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Email: {li179, chihw}@purdue.edu, linx@ecn.purdue.edu

Abstract—The emerging wireless media delivery services have
placed greater demands for wireless networks to support high-
throughput applications while minimizing the delay of individual
packets. In this paper, we investigate using inter-session network
coding to send packets wirelessly for twodeadline-constrained
unicast sessions. Specifically, each unicast session aims to transmit
a stored video file, whose packets have hard sequential deadline
constraints. We first characterize the corresponding deadline-
constrained capacity region under heterogeneous channel condi-
tions and heterogeneous deadline constraints. We show that this
deadline-constrained capacity region can be achievedasymptoti-
cally by modifying the existing generation-based schemes. Despite
its asymptotic optimality, the generation-based scheme has poor
performance and high complexity in the practical regime small &
medium file sizes. To address these problems, we further develop
new immediately-decodable network coding (IDNC) schemes
that admit superior performance in the practical regime while
being provably optimal in the asymptotic regime. In contrast
to the existing delay/deadline-based IDNC results, which focus
on a single multicast session (intra-session network coding) with
homogeneous channel conditions, our new IDNC design takes full
account of channel heterogeneity and provides the first rigorous
asymptotic optimality analysis for two unicasts with (potentially
heterogeneous) hard deadline constraints.

I. I NTRODUCTION

The advance of broadband wireless technologies has en-
abled a number of innovative wireless services. It is now
common to use 3G/4G cellular networks or WiFi to provide
multimedia services, most of which have stringent Quality-of-
Service (QoS) requirements. Among them, video streaming
over wireless networks has gained a significant amount of
interest. For such multimedia traffic, unicast is the prevalent
mode of operation since different users often request different
contents. In this paper, we consider sending two unicast
sessions over an unreliable wireless channel. Each unicast
session downloads a stored-video file from the base-station
(BS). Note that in video streaming, each packet has a delivery
deadline, which is sequentially placed along the time horizon
(e.g., the first frame’s deadline is at the 1/30 second, while
the second frame’s deadline is at the 2/30 second, and so
on). If a packet is not delivered before the deadline, it is
considered useless to the receiver. Unfortunately, the random
and unreliable wireless channel makes it much more difficult
to meet the deadline constraints of video packets, while main-
taining a high system throughput. Meanwhile, the asymmetry

This work has been partially supported by the NSF grants CNS-0721484,
CNS-0721477, CNS-0643145, CCF-0845968, CNS-0905331, and a grant
from Purdue Research Foundation. Part of this work has appeared in Allerton
Conference 2011 as an invited paper.

due to heterogeneous channel conditions and heterogeneous
deadlines imposes further difficulties for jointly scheduling
multiple deadline-constrained unicast sessions. In this paper,
we are interested in using inter-session network coding (NC)
to improve the deadline-constrained streaming throughput in
this setting.

It is well-known that without deadline constraints, NC can
increase the throughput of communication networks [1], [2]
while still admitting efficient implementation [3], [4]. While it
has been shown that NC is particularly attractive for wireless
broadcast in our prior work [5], [6], it is notable that NC
can also improve the throughput for multiple unicast sessions
as well [7]. However, if not properly designed, NC could
introduce “decoding delay,” i.e., the receiver may not be able to
decode the information packet right away. For example, in the
generation-based NC schemes[4], each user must accumulate
a sufficient number of coded packets from a generation before
it can decode any information packet. Such a long decoding
delay can be detrimental to delay-sensitive applications such as
video streaming. Hence, how to design a NC scheme subject
to the deadline constraints becomes a challenging problem.

Existing studies have discussed different aspects of inter-
session NC transmission schemes. However, they either do
not account for the lossy wireless network setting, or do not
consider the delay aspect. Specifically, [8]–[10] discuss how to
design and control intersession-network-coded traffic for the
setting of lossless channels. [7] proposes a practical network
coding scheme for multiple unicast-sessions while [11], [12]
characterize the corresponding information-theoretic capacity
region. [13] combines intra- and inter-session network coding
to enhance the throughput of unicast flows. Recently, [14]
characterizes the capacity of 2-session unicast for an access-
point network. These studies focus on throughput without
considering delay. In contrast, our paper focuses on the delay
aspect when coding over two unicast sessions. Readers are re-
ferred to [6], [15]–[19] and the references therein for the delay
analysis in the simpler1 setting of a single multicast/broadcast
session.

In this work, we first modify the generation based (GB)
scheme to achieve the hard-deadline-constrained capacity
asymptotically. We then show the bad performance of the
start-up phase for GB scheme. Further, we analyze the delay
inefficiency that causes GB scheme to perform poorly in the
practical regime of median file sizes. To combat the delay

1It is well known [14] that even without the delay consideration, the
capacity / throughput study of coding over multiple unicast sessions is much
more challenging than that of coding over a single multicast session.
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inefficiency of most existing NC schemes, recent practical
protocols have focused more on the “immediately decodable”
NC (IDNC) schemes [5]–[7], [20]. In this work, we are
interested in developing new IDNC schemes to maximize
the throughput for each unicast session under the sequential
deadline constraints of stored-video streaming. Unfortunately,
the performance analysis of these IDNC schemes turns out to
be highly non-trivial. In contrast to our prior work [5], [6]
that focus on a single multicast session with homogeneous
channel conditions and deadline constraints, the design and
performance analysis of the IDNC scheme is much more
complicated for unicast-sessions because of the asymmetry
due to heterogeneous channel conditions and heterogeneous
deadline constraints (see further discussions in Section V).
Nonetheless, we establish the asymptotic optimality of the
proposed IDNC scheme when the file sizes are large. In
this analysis, we use a novel form of Lyapunov function,
which reveals new and intricate dynamics of an IDNC system.
Further, our numerical simulations show that the throughput of
the IDNC scheme is close-to-optimal even for small file sizes.
We believe that our study on the 2-user case uncovers non-
trivial and interesting insights that could serve as a precursor
to the full design and analysis for the case of a larger number
of users. Prior studies of similar IDNC schemes either do not
consider deadline-constraints at all [21], or only consider the
multicast case [6]. To the best of our knowledge, there have
been no analytical studies in the literature that analyze the
throughput of IDNC schemes subject to sequential deadline
constraints in the multi-unicast setting.

The rest of this paper is organized as follows. Section II
introduces the system model. Section III discusses the capacity
region with deadline constraints. Section IV introduces the
generation based scheme for sequential hard deadline con-
straints. Section V describes the IDNC schemes for deadline-
constrained streaming. Section VI provides the throughput
analysis of IDNC schemes under heterogeneous deadline con-
straints and heterogeneous channel conditions, which is the
main contribution of this paper. Section VII presents the sim-
ulation results for the proposed IDNC schemes. Section VIII
concludes the paper.

II. T HE SETTING

We consider the scenario that the base station (BS) sends
two video files to2 users,d1 and d2, respectively. The two
video files containN1 andN2 packets, respectively, and are
denoted by{X1,n}

N1

n=1, {X2,n}
N2

n=1, respectively. We some-
times use session 1 and session 2 to refer to (the transmission
of) the data packets ford1 andd2, respectively.

We define the time when the BS starts transmission as the
time origin, and assume that all packets are available at the
BS at time0. We assume slotted transmission. Each packet
Xj,n (j = 1, 2) has a deadlineτj,n such that after time slot
τj,n the packetXj,n is no longer useful for userj. We assume
that for j = 1, 2

τj,n = λj · n, n ∈ {1, . . . , Nj}, (1)

whereλj is the (sequential) deadline increment for sessionj.
In this work, we consider heterogeneous deadlines, i.e.,λ1 and

λ2 may be different. We assume thatT = λ1N1 = λ2N2, that
is, the total display timeT for each video file is the same2.

We consider random and unreliable wireless channels. Both
users can overhear the transmission with certain probability.
For j = 1, 2, we use Cj(t) = 1 to denote the event
that userj can receive a packet successfully at timet; and
Cj(t) = 0, otherwise. In this work, we assume channels are
independently and identically distributed (i.i.d.) across time,
and C1(t) and C2(t) are independent with each other. The
success probabilities for channels 1 and 2 are denoted byp1
andp2, respectively. We consider heterogeneous channels, i.e.,
p1 may be different fromp2. We assume that bothp1 and
p2 are known to the BS. We also assume that at the end of
each time slot, the BS has perfect feedback from both users
regarding whether the transmitted packet has been successfully
received by each user. In one slot, the BS can code a set of
unexpired packets together and send the resultant coded packet
to all users. When coding is used, we say that the original
packet is correctly received only if it can be “decoded” from
the coded transmission before the corresponding deadline.

Our goal is to design a coding/scheduling policy that maxi-
mizes the number of successful (unexpired) packet receptions.
More specifically, letDj(n) = 1 if user j can successfully
decode/recoverXj,n before its deadlineτj,n; andDj(n) = 0,
otherwise. We define the total number of unexpired successes
by N success

1
∆
=
∑N1

n=1 D1(n) and N success
2

∆
=
∑N2

n=1 D2(n).
Our goal is to maximize the minimum of the normal-
ized throughputs, between the two users, i.e., maximizing
min

(

E{N success
1 }
N1

,
E{N success

2 }
N2

)

.

II I. THE DEADLINE-CONSTRAINED CAPACITY REGION

Consider an interval(0, T ]. Suppose that during this inter-
val, on averager1T packets from session 1 can be delivered
before their deadlines, wherer1 is termed the achievable rate
for user 1. Obviously,r1 ≤ 1

λ1
since the best scenario is to

deliver all N1 packets beforeT = λ1N1. Similarly, suppose
on averager2T packets from session 2 can also be delivered in
this period, wherer2 ≤ 1

λ2
is the achievable rate for user 2. In

[14] and [22], it is shown that even when not considering the
sequential deadline constraints, the best possible achievable
rate pairs(r1, r2) must satisfy the following two inequalities
simultaneously:3

r1
p1

+
r2

1− (1− p1)(1− p2)
≤ 1 (2)

2If the display time of one file is longer than that of the other, then after the
completion time of the other file (before which both files were inter-session
coded) we can treat the remaining packets as a single, separate unicast session,
which is much easier to deal with, since there is no other session to be coded
together.

3The intuition behind these two inequalities are as follows. Consider (2)
first. Since we would like to sendr1T packets tod1, transmitting those
packets (either in an uncoded or in a coded way) would requirer1T

p1
number

of time slots on average. Note that even though sometimes we may use NC
to serve two destinations simultaneously, roughly speaking before doing so
some version of each session-2 packet needs to be received by at least one of
the destinations before it can be mixed with a session-1 packet [14], [22]. As
a result at least r2T

1−(1−p1)(1−p2)
number of time slots should be dedicated

to sending session-2 packets (not mixing with any session-1 transmission).
Since the total time budget isT , the above heuristics imply (2). By swapping
the roles of sessions 1 and 2, we also have (3).
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Fig. 1. Asymptotic capacity region for a hard-deadline-constrainedtwo
unicast system. Subfigures (a) to (d) represent four possible cases depending
on the location of the point( 1

λ1
, 1
λ2

) andthe red and the blue line segments.

r2
p2

+
r1

1− (1− p1)(1− p2)
≤ 1. (3)

Since the capacity without deadlines is always an upper bound
of the capacity with deadlines, the above analysis proves the
following outer bound on the deadline-constrained capacity.

