

2
, (56)

where BP, z is the z component of the partition magnetic field.
We only need this component because the system is one-
dimensional. The potentials defining the partition are

VL(ϕ) =
{
V (φ), 0 ≤ ϕ < π

0, otherwise,
(57)

and VR(ϕ) = VL(ϕ − π ), 0 ≤ ϕ ≤ 2π .
Since there are no external time-dependent perturbations

in this case, the partition and gluing fields are the same, and
the time-dependency of the partition field is due only to the
hydrodynamical-like effects and forces between fragments
that follow from comparing Eqs. (6) and (19). The objective is
to represent a TD current that is initially zero everywhere. For
this reason λ(ϕ, 0) = 0. We begin by finding the eigenvalues
of the Hamiltonian shown in Eq. (52), that is, Ĥ |ψi〉 = εi |ψi〉.
We wish to represent the initial density and the TD current
density that are produced by the following linear combination
of states:

|ψ(t)〉 = c0|ψ0〉e−iε0t + c2|ψ2〉e−iε2t , (58)

where c0 = √
0.98 and c2 = √

0.02. First, we find the poten-
tial vP that represents the initial density of the system us-
ing ground-state PDFT. The density nref(ϕ, t = 0) = |ψ(ϕ, t
= 0)|2 is used as a reference to minimize the error,

e2[vp, νL, νR] = ‖nref(t = 0) − n0[vP, νL, νR]‖2
2

+ (EL[vP] − ER[vP])2, (59)

with respect to the partition potential vP, which is represented
in a spline basis set. The density as functional of the partition
potential and occupation numbers is

n0[vP, νL, νR](ϕ) = νL|ψ̃L[vP]|2(ϕ) + νR|ψ̃R[vP]|2(ϕ), (60)

where νL, νR are the occupation numbers of the right and
left fragment, respectively; these numbers satisfy νL + νR

= 1. The wave-functions ψ̃L and ψ̃R are ground states, and
functionals of the partition potential. These wave-functions
are obtained by solving the eigenvalue problem Ĥα(t
= 0)[vP]|ψ̃α[vP]〉 = Eα[vP]|ψ̃α[vP]〉. The energies ER and EL

are the ground-state energies of the left and right fragment,
respectively. The term (ER − EL)2 in Eq. (60) ensures that
the chemical potential equalization is satisfied, leading to a
unique partition potential.30 In Eq. (59), ‖f‖2 is the norm

‖f ‖2 =
(∫ 2π

0
dϕf 2(ϕ)

)1/2

, (61)

which is approximated with the trapezoidal rule. The
error functional e is minimized using sequential least-
squares quadratic programming. The wavefunctions ψL

and ψR are propagated by solving the Schrödinger equa-
tion i∂tψα[λ](ϕ, t) = Ĥα[λ](t)ψα[λ](ϕ, t) with the Crank-
Nicholson method, where |ψα(t = 0)〉 = |ψ̃α〉. At each time
step the following error functional is minimized:

ẽ2[λ](t) = ‖j ref(t) − j [λ](t)‖2
2. (62)

To reproduce the TD current density of the system, j ref

= Re(i−1ψ∗∂ϕψ), the above functional was minimized us-
ing the MINPACK routine lder, an implementation of the
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FIG. 1. (a) Partition potential (solid line) and time-independent external po-
tential (dashed line) as function of the angle ϕ. (b) Initial density of left (solid
line) and right (dashed line) fragment vs. angle ϕ. The mass and radius are
set as m = 1, R = 1.

Marquardt-Levenberg method. The potential λ is also ex-
pressed using a spline basis set at each time step. The
TD total density of the fragmented system is n[λ](ϕ, t)
= νL|ψL[λ]|2(ϕ, t) + νR|ψR[λ]|2(ϕ, t) and the current
is j[λ](ϕ, t) = νLjL[λ](ϕ, t) + νRjR[λ](ϕ, t), where jα

= Re(i−1ψ∗
α∂ϕψα), α = L, R. The occupation numbers νL and

νR are the optimal ones obtained from the minimization of e2

in Eq. (59).
Even though the current density is nearly constant, the

λ field varies significantly. An advantage of employing λ to
reproduce the current is the explicit dependence of j on λ,

j (ϕ, t) = jp(ϕ, t) + n(ϕ, t)λ(ϕ, t). (63)

Fig. 1(a) shows the external potential of the system and the
partition potential required to represent the initial density of
the system. The partition potential has two wells, one around
ϕ = π /2 and another at the boundaries. The partitioning
scheme we chose localizes the current-densities of the frag-
ments. The left fragment is isolated from the right fragment.
Therefore, the partition potential must allow for some spread-
ing of the left fragment density into the right. The depth of the
partition potential depends on the height of the barrier sep-
arating the fragment potentials: The higher this barrier, the
deeper the partition potential should be. Fig. 1(b) shows the
initial electronic densities for both fragments. In this case, the
addition of the second excited state adds extra charge to the
right fragment density.

The unique partition magnetic field is shown in Fig. 2(a).
It is initially zero because the scalar partition potential was
used to represent the initial density and there is no initial cur-
rent density; the initial wave function ψ(t = 0) is real-valued.
The current densities shown in Fig. 2(b) are also unique, and
in this case they are localized around their respective frag-
ments. Each fragment’s current density is in a 1-1 correspon-
dence with the partition potential. However, in practice, the
map between the total current density and the partition mag-
netic field (or the partition 4-potential in general) is more use-
ful because if the current density of a fragment is localized
around that fragment, then it is largely insensitive to variations
of the 4-potential far from it, while the total-current density
may not be.

VII. CONCLUDING REMARKS

We presented a technique to partition, formally, the to-
tal current density of a molecule into contributions that can

ϕ

0 2 4 6 t0
4

8

λ

−0.6
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1 2 3 4 5 6
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1
2

j L
,
j R

×10−4

(a) (b)

FIG. 2. (a) z component of the partition magnetic field as function of angle
and time. (b) Snapshot of the current densities at t = 2.0 for the left (solid
line) and right (dashed line) fragments.

be assigned to user-defined fragments of the molecule. To
represent the current density of the real system, a fictitious
partition 4-potential was defined. The partition 4-potential ac-
counts for the fragment correlation effects that are ignored
when the molecule is partitioned. It also satisfies a balance-
of-forces theorem stating that the 4-potential must eliminate
the fictitious forces on the system and add the correct force
to the fragmented molecule. The balance-of-forces theorem
is further simplified by the definition of a gluing field which
depends on kinetic, XC, and change-in-external-potential
effects.

Our framework offers a new fragment-based approach to
study how the molecule responds to electromagnetic fields, or
how it responds to scalar potentials as well. It should be par-
ticularly useful for application to materials whose magnetic
properties arise from a collection of relatively well-localized
and weakly-overlapping currents. The method is applica-
ble to both solids and molecules. However, the workhorse
of TDCDFT, the VK functional,8 is especially suitable for
solids and long-chained polymers. New functionals are re-
quired within TDCDFT to account for memory effects in
molecules, for example, using Lagrangian frames of Refs. 5
and 31. We expect the formal theorems derived here will
assist on the development of such functionals for AXC. For
practical simulations, they should go hand-in-hand with
approximate expressions for the gluing and partition 4-
potentials, a topic for future research. Alternatively, for
many-electron systems, one may apply the present theory
within wave-function schemes where one approximates the
fully interacting fragment-Hamiltonians using Hartree-Fock
theory32, 33 (or its refinements), and adding the correspond-
ing partition 4-potential. Estimation and identification of the
gluing 4-potential can be then carried out by solving inver-
sion problems (given the current-density, or other observable
of interest, and partition scheme, find the gluing field), which
can help for the development of functional approximations to
the gluing 4-potential. This will be subject of future work.
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Density functional approximations to the exchange-correlation energy of the Kohn-Sham theory, such as the
local density approximation and generalized gradient approximations, lack the well-known integer discontinuity,
a feature that is critical to describe molecular dissociation correctly. Moreover, standard approximations to the
exchange-correlation energy also fail to yield the correct linear dependence of the ground-state energy on the
number of electrons when this is a noninteger number obtained from the grand canonical ensemble statistics.
We present a formal framework to restore the integer discontinuity of any density functional approximation.
Our formalism derives from a formula for the exact energy functional and a constrained search functional that
recovers the linear dependence of the energy on the number of electrons.

DOI: 10.1103/PhysRevA.89.052506 PACS number(s): 31.15.E−

I. INTRODUCTION

Density functional theory (DFT) [1,2] is a useful formula-
tion of ground-state quantum mechanics that offers a simple
approach to estimate the electronic properties of molecules
and solids [3]. Perdew et al. [4] (PPLB) considered Mermin’s
extension [5] of DFT to systems that adiabatically exchange
electrons with a distant reservoir at zero temperature. In this
framework, the energy as a function of the electron number is a
series of straight lines interpolating the energies corresponding
to those of closed systems with integer numbers of electrons.
PPLB found that the exchange-correlation (XC) potential dis-
plays a derivative discontinuity (DD) that, when added to the
Kohn-Sham (KS) band gap, yields the fundamental band gap of
the system (also see Ref. [6]). The DD is present in molecular
dissociation: When two atoms are separated far apart they take
on integer numbers of electrons to neutralize their charges,
and the total energy of the system, which is nearly additive,
tends to display a DD with respect to a change in the number
of electrons when one atom transfers its electron to the other.

The DD of the XC energy functional and the linear
dependency between discrete intervals is required to improve
the physics of density functionals. The missing integer dis-
continuity causes problems in the estimation of ground-state
properties like binding energies [7] and reaction barriers [8]. In
time-dependent density functional theory, the missing integer
discontinuity is also required to improve the accuracy of
density functional approximations (DFA’s) [9–14], especially
to describe bond-stretching processes. A strong delocalization
error [15] occurs due to the lack of piecewise linear depen-
dency of the resulting fragment energies with the number
of electrons. This nonlinearity is pervasive and affects all
calculations that use continuous XC energy functionals such
as the local density approximation (LDA) [16]. These known
problems point to the need to develop new functionals with
the correct piecewise linearity, capable of describing bond
stretching without resorting to symmetry breaking. Long-
range and nonlocal corrections are usually added to the XC
energy functional [17] to solve these problems. In most
cases, the corrections improve the results without completely

*awasser@purdue.edu

recovering the linear behavior of the XC energy between
integers and its DD.

Nonempirical functionals such as the LDA and generalized
gradient approximations work well for atoms with integer
numbers of electrons. Kraisler and Kronik [18] explored the
properties of a simple ensemble average of XC energies
of pure states. They showed that the piecewise linearity is
almost restored by their approach using the optimized effective
potential method. Their results illustrate the plausibility of
recovering the integer discontinuity of most functionals of
discrete-electron states that are apparently continuous in terms
of the density.

