Powder Compaction Simulation
Yuqi Fang, Caroline Baker, Marcial Gonzalez
Mechanical Engineering

Introduction
- Powder compaction process is widely used in industry
 - Pharmaceutical: tablets
 - Food: sugar cube
 - Metal: powder metallurgy
 - Energetic material: industrial explosives

- Powders exhibit complex behavior during compaction process
 - Change in location: rearrangement, jamming
 - Change in shape: elastic and plastic deformation
 - Reduce cost and time for experimental efforts

Objectives
- Microstructure evolution
 - Elastic powder bed
 - Plastic powder bed (new)
 - Visualized particle behavior

Methodology
- Powder bed:
 - Purdue super computer: Conte
- Single Particle:
 - nanoHUB: nanohub.org

Formulation
- Elastic deformation:
 - Hertz theory [2]:
 - Independent contact: \(F \propto r^{3/2} \)
 - Nonlocal theory [3]:
 - Nonlocal contact: \(F \propto (\gamma + 4 \gamma_c N)^{3/2} \)
 - \(\gamma \): overlap of local contact particles
 - Plastic deformation:
 - Plastic theory [4]: \(F \propto 1 + 1.2\gamma m \)
 - \(m \): inverse of strain hardening exponent

Technique
- Nondimensional pressure: \(\gamma \) = Young's modulus
- Relative density: Density when powder is poured into container
 - Apparent density of non-porous material [6]

Results
- Pressure-deformation relationship by different theories
 - Elastic deformation: Parallel plate pressure
 - Hertz theory: window pressure

Conclusion and Future work
- This is a free tool for modeling powder compaction.
- Develop new compaction process with low cost
- Teach powder compaction process with visualized behavior
- More deformation mechanisms will be added in the tool
- Smaller particle size: nano-powders [5]
- User-defined powder bed

Acknowledgement and reference
This work is funded by the National Science Foundation, Network for Computational Nanotechnology Cyberplatform, Award EEC-1227110. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.