Proposition 1. For any scheme in a deadline constrained sys-
tem, the achievable throughput vector

(

E{N success
1 }

λ1N1
,
E{N success

2 }
λ2N2

)

mustbe in the following region:

R =
{

(r1, r2) : 0 ≤ r1 ≤
1

λ1
, 0 ≤ r2 ≤

1

λ2
, and (r1, r2)

satisfies(2) and (3) simultaneously
}

. (4)

We will prove later that for sufficiently largeT , the above
capacity outer bound can be achieved by either a generation-
based scheme or an IDNC scheme. The region in (2) and (3)
thus describes the asymptotic capacity region for a deadline-
constrained system.

We illustrate the capacity region in Fig 1. The red and blue
lines represent the constraints by (2) and (3), respectively.
The shadowed area indicates the asymptotic capacity region
depending on the relative location of the point( 1

λ1
, 1
λ2
) and

the red and blue line segments.
By similar analysis, we can also prove that if coding is

prohibited, then the non-coding capacity region of a deadline-
constrained system becomes

Runcoded=
{

(r1, r2) : 0 ≤ r1 ≤
1

λ1
, 0 ≤ r2 ≤

1

λ2
, and

(r1, r2) satisfies
r1
p1

+
r2
p2
≤ 1
}

. (5)

IV. ACHIEVING THE ASYMPTOTIC CAPACITY BY A
GENERATION-BASED SCHEME

The generation-based (GB) scheme is widely used in exist-
ing work [4], [14] for throughout-oriented analysis. Specif-
ically, the GB scheme divides the whole file into several
generations and transmits each generation sequentially. Within

each generation, the BS encodes all the packets that belong
to this generation together and transmits the coded packets.
After receiving enough coded packets, the receiver can decode
the entire generation. The BS then moves on to the next
generation. Since the receiver needs to collect enough packets
before decoding, a GB scheme generally incurs a decoding
delay (the larger the generation size, the longer the decoding
delay). For the following, we will show that the GB scheme
in [14] can be modified to achieve the asymptotic capacity
in Proposition 1, and then elaborate on its problem in the
practical regime of median file sizes.

Specifically, for sessions 1 and 2 we choose the correspond-
ing generation sizes to beM1 andM2, respectively, and we
enforce thatλ1M1 = λ2M2. (For practical implementation,
we can relax this requirement.) In this way, both sessions will
have the same number of generations. Thel-th generation
of session-1 packets can be coded together with thel-th
generation of session-2 packets. We then note that the GB
scheme proposed in [14] cannot be used directly in a deadline-
constrained system due to the following two observations.

First, recall that our goal is to send allN1 andN2 packets
(before their deadlines) within the interval(0, T ] whereT =
λ1N1 = λ2N2. Therefore, the best scenario is to sustain the
rate(1/λ1, 1/λ2). However,(1/λ1, 1/λ2) may be outside the
deadline-constrained capacity outer-bound in Proposition 1,
also see Fig. 1(a,c,d). In this case, we say that the system is
under-provisioned[23]. The problem for an under-provisioned
system is that it is simply impossible for every packet to meet
its deadline constraint. However, a GB scheme will encode
all packets of the same generation together and decode all
the packets together. Therefore, if there is any packet that
cannot meet its deadline constraint, then the entire generation
cannot be decoded, which greatly reduces the throughput. Our
solution to this problem is to deliberately discard some packets
so that those packets do not participate in the GB scheme. In
this way, those not-discarded packets have a better chance to
be decoded in a GB scheme. To facilitate the exhibition, we
modify the generation based scheme proposed in [14] to fit
the sequential hard deadline constraints. The new generation
based scheme is different from the one in [14] from two
aspects: First, suppose that the best possible scenario (in which
all packets can be successfully decoded in time) is simply
not sustainable by the underlying channel quality(p1, p2).
Namely, when the rate pair(1/λ1, 1/λ2) violates either (2)
or (3), it is simply impossible to meet the deadlines of all
packets. Recall that this is theunder-provisionedscenario. By
deliberately discarding some packets we relax the deadlines
for those not-discarded packets. Therefore, those not-discarded
packets are less likely to expire. So we also incorporate the
dropping mechanism for generation based scheme for the
under provisioned case since otherwise decoding would be
extremely difficult.

Second, there is little time to perform coding for the first
few packet since the first few packets expire very quickly.
Our solution to this issue is to drop the first generation of
both session 1 and session 2, and start encoding generation-2
packets from the very beginning. In this way, we allow more
time for all the subsequent encoding/decoding.
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After considering these two points, we can design a
Generation-Based scheme for the hard deadline constraints as
follows. For simplicity, we useγ to denote a constant value
used throughout the algorithm, which can be easily computed
by the BS. That is,

γ
∆
= min

( 1
1/λ1

p1
+ 1/λ2

p1+p2−p1p2

,
1

1/λ1

p1+p2−p1p2
+ 1/λ2

p2

)

. (6)

§ GENERATION-BASED-SCHEME

1: Drop the first generation of both session 1 and session 2.
SetGenID← 2

2: For j = 1, 2 choose arbitrarilyMj(1 − min(γ, 1)) user-
j packets from theGenID-th generation anddrop those
packets, i.e, we remove those packets from any future
consideration.

3: for time t = (GenID − 2) ∗ λ1M1 + 1 to time t =
(GenID− 1) ∗ λ1M1 do

4: if there is still a user-jpacket of theGenID-th gener-
ation that is not heard by any userthen

5: The BS transmits one of such packets (that is not
heard by any user) uncodedly.

6: else
7: After all GenID-th packets have been heard by at

least one user, using the idea of Random Linear
Network Coding [3], the BS generates a single coded
packets by randomly mixing all user-1 packets in the
GenID-th generation that have been heard only by
user 2, and all user-2 packets that have been heard
only by user 1. The BS sends the RLNC-generated
packet.

8: end if
9: end for

10: In the end of timet = (GenID− 1) ∗λ1M1, user 1 (resp.
user 2) will decode if it has received enough coded packets
of the GenID-th generation.

11: GenID← GenID+1 and go back to Line 2.

It is easy to see that the generation based scheme is through-
put optimal in the asymptotic sense (i.e., when the generation
size is sufficiently large, and when the file sizesN1 andN2

approach infinity [4]). To see this, consider first the over-
provision case. Suppose the size of each generation is large
enough. Sinceγ > 1, by the law of large numbers, we can
repeat the analysis in Section III. Then, we have, for close-to-
1 probability, each generation can be transmitted successfully
to users for each session. If the number of generations also
approaches infinity, the loss due to the dropping of the first
generation can be neglected. Thus, the asymptotic throughput
optimality for the over-provisioned case can be established.
Next, consider the under-provisioned case. After dropping a
certain number of packets, the system is able to accommodate
the transmission of the remaining packets for each generation.
Thus we can also show the asymptotic throughput optimality
for the under-provisioned case. There is a problem with the
generation based scheme, however. Note that the larger the

generation size is, intuitively the better the throughput for
generation based scheme. However, in practice, if the size of
each generation is large, then the performance for the start-up
phase may be poor. Because the first generation is dropped,
the larger the generation size is, the poorer the performance in
the initial period. On the other hand, if the generation size is
small, then the law of large numbers cannot kick in. There will
be a large chance that, an insufficient number of coded packets
for generationj are received before time(j − 1)M1λ1 (after
this generationj +1 will start). If this happens, all the coded
packets have to be dropped and cannot be decoded. Thus, the
throughput will suffer.

These insights can be verified through our simulation results
comparing the performance for both cases with the small file
size and large file size. Here we use “G-B 4-4” in short
of generation based scheme with generation size 4 and 4,
respectively, for session 1 and session 2. “G-B 40-40” denotes
generation based scheme with generation size 40 and 40,
respectively. “IDNC” denotes the IDNC scheme that we would
discuss in Section V. “upper bound” denotes the upper bound
derived from Proposition 1, while “upper bound for uncoded”
denotes the upper bound derived from (5). We setλ1 = 3,
λ2 = 3, andp1 = p2. In Fig. 2 we compare the performance
for large file sizes, and we setN1 = 40000, N2 = 40000. We
can see that, G-B 40-40 performs better than G-B 4-4, since
larger generation size can bring higher throughput. In Fig. 3
we compare the performance for small file sizes, and we set
N1 = 400, N2 = 400. We can see that most of time G-B 4-4
suffers less in throughput compared with G-B 40-40, as G-B
4-4 drops less packets in the beginning.

As can be seen in the figures, although the GB schemes
are asymptotically optimal, they have poor performance in
a practical regime of median file sizes. Most of the time,
their performance is barely better than the non-coded so-
lution (as compared with the upper bound for non-coded
schemes). Further, the GB scheme also suffers from high
decoding complexity when a large generation size is used.
Buffer management is also an issue in a GB scheme since
the users need to store all the received coded packets before
decoding in the end. In the remaining sections of this paper,
we propose a new Immediately Decodable Network Coding
(IDNC) scheme that addresses the above issues, which has
superior performance at median file sizes, and is also provably
optimal in the asymptotic regime.

V. THE IDNC SCHEME

To overcome the delay inefficiency of generation based
scheme, recent practical protocols have focused more on the
“immediately decodable” NC (IDNC) schemes [7], [20]. An
IDNC scheme for two unicast sessions has the following
structure. Suppose that two usersd1 andd2 are interested in
different packetsX andY , respectively. Initially, the BS sends
X andY uncodedly until each packet is received by at least
one user. Suppose due to random channel realization,d1 has
overheardY andd2 has overheardX. We call the (unexpired)
packet X a (potential) coding opportunity involving user 1 and
call the (unexpired) packet Y a (potential) coding opportunity
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N1 = 40000, N2 = 40000 averaged in 10 simulations.
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Fig. 3. Total number of received packets in session 1 whenλ1 = 3, λ2 = 3,
N1 = 400, N2 = 400 averaged in 100 simulations.

involving user 2. The BS can now combine the two coding
opportunities and send[X + Y ], which serves two receivers
simultaneously (and is thus more efficient than traditional
uncoded retransmission). Note that in this example, the desired
packetX (resp.Y ) can beimmediately decodedby d1 (resp.
d2) upon receiving[X + Y ]. Compared to the generation-
based solutions, the IDNC schemes have zero decoding delay,
and incur substantially lower encoding complexity since only
binary field is used. As a result, IDNC schemes generally
demonstrate much faster startup phase [24], and are more
suitable for time-sensitive applications.

However, designing IDNC scheme for the setting in this
work is difficult. In a single-multicast setting, the above
simple IDNC scheme proposed in [6] turns out to be optimal
even with deadline constraints. However, when performing
coding over 2-unicast sessions, we need to take into account
new issues. For example, in the under-provisioned scenarios
(Figs. 1(a,c,d)) the system simply cannot sustain the rate vector
( 1
λ1
, 1
λ2
). In a similar way as in the modified GB scheme in

Section IV, we thus need to incorporate a new early-dropping
mechanism in the IDNC scheme, the details of which would
be discussed shortly after.