In this work we propose a formalism to restore completely
the linear dependency on the electron number between
integers. We use the fact that most density functional ap-
proximations have been developed for closed systems with
integer numbers of electrons. Ensemble-v representability
is the central concept employed in this study; we assume
that for a given ensemble density there is a corresponding
external potential giving rise to such density. This assumption
implies that one can extract density matrices, which are
density functionals, that allow us to carry out an expansion
of the ensemble XC energy functional in terms of XC and
KS kinetic energies evaluated at closed, fully interacting
discrete-electron densities that sum to the correct ensemble
ground-state density. We then connect the resulting expression
for the ensemble XC energy to an expansion of the KS
kinetic energy evaluated at noninteracting discrete-electron
densities that yield the same ensemble ground-state density.
For density functional approximations, a constrained search
is proposed to replace the Levy-Lieb search that requires
the electron-electron repulsion operator. This search assumes
noninteracting v representability of the discrete-state densities
and permits one to recover strictly the piecewise-defined
linearity for approximate XC energy functionals and their
concomitant integer discontinuities.

II. THEORY

The PPLB density functional is defined as

Ev[n] = F [n] +
∫

drn(r)v(r), (1)
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where F [n] is the constrained-search functional:

F [n] = inf
D̂→n

Tr{(T̂ + Ŵ )D̂}. (2)

T̂ is the kinetic energy operator, Ŵ is the electron-electron
repulsion operator, and D̂ is the density matrix operator in
Fock space. The notation “D̂ → n” indicates that the search for
the infimum is performed over all density matrices satisfying
Tr{D̂n̂(r)} = n(r). In order to carry out an equivalent search
without requiring this density constraint, we introduce the
Lagrange multiplier u[n] as indicated below. The generalized
energy EN [u], now a functional of u[n], involves a search over
all density matrices corresponding to N electrons (N is in
general noninteger):

EN [u] = inf
D̂→N

Tr{(T̂ + Ŵ +
∫

dru(r)n̂(r))D̂}. (3)

Here, N is a real number between J and J + 1, where J

is a positive integer. If the convexity assumption holds, i.e.,
EJ−1[u] − EJ [u] � EJ [u] − EJ+1[u] for any J , then

EN [u] = (1 − ω)EJ [u] + ωEJ+1[u], (4)

where ω[n] = ∫
drn(r) − J . We assume that 0 < ω < 1. The

search for the infimum in Eq. (3) yields a density matrix
D̂[n] that is also a linear interpolation of integer-number
density matrices, D̂J and D̂J+1. For example, if the bordering
systems are pure ground states then D̂M = |ψM〉〈ψM |, M =
J,J + 1. The densities of the pure states, that is, nM [u](r) =
Tr{D̂M [u]n̂(r)}, M = J,J + 1, satisfy the restriction:

n(r) = (1 − ω)nJ [u](r) + ωnJ+1[u](r). (5)

Because u is a functional of the density, so are the densities nJ

and nJ+1. Inserting the minimizing density matrix D̂[n] into
F [n] we find that

F [n] = (1 − ω[n])F [nJ ] + ω[n]F [nJ+1]. (6)

For notational convenience, we introduce the average
function:

y(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 x = 0,

1 − x 0 < x < 1,

1 + x −1 < x < 0,

0 otherwise,

(7)

which allows us to express F (as well as the energy, density,
etc.) as

F [n] =
∑
M

y(N − M)F [nM ], (8)

where N = ∫ n is, of course, a density functional as well, and
M runs over non-negative integer numbers. The functional
F [n] is split in the usual Kohn-Sham manner:

F [n] = Ts[n] + EHXC[n], (9)

where Ts[n] = inf{Tr[T̂ D̂s]|D̂s → n}, and EHXC[n] =
EH[n] + EXC[n], the Hartree and exchange-correlation energy
functionals.

The ground-state energy for the auxiliary system of non-
interacting electrons, Es,N can be thought of as a functional

of us(r), an analog of u(r) introduced to carry out the
noninteracting search version of Eq. (3):

Es,N [us] = inf
D̂s→N

Tr

{(
T̂ +

∫
drus(r)n̂(r)

)
D̂s

}
. (10)

As in the case of F [n], Ts[n] returns two densities ns,J (r)
and ns,J+1(r) that, when added together with the weight factor
y(N − M), yield the density n(r) of the interacting system.
In what follows, we will refer to ns,J (r) and ns,J+1(r) as the
noninteracting bordering-integer densities. We emphasize that
even employing the exact exchange-correlation functional, the
noninteracting integer density ns,M (r) is not equal to the M-
electron density of the interacting system [see the next section
for a model system we describe later on]. Rather than being the
ground-state density of M interacting electrons in v(r) [or M

noninteracting electrons in vs(r)], it is the ground-state density
of M noninteracting electrons in us(r), a potential that differs
from vs(r) for noninteger M , as illustrated in Fig. 2(b). For
example, ns,J (r) = ∑J

i=1 |φi(r)|2, and ns,J+1(r) = ns,J (r) +
|φJ+1(r)|2, where {φi}(r) are single-particle orbitals that satisfy(

T̂ +
∫

drus(r)n̂(r)

)
|φi〉 = εi |φi〉, (11)

and by definition
∑

M y(N − M)ns,M (r) = n(r). The nonin-
teracting bordering-integer densities ns,J (r) and ns,J+1(r) are
density functionals as well. Inserting Eq. (9) on both sides of
Eq. (8) and expanding Ts[n] as

∑
M y(N − M)Ts[ns,M ], we

obtain the most important result of this paper:

EHXC[n] =
∑
M

y(N−M){(Ts[nM ] −Ts[ns,M ]) +EHXC[nM ]},

(12)

an exact relation for EHXC[n] in terms of quantities that
describe pure quantum states, with Ts evaluated at both,
the interacting and noninteracting bordering-integer densities.
Equation (12) is trivially true when n(r) integrates to an integer
number, but it is a useful identity when J < N < J + 1 in the
context of approximate DFT, as we show next.

In order to perform an ensemble-ground-state calculation,
the external potential and noninteger number of electrons are
required, one then needs to average two ground-state energies
corresponding to states with integer numbers of electrons, pro-
vided the convexity assumption holds. These pure ground-state
densities are combined to produce the ensemble density and,
through a density-inversion procedure (as illustrated in the next
section), one obtains ensemble KS potentials, which formally
also come from Eq. (12) by means of functional differentiation.
By approaching an integer number of electrons from above,
one then observes the discontinuity in the XC potential. An
alternative way of performing the calculation is by employing
a suitable approximation to the functionals appearing on the
right-hand side of Eq. (12) and estimating the KS ensemble
potential through the optimized effective potential method or
variations of it (see, for example, Ref. [18]).

Let us denote as E
app
HXC[nM ] an approximation for M =

1,2, . . . Inserting this functional into Eq. (12) yields E
app
HXC[n], a

useful approximation to the ensemble functional. The densities
{nM} can in principle be obtained from the search in F [n], a
functional we do not know. But we can circumvent the use of
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F [n] by defining

Gs[n] = inf
{ñM }→n

∑
M

y(N − M)Gs[ñM ], (13)

where

Gs[ñM ] = inf
D̂s→ñM

Tr

{(
T̂ +

∫
drvapp

HXC[ñM ](r)n̂(r)

)
D̂s

}
.

(14)

By {ñM} → n we refer to the constraint
∑

M y(N −
M)ñM (r) = n(r). If J < N < J + 1, the optimal densities
{nM} that minimize the right-hand side of Eq. (13) are obtained
from solving two sets of KS equations self-consistently: one
with KS potential ṽs[ñJ ] = v

app
HXC[ñJ ] + ũ and another with

ṽs[ñJ+1] = v
app
HXC[ñJ+1] + ũ. The orbitals arising from the KS

equations with ṽs[ñJ ] and ṽs[ñJ+1] are complex squared and
added together to yield the densities ñJ and ñJ+1. The external
potential ũ is a Lagrange multiplier arising from the constraint
{ñM} → n and is to be varied until the constraint is satisfied.
If ũ is set as the external potential of the system v, then one
obtains an approximation to the ensemble ground-state density.
The functional in Eq. (13) reformulates the noninteracting
v-representability problem for an approximate XC potential.
When the exact XC potential is used, then setting ũ = v and
solving the two sets of KS equations produces the orbitals
needed to build the exact ground-state densities nJ and nJ+1.

The total energy of the system is

Eapp
v [n] =

∑
M

y(N − M)

(
Ts[nM ] + E

app
HXC[nM ]

+
∫

drv(r)nM (r)

)
. (15)

The approximated ground-state energy is found by setting
E

app
N [v] = infn→N E

app
v [n]. If the convexity assumption holds

for our system of interest, then

E
app
N [v] =

∑
M

y(N − M)Eapp
M [v], (16)

where

E
app
M [v] = inf

nM

Ts,M [nM ] + E
app
HXC,M [nM ] +

∫
drv(r)nM (r).

(17)

Equation (16) shows that it is possible to recover the piecewise
linear dependence of the approximated energy. Using the
analog of Eq. (5) for J − 1 < N < J and the KS equations, it
can be shown that (see Appendix)

δE
app
HXC

δn(r)
= E

app
J − E

app
J−1 − ε

app
J + v

app
HXC(r)

+
∑
M

y(N − M)
∫

dr′
(

δE
app
v,M

δnM (r′)

)
δnM (r′)
δn(r)

. (18)

The term δE
app
v,M/δnM (r′) is a constant at the minimum and∫

dr′δnM (r′)/δn(r) = 0, which leads to (dropping the Hartree
contribution)

δE
app
XC

δn(r)
= −I app − ε

app
J + v

app
XC (r). (19)

Since v
app
XC = δE

app
XC /δn, by definition, we obtain the Janak’s

theorem [19] ε
app
J = −I app, where I app = E

app
J−1[u] − E

app
J [u]

is the ionization energy of the system, and J − 1 < N < J .
We can also write Eq. (19) as

δE
app
XC

δn(r)
= −I app − δTs

δn(r)
− u(r). (20)

This result allows us to calculate the XC DD as1

�XC = lim
�N→0+

δE
app
XC

δn(r)

∣∣∣∣
J+�N

− δE
app
XC

δn(r)

∣∣∣∣
J−�N

= I app − Aapp − (
ε

app
L − ε

app
H

)
, (21)

where Aapp = E
app
J [u] − E

app
J+1[u] is the electron affinity of the

J -electron system and ε
app
H and ε

app
L are the HOMO and LUMO

orbital energies of the J -electron system. The XC DD turns out
to be the difference between the fundamental gap of the real
system and the KS gap. However, the approximated XC DD
serves the same purpose: to correct the KS particle band gap.

For an ensemble DFA the Janak’s theorem is valid but
the ionization theorem is not, in general. For example, for
a system with strictly J electrons it is known that the LDA
HOMO energy does not match the ionization predicted by
LDA, i.e., when N = J , εLDA

J �= −ILDA. To satisfy the Janak’s
theorem, a constant must be added to the approximate XC
potential to replace the HOMO orbital by the DFA ionization.
When J − 1 < N < J , this constant is −I − εH(N = J ). At
N = J , however, there is no need for such correction since
the functional derivative with respect to the density at this
point is not defined uniquely. On the other hand, using the
XC energy functional, the ionization theorem for Coulombic
systems leads to the well-known expression for the DD of the
XC energy functional: −A − εL.

Equation (12) indicates that the approximation Ẽ
app
XC [n] =

(1 − ω)Eapp
XC [ns,J−1] + ωE

app
XC [ns,J] misses the different KS

kinetic energy contributions leading to the piecewise linear
features of the energy; also observe that Ẽ

app
XC is an average us-

ing the densities ns,M instead of nM . (Note that Ẽ
app
XC does hold

for the uniform electron gas where the level spacing is
negligible. The discrete-state densities returned in that case
by the minimization of the kinetic energy are negligibly
different from those returned by F when both are evaluated
at the electron-gas density n, and N is not an integer).
Employing the optimized effective potential method, Kraisler
and Kronik [18] showed that the linear dependency on the
number of electrons is almost restored using the functional
Ẽ

app
XC . With the kinetic energy and density contributions of

Eq. (12), it is completely restored.

III. NUMERICAL EXAMPLE

To illustrate our findings, we consider the example of
a system of contact-interacting fermions [20,21] described
by the energy functional Ev[nM ] = Ts[nM ] + EH[nM ] +
EX[nM ] + ∫

dxv(x)nM (x), where EH[nM ] = 1/2
∫

dxn2
M (x)

and EX[nM ] = −1/4
∫

dxn2
M (x). Suppose that nref

N (x) =

1This discontinuity is taken along a path of ground-state ensemble
densities [27].
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(Na/π )sech(ax) is a density of interest with N = 2.5 and
a = 2. To find the potential u[n], we minimize the error
functional: e2

N [u] = ‖√nN [u] − √
n

ref
N ‖2

2. The preset density
is recovered by solving the KS equations for N = 2 and N = 3
and setting n2.5[u](x) = 1

2n2[u](x) + 1
2n3[u](x). Note that the

self-consistent procedure has to be applied twice, once for
vX[n2] = − 1

2n2(x) and once for vX[n3] = − 1
2n3(x); in both

cases, the same estimation of u is used. The finite differences
method was employed to solve the Kohn-Sham equations. We
represent u in a spline basis set and e2

N [u] is minimized with
the Levenberg-Marquardt algorithm [22,23]. This procedure
yields the optimal potential u[n2.5] shown in Fig. 1(a). Now
we set that potential as fixed v(x) = u(x) and calculate the
ensemble energy as a function of the number of electrons.
Figure 1(b) shows the results. The solid line represents the
piecewise ensemble interpolation and the dashed lines result
from setting EX[nN ] = −1/4

∫
dxn2

N (x) (which lacks the DD)
to calculate the energy for any number of electrons. The solid
and dashed lines look to the eye very close to each other, but
their differences are made clear in Fig. 1(c). This difference is
small for the functional chosen. The deviation is more severe
for the three-dimensional LDA functional [7].

In Fig. 1(d) we show the estimation of the DD that results
from inverting the KS equations for a noninteger number of
electrons close to N = 2. To impose the Janak’s theorem we
minimize the error functional:

ẽ2
N [us] = ‖√nN [us] − √

n
ref
N ‖2

2 + (
εH,N [us] − εref

H

)2
, (22)

where nref
N is the target “exact” ensemble density that cor-

responds to the external potential shown in Fig. 1(a) and
electron number N . εref

H is the HOMO eigenvalue of the system
with N = 3, obtained from solving the KS equations with
vX = −1/2n3 and external potential v. ẽ2

N is minimized using
the conjugate-gradient method [24]. Because the ionization
theorem is not satisfied, the potential satisfying vX → 0 as
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FIG. 1. (a) Preset ensemble density for N = 2.5 (solid line);
external potential (dashed line). (b) Energy as a function of N (solid
line); approximated energy (dashed line). (c) Difference between
Eq. (16) and the energy calculated using EX[nN ] = −λ/4

∫
n2

N for
any N . (d) Ensemble exchange potential for N = 2.0 (solid line),
N = 2.15 (dashed line), and N = 2.01 (dashed-dotted line).
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FIG. 2. (a) Difference between nM and ns,M for M = 3; these
densities are required to yield the density in Figs. 1(a) and 1(b)
Kohn-Sham potentials corresponding to N = 2.5 (solid line) and
N = 2.0 (dashed line).

x → ±∞ must be shifted by the constant −A − εH(N =
3). In accordance with Eq. (21), the ensemble exchange
potential displays its corresponding derivative discontinuity.
In Fig. 1(d), the difference between the curves for N = 2.01
and N = 2.0 is −A[v] − εL(N = 2.0). If we shifted the solid
curve by −I [v] − εH(N = 2.0) (I [v] = E1[v] − E2[v]) and
compared the shifted curve (which is limN→2− vX) with the
curve for N = 2.01, we would observe the discontinuity shown
in Eq. (21) around the center of the one-dimensional atom. On
the other hand, the KS potential far from the center is given
by us(x) → Const. + 1/(2φ2)d2φ2/dx2. When the number of
electrons is slightly increased above N = 2, we are adding a
density δn = εn3 with a slower asymptotic decay than that
of the system with two electrons, causing the discontinuity in
Fig. 1(d) because δn(x) only affects the potential at distances
that are far from the center.

We stress that a functional approximation for discrete states
is enough to determine, through Eq. (12), an approximation
to the XC functional that is also applicable to ensembles.
However, solving the linearity problem in DFA’s is not enough
to solve the problem of molecular dissociation, which is caused
by incorrect electron delocalization. A possible solution is to
induce localization by partitioning a molecule into subsystems
or a system-bath complex [25]. In such a case, a functional
with the correct DD is required since the theory of ensembles
provides a rigorous framework for defining energy functionals
of open systems. This idea follows the main argument of
Ref. [4] pointing to the importance of the XC DD.

IV. CONCLUSIONS

We presented a formal framework to extend density func-
tional approximations of pure-state systems to be applicable
to densities that integrate to fractional numbers of electrons.
The main result, an exact condition, is a recursive formula
relating the HXC energy with the KS kinetic energy evaluated
at the noninteracting bordering densities, and the HXC and
KS energies evaluated at the bordering interacting densities.
However, the Hohenberg-Kohn-Mermin theorem expressing
the densities nM [u] as functionals of n(r) does not allow
us to express EXC[n] as an explicit functional of n(r), not
even when using explicit functionals of the discrete-electron
densities. Thus, the ensemble vXC(r) must be accessed through
inversion.
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APPENDIX: PROOF OF EQ. (18)

Equation (12) is equivalent to

EHXC[n] = −Ts[n] +
∑
M

y(N − M)(Ts[nM ] + EHXC[nM ]).

Set v = u[n] as fixed. We can add − ∫
drv(r)n(r) +∫

drv(r)n(r) to the right-hand side of the above equation to

yield

EHXC[n] = −Ts[n] −
∫

drv(r)n(r) +
∑
M

y(N − M)Ev[nM ].

Suppose J − 1 < N < J , and note that δTs/δn(r) = εJ −
us[n](r) [26], where us[n] = vHXC[n] + u[n]. Using the chain
and product rules we get the equation leading to Eq. (18):

δEHXC

δn(r)
= −εJ + us[n](r) − v(r)

+
∑
M

{
δN

δn(r)

∂y

∂x
(N − M)Ev[nM ]

+ y(N − M)
∫

dr′ δEv[nM ]

δnM (r′)
δnM (r′)
δn(r)

}
,

where

∂y

∂x
=

{
sgn(−x) − 1 < x < 1

0 otherwise,

and δN/δn(r) = 1.
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Fifty years after the original formulation of density functional theory (DFT), subtle consequences of the mathematical
mappings underlying its formalism continue to merit new views. In this article, we discuss the origin, the importance,
and the challenges associated with finding the derivative discontinuity of the exchange-correlation (XC) energy of DFT
at integer–electron numbers. We show how even the energy of a quantum electron gas with finite volume and number of
electrons displays such derivative discontinuities, but continuous density functional approximations to the XC functional
miss them entirely. We discuss some of the practical problems that arise due to this lack of derivative discontinuities in
standard functionals, and explain new ways to recover them.

Keywords: density functional theory; fractional number of electrons; exchange-correlation energy; derivative discontinuity;
molecular dissociation

1. Introduction

Density functional theory (DFT) has been an invaluable tool
in modern physics and chemistry during the last 50 years
[1]. DFT introduces a functional of the density for the en-
ergy, which upon minimisation becomes the exact ground-
state energy of the molecule or solid. Density functional
approximations (DFAs) have made the simulation of com-
plex systems possible. Wave-function-based methods, on
the other hand, despite their reliability for small molecules,
are computationally highly demanding and yield informa-
tion that is often not used, i.e., the wave-function itself.
However, wave-function methods can be used to improve
DFAs.

A DFA is usually constructed within Kohn–Sham (KS)
DFT [2]. The existence of a system of non-interacting elec-
trons subject to an appropriate external potential (the KS
potential) is postulated. The exact KS potential forces the
system to reproduce the ground-state density of the real
molecule. It is given by the sum of the true external po-
tential, the Hartree potential, and the exchange-correlation
(XC) potential, given as the functional derivative of the XC
energy functional, the only quantity that needs to be approx-
imated. Approximations to the XC energy functional are ei-
ther based on first principles or empirical. First-principles
functionals are developed by forcing the DFA to satisfy
known constraints of the exact functional, while empiri-
cal ones are developed to obtain the best estimates of the
ground-state energy, and other properties, of a training set
of molecules.

∗
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For electronic-structure calculations, the types of DFAs
commonly used are the local density approximation (LDA)
[3,4], generalised gradient approximation (GGA) [5–17],
meta-GGA [18], hyper-GGA [19], DFAs based on the
random phase approximation [20], and hybrid functionals
[21,22]. Two main ideas lead the search for DFAs: (1) the
DFA must reduce to the LDA in the electron gas limit, as
well as satisfy known exact conditions, or (2) the DFA may
not be reduced to the LDA in the electron gas limit or might
not have formal properties, but it must be able to predict
molecular properties within a certain range of tolerance.

In chemistry, standard DFAs are useful for estimating
the ground-state energy of molecules along with their cor-
responding equilibrium geometries and spectra within the
Born–Oppenheimer approximation [23]. However, the es-
timation of chemical reactivity properties, like formation
energies, reaction barriers, etc., is still an active challenge
[24]. This requires understanding of exchange and rear-
rangement processes where electrons are transferred be-
tween molecular fragments [25]. For a DFA to be reliable
and accurate, it must take into account this highly relevant
physical phenomenon. Understanding of quantum open sys-
tems is thus necessary [26]. These can be studied using the
grand-canonical ensemble (GCE) at 0 K.

The GCE allows for random variations in the number
of particles and introduces ground-state densities that inte-
grate to a real number of electrons. An outcome of DFT in
the GCE at 0 K is a quantity known as the derivative discon-
tinuity (DD) of the XC energy. This quantity, when added

C© 2014 Taylor & Francis
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to the exact single particle KS gap of a molecule (or solid),
yields the exact fundamental gap. Nevertheless, DFAs, like
the LDA and GGAs, usually underestimate the gap [27–29]
due to the lack of XC DD. It is still imperative to derive
functionals that simulate systems of interest in a reasonable
amount of time, as well as to derive robust approximations
that work for both molecular electronic structure and band-
gap estimation.