In addition to the challenges from the “under-provisioned
case”, we may also face a second challenge that arises
from the heterogeneity of the channels and the deadlines,
and that is orthogonal from the previous problem due to
the under-provisioned scenario. More specifically, consider
an over-provisioned scenario for which we can send at rate
(r1, r2) = ( 1

λ1
, 1
λ2
) that satisfy both (2) and (3). In an IDNC

scheme, each packet is sent repeatedly in an uncoded fashion
until it is received by at least one user. As a result, on
average it takes r1T

1−(1−p1)(1−p2)
time slots to finish sending

all session-1 packets uncodedly. For each time slot, with
probability p2(1 − p1) such a packet will be heard only by
d2, which creates a coding opportunity involving user 1. On
average, the average amount of coding opportunities of user 1
is r1T ·p2(1−p1)

1−(1−p1)(1−p2)
. Note that such a coding opportunity of

use 1 will later be combined with that of user 2. Note that
when sending a coded packet, it takes on average1

p1
beforeit

can be received byd1. Therefore, it takes r1T ·p2(1−p1)
p1(1−(1−p1)(1−p2))

trials of sending coded packets to fully “consume the coding
opportunities of user 1”. Symmetrically, the average amount of
time slots to fully consume the coding opportunities of user 2
is r2T ·p1(1−p2)

p2(1−(1−p1)(1−p2))
. If we have

r1T · p2(1− p1)

p1(1− (1− p1)(1− p2))
>

r2T · p1(1− p2)

p2(1− (1− p1)(1− p2))

⇔
λ1p1(p1 − p1p2)

λ2p2(p2 − p1p2)
< 1, (7)

thenfrom our previous arguments, it takes longer to consume
all user-1 coding opportunities than to consume the coding
opportunities of user 2. Those “leftover” user-1 coding oppor-
tunities (those that could not be combined with that of the
user-2 coding opportunities) thus needs to be transmitted in
an uncoded manner. If there is no deadline constraint, then
we can simply wait until the very end (when the coding
opportunities of user 2 have been used up) to decide which
are the leftover user-1 coding opportunities. However, if there
is deadline, when we know for sure which user-1 coding
opportunities are the leftover ones, those packets may have
already expired and cannot be sent anymore. The throughput
thus suffers from not being able to send those leftover coding
opportunities uncodedly. Note that such a challenge does not
arise in the homogeneous setting of all existing IDNC work
[5], [6], for which there is no left-over coding opportunity.
To recover from this sub-optimality, when (7) is satisfied,an
optimal IDNC scheme should continue sending some user-1
packet in an uncoded manner even after it has been overheard
by user 2.For future reference, we say “user 1 is a leading
user” if (7) is satisfied since user 1 now has more coding
opportunities than that could be combined with user 2’s coding
opportunities. For the following, we combine the above two
intuitions and design a new IDNC scheme that is capable of
achieving the upper bound of deadline-constrained capacity
given in Proposition 1.
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To begin with, we will introduce some definitions. In our
new IDNC scheme, the BS keeps two registersn1 and n2.
One can view the purpose ofni as to keep track of the next
uncoded packet to be sent for sessioni. Since bothn1 and
n2 evolve over time, we sometimes useni(t) to denote the
value of ni at the end of timet. The BS also keeps two
lists of packets:L10 andL01. List L01 contains all unexpired
coding opportunities of user 1 (those heard byd2 but not yet
by d1). Symmetrically, listL10 contains all unexpired coding
opportunities of user 2. Each packet is also associated with a
status, which can take one of the following four values “not-
processed”, “dropped”, “uncoded-Tx-only” and “coding-
eligible”. The BS uses two arraysstatus1[i], i = 1, · · · , N1,
and status2[i], i = 1, · · · , N2 to keep track of the status of
the session-1 and session-2 packets, respectively. In addition,
the BS keeps 4 floating-point registers, denoted byx1, x2,
y1, andy2. We also assume that at the end of each time slot,
both users send an ACK or NACK message back to the BS
depending on whether that user has successfully received the
transmitted packet in the present time slot.

In the following, we describe our IDNC scheme in details.
In the time origin, the BS first initializes the following
variables: n1 ← 1, n2 ← 1, L10 ← ∅, L01 ← ∅,
status1[i]←not-processed, status2[i]←not-processed, for
all i; x1, y1, x2, y2 ← 0. For convenience, we useγ to denote
the constant value as defined in (6). The detailed steps are now
described as follows.

1: for t = 1 to λ1N1 do
2: In the beginning of time t, run the sub-routine

SCHEDULE-PACKET-TRANSMISSION

3: In the end of timet, run the sub-routine UPDATE-
PACKET-STATUS

4: end for

The two sub-routines are described separately as follows.

§ SCHEDULE-PACKET-TRANSMISSION

1: if n2 ≤ N2 & n1 ≤ N1 then
2: while status1[n1] =not-processed do
3: x1 ← x1 +min(γ, 1)
4: if ⌊x1⌋ > y1 where⌊·⌋ is the floor functionthen
5: y1 ← ⌊x1⌋
6: Generate a numbera independently and uniformly

randomly from[0, 1]

7: if a < λ1p1(p1−p1p2)
λ2p2(p2−p1p2)

then
8: status1[n1]← coding-eligible
9: else

10: status1[n1]← uncoded-Tx-only
11: end if
12: else
13: status1[n1]←dropped
14: n1 ← n1 + 1
15: end if
16: end while
17: Repeat the steps from Line 2 to Line 16 with the roles

of users 1 and 2 swapped, i.e, we focus on user 2 now.
18: if bothL10 andL01 are non-emptythen
19: Choose the oldest packetX1,j∗

1
from L01 and the

oldest packetX2,j∗
2

from L10. Broadcast the sum
[X1,j∗

1
+X2,j∗

2
].

20: else
21: if n1λ1 ≤ n2λ2 then
22: Send uncoded packetX1,n1

directly.
23: else if n1λ1 > n2λ2 then
24: Send uncoded packetX2,n2

directly.
25: end if
26: end if
27: else
28: Choose the oldest unexpired packets in the system

(including those inL01 ∪ L10 and those haven’t been
sent) and send that packet uncodedly.

29: end if

§ UPDATE-PACKET-STATUS

1: if an uncoded packetX1,n1
was sent in the current time

slot then
2: if X1,n1

is received byd1 then
3: n1 ← n1 + 1.
4: else if X1,n1

was received only by d2 and
status1[n1] =coding-eligible then

5: Add X1,n1
to L01 and setn1 ← n1 + 1

6: end if
7: else if an uncoded packetX2,n2

was sent in the current
time slot then

8: Repeat the steps from Line 2 to Line 6 with the roles
of users 1 and 2 swapped.

9: else
10: Suppose the coded packet being sent is[X1,j∗

1
+X2,j∗

2
],

the sum ofX1,j∗
1

andX2,j∗
2
.

11: if [X1,j∗
1
+X2,j∗

2
] was received byd1 then

12: RemoveX1,j∗
1

from L01.
13: end if
14: if [X1,j∗

1
+X2,j∗

2
] was received byd2 then

15: RemoveX2,j∗
2

from L10.
16: end if
17: end if
18: Remove all expired packets from the system.

The high-level ideas of the proposed IDNC scheme is as
follows. Let us first focus on the sub-routine SCHEDULE-
PACKET-TRANSMISSION. Line 1 checks whether we have
reached the terminal phase of the transmission, i.e., when
either n1 > N1 or n2 > N2 holds, we simply choose the
oldest available packet to transmit. When we are in the main
loop of the transmission (the normal operations), i.e., when
both n1 ≤ N1 andn2 ≤ N2 hold, we first assign the packet
status for bothX1,n1

andX2,n2
. More specifically, in Lines 2

to 16, we first consider the “next-to-be-transmitted” packet and
will assign the corresponding packet status. To do so, we use
the variablesx1 and y1 to decide whether we would like to
set the current status to “dropped”. As can be easily seen
in Lines 3, 4, and 13, whenγ ≥ 1, we never drop a packet
(i.e., no packets are set todropped). The value ofγ is indeed
to decide whether the system is over-provisioned (γ≥ 1) or
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under-provisioned (γ <1). As explained in Section IV, we
drop a packet only whenγ < 1, and Lines 3 to 5 make sure
that the packet dropping ratio is equal to the pre-computedγ
as in (6). If we decide to drop the packet, then we need to
move on and decide the status of the next packet, see Lines 13
and 14. For those packets that are not dropped and thus will
be transmitted later, we sometimes need to preemptively send
those packets in an uncoded manner for the “leading user” as
explained earlier in Section V. If user 1 is the leading user,
then λ1p1(p1−p1p2)

λ2p2(p2−p1p2)
< 1. Lines6 to 11 ensure that some user-1

packets have their status set touncoded-Tx-only. Note that if
user 2 is the leading user, thenλ1p1(p1−p1p2)

λ2p2(p2−p1p2)
> 1 andLines 6

to 11 automatically ensure that all user-1 packets have their
status set tocoding-eligible. Once we finish setting the packet
status, we give priority to transmitting the coded packet first
(Lines 18 and 19). If sending coded packets is not possible,
then we evenly alternate between sending uncoded packets
for users 1 and 2, by comparing the values ofn1λ1 andn2λ2

(Lines 21 to 25). Namely, we choose the next uncoded packet
depending on which is the closest to expire. This observation
also leads to the following self-explanatory lemma.

Lemma 1. For any time slott, we have−max(λ1, λ2) ≤
λ1n1(t)− λ2n2(t) ≤ max(λ1, λ2).

Let us now focus on the sub-routine UPDATE-PACKET-
STATUS. If an uncoded packetX1,n1

was sent and received
by d1 (see Lines 2–3), then there is no need to retransmit
this packet. We simply shift our focus to the next packet
(n1 ← n1 + 1). If X1,n1

is received byd2 but not by
d1, then this packet may become a new coding opportunity.
However, as mentioned earlier, if user 1 is the leading user,
then sometimes we need to forgo an coding opportunity and
continue sending it in an uncoded manner. This is decided by
the packet status. If packet status was set touncoded-Tx-only,
then we do not put the overheard packetX1,n1

in the coding
list L01. That is,X1,n1

will not participate in any future coding
operations and will still be transmitted uncodedly next time.
Only when the packet status iscoding-eligible (see Line 4)
will the overheardX1,n1

be put into the listL01. Lines 11
to 18 simply perform packet update to remove the packets
that have either expired or have already been decoded by the
target user.

The IDNC scheme has zero decoding delay, i.e., upon
the reception of any coded or uncoded packet, the user can
decode one more packet for its own session. Further, the coded
transmissions are mingled with the uncoded transmissions,
not like the generation-based scheme. Thus the BS does not
need to drop the first generation in order to let packets of
the subsequent generations meet the deadline. We can clearly
see from Fig. 2 and 3 that our IDNC scheme universally
outperforms the generation-based schemes for either large file
size and small file size. Next we would prove the asymptotic
throughput optimality for our IDNC scheme.

VI. M AIN RESULT: PERFORMANCEANALYSIS OF THE

NEW IDNC SCHEME

The IDNC scheme is easier to implement than the gen-
eration based scheme in practice. However, the analysis of

the IDNC scheme is rather difficult, especially under the
sequential hard deadline constraints. To the best of our knowl-
edge, our work is the first one to analyze the performance
of IDNC schemes for two unicasts under sequential hard
deadline constraints. The performance of the proposed new
IDNC scheme is characterized as follows.

Proposition 2. For any given system parametersp1, p2, λ1,
andλ2, let β∗ denote the largestβ value such that0 ≤ β ≤ 1

and the rate vector(r1, r2) =
(

β
λ1
, β
λ2

)

satisfiesboth (2) and
(3). For any ǫ > 0, there exists a sufficiently largeN1 (and
N2 = λ1N1

λ2
) such that the proposed IDNC scheme achieves

E{N success
1 }/N1 ≥

β∗

λ1
− ǫ and E{N success

2 }/N2 ≥
β∗

λ2
− ǫ.