DFT is exact, its basic theorems are well stated and
based on sound quantum mechanical foundations [30];
there is an equivalence between quantum mechanics and
DFT. Thus, readers must be advised about the use of lan-
guage. An explicit form of the exact energy in terms of
the density is, if not extremely difficult, impossible, as an
exact analytical solution of the Schrödinger equation for all
many-electron systems. Therefore, if a calculation fails, it
is not DFT to blame, but the particular DFA used in such
calculation. So far, there is no single DFA which is able
to yield highly reliable results to all known applications.
Instead, each functional has its own merits for performing
in certain applications [31].

The failure of many DFAs in describing simple disso-
ciation processes in molecules, for example, is due to their
lack of integer discontinuity [32]. It has been shown that
the lack of XC DD and the failure to describe the molecular
dissociation are related [23]. For this reason, we present a re-
view of DFT for open systems at 0 K, and new perspectives
on the problem of the DD of the XC energy functional. We
approach DFT using only full-body density matrices and
derive all the steps that lead to the DD of the XC energy
functional. We show that even the quantum electron gas
(i.e., the finite electron gas), which is used to construct the
paradigmatic model of most DFAs, i.e., the macroscopic
electron gas, presents integer discontinuities. We also dis-
cuss a formulation we developed in Ref. [33] to relate the
XC energy functional of densities that integrate to integer
number of electrons with the exact XC energy functional
for non-integer number of electrons. This formalism leads
to extensions of the LDA, GGAs, and other functionals to
the GCE. Our formulation derives from earlier observations
made by Casida [34] and Harbola [35] on the problem of
KS-DFT for ensembles and Janak’s theorem, and it also
extends a recent work by Kraisler and Kronik [36]. This pa-
per is organised as follows: in Section 2, we present basic
definitions concerning DFT in the GCE. Several theorems
leading to the DD of the XC energy functional are shown
in Section 3. The practical relevance of XC DD is then dis-
cussed in Section 4. Section 5 presents new developments in
the calculation of the integer discontinuities. Finally, future
directions are highlighted in Section 6.

2. Density functional theory

In this section, we introduce essential aspects and defini-
tions of ground-state DFT, needed for understanding Sec-

tions 3– 6. To begin our discussion, let us consider a system
of J electrons under the influence of an external potential
v(r), which describes the interaction between an electron
and the nuclei. For example, if there are MN nuclei, then

v(r) =
MN∑
I=1

−ZI

|r − RI | , (1)

where ZI is the charge of the Ith nucleus, and RI is its posi-
tion vector. The external potential operator for J electrons
is obtained from the potential v by means of

V̂ext,J =
J∑

i=1

v(r̂i), (2)

where r̂i is the position operator for the ith particle. For
states with any number of particles, we employ second
quantisation. For example, the non-relativistic Hamiltonian
is

Ĥ [v] = T̂ + Ŵ + V̂ext[v], (3)

where T̂ is the kinetic energy operator (expressed in terms
of creation, ψ̂†(r), and annihilation, ψ̂(r), operators)

T̂ =
∑

σ

1

2

∫
d3r (∇ψ̂†

σ (r)) · (∇ψ̂σ (r)), (4)

Ŵ is the electron–electron repulsion operator:

Ŵ =
∑
σ,σ ′

1

2

∫
d3r d3r′ ψ̂†

σ (r)ψ†
σ ′ (r′)

1

|r − r′| ψ̂σ ′(r′)ψ̂σ (r),

(5)

and V̂ext is the external potential operator in second quanti-
sation:

V̂ext[v] =
∫

d3r v(r)n̂(r). (6)

Here, n̂(r) is the density operator of the system, n̂(r) =∑
σ ψ̂†

σ (r)ψ̂σ (r). The last term, V̂ext[v], is a functional of
the potential v.

The state of an electronic system of J electrons is deter-
mined by a wave-function defined in the Hilbert space of
J-electron wave-functions (HJ ). The ground-state energy
is

EJ [v] = min
ψ∈HJ

〈ψ |Ĥ [v]|ψ〉. (7)

Here, the search for the minimum is carried out over all
J-electron functions. The ground-state energy is a func-
tional of the external potential. Now let us denote the ground
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state of the system as |ψJ[v]〉, so the ground-state density
is

ñJ [v](r) = 〈ψJ [v]|n̂(r)|ψJ [v]〉. (8)

Equation (7) can be recast in the form:

EJ [v] = 〈ψJ [v]|T̂ + Ŵ |ψJ [v]〉 +
∫

d3r ñJ [v](r)v(r).

(9)

The last term is simply the integral of the product of two
real-valued functions. Equation (8) can be used to generate
a map between a space of potentials V and a set of J-particle
ground-state densities DJ = ñJ [V]. Hohenberg and Kohn
[37] (HK) proved that there is a bijection between DJ and
V . Thus, a given density n ∈ DJ determines the potential of
the system, and therefore all the observables of the system
because the ground-state wave-function is a functional of
the external potential. The HK theorem gave birth to DFT
as a well-founded theory.

The next step in the HK formulation is the introduction
of the functional:

FHK[n] = 〈ψ[n]|T̂ + Ŵ |ψ[n]〉 (10)

and the energy density functional:

EHK[n; v] = FHK[n] +
∫

d3r n(r)v(r), (11)

where the external potential is fixed. Thus, the ground-state
energy of the system can be obtained as

EJ [v] = min
n∈DJ

EHK[n; v]. (12)

A known problem of the functional defined in Equation
(11) is its domain: the space DJ is restricted only to den-
sities that correspond to ground states. This problem was
solved by Levy [38], who introduced the constrained search
functional:

F ∗
J [nJ ] = min

ψJ →nJ

〈ψJ |T̂ + Ŵ |ψJ 〉, (13)

where the search is again over HJ , under the constraint
that 〈ψJ |n̂(r)|ψJ 〉 = n(r). The domain of F ∗

J is larger than
that of FHK because now densities that correspond to wave-
functions that are not ground states are allowed. Lieb [30]
showed that ensemble densities may not be included in the
domain of F ∗

J , and that the following functional solves such
problem and has a larger domain:

FJ [nJ ] = min
�̂J →nJ

Tr{(T̂ + Ŵ )�̂J }, (14)

where �̂J is a density matrix including excited states of the
system with J electrons:

�̂J =
∑

k

wJ,k|ψJ,k〉〈ψJ,k|,
∑

k

wJ,k = 1. (15)

Here, the index k runs over all the energy states. Thus, the
ground-state energy can be obtained through the minimisa-
tion:

EJ [v] = min
n

{
FJ [n] +

∫
d3r n(r)v(r)|

∫
d3r n(r) = J

}
.

(16)

We refer to a functional like FJ as a discrete-particle-state
functional because the number of electrons is an integer and
the molecule, or solid, is treated as a closed system.

2.1. Search over density matrices

The DFT approach described above only considers densities
that integrate to an integer number of electrons. No phys-
ically meaningful fluctuations of the number of electrons,
or fractional numbers of electrons are taken into account.
Now, we want to study densities satisfying

∫
d3r n(r) ∈ R+ ∪ {0}. (17)

How can one introduce extended functionals that are valid
for any number of electrons? The basic principles men-
tioned in the previous section, which are based purely on
quantum mechanics (the theory of discrete numbers of elec-
trons), do not provide a clear path for introducing fractional
numbers of electrons. A natural step is to invoke statistical
mechanics for open systems at 0+ K [39], i.e., the GCE. We
imagine that the molecules of the ensemble are separated
from each other, but they can exchange electrons [40] in a
macroscopic time scale. Thus, our isolated open molecules
can have a mean number of electrons (or time-averaged
number) that is controlled by a chemical potential. Alter-
natively, an equivalent physical picture is this: we place the
molecule in contact with a distant metallic lead. Once equi-
librium is reached, the statistical population of electrons
in the molecule can be controlled again by the chemical
potential of the system [41].

To describe the above physical picture, let �̂ be the
grand-canonical density operator:

�̂[v](β) =
∑
M,k

wM,k[v](β)|�M,k[v]〉〈�M,k[v]|, (18)

where |�M, k[v]〉 is the kth state wave-function of the
molecule with M electrons. The probability of finding a
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molecule in the M, k state is

wM,k[v](β) = 〈�M,k[v]|�̂[v](β)|�M,k[v]〉

= exp(−β(EM,k[v] − μM))

�[v](β,μ)
. (19)

Here, � is the grand-canonical partition function of the
molecule:

�[v](β,μ) = Tr{exp(−β(Ĥ [v] − μN̂ ))}

=
∞∑

M,k

exp(−β(EM,k[v] − μM)), (20)

where N̂ is the electron-number operator. For a molecule
in the ensemble, under the appropriate experimental con-
ditions, it is possible to fix the average number of elec-
trons, which will be denoted as N and can be calculated as
N = Tr[N̂�̂].

For a system at 0+ K, the average energy of the system
(EN[v]) can be calculated by means of

EN [v] = lim
β→∞

Tr[�̂[v](β)Ĥ [v]]. (21)

This approach is based on wave-functions, which can be
avoided with the following functional defined by Perdew
et al. [26]1:

E[n; v] := F [n] +
∫

d3r v(r)n(r), (22)

where F is defined as

F [n] := min
�̂→n

Tr{�̂(T̂ + Ŵ )}. (23)

The search for the minimum is performed over the Liouville
space of density matrices that integrate to the density n. That
is,

�̂ =
∑
M,k

wM,k|ψM,k〉〈ψM,k|,
∑
M,k

wM,k = 1. (24)

Another functional of interest is the grand-canonical func-
tional

�([n; v], μ) = F [n] +
∫

d3r (v(r) − μ)n(r), (25)

where μ is the electronic chemical potential. Mermin [42]
proved that the grand potential � is a functional of the
density, that there is a density that minimises this functional
(with the restriction that it integrates to a given number of
electrons), and that the HK principle applies as well.

The minimum of Equation (22) is the minimum of

E[v]({wM}) =
∑
M

wMEM [v], (26)

where v is fixed and the weight coefficients {wM} are con-
strained to

∞∑
M=1

MwM = N,

∑
M=1

wm = 1. (27)

Suppose that J − 1 < N < J, and assume that the ground-
state energy is a convex function of the number of electrons,
i.e.,

I ≥ A, (28)

for all J, where I and A are the ionisation and affinity,
respectively. These quantities are defined as follows:

I = EJ−1 − EJ ,

A = EJ − EJ+1. (29)

The result of the minimisation problem is a linear inter-
polation equation whose end points are the energies of the
systems with integer numbers of electrons that are nearest
to N:

EN [v] = (1 − ω)EJ−1[v] + ωEJ [v]. (30)

Here, ω = N − J + 1, and 0 < ω < 1. The equilibrium
density of the system is

n(r) = (1 − ω)nJ−1(r) + ωnJ (r). (31)

Extending the result for all N, we find that EN[v] as a func-
tion of N is a series of straight lines, as illustrated in Figure 1.
Alternatively, we can use Equation (18) to find the graph
illustrated in Figure 1. Equation (18) also allows us to find
a relationship between the average number of electrons N
and the chemical potential, i.e.,

⎧⎨
⎩

J − 1 < N < J if (−μ) = I

N = J if A < (−μ) < I

J < N < J + 1 if (−μ) = A

⎫⎬
⎭ . (32)

Figure 2 illustrates the behaviour of the average number
of electrons in terms of the chemical potential. It can be
noted that for integer number of electrons there is something
similar to a phase transition, with a DD in the energy as
function of N when the number of electrons equals J, for
any integer J. This important feature of EN[v] is the main
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Figure 1. Linear interpolations of ground-state energies.

focus of this work. To approach it, we first need to discuss a
purely density-functional framework to determine how the
DD in Figures 1 and 2 is related to that of E[n; v].

2.2. Kohn–Sham DFT

Kohn and Sham [2] defined an auxiliary system of non-
interacting electrons to represent the ground-state density.
For a system of J electrons, the ground state of this auxil-
iary system is given by the Slater determinant |
J, s〉 formed
by the set of single-particle orbitals {φi}. This is usually
denoted as |
J, s〉 = |φ1. . .φJ〉. A given density n(r) is rep-
resented by minimising the kinetic energy:

min

J,s→n

J∑
i=1

〈φi |T̂ |φi〉. (33)

Figure 2. Chemical potential as a function of the number of
electrons.

If the density integrates to a non-integer number of elec-
trons, we employ

Ts[n] = min
�̂s→n

Tr{T̂ �̂s}. (34)

The density matrix �̂s is defined in a non-particle-
conserving Fock space of Slater determinants, which are
antisymmetrised products of KS orbitals. These orbitals
satisfy the KS equations:

(
T̂ +

∫
d3r vs[n](r)n̂(r)

)
|φi[n]〉 = εα[n]|φi[n]〉, (35)

where vs is the KS potential, whose purpose is to enforce
that Tr{�̂sn̂(r)} = n(r).

The energy functional in Equation (22) can then be
expressed as

E[n; v] = Ts[n] + EHXC[n] +
∫

d3r n(r)v(r), (36)

where

EHXC[n] = EH[n] + EXC[n]. (37)

The Hartree functional is EH[n] = 1/2
∫

d3r d3r′ n(r)n(r′)/
|r − r′|, and EXC[n] is the XC energy functional. The
minimisation of Equation (36) over n(r) yields the Euler–
Lagrange equation

δTs[n]

δn(r)
+ vs(r) = μ, (38)

where

vs(r) = vH(r) + vXC(r) + v(r), (39)

and

vH(r) =
∫

d3r′ n(r′)
|r − r′|

vXC(r) = δEXC[n]

δn(r)
, (40)

where the latter is the XC potential.
Using the definitions of Ts and F we obtain

EHXC[n] = min
�̂→n

Tr{(T̂ + Ŵ )�̂} − min
�̂s→n

Tr{T̂ �̂s}. (41)

This equation can be written as

EHXC[n] =
∫ 1

0
dλ

d

dλ
Tr{(T̂ + λŴ )�̂[n](λ)}, (42)
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where �̂[n](λ) is the result of

min
�̂→n

Tr{(T̂ + λŴ )�̂}. (43)

From the virial theorem, one obtains that

EHXC[n] =
∫ 1

0
dλTr{Ŵ �̂[n](λ)}. (44)

which can further be simplified as

EHXC[n] = Tr{Ŵ �̂∗[n]}, (45)

with �̂∗[n] = ∫ 1
0 dλ�̂[n](λ). The above expression indi-

cates that the HXC functional is determined by the average
electron–electron repulsion, taken over a continuously dif-
ferentiable path of states connecting the KS state with the
fully interacting ground state. Clearly, the functional de-
pendence of the HXC energy on n(r) is determined by that
of the average state �̂∗[n].

3. Derivative discontinuities

The DD of the XC energy functional emerges from sev-
eral fundamental properties of the KS kinetic and potential
energies. Here, we present four theorems formally stating
such properties.

3.1. Theory

Minimisation of the functional E[n; v], Equation (36), sub-
ject to the condition

∫
d3r n(r) = N, where N is a posi-

tive real number, yields the ground-state energy EN[v] and
the ground-state density, which we denote as nv, N(r). The
Hohenberg–Kohn–Mermin (HKM) theorem for ensembles
establishes that there is a one-to-one mapping between the
density n(r) and the pair v(r), N, up to an arbitrary constant
in v(r). Throughout this section, we investigate the be-
haviour of the density-functionals E, Ts, and EHXC around
the number of electrons J. If 0 < ω < 1, the ground-state
ensemble densities satisfy:

nv,J+ω(r) = (1 − ω)nv,J (r) + ωnv,J+1(r),

nv,J−ω(r) = (1 − ω)nv,J (r) + ωnv,J−1(r). (46)

This indicates that a density in the ensemble is an aver-
age over pure-state densities corresponding to states with
integer numbers of electrons.

Minimisation of E[n; v] subject to
∫

d3r n(r) = N leads
to the Euler–Lagrange equation:

μ[nv,N ] = δEv[n]

δn(r)

∣∣∣∣∣
nv,N

, (47)

where μ[nv, N] is the chemical potential of the system.
The chemical potential is a functional of the potential
and the number of particles. Thus, it is also a functional
of the density nv, N(r), so we express it as μ[nv, N]. Denot-
ing the ionisation and affinity of the system as Iv, J and Av, J,
respectively (now including the dependency on v), then, as
mentioned in Section 2.1, the chemical potential satisfies

μ[nv,N ] =
{−Iv,J (J − 1 < N < J ),
−Av,J (J < N < J + 1).

(48)

The chemical potential μ[nv, J] can have any value between
−Iv, J and −Av, J. Although the chemical potential is not
uniquely defined at J, its limits are. Hence, the integer dis-
continuity along a path of ground-state densities nv, N is
defined as

�μ,v(J ) = lim
ω→0+

{
μ[nv,J+ω] − μ[nv,J−ω]

} = Iv,J − Av,J .

(49)

An alternative expression for the above quantity is

�μ,v(J ) = lim
ω→0+

⎧⎨
⎩ δEv

δn(r)

∣∣∣∣∣
nv,J+ω

− δEv

δn(r)

∣∣∣∣∣
nv,J−ω

⎫⎬
⎭ .

(50)

From Equation (22), we note that the term
∫

d3rv(r)n(r) is
continuous. Therefore, the DD of E[n; v] is the same as that
of the functional F of Equation (23), which is expanded as

F [n] = Ts[n] + EH[n] + EXC[n]. (51)

The functional Ts represents the kinetic energy of an
ensemble of systems with non-interacting electrons. The
average density of a member of the ensemble is given by

n(r) =
∑

α

f (μ − εα)|φα(r)|2. (52)

The occupation numbers are determined by the Fermi–
Dirac distribution:

f (μ − εα) = 1

1 + exp(β(μ − εα))

∣∣∣∣∣
β=∞

. (53)

They can be expressed as

f (μ − εα) =
⎧⎨
⎩

1 (εα < μ)
ω (εα = μ)
0 (εα > μ).

(54)

The restriction in Equation (34) that the sum of squared or-
bitals yields a prescribed density gives rise to a multiplica-
tive local potential, a Lagrange multiplier. Such multiplier
is the well-known KS potential vs(r). As in the case of en-
sembles of interacting electrons, there is an invertible map
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between n(r) and the pair vs(r), N. Let us denote such map
as Ds. We will also employ the map between potentials and
densities that integrate to N electrons only and their corre-
sponding potentials. Let us denote such map as Bs,N . This
map is useful to define the linear response functions.

We now analyse the discontinuity of the KS kinetic
energy potential:

�s,v(J ) = lim
ω→0+

⎧⎨
⎩ δTs

δn(r)

∣∣∣∣∣
nv,J+ω

− δTs

δn(r)

∣∣∣∣∣
nv,J−ω

⎫⎬
⎭ ,

(55)

which first requires the following theorem:

Theorem 3.1: Let εH[nv, N] be the highest occupied molec-
ular orbital (HOMO) of the system with N electrons. For-
mally, it is defined as

εH[nv,N ] =
{
εJ+1[nv,N ] (J < N ≤ J + 1)
εJ [nv,N ] (J − 1 < N ≤ J ).

(56)

If N is a non-integer number of electrons, then the functional
derivative of the KS kinetic energy functional is

δTs[n]

δn(r)

∣∣∣∣∣
nv,N

= εH[nv,N ] − vs[nv,N ](r). (57)

Proof: This proof follows that of Liu and Ayers [43] for
discrete-particle states. Suppose that the density n(r) inte-
grates to a number of electrons J + ω. The KS kinetic
energy can be expressed as

Ts[n] =
J∑

α=1

〈φα|T̂ |φα〉 + ω[n]〈φH|T̂ |φH〉. (58)

Here, the KS orbitals are normalised and are functionals
of the density n(r). The coefficient ω is a functional of the
density as well:

ω[n] =
∫

d3r n(r) − J. (59)

Hence, a variation of Ts around J + ω is

δTs =
J+1∑
α=1

fα〈δφα|T̂ |φα〉 + c.c. + δω〈φH|T̂ |φH〉, (60)

where fα = 1 if α = 1, . . . , J, and fJ + 1 = ω. Using the KS
equations, it is easy to show that

δTs =
J+1∑
α

εαfαδ〈φα|φα〉 −
∫

d3r vs(r)

(
J+1∑
α=1

fαδ|φα(r)|2
)

+ εHδω −
∫

d3r vs(r)δω|φH(r)|2. (61)

Because the orbitals are normalised and

δn(r) =
J+1∑
α=1

fαδ|φα(r)|2 + δω|φH(r)|2, (62)

we obtain

δTs = εH δω −
∫

d3r vs(r)δn(r). (63)

Finally, by noting that δω = ∫
d3r δn(r) we obtain

δTs[n]

δn(r)
= εH[n] − vs[n](r). (64)

Evaluation at nv, N(r) yields Equation (57). It must be re-
marked that this result is valid for non-integer numbers of
electrons. �

This theorem, applied to Equation (47), leads directly
to Janak’s theorem [44]:

εH[nv,N ] = δEv

δn(r)

∣∣∣∣∣
nv,N

= μ[nv,N ]. (65)

Theorem 3.2: The HOMO of a KS system of non-
interacting electrons representing the density nv, N(r)
satisfies

εH[nv,N ] =
{−Av,J (J < N ≤ J + 1)
−Iv,J (J − 1 < N ≤ J ).

(66)

A proof of this result can be found in Ref. [35]. The
above theorem is valid as long as limr→∞ vs(r) = 0.

In order to find the discontinuity of the kinetic potential,
one has to find the discontinuity of the HOMO energy
and the KS potential. However, note that the addition of a
constant function Cv, N to the KS potential (or the HOMO
energy) does not affect the density. From the KS equations,
we note that the quantity εH[nv, N] − vs[nv, N](r) is not
arbitrary by a constant. Therefore, the DD of Ts is unique.

Theorem 3.3: Let N = J + ω. If the density nv, N(r) can be
represented by a system of non-interacting electrons under
the potential vs(r; ω), then vs(r; ω) satisfies, as ω → 0+ ,

δv+
s (r; ω) = ω

∫
d3r′χ−1

s,J (r, r′)

× (�n+(r) − |φL[nv,J ](r′)|2), (67)

where

χs,J (r, r′) =
( δn(r)

δvs(r′)

)
N=J

(68)
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Proof: Suppose that the density nv, J(r) can be represented
by a system with KS potential vs[nv, J](r). If the number of
electrons is increased by a small quantity ω then the density
nv, J + ω(r) can be expressed as

nv,J+ω(r) = nv,J (r) + δnω(r), (69)

where

δnω(r) = ω�n+(r), (70)

and �n+ (r) = nv, J + 1(r) − nv, J(r). The term δnω(r) is
a perturbation involving the addition of an electron to the
ensemble. Note that the perturbation in the density is in
general non-local; it should induce a non-local response
in the potential δvs(r). Additionally, the perturbed density
can be assumed to be of the form nv,J+ω(r) = Ds[vs +
δv+

s ](J + ω). Hence, we can write (ignoring higher order
responses)

δnω(r) =
∫

d3r′
( δn(r)

δvs(r′)

)
N=J

δv+
s (r′) + ω

(∂n(r)

∂N

)+

vs,N=J
.