Proposition2 shows that our IDNC scheme achieves asymp-
totically the upper bound in Proposition 1 for both over-
provisioned (β∗ = 1) and under-provisioned (β∗ < 1)
scenarios. Before proving Proposition 2, we present Lemma 2,
which is critical to our proof.

Lemma 2. Consider our IDNC scheme with system parameter
valuesλ1, λ2, p1, and p2. Then for anyǫ > 0, there exists
B > 0 such that for all fixedt1 andt2 satisfying(t2−t1) ≥ B,
we have forj = 1, 2,

E

{

nj(t2)− nj(t1)
∣

∣

∣
t2 < min(λ1n1(t1), λ2n2(t1))

}

≤
(t2 − t1)max(γ, 1)(1 + ǫ)

λj
. (8)

The detailed proof for Lemma 2 can be found in Appen-
dices A and B. The high-level interpretation of this lemma
is provided as follows. Consider any two fixed time instants
t1 and t2, and assume that we are in a critically provisioned
scenario:γ = 1. For j = 1, the termn1(t2)−n1(t1) quantifies
how many new session-1 packets have been “injected” to the
system during the time interval(t1, t2]. Lemma 2 shows that
this value cannot grow much faster than(t2−t1)

λ1
. In other

words, the growth ofn1(t) in a critically-provisioned scenario
is proportional to how fast the packets of session 1 expire. The
sketch of the proof is as follows. Note that when condition-
ing on t2 < min(λ1n1(t1), λ2n2(t1)), none of these newly
injected packetsX1,n1(t1), X1,n1(t1)+1, · · · , X1,n1(t2)−1 will
expire during the interval(t1, t2]. Therefore, those packets
will have similar behavior as if in a system without deadline
constraints. Then, by the law of large numbers (recall thatt2−
t1 ≥ B is sufficiently large), we can explicitly quantify/upper-
bound the numbers of uncoded and coded transmissions in this
time interval (t1, t2], which in turn give us the inequality in
(8). For the following, we would first present the proof for
Proposition 2 based on Lemma 2.

Proof: For the following, we would first discuss the
critically-provisioned case (γ= 1 and recall the definition of
γ in (6)). We would later generalize the proof for the under-
provisioned case, and the proof for the over-provisioned case4.

4For a deadline constrained system, it is more interesting to quantify the
performance in the under-provisioned setting because in an over-provisioned
setting (when deadline is very far and each packet has plenty of time to finish
transmission) even a sub-optimal scheme can easily finish transmitting all
packets without violating the deadlines.
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For ease of exposition, we first assume that user 1 is
the leading user. Since we are considering the critically-
provisioned case, we have1γ = 1/λ1

p1
+ 1/λ2

p1+p2−p1p2
= 1. For

any givenǫ > 0, we useB to represent theB value specified
in Lemma 2. We will describe how to choose theǫ value in
the later part of this proof. For a givenǫ > 0, we define
qj(t)

∆
= nj(t)−

γt(1+2ǫ)
λj

for j = 1, 2. We first note thatnj(t),
the index of the next to-be-sent uncoded packets must satisfy
nj(t) ≥

t
λj

. By definition, qj(t) is thus always non-negative.
We first show thatq1(t) and q2(t) cannot be very large

due to Lemma 2. Consider a(t1, t2) pair satisfyingB0
∆
=

t2−t1 > B. Note that by the definition ofq1(t), q2(t), and by
Lemma 1, we haveq2(t) ≥

n1(t)λ1−λ1

λ2
− γt(1+2ǫ)

λ2
= λ1

λ2
q1(t)−

λ1

λ2
. This observation thus implies that ifq1(t1) >

B0

λ1
+1, then

q2(t1) >
B0

λ2
. One can also check that if the following three

conditionsq1(t1) >
B0

λ1
+ 1 and q2(t1) >

B0

λ2
, t2 = t1 + B0

hold simultaneously, thent2 < min(λ1n1(t1), λ2n2(t1)) in
Lemma 2.

Note that by the definition ofq1(t), we can see that the

conditionq1(t1) >
B0

λ1
+max

(

1, λ2

λ1

)

implies thatλ1n1(t1)−

max(λ1, λ2) > t2. By Lemma 1, this further implies thatt2 ≤
max(λ1n1(t1), λ2n2(t1)). We then have

E

{

q1(t1 +B0)− q1(t1)
∣

∣

∣
q1(t1) >

B0

λ1
+max(1,

λ2

λ1
)
}

= E

{

n1(t1 +B0)− n1(t1)
∣

∣

∣
q1(t1) >

B0

λ1
+max(1,

λ2

λ1
)
}

−
B0(1 + 2ǫ)

λ1
(9)

≤
B0γ(1 + ǫ)

λ1
−

B0γ(1 + 2ǫ)

λ1
< 0, (10)

where (9) follows from the definition ofq1(t), the first
inequality of (10) follows from Lemma 2. Eq. (10) shows that
q1(t) has a negative drift. As a result, for anyǫ1, ǫ2 > 0, there
exists at0 > 0 such that

∀t > t0, P (q1(t) < ǫ1t) > 1− ǫ2. (11)

Now that we have shown thatq1(t) and q2(t) cannot be
very large, we next show thatn1(t) andn2(t) cannot be made
much larger thant

λ1
and t

λ2
, respectively, either. Specifically,

the following inequality holds for anyt > t0,

E{n1(t)} = E

{

γt(1 + 2ǫ)

λ1
+ q1(t)

}

= E

{

γt(1 + 2ǫ)

λ1
+ q1(t)

∣

∣

∣
q1(t) < ǫ1t

}

P(q1(t) < ǫ1t)

+ E{n1(t)|q1(t) ≥ ǫ1t}P(q1(t) ≥ ǫ1t)

≤
(γt(1 + 2ǫ)

λ1
+ ǫ1t

)

+ tǫ2, (12)

where (12) is becausen1(t) is always upper bounded byt
regardless whetherq1(t) ≥ ǫ1t or not. Note that we can
choose arbitrarily smallǫ, ǫ1, and ǫ2 and (12) still holds for
sufficiently larget. As a result, (12) shows that the expectation
E{n1(t)} is upper bounded byγtλ1

+ o(t). Similarly, we can

proveE{n2(t)} ≤
γt
λ2

+ o(t) (γ = 1 for critically-provisioned
case).

We next use these inequalities to bound the number of
successful transmissions to user 1 and 2. For the following,
we temporarily assume that the file sizes are infinity by
adding dummy packets to both sessions, which are labeled
as Xj,Nj+1, Xj,Nj+2, · · · for j = 1, 2. In this way, we can
continue executing Lines 2 to 26 of SCHEDULE-PACKET-
TRANSMISSIONwithout worrying about the degenerated cases
when executing Line 28. We then defineTj(t) as the number
of time slots when the BS transmits an uncoded packet for
sessionj up to timet (those time slots when Lines 22 or 24
of SCHEDULE-PACKET-TRANSMISSION are executed). Since
user 2 is not the leading user, the BS transmits every session-
2 packet uncodedly until it has been received by at least one
user. We thus have

E{T2(t)} ≤ E{n2(t)}
1

p1 + p2 − p1p2
, (13)

where the inequality is because some uncoded packets are
expired before they can be received by any user, and hence the
expected transmission time for each packet is no larger than
the case when there is no expiration. Next, we considerT1(t).
Note that for session 1, some packets would be transmitted
repetitively until user 1 receives it even after it has been
received by user 2.T1(t) is thus comprised of two types of
transmissions: The first type counts the number of time slots
in which the BS transmits an uncoded packet of session 1 that
has not been heard by any user. The second type counts the
number of time slots in which the BS transmits a session-1
packet uncodedly even though that packet has been heard by
user 2 already (due to its status being set touncoded-Tx-
only and in which case the BS continues to transmit this
packet until user 1 receives it). The first part can be upper
bounded byE{n1(t)}

1
p1+p2−p1p2

in the same way as in (12).
We useUCO(t) to denote the total number of the second type
of uncoded-Tx-only transmission during the interval[1, t].
We then have

E

{

UCO(t)
}

≤ E{n1(t)}
(

1−
λ1p1(p1 − p1p2)

λ2p2(p2 − p1p2)

)

×

(

p2(1− p1)

1− (1− p1)(1− p2)

)

1

p1
. (14)

Theexplanation of (14) is as follows. Out of alln1(t) session-
1 packets that have been transmitted during time interval
[1, t], a fraction of(1 − λ1p1(p1−p1p2)

λ2p2(p2−p1p2)
) hastheir status set to

uncoded-Tx-only. Out of those with status set touncoded-
Tx-only, a fraction of

(

p2(1−p1)
1−(1−p1)(1−p2)

)

will be heard byd2
first (strictly before it is heard byd1). For those that have
been heard byd2 first, it takes, on average, additional1p1

time
slots of transmission before it can be heard by the intended
userd1. The inequality is again to take into account that some
packets may expire even before finishing its corresponding
transmission. Combining the first and second part, we obtain

E{T1(t)} ≤ E{n1(t)}
1

p1

(

1−
λ1p1(p1 − p1p2)

λ2p2(p1 + p2 − p1p2)

)

.

(15)
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Note that when we transmit an uncoded packet for session
1, the expected “reward” isp1 since only user 1 can benefit
from this transmission. When we transmit a coded packet, the
expected reward for user 1 isp1 and the expected reward for
user 2 isp2 since both destinations can benefit from the coded
transmission. Note that by definition the total number of coded
transmission in the[1, t] interval ist− T1(t)− T2(t). We can
now lower bound the expected total rewards for user 1:

E{N success
1 } = p1E{T1(t)}+ p1E{t− T1(t)− T2(t)}

= p1t− p1E{T2(t)}

≥ p1t− p1
γt

λ2

1

p1 + p2 − p1p2
− o(t)

=
γt

λ1
− o(t), (16)

wherethe inequality follows fromE{n2(t)} ≤
γt
λ2

+ o(t) and
(13),and (16) follows from plugging in the definition ofγ and
arithmetic simplification (hereγ = 1).

Consider the asymptotic regime with sufficiently largeN1

and N2. We chooset = t∗
∆
= λ1N1

γ(1+3ǫ) , and we have

E{N success
1 } = N1

1+3ǫ − o(t). Recall that the above expected
rewardE{N success

1 } is the number of session-1 packets that are
successfully decoded by user 1 by the end of timet∗ and that
also counts the dummy packetsXj,Nj+1, Xj,Nj+2,· · · added
afterXj,Nj

(so that we can avoid executing Line 28). To count
only the real packets, we notice that, by (11), for sufficiently
largeN1, with high probability1− ǫ2 we have

n1(t
∗)−

γt∗(1 + 2ǫ)

λ1
= q1(t∗) < ǫ1t

∗

⇔ n1(t
∗) < N1

1 + 2ǫ

1 + 3ǫ
+ ǫ1t

∗. (17)

By choosing sufficiently smallǫ1, the above analysis shows
that n1(t

∗) < N1 with probability≥ 1 − ǫ2. Symmetrically,
P (n2(t

∗) < N2) ≥ 1− ǫ2. Jointly,P (n1(t
∗) < N1, n2(t

∗) <
N2) ≥ 1− 2ǫ2. It means that at timet∗ with high probability
1 − 2ǫ2, both indicesn1(t

∗) and n2(t
∗) are still less than

N1 andN2, respectively. Therefore, no dummy packets have
been injected in the system yet. As a result, even when we
run the algorithm without any dummy packets, the expected
successE{N success

1 (without dummy packets)} at time t∗ must
be no smaller than 1

1−2ǫ2
(E{N success

1 (with dummy packets)}−
2ǫ2N1). Choosing sufficiently smallǫ and ǫ2, we have thus
E{N success

1 (without dummy packets)}
N1

approaches1 when bothN1 and
N2 are sufficiently large.

Similarly, we can proveE{N success
2 (without dummy packets)}

N2
ap-

proaches1 when N1 and N2 are sufficiently large. The
expected total rewards for user 2 can be lower bounded by

E{N success
2 } = p2E{T2(t)}+ p2E{t− T1(t)− T2(t)}

= p2t− p2E{T1(t)}

≥ p2t− p2
γt

λ1

(

1

p1
−

N2(p1 − p1p2)
1
p2

(p1 + p2 − p1p2)N1

)

− o(t)

=
γt

λ2
− o(t). (18)

Whent = λ2N2/γ, we haveE{N success
2 } = N2−o(t). Hence,

the achievable rateN
success
2

λ2N2
also approaches1λ2

for sufficiently
largeN2. By the similar arguments for the “dummy packets”
analysis of user 1, we can also prove the throughput optimality
of user 2.

The case when user 2 is the leading user can be proved
similarly.

We have shown the optimality proof for the critically-
provisioned case. Next, we are going to show the maximum
throughput that can be achieved by our scheme for the under-
provisioned caseγ < 1. For ease of exposition, we assume
that user 1 is the leading user. Defineq1(t)

∆
= n1(t)−

t(1+2ǫ)
λ1

and q2(t)
∆
= n2(t) −

t(1+2ǫ)
λ2

. Then in the same way as in
the critical-provisioned case, we can prove the negative drift
of q1(t) and q2(t) and consequently prove the existence of
t0 such that for anyt > t0, E{n1(t)} ≤

t
λ1

+ o(t) and
E{n2(t)} ≤

t
λ2

+ o(t).
Comparedto the critically-provisioned case, the main dif-

ference is that for the under-provisioned case, a new packet-
dropping mechanism is used in Line 2 to Line 16 of
SCHEDULE-PACKET-TRANSMISSION. Therefore, we need to
carefully take that into account in our analysis. Use the same
definition ofT1(t) andT2(t) as in the previous proof, we can
upper boundE{T2(t)} as follows. By our dropping mechanism
for the under provisioned case, we can upper boundE{T2(t)}
easily. Since user 1 is the leading user,T1(t) is still comprised
of two parts: one part is when the BS transmits uncoded
packets of session 1, the other part is when a session 1 packet
has been received by user 2 first, the BS continues to transmit
this packet until user 1 receives it. We can upper bound the
first part and second part separately, and then upper bound
E{T1(t)} . By the same argument as in the previous proof,
expected total rewards for users 1 and 2 are lower bounded
by

E{N success
1 } =

t

λ1

( 1
1/λ1

p1
+ 1/λ2

p1+p2−p1p2

)

+ o(t), (19)

and

E{N success
2 } =

t

λ2

( 1
1/λ1

p1
+ 1/λ2

p1+p2−p1p2

)

+ o(t). (20)

Theremaining step is again to show that at timet∗
∆
= λ1N1

1+3ǫ ,
with close to one probability bothn1(t

∗) < N1 andn2(t
∗) <

N2. Therefore, the two equations guarantees that
E{N success

j }

Nj

approaches 1
1/λ1
p1

+
1/λ2

p1+p2−p1p2

for sufficiently largeN1 andN2.

Next we show proof for the over-provisioned case. For ease
of exposition, we first assume that user 1 is the leading user.
Since we are considering the over-provisioned case, we have
1
γ = 1/λ1

p1
+ 1/λ2

p1+p2−p1p2
> 1. For any givenǫ > 0, we use

B to represent theB value specified in Lemma 2. We will
describe how to choose theǫ value in the later part of this
proof. For a givenǫ > 0, we defineqj(t)

∆
= nj(t)−

γt(1+2ǫ)
λj

for j = 1, 2.
We first show thatq1(t) and q2(t) cannot be very large

due to Lemma 2. Consider a(t1, t2) pair satisfyingB0
∆
=

t2−t1 > B. Note that by the definition ofq1(t), q2(t), and by
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Lemma1, we haveq2(t) ≥
n1(t)λ1−λ1

λ2
− γt(1+2ǫ)

λ2
= λ1

λ2
q1(t)−

λ1

λ2
. This observation thus implies that ifq1(t1) >

B0

λ1
+1, then

q2(t1) >
B0

λ2
. One can also check that if the following three

conditionsq1(t1) >
B0

λ1
+ 1 and q2(t1) >

B0

λ2
, t2 = t1 + B0

hold simultaneously, thent2 < min(λ1n1(t1), λ2n2(t1)) in
Lemma 2.

Note that by the definition ofq1(t), we can see that the

conditionq1(t1) >
B0

λ1
+max

(

1, λ2

λ1

)

implies thatλ1n1(t1)−

max(λ1, λ2) > t2. By Lemma 1, this further implies thatt2 ≤
max(λ1n1(t1), λ2n2(t1)). Then, by the same arguments for
the critical-provisioned case, we have

E

{

q1(t1 +B0)− q1(t1)
∣

∣

∣
q1(t1) >

B0

λ1
+max(1,

λ2

λ1
)
}

= E

{

n1(t1 +B0)− n1(t1)
∣

∣

∣
q1(t1) >

B0

λ1
+max(1,

λ2

λ1
)
}

−
B0(1 + 2ǫ)

λ1
(21)

≤
B0γ(1 + ǫ)

λ1
−

B0γ(1 + 2ǫ)

λ1
< 0. (22)

We have shown thatq1(t) has a negative drift. As a result, for
any ǫ1, ǫ2 > 0, there exists at0 > 0 such that

∀t > t0, P (q1(t) < ǫ1t) > 1− ǫ2. (23)

Now that we have shown thatq1(t) and q2(t) cannot be
very large, we next show thatn1(t) andn2(t) cannot be made
much larger thanγtλ1

and γt
λ2

, respectively, either. Specifically,
the following inequality holds for anyt > t0,

E{n1(t)} = E

{

γt(1 + 2ǫ)

λ1
+ q1(t)

}

= E

{

γt(1 + 2ǫ)

λ1
+ q1(t)

∣

∣

∣
q1(t) < ǫ1t

}

P(q1(t) < ǫ1t)

+ E{n1(t)|q1(t) ≥ ǫ1t}P(q1(t) ≥ ǫ1t)

≤
(γt(1 + 2ǫ)

λ1
+ ǫ1t

)

+ tǫ2. (24)

By the same argument for the critical-provisioned case, (12)
shows that the expectationE{n1(t)} is upper bounded byγtλ1

+

o(t), andE{n2(t)} ≤
γt
λ2

+ o(t).
We next use these inequalities to bound the number of

successful transmissions to user 1 and 2. For the following,
we temporarily assume that the file sizes are infinity by
adding dummy packets to both sessions, which are labeled
as Xj,Nj+1, Xj,Nj+2, · · · for j = 1, 2. In this way, we can
continue executing Lines 2 to 26 of SCHEDULE-PACKET-
TRANSMISSIONwithout worrying about the degenerated cases
when executing Line 28. We then defineTj(t) as the number
of time slots when the BS transmits an uncoded packet for
sessionj up to timet (those time slots when Lines 22 or 24
of SCHEDULE-PACKET-TRANSMISSION are executed). Since
user 2 is not the leading user, the BS transmits every session-
2 packet uncodedly until it has been received by at least one
user. We thus have

E{T2(t)} ≤ E{n2(t)}
1

p1 + p2 − p1p2
, (25)

where the inequality is because some uncoded packets are
expired before they can be received by any user, and hence the
expected transmission time for each packet is no larger than
the case when there is no expiration. Next, we considerT1(t).
Note that for session 1, some packets would be transmitted
repetitively until user 1 receives it even after it has been
received by user 2.T1(t) is thus comprised of two types of
transmissions: The first type counts the number of time slots
in which the BS transmits an uncoded packet of session 1 that
has not been heard by any user. The second type counts the
number of time slots in which the BS transmits a session-1
packet uncodedly even though that packet has been heard by
user 2 already (due to its status being set touncoded-Tx-only
and in which case the BS continues to transmit this packet until
user 1 receives it). The first part can be upper bounded by
E{n1(t)}

1
p1+p2−p1p2

. We still useUCO(t) to denote the total
number of the second type ofuncoded-Tx-only transmission
during the interval[1, t]. We then have

E

{

UCO(t)
}

≤ E{n1(t)}
(

1−
λ1p1(p1 − p1p2)

λ2p2(p2 − p1p2)

)

×

(

p2(1− p1)

1− (1− p1)(1− p2)

)

1

p1
. (26)

Combiningthe first and second part, we obtain

E{T1(t)} ≤ E{n1(t)}
1

p1

(

1−
λ1p1(p1 − p1p2)

λ2p2(p1 + p2 − p1p2)

)

.

(27)

Note that when we transmit an uncoded packet for session
1, the expected “reward” isp1 since only user 1 can benefit
from this transmission. When we transmit a coded packet, the
expected reward for user 1 isp1 and the expected reward for
user 2 isp2 since both destinations can benefit from the coded
transmission. Note that by definition the total number of coded
transmission in the[1, t] interval ist− T1(t)− T2(t). We can
now lower bound the expected total rewards for user 1:

E{N success
1 } = p1E{T1(t)}+ p1E{t− T1(t)− T2(t)}

= p1t− p1E{T2(t)}

≥ p1t− p1
γt

λ2

1

p1 + p2 − p1p2
− o(t)

=
γt

λ1
− o(t) (28)

Similarly we can show that

E{N success
2 } ≥

γt

λ2
− o(t) (29)

The case when user 2 is the leading user can be proved
similarly.

The proof for Proposition 2 is thus complete.

VII. S IMULATION

Our previous analyses focus on the asymptotic regime with
large file sizesN1 → ∞ andN2 → ∞. In this section, we
use simulation to verify the performance of our IDNC scheme
for finite N1 andN2.
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Fig. 4. Average rate of receiving packets for user 1 and user 2 whenN1

andN2 are large.

A. Performance for LargeN1 andN2

We first assume that the successful delivery probabilities for
user 1 and user 2 arep1 = 0.5 andp2 = 0.6, respectively. Then
we consider the following 5 cases with(λ1, λ2) being (2,4),
(3,4), (4,4), (5,4), and (6,4), respectively (we name them as
Cases 1 to 5, respectively). For all cases we useN1 = 40000.
Recall that we requireλ1N1 = λ2N2. We thus setN2 to be
20000, 30000, 40000, 50000, and 60000 in the 5 cases.

We first show the capacity region without deadline con-
straints in Fig. 4, i.e., according to (2) and (3), as shown by
the area beneath the two solid lines. We then use different
markers to denote the normalized throughput(

N success
1

λ1N1
,
N success

2

λ2N2
)

from simulation for the 5 cases. The circles indicate the
corresponding theoretical upper bound of both sessions, which
are given by

(

β∗

λ1
, β∗

λ2

)

in Proposition 1.
More specifically, Cases 1 and 2 are the under-provisioned

scenarios for whichβ∗ < 1 and the throughput is limited
by the two lines rather than by the maximum rate( 1

λ1
, 1
λ2
).