(71)

The functional derivative in Equation (71) is χ s, J(r, r′), the
KS linear response function for the system with J electrons,
Equation (68). To evaluate such quantity one needs the map
Bs,J discussed just before Theorem 1.

The partial derivative in Equation (71) corresponds to
the variation of the density when the KS potential is fixed at
vs(r). The super-index + denotes the derivative taken on
the positive side of J. If the KS potential is fixed, then the
extra electron would occupy the lowest occupied molecular
orbital (LUMO) orbital of the molecule with J electrons.
Therefore, (

∂n(r)

∂N

)+

N=J,vs

= |φL[nv,J ](r)|2. (72)

Using this equation together with Equations (70), we can
solve for δv+

s in Equation (71) by multiplying on both sides
by the inverse of χ s, J(r, r′), obtaining Equation (67). This
equation allows us to conclude that δv+

s → 0 as ω → 0+ .
Thus, the potential,

vs(r; ω) = vs[nv,J ](r) + δv+
s (r; ω), (73)

can be taken as a continuous function of ω. �
It is worthwhile noting that δv+

s (r)/ω does not tend to
zero as r → ∞. Therefore, the same analysis applied to the
removal of an electron from the J-electron system shows
that δvs(r)/ω is discontinuous.

Theorem 3.4: The KS potential vs[nv, J + ω] is a discon-
tinuous function of ω satisfying [41]

lim
ω→0+

(vs[nv,J+ω] − vs[nv,J−ω]) = CXC,v, (74)

where CXC, v is a constant.

Proof: Theorem 3 established that nv, J + ω(r) is repre-
sented by vs(r; ω) as ω → 0+ . Due to the HKM theorem
[42], the map Ds is one-to-one. Hence, this potential tends
to vs[nv, J], which is the potential for which εJ = −Iv, J.
This implies that

lim
ω→0+

εJ+1[vs(ω)] = εL, (75)

is apparent violation of Janak’s theorem. The only way to
resolve this is by allowing the KS potential, as functional
of nv, J + ω, to satisfy

lim
ω→0+

vs[nv,J+ω] = vs[nv,J ] + CXC,v. (76)

This does not violate the HKM theorem because the ad-
dition of a constant does not affect the density, but the
eigenvalues depend on such constant. �

Since we demanded that the functional vs[nv, N](r) van-
ish in the asymptotic region, the order in which limits are
taken is important. For example, note that

lim
ω→0+

lim
|r|→∞

vs[nv,J+ω](r) = 0, (77)

but [41]

lim
|r|→∞

lim
ω→0+

vs[nv,J+ω](r) = CXC,v. (78)

As we mentioned before, the DD of Ts[n] is unique, so
it is not affected by a constant in the potential. Now, the
map Ds evaluated at vs(r, ω), J + ω allows us to write

δTs[n]

δn(r)

∣∣∣
nv,J+ω

= εJ+1[vs(ω)] − vs(r; ω). (79)

Given that εJ + 1[vs(r; ω)] → εL, we conclude that

�s,v(J ) = εL[nv,J ] − εH[nv,J ]. (80)

where εL[nv, J] is the LUMO orbital of the molecule with
J electrons.

Finally, since the Hartree functional is continuously dif-
ferentiable and the external potential v(r) is fixed, the DD
of the XC energy functional is

�XC,v(J ) = lim
ω→0+

{
δEXC

δn(r)

∣∣∣∣∣
nv,J+ω

− δEXC

δn(r)

∣∣∣∣∣
nv,J−ω

}

= CXC,v = −Av,J − εL[nv,J ], (81)

in agreement with Theorem 4. This quantity has a special
property: when added to the KS gap εL[nv, J] − εH[nv, J], the
fundamental gap Iv, J − Av, J is recovered. Continuous func-
tionals like LDA and GGAs lack the DD in Equation (81),
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causing serious difficulties in practical calculations such as
those discussed next.

4. Practical importance

The absence of XC DD in DFAs is responsible for
many problems in applications to molecular and solid-state
physics. In this section, we discuss the cases of molecular
dissociation and energy gaps.

4.1. Molecular dissociation

The energy changes involved in bond stretching yield the
forces that drive the dynamics of chemical reactions, and
binding energies for chemical thermodynamics. Let us con-
sider a simple diatomic molecule, A − B. As the dis-
tance between A and B is increased, the energy of the
molecule tends to be additive, and at infinite separation
the molecule becomes a set of two isolated atoms. For in-
stance, suppose that there is a small coupling between the
two atoms, forcing them to exchange electrons. Suppose
that the only two states available are A− − B+ and A −
B. In an ensemble of replicas of these states, the average
energy is simply the average of the energies of those two
states, weighed by their relative abundances, i.e., using the
average charge of atom A, xA. The average energy, for a
large bond length, is a linear function of xA. On the other
hand, if the system is only in either of the states A − B or
A+ − B−, then the average energy would be a different
linear function. When these two linear functions are joined,
the energy shows a minimum and a DD at xA = 0 [26].
This observation is not featured by the LDA (or GGA). For
example, if the charge is transferred from one atom to the
other, one would observe that the LDA energy derivative is
continuous [41] (also see Ref. [45]).

Practice tells us that LDA and GGAs tend to over-
estimate binding energies [24]. This error is caused by
self-repulsion [or self-interaction error (SIE)]: these func-
tionals are derived from the analysis of the homogeneous
and nearly homogeneous electron gas, where the number
of electrons is large, and where these functionals become
exact. A diatomic molecule in its equilibrium distance is in
a sense closer to an electron gas than each of its atoms. As
the number of electrons increases, the effects of the self-
repulsion decrease. However, at dissociation, the effects of
self-repulsion are more severe on each atom. Thus, assum-
ing that our DFA works well for the molecule at equilibrium
separation, then it might not be so for the individual atoms
(or fragments), over-estimating the binding energy.

Cohen et al. [46] (also see [47,48]) illustrated the defi-
ciency of the LDA XC functional, which is common to a
majority of DFAs, related to the SIE and erroneous elec-
tronic delocalisation. The exact XC functional satisfies

EXC[n] = −EH[n]; N = 1 (82)

(EHXC[n] = 0 when N = 1). Additionally, the exact func-
tional E[n; v] satisfies size consistency. Let us consider an
H+

2 molecule with its protons arranged in a horizontal axis,
and let vL and vR be the electron–nucleus potentials cor-
responding to the left and right protons, respectively. The
density of the H+

2 molecule, when the distance between the
nuclei is large, is quite close to the sum of two ground-state
densities, i.e., nL + nR. The energy of the system satisfies

E[nL + nR; v] → E[nL; v] + E[nR; v]

≈ E[nL; vL] + E[nR; vR]. (83)

The HXC energy functional also tends to be additive,
i.e., EHXC[nL + nR] → EHXC[nL] + EHXC[nR]. If
we write n(r) = ωLnL, 1(r) + ωRnR, 1(r), where nα, 1(r)
are densities integrating to one electron, and ωL and ωR

are the occupation numbers of each fragment, in this case
ωL = ωR = 1/2, then we could verify that ELDA

XC [n] �=
ωLELDA

XC [nL,1] + ωRELDA
XC [nR,1] [49]. (We will also denote

E[n; v] as Ev[n]) For the case of a single H atom, the LDA to-
tal energy does not satisfy ELDA[ωn1] = ωELDA[n1]; neither
the GGAs nor the LDA functional satisfy size-consistency
in this ensemble sense.

The origin of the violation of size consistency in this en-
semble sense is the delocalisation error caused by the SIE:
because LDA violates Equation (82), it erroneously treats
a single electron as a cloud of self-repelling charges, which
is more spread out over the H+

2 molecule than the exact

density. In general, if all the nuclei in the chain H
(Mp−Ntot)+
Mp

(where Ntot and Mp are the total number of electrons and
protons, respectively, and Ntot < Mp) are arranged in a lattice
where the distance between each other is large, the energy
of a single atom in the lattice would correspond to that of
an atom with an average fractional charge (Mp − Ntot)/Mp

+ . However, the spurious density delocalisation and self-
interaction error cause the average-energy-per-atom curve
to be convex and deviate from the exact one for this sim-
ple case (see Figure 3, recall that N is the average number
of electrons per atom). Further addition of electrons to the
chain leads to a curve of average-energy-per-atom vs. aver-
age number of electrons that misses the contribution from
XC DD at N = 1. The observations of Cohen et al. [46] thus
suggest that incorporating the correct piecewise linear de-
pendency on the number of electrons is necessary to avoid
the delocalisation error.

In general, the delocalisation/SIE error in DFAs is prob-
lematic when distances between atoms are large [50,51],
and when the atoms have few electrons. There are many
known cases where LDA and/or GGAs fail (for example,
see [52–54]). In our opinion, it is easier to diagnose the er-
ror in a non-empirical functional than in an empirical one.
Alternative approaches treat the delocalisation error as a
problem of lack of references instead of lack of piecewise
linear dependency on N (or lack of DD). Works addressing
this problem of quasi-degenerate states are reported in the
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Figure 3. Sketch of the average electronic energy of a hydrogen

atom, in the chain H
(Mp−Ntot)+
Mp

, as function of its average number
of electrons. Solid line, exact; dashed line, LDA.

literature, especially considering multi-references and/or
configuration interaction of KS wave-functions [55–64].
However, KS-DFT, as discussed here, is a single reference
theory.

4.2. Energy gaps

Consider the example of the previous subsection, the A–B
system. The energy of an atom, for example, A, is an aver-
age of two states with the nearest number of integer number
of electrons. Moreover, in agreement with Section 2.1, the
average energy of A is a piecewise linear function of the
number of electrons and displays a DD, which constitutes
the fundamental gap of the atom. The energy as a function
of the number of electrons should be piecewise linear, not
piecewise non-linear. The XC energy functional has a DD
as well, which replaces the LUMO energy by the affinity
of the system (Theorem 4). This discontinuity is missed by
continuously differentiable functionals. One can approxi-
mate the XC DD using complicated forms in terms of the
occupation numbers. However, we remark that piecewise
linear dependency is stronger than DD because the former
implies the latter, and not the other way around.