Cases3 to 5 are the over-provisioned scenarios for which
the throughput is decided by the maximum rate( 1

λ1
, 1
λ2
). We

observe that in all cases, the achievable throughput coincides
to the theoretic upper bound, as predicted by Proposition 2.

B. Performance for SmallN1 andN2

We are also interested in the performance of the IDNC
scheme in the finite regime (whenN1 and N2 are small).
In Fig. 5 we plot the normalized throughput for both users
whenN1 andN2 are small. We use the same parameters as in
Section VII-A except with smaller file sizes(N1, N2) being
(400, 200), (400, 300), (400, 400), (400, 500), and (400, 600).
We can observe that, although the numbers of packets for both
session 1 and session 2 are small, the achievable throughput
are still very close to the theoretical upper bound.

C. Comparison of the generation-based scheme with the
IDNC scheme

In Figs. 2 and 3, we compare the performance between
the generation-based scheme and the IDNC scheme. We can
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Fig. 5. Average rate of receiving packets for user 1 and user 2 whenN1

andN2 aresmall.

TABLE I
COMPARISON FORIDNC SCHEMESWITH & W ITHOUT KNOWN CHANNEL

user-1 user-2
user-1 with
estimation

user-2 with
estimation

case 1 0.9431 0.8714 0.9436 0.8763
case 2 0.9551 0.9280 0.9523 0.9322
case 3 0.9844 0.9799 0.9830 0.9807
case 4 0.9905 0.9910 0.9908 0.9896
case 5 0.9952 0.9944 0.9951 0.9940

easily see that in Fig. 2 the performance of the IDNC scheme
approachesthe outer bound for the entire range of thep
values. It is still true even for small file size in Fig. 3.
The IDNC scheme dynamically arranges the operations of
coded transmission, uncoded transmission, and drops packets
in an “online” fashion, while the generation-based scheme
stubbornly stick to the pre-fixed order for these operations.
Moreover, the IDNC scheme takes less complexity in the
encoding process, and consumes relatively smaller buffer size
for storing the coding opportunities.

D. Extensions to The Settings of Unknown Channel

Although our proof of asymptotic optimality assumes that
the BS knows the channel parametersp1 and p2, we believe
that IDNC schemes can also achieve good performance with-
out channel information. Specifically, since the users would
send an ACK to the BS at the end of each time slot, the BS
can use this feature to “estimate” the channel parametersp̂1
andp̂2 and plug them into the IDNC subroutines as a substitute
for the actualp1 andp2. For the following, we use simulation
to study the performance of the “adaptive” IDNC scheme that
estimates the channel parameters on the fly. We consider the
same 5 cases as in Sections VII-A and VII-B. For the cases
of large N1 and N2 as in Section VII-A, since by the law
of large numbers, the estimatêpj → pj for all j = 1, 2, the
normalized throughput of the adaptive IDNC scheme is always
within 1% of the performance when the values ofp1 andp2 are
known to the BS. For smallN1 andN2 as in Section VII-B,
we summarize our finding in Table I. We find that, even for
small file size, the performance with channel estimation is
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very close to the performance with known channel parameters.
Based on the above observation, our IDNC scheme is robust
and approaches the optimal throughput even when the channel
parameters are unknown. Finally even if the feedback from
users is not perfect, we can design a similar mechanism like
in [6], to solve the problem of delayed and lossy feedback.

VIII. C ONCLUSION AND DISCUSSION

In this work, we have studied inter-session network coding
for sending two unicast sessions over an unreliable wireless
channel. We have considered two unicast sessions under
heterogeneous channel conditions and heterogeneous deadline
constraints. We developed both a generation-based scheme and
an immediately-decodable network coding (IDNC) scheme
for controlling packet transmissions for the unicast sessions
in order to maximize the normalized throughput subject to
hard deadline constraints. The newly designed IDNC scheme
is proven to be asymptotically optimal (when the file size
is large), so is the generation-based scheme. Moreover, the
IDNC scheme also has significantly less complexity and buffer
requirements, and achieves close-to-optimal throughput even
for small file sizes, an attribute not found in the generation-
based solutions.
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“XORs in the air: Practical wireless network coding,” inProc. of ACM
SIGCOMM, 2006.

[8] A. Ramakrishnan, A. Das, H. Maleki, A. Markopoulou, S. Jafar, and
S. Vishwanath, “Network coding for three unicast sessions: Interference
alignment approaches,” inProc. of Allerton Conference, 2010.

[9] A. Eryilmaz and D. Lun, “Control for inter-session network coding,” in
NetCod, 2007.

[10] D. L. D. Traskov, N. Ratnakar, R. Koetter, and M. Médard, “Network
coding for multiple unicasts: An approach based on linear optimization,”
in Proc. of ISIT, 2006.

[11] C.-C. Wang, N. Shroff, and A. Khreishah, “Cross-layer optimizations
for intersession network coding on practical 2-hop relay networks,” in
Proc. of Asilomar Conference on Signals, Systems and Computers, 2009.

[12] C.-C. Wang, “On the capacity of wireless 1-hop intersession network
coding - a broadcast packet erasure channel approach,”IEEE Trans.
Information Theory, vol. 58, no. 2, pp. 957–988, Feb 2012.

[13] H. Seferoglu and A. Markopoulou, “I2nc: Intra- and inter-session
network coding for unicast flows in wireless networks,” inProc. of
INFOCOM, 2011.

[14] L. Georgiadis and L. Tassiulas, “Broadcast erasure channel with feed-
back – capacity and algorithms,” inNetCod, 2009.

[15] A. Eryilmaz, A. Ozdaglar, and M. Ḿedard, “On delay performance gains
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APPENDIX A
PROOF OFLEMMA 2 FOR THE OVER PROVISIONED CASE

Proof: We first present a detailed proof of Lemma 2 for
the over-provisioned case, that is,γ ≥ 1. By definition (6),
we thus have1γ = 1/λ1

p1
+ 1/λ2

p1+p2−p1p2
≤ 1. Without loss of

generality, we assume that user 1 is the leading user, that is,
λ1p1(p1−p1p2)
λ2p2(p2−p1p2)

< 1. So 1
γ = 1/λ1

p1
+ 1/λ2

p1+p2−p1p2
. Thefollowing

discussion is conditioned on the event that in the end of time
t1, we haveAt1

∆
= {t2 < λ1n1(t1), t2 < λ2n2(t1)}. Define

∆n1 =









(t2 − t1)
(

1/λ1

p1
+ 1/λ2

p1+p2−p1p2

)

λ1







+ 1, (30)

∆n2 =









(t2 − t1)
(

1/λ1

p1
+ 1/λ2

p1+p2−p1p2

)

λ2







+ 1. (31)

Note that by our definition,∆n1λ1 ≈ ∆n2λ2.
From the beginning of timet1 + 1, let us temporarily

suspend the “expiration mechanism” and use our proposed
scheme to transmit packets while allowing the supposedly-
expired packets to remain in the system. We first examine
how long it takes before the registern1(t) evolves from its
current valuen1(t1) to a different valuen1(t1) + ∆n1, and
the registern2(t) evolves from its current valuen2(t1) to a
different valuen2(t1) + ∆n2. More specifically, we uset3
to denote the (random) time slot that is the first time slot
t ≥ t1 such that bothn1(t) is at leastn1(t1)+∆n1 andn2(t)
is at leastn2(t1) + ∆n2. The following proof can be divided
into three corollaries. Under the assumption that the expiration
mechanism is suspended fromt1 and onward, we first prove
that the random variablet3 is no less than the given constant
t2 with high probability. That is,
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Corollary 1. Without considering hard deadline constraints,
for any ǫ > 0, δ > 0, if t2 − t1 is sufficiently large, then

P ( (t3 − t1) > (t2 − t1)(1− ǫ)| At1) > 1− δ. (32)

Based on Corollary 1, we will then show that the “growth”of
nj(t) from time t1 + 1 to t2 is upper bounded by(t2−t1)γ

λj
:

Corollary 2. Without considering hard deadline constraints,
for any ǫ > 0, there exists a sufficiently largeB such that if
t2 − t1 > B, then

E

{

nj(t2)− nj(t1)|At1

}

≤
(t2 − t1)γ(1 + ǫ)

λj
. (33)

Finally, we will take into account the hard deadline con-
straints and show that even with the hard deadline constraints,
we still have

Corollary 3. After considering hard deadline constraints, for
any ǫ > 0, there exists a sufficiently largeB such that if
t2 − t1 > B, then

E

{

nj(t2)− nj(t1)|At1

}

≤
(t2 − t1)γ(1 + ǫ)

λj
. (34)

The proof of Lemma 2 is thus complete for the over-
provisioned case. For the following, we will prove Corollar-
ies 1 to 3, respectively.

A. Proof for Corollary 1

Proof: We define UT1 (which stands for “Uncoded
Transmission”) as the number of time slots in[t1 + 1, t3]
when the proposed scheme schedules anuncoded packet
transmission for Session 1. Note that by our definitions, all
those uncoded transmissions must be used to transmitX1,n for
somen ≥ n1(t1). Similarly, we also defineUT2 as the number
of time slots in[t1+1, t3] when the proposed scheme schedules
an uncoded packet transmission for Session 2 packetsX2,n

with the indices beingn ≥ n2(t1). Define

H1,n =
∣

∣{t > t1 : in the beginning of timet, the scheme

schedules an uncoded transmission ofX1,n}
∣

∣. (35)

Since we stop an uncoded transmission if any one of the
destinations successfully receives it, we have

E{H1,n|At1} =
1

1− (1− p1)(1− p2)
=

1

p1 + p2 − p1p2
(36)

for all n ≥ n1(t1). As a result, the total number of time slots
to transmit the uncoded session-1 packets is

UT1 ≥

n1(t1)+∆n1−1
∑

i=n1(t1)+1

H1,i,

where the inequality is because uncoded session 1 packets with
indices less thann1(t1) + 1 or larger thann1(t1) + ∆n1 − 1
may also be transmitted during[t1 + 1, t3].

Similarly, the total number of time slots to transmit the
uncoded session 2 packets in time[t1 + 1, t3] is at least

UT2 ≥

n2(t1)+∆n2−1
∑

i=n2(t1)+1

H2,i.

Since eachH1,i andH2,j are of i.i.d. (conditional) geomet-
ric distribution with expectation (36), for anyǫ1, δ1 > 0, we
can choose a sufficiently largeB1 such that if∆n1 > B1 and
∆n2 > B1

λ1

λ2
, then

P

(

UT1 + UT2 > (1− ǫ1)
∆n1 +∆n2 − 2

p1 + p2 − p1p2

∣

∣

∣

∣

At1

)

≥ P

(

∆n1+∆n2
∑

i=1

Hi > (1− ǫ1)
∆n1 +∆n2 − 2

p1 + p2 − p1p2

)

> 1− δ1,

(37)

where{Hi} are i.i.d. geometric random variables with expec-
tation 1

p2+p2−p1p2
and(37) follows from the weak law of large

numbers.
Let O1,n denote a Bernoulli random variable that is1

if, when repeatedly sendingX1,n uncodedly, it wasd2 that
receivedX1,n first; O1,n = 0, if d1 and d2 receivedX1,n

simultaneously ord1 received it first. Symmetrically, we define
the Bernoulli random variableO2,n such thatO2,n is 1 if,
when repeatedly sendingX2,n uncodedly, it wasd1 that
receivedX2,n first; O2,n = 0, if d1 and d2 receivedX2,n

simultaneously ord2 received it first.
WhenX1,n has been received by user 2 first and not by user

1, the BS would decide whether or not to keep transmitting
this packet in the uncoded fashion until it’s received by user
1, or not. We defineFC1,n (which stands for “Flip a Coin”)
as a Bernoulli random variable to indicate the decision result.
FC1,n = 1 if the BS decides to keep transmitting this packet
uncodedly until it’s received by user 1;FC1,n = 0 if not. By
our algorithm,FC1,n = 1 with probability 1− λ1p1(p1−p1p2)

λ2p2(p2−p1p2)
,

FC1,n = 0 with probability λ1p1(p1−p1p2)
λ2p2(p2−p1p2)

.
To distinguish from the uncoded transmission, we name

the retransmission of coding opportunity of user 1 as “Single
Transmission”, as the single transmission is meant for user 1
only. We defineST1,n as

ST1,n
∆
=
∣

∣

{

t > t1 : in time t, coding opportunity for user 1

X1,n is transmitted until user 1 receives it.
}∣

∣, (38)

Note that for anyi ≥ n1(t1), ST1,n = 0 wheneverO1,n = 0;
ST1,n = 0 wheneverO1,n = 1 and FC1,n = 0; whenever
we have O1,n = 1, and FC1,n = 1, random variable
ST1,n is geometrically distributed with successful probability

p1. As a result,ST1,n is with expectation p2−p1p2

p1+p2−p1p2

(

1 −

λ1p1(p1−p1p2)
λ2p2(p2−p1p2)

)

1
p1

for any n ≥ n1(t1) (recall that we have
temporarily suspended “expiration”). By the weak law of large
numbers, we also have for anyδ4 > 0, ǫ4 > 0, there exists a
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B4 suchthat if ∆n1 > B4, we have

P

(

n1(t1)+∆n1−1
∑

i=n1(t1)+1

ST1,i ≤ (∆n1 − 1)
p2 − p1p2

p1 + p2 − p1p2

×
(

1−
λ1p1(p1 − p1p2)

λ2p2(p2 − p1p2)

) 1

p1
(1− ǫ4)

∣

∣

∣
At1

)

≤ δ4. (39)

We now defineCT1,n as follows:

CT1,n
∆
=
∣

∣

{

t > t1 : in time t, packetX1,n is mixed (coded)

with some otherX2,n′ packets.
}∣

∣, (40)

where CT1,n stands for the coded transmission for packet
X1,n. Note that for any givenn, the packetsX1,n may be
sent in a coded form for several (not necessarily adjacent) time
slots and each time the companyingX2,n′ may be different,
i.e., differentn′.

DefineTCT as the total number of coded transmission in
time [t1 + 1, t3]. We then notice the following facts: (i) In
the beginning of timet3, the scheme must either transmit
an uncoded packetX1,n1(t1)+∆n1−1, or transmit an uncoded
packet X2,n2(t1)+∆n2−1 and it is received by one of the
destinations (that is whyn1(t) changes ton1(t1) + ∆n1, or
n2(t) changes ton2(t1) + ∆n2). (ii) Therefore, at the end
of time t3 − 1, there must havemin (L10, L01) = 0. There
are no packets to be coded at the end of timet3 − 1. (iii)
Therefore, at the end of timet3 − 1, either (a) there is no
{X1,n : n ∈ (n1(t1), n1(t1) + ∆n1 − 1]} in L01, or (b) there
is no {X2,n : n ∈ (n2(t1), n2(t1) + ∆n2 − 1]} in L10. From
the above three facts, we have

TCT =min
(

n1(t1)+∆n1−1
∑

i=1

CT1,i,

n2(t1)+∆n2−1
∑

i=1

CT2,i

)

.

(41)

For the following, we will prove that for anyǫ5, δ5 > 0, we
can choose a sufficiently largeB5 such that if∆n2 > B5, we
have

P

(

TCT > (∆n2 − 1)

(

p1 − p1p2
(p1 + p2 − p1p2)p2

)

(1− ǫ5)

∣

∣

∣

∣

At1

)

> 1− δ5. (42)

To that end, we use the following union-bound arguments and

focus on the sub-series of the summations:

P

(

TCT > (∆n2 − 1)
( p1 − p1p2
(p1 + p2 − p1p2)p2

)

(1− ǫ5)
∣

∣

∣
At1

)

= P

(

Eq. (41)> (∆n2 − 1)

(

p1 − p1p2
(p1 + p2 − p1p2)p2

)

× (1− ǫ5)
∣

∣

∣
At1

)

≥ 1− P

(

n1(t1)+∆n1−1
∑

i=n1(t1)+1

CT1,i ≤ (∆n2 − 1)

×
( p1 − p1p2
(p1 + p2 − p1p2)p2

)

(1− ǫ5)
∣

∣

∣
At1

)

− P

(

n2(t1)+∆n2−1
∑

i=n2(t1)+1

CT2,i ≤ (∆n2 − 1)

×
( p1 − p1p2
(p1 + p2 − p1p2)p2

)

(1− ǫ5)
∣

∣

∣
At1

)

. (43)

Note that for anyi ≥ n1(t1), CT1,i = 0 if O1,i = 0. Further,
conditioning onO1,i = 1, we haveFC1,n = 0, the random
variableCT1,i is geometrically distributed with success proba-
bility p1. As a result, by averaging over all events, we can show
thatCT1,i is with expectation

(

p2−p1p2

p1+p2−p1p2
· λ1p1(p1−p1p2)
λ2p2(p2−p1p2)

1
p1

)

for any i ≥ n1(t1) (recall that we have temporarily suspended
“expiration”). The weak law of large numbers thus implies
that for anyδ6 > 0, there exists aB6 such that if∆n1 > B6,
we have

P

(

n1(t1)+∆n1−1
∑

i=n1(t1)+1

CT1,i ≤ (∆n2 − 1)
( p1 − p1p2
(p1 + p2 − p1p2)p2

)

× (1− ǫ5)
∣

∣

∣
At1

)

≤ δ6. (44)

Conditioning on O2,i = 1, the random variableCT2,i is
geometrically distributed with success probabilityp2. (Since
we assume user 1 is the leading user, there is no need to flip
a coin when deciding whether to set the status of a user-2
packet to be “uncoded-Tx-only”). As a result, by averaging
over all events,CT2,i is i.i.d. with expectation p1−p1p2

(p1+p2−p1p2)p2

for any i ≥ n1(t1) (recall that we have temporarily suspended
“expiration”).

By the weak law of large numbers, we also have for any
δ7 > 0, there exists aB7 such that if∆n2 > B7, we have

P

(

n2(t1)+∆n2−1
∑

i=n2(t1)+1

CT2,i ≤ (∆n2 − 1)
( p1 − p1p2
(p1 + p2 − p1p2)p2

)

(1− ǫ5)
∣

∣

∣
At1

)

≤ δ7. (45)

Jointly (44) and (45) imply that (43) can be made arbitrarily
close to one by choosing sufficiently largeB6 (∆n1 is
sufficiently large so that∆n2 is large enough) andB7, and
by settingB5 = max(B6

λ1

λ2
, B7). Eq. (42) is thus proven.
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To summarize what we have proven thus far, we define

Term-1
∆
=

∆n1 +∆n2 − 2

p1 + p2 − p1p2
, (46)

Term-2
∆
= (∆n1 − 1)

(

p2 − p1p2
p1 + p2 − p1p2

·
(

1−
λ1p1(p1 − p1p2)

λ2p2(p2 − p1p2)

) 1

p1

)

, (47)

Term-3
∆
=

(∆n2 − 1)(p1 − p1p2)

(p1 + p2 − p1p2)p2
. (48)

Our previous analyses (37), (39), and (42) prove that the
following three inequalities hold with close-to-one probability:
(i) UT1+UT2 ≥ (1−ǫ1)Term-1, (ii)

∑n1(t1)+∆n1−1
i=n1(t1)+1 ST1,i ≥

(1− ǫ4)Term-2, and (iii)TCT ≥ (1− ǫ5)Term-3. Further, we
can prove by simple arithmetic operations that

Term-1+ Term-2+ Term-3

=
∆n1 +∆n2 − 2

p1 + p2 − p1p2
+

(∆n2 − 1)(p1 − p1p2)

(p1 + p2 − p1p2)p2
+

(∆n1 − 1)

(

p2 − p1p2
p1 + p2 − p1p2

·
(

1−
λ1p1(p1 − p1p2)

λ2p2(p2 − p1p2)

) 1

p1

)

=
∆n1 − 1

p1 + p2 − p1p2
+

(∆n1 − 1)(p2 − p1p2)

(p1 + p2 − p1p2)p1

+
∆n2 − 1

p1 + p2 − p1p2
+

(∆n2 − 1)(p1 − p1p2)

(p1 + p2 − p1p2)p2

− (∆n1 − 1)
λ1(p1 − p1p2)

λ2(p1 + p2 − p1p2)p2

=
∆n1 − 1

p1
+

∆n2 − 1

p2
− (∆n1 − 1)

λ1(p1 − p1p2)

λ2(p1 + p2 − p1p2)p2

≥
∆n1 − 1

p1
+
(∆n1λ1 − λ1 − λ2

λ2
− 1
) 1

p2

− (∆n1 − 1)
p1 − p1p2

(p1 + p2 − p1p2)p2

λ1

λ2
(49)

= (∆n1 − 1)
(1/λ1

p1
+

1/λ2

p1 + p2 − p1p2

)

λ1 −
2

p2

=









(t2 − t1)
(

1/λ1

p1
+ 1/λ2

p1+p2−p1p2

)

λ1









(1/λ1

p1
+

1/λ2

p1 + p2 − p1p2

)

λ1

(50)

−
2

p2
≈ t2 − t1, (51)

where(50) follows from (30), and (49) is by Lemma 1.
Since for any time slot in[t1 + 1, t3] we either send an

uncoded or a coded transmission, we must havet3 − t1 =
UT1 +UT2 +

∑n1(t1)+∆n1−1
i=n1(t1)+1 ST1,i +TCT. As as result, we

have proven that for anyǫ8, δ8 > 0, there exists aB8 > 0 such
that if t2 − t1 > B8 (so that∆n1 and∆n2 are sufficiently
large), we have

P ( (t3 − t1) > (t2 − t1)(1− ǫ8)| At1) > 1− δ8. (52)

Namely, with close to one probability, the random timet3, at
the end of whichn1(t) is at leastn1(t1) + ∆n1 and n2(t)
is at leastn2(t1) + ∆n2 for the first time, is no less than
t1+(t2− t1)(1− ǫ8). The proof for Collory 1 is complete.