Due to the lack of �XC, roughly speaking, the LDA
XC method underestimates the band gap of solids by
40 % [7,65], and LSD over-estimates the electron affin-
ity of atoms even with self-interaction correction [66]. The
exact KS band gap (εL − εH) cannot reproduce the fun-
damental gap of a molecule or the band gap of a solid.
Hence, estimating the XC DD is an important goal for the
DFT community. For applications in solid-state theory, the
XC DD should ideally be an output from a single calcu-
lation over the unit cell of the solid with fixed number of
electrons. This philosophy of calculation can be applied to
isolated molecules as well [67]. One could use the LUMO

orbital density to approximate the density of a molecular
anion and its energy. This single-shot estimation idea has
been pursued by Gázquez et al. [68], who proposed a simple
formula using the HOMO and LUMO densities to estimate
nJ − 1 and nJ, which are input into the XC potential of the
corresponding discrete states to estimate the energy gap of
the system. They suggest that any functional can be used
to estimate the band gap using their approximation and that
adding a long-range correction to the functionals improve
the calculations. Nevertheless, the addition and relaxation
of an electron to the ground state may change the proper-
ties of the molecule significantly, probably beyond what a
zero-order perturbation correction would predict.

DFAs with XC potential discontinuity have been pro-
posed. For example, the functional of Perdew and Zunger
[69] corrects partially the self-interaction error and shows
an improved estimation of the XC DD. Sham [70] derived
an expression for the XC energy functional using Feyn-
man diagrams and the Luttinger–Ward functional (a sim-
ilar equation has been recently developed within DFT by
Yang et al. [71]). Sham and Schlüter [72], based on Sham’s
equation, derived an integral equation that relates the one-
particle many-body Green’s function with the XC potential
and the XC self-energy. The Sham–Schlüter equation has
been successfully employed to calculate the DD of semi-
conductors and insulators [73,74]. Other early estimation of
the XC DD for simple-model systems are available [75,76]
(see also [77]). Kuisma et al. [78] showed that the orbital-
dependent functional of Gritsenko et al. [79] presents DD,
which once averaged over spatial coordinates yields better
band-gap prediction for semi-conductors. Other function-
als that display DD are the hyper-GGAs and meta-GGAs.
In general, as shown in the seminal paper of Krieger et al.
[80], XC functionals that show dependency on orbitals tend
to feature the integer discontinuity.

For the molecular case, Andrade and Aspuru-Guzik [81]
proposed a method to correct the asymptotic limit form of
the LDA and GGAs XC potentials, and estimate the XC
DD. They assumed that the there exists a fictitious density
that reproduces the XC potential, and proposed a method to
correct the asymptotic behaviour of the approximated XC
functional using a cut-off criterion for the fictitious density.
They further assumed that the LDA (or GGA) averages over
the XC DD (see Ref. [65]). Thus, by averaging over space,
the difference between their corrected XC potential and the
LDA (or GGA) potential, Andrade and Aspuru-Guzik [81]
were able to estimate the DD with good accuracy for small
molecules.

Seidl et al. [82] generalised KS (GKS) DFT by intro-
ducing, instead of a system of non-interacting electrons,
a system of electrons whose interaction is determined by
the user, for example, non-local Hartree–Fock interaction.
The screened exchange (sX) LDA method of Bylander
and Kleinman [83], which has non-local Fock electron
exchange, can also be formalised within the theory of Seidl
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et al. [82]. The auxiliary electrons of GKS DFT are subject
to a local effective potential that guarantees that the density
of these electrons corresponds to that of the real system
of electrons. The generalised scheme of Seidl et al. [82]
introduces Schrödinger-like equations with non-local oper-
ators whose self-consistent solution yields the generalised
single-particle orbitals. Additionally, the sum of the square
modulus of the occupied orbitals yields the exact density of
the system. Seidl et al. [82] showed using perturbation the-
ory and experimental data that the particle gap of sX-LDA is
a suitable approximation to the XC DD, making the single-
particle band gap closer to the fundamental one. We must
remark, however, that the use of exact exchange in standard
(i.e., using local potentials) KS-DFT might not improve the
KS band gap and make it close to the true band gap [84].

Cohen et al. [32] analysed second-order perturbation
theory with occupation numbers [34] and obtained discon-
tinuities that improved the band gap over Koopmans’ the-
orem. In fact, they found that the MP2 energy vs. particle
number graph is quite closer to the correct linear interpola-
tion form than that of the LDA and HF. Tsuneda et al. [85]
showed numerically that a series of long-range corrected
functionals give close approximations to the ionisation po-
tential when the functionals are implemented within GKS
DFT. Tsuneda et al. [85] also showed that these long-range
corrected functionals, when directly extended to ensembles
(that is, using the same functional always) preserve the or-
bital energies when non-integer number of electrons are
considered. They highlighted that this is one of the reasons
for the success of long-range corrected functionals.

4.3. Criticisms

The extension to HK DFT by Mermin [42] and Perdew et al.
[26] has been the subject of criticisms by several authors.
Valiev and Fernando [86] suggested that Janak’s theorem
has no place in DFT because the occupation numbers are
not variational parameters. However, as our review shows,
using a purely DFT approach within the GCE, one can de-
rive the Janak’s theorem. Zahariev and Wang [87] used a
thermal regularisation theorem to prove that the XC poten-
tial has no derivative discontinuities for integer number of
electrons. However, their proof was rejected in Ref. [88] by
showing that Zahariev and Wang [87] neglected an order-
of-limits problem. Klienman [89,90] pointed out that the
Perdew, Parr, Levy, and Balduz (PPLB) result contradicts
the result of Levy et al. [91] stating that the XC potential
tends to zero at large distances. He also argued that the
proof of PPLB that the ensemble KS HOMO energy is the
negative of the ionisation is incorrect. The discrepancies
he found are due to a different choice of occupation num-
bers he employed. The objections of Klienman were refuted
by Perdew and Levy [92], and further studies confirming
the DD of the XC potential are reported for the optimised
effective potential [34].

Simple practical examples displaying the DD have been
reported, for example Sagvolden and Perdew [93] used
the exact ground-state densities of H− and H to construct
ensemble densities and calculate the XC potential. They
showed with this simple example the existence of the dis-
continuous jump of the XC potential. This was later ex-
tended to spin DFT [94] to again find the corresponding
jumps in the polarised XC potentials. The DD has also
been confirmed by Harbola [95], who extended the differ-
ential theorem of Holas and March [96] to the GCE at 0 K
and applied it successfully to the helium case.

5. Ensemble density-functional approximations

In this section, we present new views on the approximation
of the XC energy functional in the GCE.

5.1. The LDA and the electron gas

The LDA XC energy functional is exact for the uniform
electron gas. It is usually split into exchange and correlation
components. The former is

ELDA
X [n] = −CX

∫
d3r n4/3(r), (84)

where CX is given by

CX = 3

4π
(3π2)1/3. (85)

For the correlation contribution,

ELDA
c [n] =

∫
d3r n(r)ec(n)

∣∣∣
n=n(r)

. (86)

The Perdew–Wang parametrisation of the correlation en-
ergy density ec(n) [97] is a continuously differentiable func-
tion of the density. To derive the LDA functional, one as-
sumes that the density can be approximated as a series of
uniform-density bars as

napprox(r) =
∑

k

χk(r)nk, (87)

where

χk(r) =
{

1, r ∈ kth bar
0, otherwise.

(88)

Each of the nk is a constant that approximates the true
density in the corresponding bar (Figure 4). The number
nk in a large system (e.g., a solid) represents the number
of electrons per volume. Experience has proven that the
L(S)DA is in many ways a successful approximation for
solids. However, strictly speaking, in a small molecule nk

represents the probability of finding an electron in a volume
δVk times the total number of electrons.
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Figure 4. Illustration of the physical concept of the LDA.

As discussed at length before, the LDA XC functional,
as well as many others, is unable to reproduce the correct
dependency of the energy in terms of the average number
of electrons. To investigate the source of this error let us
consider a quantum gas with a finite number of electrons,
which is the system used to approach the macroscopic elec-
tron gas. The quantum electron gas is relevant to study
molecules with π -electron clouds, as the electrons can be
assumed to lie in a finite box. Let the system be described by
the Hamiltonian of Equation (3) with V̂ext = 0. The wave-
function of an independent electron is

ψk,σ (r) = 1√
V

ξσ exp(−ik · r), (89)

where V = LxLyLz, ξσ is the spin-state, and the momentum
quantum number is k = (kx, ky, kz):

kj = 2πmj

Lj

mj = 0,±1,±2, . . . j = x, y, z. (90)

The single particle energy is

εk,σ = 2�2π2

((mx

Lx

)2
+

(my

Ly

)2
+

(mz

Lz

)2
)

. (91)

The thermodynamic properties of an ensemble of these non-
interacting, finite electron gases are easily calculated using
the grand-canonical partition function

�(T , V,μ) =
∑
{nk,σ }

∏
qσ

exp(−βnqσ (εqσ − μ))

=
∏
kσ

[1 + exp(−β(εkσ − μ))]. (92)

This function leads to the occupation numbers:

fkσ (β) = 1

1 + exp(β(εkσ − μ))
, (93)

where the total number of electrons is

N =
∑
kσ

fkσ . (94)

When the temperature is zero, β =∞, we obtain a Heaviside
function:

f (εkσ − μ) = fkσ (β)
∣∣∣
β=∞

. (95)

Let the HOMO energy be εH, σ and its occupation number
fH, σ = f(0). Suppose that the average number of electrons
is N = J + 2ω, where 0 < ω < 1. Then

J + 2ω =
∑
kσ

f (εkσ − μ) = J + fH,↑ + fH,↓. (96)

Thus, fH, ↑ + fH, ↓ = 2ω. If fH, ↑ = fH, ↓, then fH, σ = ω.
The average energy is

E0(N ) =
∑
kσ

f (εkσ − μ)εkσ = EJ + 2ωεH

= (1 − 2ω)EJ + 2ω(EJ + εH). (97)

The GCE statistics can be easily adapted to study this mi-
croscopic non-degenerate electron gas with full Coulombic
interaction between the electrons. In such case, the energy
E0(N) has to be replaced by the true energy of the system,
Ev(N). Since this system is a molecule in essence, we ex-
pect the energy Ev(N) to be convex as well, as discussed
in Section 2. Thus, we conclude that the energy of the
quantum electron gas is a series of first-order spline inter-
polations (see Figure 5). However, as V becomes infinitely
large, E0(N) tends to a continuously differentiable function.
In other words, the level spacing between energies tends
to zero, allowing us to employ the Euler–McLaurin inte-
gration formula to calculate the properties of the electron
gas exactly. On the other hand, one can also express the
exchange energy as an ensemble average:

Ex ≈ (1 − ω)ELDA
X [nJ ] + ωELDA

X [nJ+1]. (98)

If the level spacing is small enough, we can simply assert
that

Ex = ELDA
X [nJ+ω]. (99)

Now, we will show that the above two equations are not
applicable to molecules.
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Figure 5. Energy of the quantum electron gas as a function of
the number of particles; extreme low densities.