B. Proof for Corollary 2

Proof: By Corollary 1, for anyǫ8 > 0, with close-to-one
probability we havet3 ≥ t1+(t2−t1)(1−ǫ8). By the definition
of the random stopping timet3, with close-to-one probability,
one of the following two statements holds at the end of time
t∗

∆
= t1+(t2− t1)(1− ǫ8): (i) n1(t

∗) ≤ n1(t1)+∆n1, or (ii)
n2(t

∗) ≤ n2(t1) + ∆n2. Therefore,

P
(

n2(t
∗)(1− ǫ8)) ≥ n2(t1) + ∆n2 &

n1(t
∗)(1− ǫ8)) ≥ n1(t1) + ∆n1

∣

∣At1

)

< δ8. (53)

By Lemma 2, both the distances|λ2n2(t1) − λ1n1(t1)| and
|λ2n2(t

∗)−λ1n1(t
∗)| are upper bounded bymax(λ1, λ2). We

can thus prove that

n2(t
∗) ≤ n2(t1) + ∆n2 (54)

⇒ n1(t
∗) ≤ n1(t1) + ∆n1 + 2

max(λ1, λ2)

λ1
(55)

⇒ n1(t
∗) ≤ n1(t1) + ∆n1 + 2

λ2

λ1
+ 2. (56)

Combining (53) and (56) we have

P
(

n1(t1 + (t2 − t1)(1− ǫ8)) ≤ n1(t1) + ∆n1 + 2
λ2

λ1
+ 2

∣

∣At1

)

> 1− δ8. (57)

We then notice that for allj ∈ {1, 2}, we must haven1(t2)−
n1(t

∗) ≤ t2 − t∗. The reason is that for every time slot, the
registern1(t) can increase at most by 1 in the over-provisioned
scenario. Since the difference betweent2 andt∗ is (t2−t1)ǫ8,
(57) implies

P

(

n1(t2)− n1(t1) ≤ ∆n1 + 2
λ2

λ1
+ 2 + (t2 − t1)ǫ8

∣

∣

∣

∣

At1

)

> 1− δ8. (58)

Further,n1(t2)−n1(t1) ≤ t2− t1 since for each time slot the
registern1(t) can increase by at most one. By (58), we can
upper bound the expectation ofn1(t2)− n1(t1):

E

{

n1(t2)− n1(t1)|At1

}

≤
(

∆n1 +
λ2

λ1
+ 2 + (t2 − t1)ǫ8

)

× (1− δ8) + δ8(t2 − t1). (59)

By noticing that∆n1 is linearly proportional to(t2−t1) while
all other terms are sub-linear (with either aǫ or aδ coefficient),
(59) thus implies that for anyǫ > 0, there exists a sufficiently
largeB such that ift2 − t1 > B, then

E

{

n1(t2)− n1(t1)|At1

}

≤
(t2 − t1)γ(1 + ǫ)

λ1
. (60)

By similar argument, we have

E

{

n2(t2)− n2(t1)|At1

}

≤
(t2 − t1)γ(1 + ǫ)

λ2
. (61)
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C. Proof for Corollary 3

Proof: In the above analysis, we have not considered the
impact of when allowing expiration. In the following, we will
include expiration back to our analysis. To that end, we first
notice that we can still defineH1,n, H2,n, ST1,n, CT1,n, CT2,n

as in (35), (38), and (40), respectively. Note that now these
five random variables are no longer independently distributed
as the realization of one random variable, sayH1,n, may affect
the distribution of the other random variables, sayCT2,n′ , due
to expiration. Define a set ofshadow random variables̃H1,n,
H̃2,n, S̃T1,n, C̃T1,n, C̃T2,n that characterize the behaviors
when there is no expriation involved. More specifically, we
chooseH̃1,n = H1,n if H1,n stops “growing” due to theX1,n

packet being received by one of the two destinations. IfH1,n

stops growing due to the expiration ofX1,n, then we letH̃1,n

continue to grow as an independent geometric random variable
with success probability(p1 + p2 − p1p2). In this way,H̃1,n

mimics the behavior of a system with no expiration andH̃1,n

is independent from all other random variables. In the same
manner, we choosẽST1,n = ST1,n if ST1,n stops growing due
to the single transmission involvingX1,n being received byd1,
and we letS̃T1,n keep growing ifST1,n stops growing due to
the expiration ofX1,n. Similarly, we chooseC̃T1,n = CT1,n

if CT1,n stops growing due to the mixed coded transmission
involving X1,n being received byd1. If CT1,n stops growing
due to the expiration ofX1,n, then we letC̃T1,n continue
to grow as an independent geometric random variable. In this
way,C̃T1,n mimics the behavior of a system with no expiration
and C̃T1,n is independent from all other random variables.

Then we need to prove the following version of (52): For
any ǫ8, δ8 > 0, there exists a sufficiently largeB8 such that
for any t2 − t1 > B8, we have

δ8 ≥ P

(

UT1 + UT2 +

n1(t1)+∆n1−1
∑

i=n1(t1)+1

ST1,i + TCT

≤ (t2 − t1)(1− ǫ8)|At1

)

(62)

= P

(

n1(t1)+∆n1−1
∑

i=n1(t1)+1

H1,i

+

n2(t1)+∆n2−1
∑

j=n2(t1)+1

H2,j +

n1(t1)+∆n1−1
∑

i=n1(t1)+1

ST1,i

+min
(

n1(t1)+∆n1−1
∑

k=1

CT1,k,

n2(t1)+∆n2−1
∑

l=1

CT2,l

)

≤ (t2 − t1)(1− ǫ8)

∣

∣

∣

∣

∣

At1

)

(63)

Note that conditioning on the eventAt1 (see the definition of
At1 in Appendix A), during time(t1, t1 + (t2 − t1)(1− ǫ8)],
no packets with indices≥ n1(t1) for session 1 and packets
with indices≥ n2(t1) for session 2 will expire. Therefore,
conditioning onAt1 any realization ofH1,i, H2,j , ST1,i,
CT1,k, and CT2,l in (63) must not result in any expiration

for packets with indices≥ n1(t1) for session 1 and packets
with indices≥ n2(t1) for session 2. As a result, we have

P

(

n1(t1)+∆n1−1
∑

i=n1(t1)+1

H1,i +

n2(t1)+∆n2−1
∑

j=n2(t1)+1

H2,j

+min

(

n1(t1)+∆n1−1
∑

k=1

CT1,k,

n2(t1)+∆n2−1
∑

l=1

CT2,l

)

+

n1(t1)+∆n1−1
∑

i=n1(t1)+1

ST1,i ≤ (t2 − t1)(1− ǫ8)

∣

∣

∣

∣

∣

At1

)

= P

(

n1(t1)+∆n1−1
∑

i=n1(t1)+1

H̃1,i +

n2(t1)+∆n2−1
∑

j=n2(t1)+1

H̃2,j

+min

(

n1(t1)+∆n2−1
∑

k=n1(t1)+1

C̃T1,k,

n2(t1)+∆n2−1
∑

l=n2(t1)+1

C̃T2,l

)

+

n1(t1)+∆n1−1
∑

i=n1(t1)+1

S̃T1,i ≤ (t2 − t1)(1− ǫ8)

∣

∣

∣

∣

∣

At1

)

, (64)

because for those realizations, the probability distributions of
the shadow random variables and the actual random variables
are the same for those packets that are with indices≥ n1(t1)
for session 1 or that are with indices≥ n2(t1) for session 2,
and that are transmitted between[t1 +1, t2]. Since (52) holds
for the case without expiration, (64) is smaller thanδ8 with
sufficiently largeB8. (63) is thus proven. We can then follow
the same analysis as in (52) to (60).

We have shown the case when user 1 is the leading user. By
the same approach, we can also show similar results for the
case with user 2 as the leading user (that is,λ1p1(p1−p1p2)

λ2p2(p2−p1p2)
> 1,

and 1
γ = 1/λ1

p1+p2−p1p2
+ 1/λ2

p2
). Then the proof for the over-

provisioned case of Lemma 2 is complete.

APPENDIX B
PROOF FORTHE UNDER PROVISIONED CASE OFLEMMA 2

Proof: The proof for the under-provisioned case (γ <1)
of Lemma 2 is similar. The goal is to show that for anyǫ > 0,
there exists aB > 0 such that for all fixedt1 andt2 satisfying
(t2 − t1) = B, we have forj = 1, 2,

E

{

nj(t2)− nj(t1)
∣

∣

∣
t2 < min(λ1n1(t1), λ2n2(t1))

}

≤
(t2 − t1)(1 + ǫ)

λj
. (65)

Define ∆n1 and ∆n2 the same way as in (30) and (31).
Define t3 as the first (random) time slot for which in the end
of time t3, the BS has scheduled transmission for at least∆n1

uncoded packets for session 1 and∆n2 uncoded packets for
session 2, respectively. Note that since we are dealing with
the under-provisioned case, some packets are dropped and will
never be transmitted. The way we definet3 here is to count
only those∆n1 and ∆n2 uncoded packets that are actually
transmitted. (Note that for the over-provisioned case when we
do not drop any packets, the abovet3 definition is identical
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to the one used in the proof of Corollary 1.) We then relabel
the next∆n1 packets including packetn1(t1) (that have been
transmitted by the BS) from session 1, asn1(t1), . . ., n1(t1)+
∆n1−1. We also relabel the next∆n2 packets (that have been
transmitted by the BS) including packetn2(t1) from session
2, asn2(t1), . . ., n2(t1) + ∆n2 − 1.

We first examine how long it takes before the BS finishes
transmitting packetsn1(t1), . . ., n1(t1)+∆n1−1 for session 1,
and finishes transmitting packetsn2(t1), . . ., n2(t1)+∆n2−1
for session 2. That is, we want to understand the distribution
of the random stopping timet3. We then would examine at the
end of timet3, how would indicesn1(t3) andn2(t3) be. That
is, we want to investigate how many packets (out ofnj(t3)−
nj(t1) packets) for each session have been transmitted by the
BS or how many of them (out ofnj(t3) − nj(t1) packets)
were discarded without transmission due to congestion control
in Lines 2 to 16 of the IDNC scheme.

We can apply a similar proof and show that with close-
to-one probabilityt3 is no less thant1 + (t2 − t1)(1 − ǫ′).
Namely, at most∆n1 (resp.∆n2) uncoded packets have been
transmitted for session 1 (resp. session 2) by the end of time
t1 + (t2 − t1)(1− ǫ′).

By our congestion control mechanism (Lines 2 to 16),
wheneverx1 is increased by 1, then the BS would schedule
one more uncoded packet of session 1 to be transmitted.
Recall that in the under-provisioned case,γ < 1, that is
1/λ1

p1
+ 1/λ2

p1+p2−p1p2
> 1. Henceafter the BS finishes trans-

mitting ∆n1 uncoded packets from session 1, the registern1

is at most increased by

∆n1(
1/λ1

p1
+

1/λ2

p1 + p2 − p1p2
).

Usingthe definition of∆n1 in (30), we then have∆n1(
1/λ1

p1
+

1/λ2

p1+p2−p1p2
) ≈ t2−t1

λ1
. Similarly, the registern2 is at most

increased by

∆n1(
1/λ1

p1
+

1/λ2

p1 + p2 − p1p2
)
λ1

λ2
≈

t2 − t1
λ2

.

Combiningthe above observations together, and following
a similar proof,nj(t2) − nj(t1), the increment of the actual
indices, must satisfy

E

{

nj(t2)− nj(t1)|At1

}

≤
(t2 − t1)(1 + ǫ)

λj
. (66)

The critical-provisioned case can be proven in the similar
way. Note that, for the critical-provisioned case,γ = 1/λ1

p1
+

1/λ2

p1+p2−p1p2
= 1. The proof is thus complete.
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