5.2. Approximating the HXC ensemble functional

Semi-local functionals are known to perform well at equi-
librium geometries when the number of electrons is an
integer [98,99]. Casida [34] pointed out that the XC en-
ergy functional at non-integer number electrons must be
different from the one at integer number electrons. Harbola
[35], in order to satisfy Janak’s theorem and clarify the de-
bate between Klienman [89,90] and Perdew and Levy [92],
conjectured the correct form of the ensemble XC energy.
In Ref. [33], we showed how approximated functionals for
discrete molecules can be extended to consider ensembles.
This extension recovers the linear dependency on the av-
erage number of electrons and derivative discontinuities of
the approximated XC potential. In light of the observations
of Casida and Harbola, we review here the main results of
Ref. [33] using the tools that have been outlined in this pa-
per. First, note that the functional F can be written in terms
of discrete-particle-state functionals [100]:

F [n] = (1 − ω[n])FJ−1[nJ−1] + ω[n]FJ [nJ ], (100)

where

J − 1 + ω[n] =
∫

d3r n(r), (101)

and the symbol FM (M = 1, 2, . . . , J, . . .) refers to the
Levy–Lieb search (Equation (14)) over density matrices of
systems with M electrons only. The densities nJ − 1 and nJ

are density functionals, i.e., functionals of the non-integer
density n(r). These are determined by minimising the func-
tional:

E[nM ; u[n]] = FM [nM ] +
∫

d3r u[n](r)nM (r)

M = 1, 2, . . . , J, . . . , (102)

over nM,
∫

nM(r) = M. Here, u[n] is that potential that rep-
resents n(r) such that n(r) = (1 − ω)nJ − 1(r) + ωnJ(r). To
generalise our argument, let us introduce the function:

y(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 x = 0
1 − x 0 < x < 1
1 + x −1 < x < 0
0 otherwise.

(103)

Now we write F as

F [n] =
∑
M

y(∫ n − M)FM [nM ]. (104)

Recall that the Ts functional is calculated by solving the KS
equations. Hence, Ts is averaged using two non-interacting
electron densities ns, J(r) and ns, J − 1(r), where

ns,M (r) =
M∑
i=1

|φi(r)|2 (105)

(the orbitals φi come from the KS Equation (35) and they
only depend on n). Although these densities represent a
fictitious system, they sum to the present density n(r), i.e.,

n(r) =
∑
M

y(∫ n − M)ns,M (r) =
∑

i

f (εi − μ)|φi(r)|2.

(106)

In analogy with the functional F, we can write Ts as

Ts[n] =
∑
M

y(∫ n − M)Ts,M [ns,M ], (107)

where we define the particle-number-conserving KS
energy:

Ts,M [nM ] = min
�̂s,M→nM

Tr{T̂ �̂s,M}. (108)

This search is again performed over states that correspond
only to systems with M electrons. In Equation (107), the
KS orbitals obtained to calculate Ts[n] can also be used to
construct the density matrix that results from the search in
the functional Ts, M[ns, M]. The functional FM[nM] can be
written as usual as

FM [nM ] = Ts,M [nM ] + EHCX,M [nM ], (109)

where EHXC, M is the HXC energy functional constrained
to densities that integrate to M electrons. Inserting this ex-
pression into Equation (104), we get

F [n] =
∑
M

y(∫ n − M)(Ts,M [nM ] + EHXC,M [nM ]),

(110)
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where the set of densities {nM} correspond to interacting-
electron systems. Given that F[n] = Ts[n] + EHXC[n], we
have

EHXC[n] = −Ts[n] +
∑
M

y(∫ n − M)(Ts,M [nM ]

+EHXC,M [nM ]). (111)

Another way of expressing this result is

EHXC[n] =
∑
M

y(∫ n − M)
{

(Ts,M [nM ] − Ts,M [ns,M ])

+EHXC,M [nM ]
}
. (112)

The kinetic energies in the above equation do not cancel
each other because they are being evaluated at electronic
densities of different kinds. Harbola [35] noted that the
thermal averaging of KS kinetic energies yields a different
quantity from that given by the ensemble KS kinetic energy
(Equation (107)). This observation, and the need to recover
Janak’s theorem, led Harbola [35] to conjecture the form for
the ensemble EHXC, which is proven here, Equation (111).

To calculate the interacting densities {nM}, one would
need the functional F[n]. However, if we were to use F, then
we would not need to use DFT in the first place. On the
other hand, the assumption that the densities are ensemble-
v-representable is used in this case. Such assumption can
be formally expressed as follows:

Gs[n] = min
{nM }→n

∑
M

y(∫ n − M)Gs,M [nM ], (113)

where

Gs,M [nM ] = min
�̂s,M→nM

Tr
{(

T̂ +
∫

d3r vHXC,M [nM ]

× (r)n̂(r)
)
�̂s,M

}
. (114)

In Equation (114), {nM} → n is the requirement that∑
M y(∫ n − M)nM (r) = n(r). This condition requires the

introduction of the external potential v(r) as a Lagrange
multiplier, and the self-consistent solution of the KS equa-
tions along with their corresponding XC potentials. For
example, if J < N < J + 1, one needs to solve two sets
of KS equations, one with vs, J(r) = vHXC, J(r) + v(r) and
another with vs, J + 1(r) = vHXC, J + 1(r) + v(r). The den-
sity n(r) is then calculated by averaging the densities of the
systems with J and J + 1 electrons.

The discussion so far in this subsection has referred
to the exact HXC functional. When an approximate func-
tional EA

HXC,M [nM ] is known to work well for integer–
electron systems, it can then be extended according to

Equation (111) as

EA
HXC[n] = −Ts[n] +

∑
M

y(∫ n − M)

×
(
Ts,M [ns,M ] + EA

HXC[nM ]
)
. (115)

The HXC potentials that solve Equations (113) and (114)
now read

vA
HXC,M (r) = δEA

HXC

δnM (r)
. (116)

This last expression is a derivative over densities that inte-
grate to M electrons.

The approximated ensemble-averaged energy func-
tional is now:

EA
v [n] =

∑
M

y(∫ n − M)EA
v,M [nM ], (117)

where

EA
v,M [nM ] = Ts,M [nM ] + EA

HXC,M [nM ]

+
∫

d3r v(r)nM (r). (118)

The energy functional of Equation (117) is minimised first
over the pure-state densities and then over the proper occu-
pation number ω. This leads to the energy formula:

EA
N [v] =

∑
M

y(N − M)EA
M [v], (119)

where

EA
M [v] = min

nM

Ev,M [nM ]. (120)

Note that the functional EA
N [v] is a piecewise linear function

of N.
We now show that the above prescription recovers a

DD for the ensemble XC potential vXC[n] = δEXC[n]/δn.
The functional derivative of the approximated energy with
respect to the density is (J − 1 < ∫ n < J )

δEA
HXC

δn(r)
= Ts,J + EA

HXC,J − Ts,J−1 − EA
HXC,J−1 + vs(r) − εA

J

+
∑
M

y(∫ n − M)
∫

d3r′
(

δTs,M

δnM (r′)
+ vA

HXC,M (r′)
)

× δnM (r′)
δn(r)

. (121)
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From Equation (106) we have

δn(r′)
δn(r)

= nJ (r′) − nJ−1(r′)

+ (1 − ω)
δnJ−1(r′)

δn(r)
+ ω

δnJ (r′)
δn(r)

. (122)

Using the above result, it can be shown that

δEA
HXC

δn(r)
= EA

J − EA
J−1 + vA

HXC(r) − εA
J

+
∑
M

y(∫ n − M)
∫

d3r′
(

δEA
v,M

δnM (r′)

)

× δnM (r′)
δn(r)

. (123)

The potential δEA
v,M/δnM (r′) is arbitrary by a constant upon

minimisation. Therefore,
∫

d3r′δnM (r′)/ δn(r) = 0, imply-
ing

δEA
XC

δn(r)
= −IA

v − εA
J + vA

XC(r). (124)

By Janak’s theorem (Theorem 2) (εA
J = −IA

v ), we recover
vA

XC(r) = δEA
XC[n]/δn(r). Furthermore,

δEA
HXC

δn(r)
= Ts,J + EA

HXC,J − Ts,J−1 − EA
HXC,J−1

+
∑
M

y(∫ n − M)
∫

d3r′(const. − v(r′))
δnM (r′)
δn(r)

= −IA
v − δTs

δn(r)
− v(r). (125)

Finally, we arrive at

�XC,v = IA
v − AA

v − (εA
L − εA

H ). (126)

This result is valid for the exact functional and its approxi-
mations. In the exact case, the usual expression for the DD,
−Av − εL, is recovered. On the other hand, in the approx-
imate case we cannot assume that the ionisation theorem
holds. However, Janak’s theorem remains valid. Thus, in
the asymptotic region, the XC potential does not decay to
0 but to a constant when J − 1 < ∫ n < J .

We now rederive a known result due to Perdew and
Levy [65]: The continuous LDA/GGA potential averages
over the DD [101], implying that

εA
H ≈ −IA

v + �XC,v

2
. (127)

Inserting this result into Equation (126) we have

εA
L ≈ −AA

v − 1

2
�XC,v. (128)

Therefore,

1

2
(εA

H + εA
L ) ≈ −1

2
(IA

v + AA
v ). (129)

This implies that the KS electronegativity is close to the
‘real’ one.

Recently, Kraisler and Kronik [36] considered the en-
semble approximation:

EXC[n] = (1 − ω)EXC,J−1[ns,J−1] + ωEXC,J [ns,J ]

(130)

which, as shown in the previous subsection, is quite accurate
in the electron-gas limit. Using the optimised effective po-
tential method, Kraisler and Kronik [36] applied Equation
(130) for the H2 molecule and found that the ground-state
energy is almost linear. Also, they showed that a DD arises
from this approximation.

6. Concluding remarks

The motivation of PPLB [26] (discussed at the beginning of
Section 4.1) leading to the DDs is shared by partition den-
sity functional theory (PDFT) [102–104], which splits the
functional E[n; v] into two contributions: the sum of iso-
lated fragment energies and a partition energy functional. A
fragment (or atom) is defined by its external potential and
Hamiltonian. The fragments are allowed to exchange elec-
trons with a reservoir. The XC energy functional is thus
of the PPLB form and can be approximated as shown in
this work. The partition energy functional, when properly
approximated, is the piece of the energy responsible for the
bonding between fragments. In Ref. [105] it was shown,
within PDFT, that the PPLB interpolation of energies and
densities combined with an approximation to the partition
energy functional solves the static correlation and delocal-
isation errors of the LDA and GGAs for H+

2 and H2.
Equation (115) and its properties can be used to derive

DFAs satisfying the conditions of molecular dissociation
discussed in Section 4.1. A starting point is the investiga-
tion of the functional dependence of EHXC on the average
density matrix of the system (Equation (45)). This might
require functional approximations that satisfy explicitly the
ensemble limit of adiabatic separation. Switching functions,
which are used by long-range corrected DFAs, can be use-
ful to satisfy the dissociation limit; the overlap connecting
functions used in the context of PDFT [105] could be em-
ployed as well.

To summarise, we discussed the formal origin of the
DD of the total and XC energies of DFT, and their relation
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to the adiabatic molecular dissociation problem. The for-
malism outlined here indicates that the exact HXC energy
functional can be constructed from discrete-particle-state
functionals. Fragment-based DFT techniques can benefit
from approximations to the XC energy functional featur-
ing the XC DD. Moreover, we believe that the dissociation
limit can be employed as an additional condition that the
exact functional must satisfy. Nevertheless, in a ground-
state KS-DFT, addressing problems such as the calculation
of ionisations and affinities, elimination of SIE and delocal-
isation error, and preservation of exact conditions, remains
crucial.
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Note
1. We will refer to Ref. [26] as PPLB.
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