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ABSTRACT

In a local area network, the efficiency of the network file system is a key perfor­
mance issue. This paper compares several different classes of network file systems
with respect to number of file transfers and auxiliary messages processed by each
node.

The file system classes compared are: (a) remote file access, (b) polling (each node
may create a read-only replicate of a file, but must poll the primary copy to deter­
mine whether it is up-to-date), (c) broadcast staling (each update broadcasts a mes­
sage to mark replicates as stale), (d) multicast staling (each update sends an outdating
message to the sites with replicates).

The results show that, under realistic assumptions, both polling and staling require
30-50% fewer file transfers than remote file access, while simultaneously increasing
reliability because of replication. However, polling and staling generate auxiliary
messages. Broadcast staling performs poorly in large nets because every node must
process an auxiliary message for every update in the net. Polling generates numerous
useless messages if the read ratio is high. Multicast staling performs best. It gen.
erates one half to one fiith of the auxiliary messages produced by polling. Further­
more, the load on each workstation is small and independent of the network size.

This work WIIS supporled in plln by grllDrS from tbe Nllnonm Science Foundation (MCS-8219178). SUN Mi­
crosySlC:ros Iocorporatcd. lind Digillli Equiprocnl Corporation.
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1. INTRODUCTION

As the technology for local area necworks matures, we are witnessing 3. par...•

digm shift in our view of computing resources. Before the advent of high-speed.

low-cost networks, communication among machines was slow and expensive. Conse·

quently, each computer was an isoiateri, autonomous unit, engenderil:!~ the ccmrai­

ized view of computing. With recent advances in network techLi.ology. we have grown

accustomed to working with networks of dozens of autonomous computers, linked.
with high-speed communication facilities. In such networks, it i:; easy to exchange

mail and other data, but each user still runs his programs and stores his data pri­

marilyon a single, fixed node in the network. We call this extension of the central­

ized view the distributed view. However, this view is only a temporary stage in the

current paradigm shift. The drawbacks of the distributed view will lead to the

notion of a computing engine. A computing engine is a virtual computing environ­

ment that provides a wide range of services and hides the topology of the underlying

network. The user of a computing engine deals only with the logical services; the

location of objects, the identities of the processors, and the required communication

channels are of no interest. The computing engine view is a prerequisite if we wish

to succeed in (1) building locatio£/. independent programs that execute on any node

in the net and can be transported to other environments, (2) sharing objects by their

logical names instead of by their incidental locations, and (3) expanC:ing our local

networks without massive reprogramming.

A network file system is an important component of a computing engine. It

provides a long-term store fo~ objects and makes tbem accessible from all machines

in the engine. Efficiency of tbe file system is crucial, becau~.;: it deter;niaes whether

the illusion of a computing engine is credible. If access to re::nme files is inefficient,

or if adding new nodes to the engine degrades file system pL:rfCi~·mance, users wiil
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revert to the distributed view with all its shortcomings.

This paper presents and compares several different classes of network file sys­

tems. Each class is analyzed in two different scenarios: In the symmetric scenario, all

network nodes have identical secondary storage capabilities, and the file system data

is evenly distributed over all nodes. In the asymmetric case, the engine contains one

or more special nodes that act as shared file servers, whereas the remaining nodes

have little or no storage capacity. The performance measure chosen is Dot the load

on the network per se. but rather the workload that each individual node must han­

dle in order to support a network file system.

The next section outlines the network file system classes. Section 3 presents the

performance analysis of the file systems. Section 4 strengthens the results by

developing a more general model tbat allows the analysis of file reference lOCality.

2. NETWORK FILE SYSTEM CLASSES

We distinguish tbe following five general classes of network file systems: remote

file access, polling, broadcast staling, multicast staling, and weighted 'voting.

2.1. Remote File Access

With remote file access, any file is accessible from any node in the computing

engine, no matter where in tbe engine the file is stored. Remote file access must pro­

vide access transparency and should provide location transparency. Access tran­

sparency is achieved if system caIls operate on any file in the network, regardless of

tbe file's location. Typical implementations use remote procedure calls to reach

non-local files.

File location transparency means that it is impossible for the user to derive the

location of a file from its name. File location transparency is required for writing

truly portable programs. It also allows the operating system to pick the location of a

file, to replicate files, and to migrate files in order to improve efficiency.

A fairly large number of remote access file systems have been implemented.

Example systems with access transparency, but no location transparency are

COCANET [1], UNIX United [2], and IBIS [3]. The following remote access systems

provide varying degrees of location transparency: LOCUS [4], tbe Uni.x Network File

System [5], and tbe Apollo File System [6]. LOCUS also provides some file replica­

tion, but no migration.
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An important aspect of a network file system is its resiliency with respect to

node failures. In a file system with remote access and no replication, all files on a

failed node become inaccessible. In addition, files on nodes that have not failed may

also become inaccessible, if parts of the directory paths leading to the:n are stored on

failed nodes. Only replication can guard-against inaccessibility.

2.2. Polling

In a polling system, each file consists of a primary copy at some site, and zero or

more read-only, secondary copies at other sites. All write access is to the primary

copy. A read operation at a site other than the primary site first attempts to read the

local secondary copy. If none is present, the operation creates the copy with a file

transfer. If it is present, the read operation polls the copy's primary site and com­

pares time stamps, in order to determine whether the copy is up to date. If not, a

file transfer is started. An example system incorporating this approach is the ITC

Distributed File System [7].

Polling has two major advantages over remote access file systems. First, polling

improves read-availability, because replicated files (and directories) remain available

even if their primary copies are on a failed node. Second, performance improves

provided the frequency of reads is higher than that of writes. The reason is that

read operations at a given node transfer each remote file once; all but the first read

operation will be local until the next update. By contrast, remote file access transfers

essentially tbe entire file on every operation.

2.3. Broadcast Staling

Broadcast staling is the mirror image of polling. It uses primary/secondary

copies like polling, except that the responsibility of outdating secondary copies rests

with the write operation. Each write operation (Which must update the primary

copy) broadcasts a message that marks corresponding secondary copies as stale. Each

read operation uses the local secondary copy if it is not stale, or performs a file

transfer otherwise.

To prevent useless broadcast messages, the primary copy is in one of two states:

U or M. State U means that the file is a unique copy; there are no replicates any­

where. State M means that there may be replicates in the network. If a primary

copy in state M is updated, a staling message is broadcast and the file reverts to state

U. Write operations in state U do not broadcast a staling message. A primary copy's
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state changes from U [0 M when the first replicate is created. A secondary copy is

either in state F (fresh) or S (stale). The complete state transition diagram for both

primary and secondary copies is given in Figure 1.

While staling has the same properties with regard to read-availability as polling,

it requires a special protocol to restart a failed Dode. A failed node misses ali staling

messages until it is restarted. Thus. a conservative approach would be to mark all

secondary copies at that node as stale during startup. However, depending on the

duration oi the outage, many of those files may actually still be fresh. They can be

salvaged if the restarted node enters a polling mode uotil all its secondary copies

have been verified as being either fresh or stale. In this manner, start-up time is

minimized.

2.4. Multicast Staling

Multicast staling is identical to broadcast staling, except that each primary copy

maintains a list of sites which have a replicates. If this list is empty when a write

occurs, no message is sent (similar to state U above). If the list is non-empty, a write

operation sends a staling message to all sites on the list, and then erases the list.

This arrangement significantly reduces the number of auxiliary messages compared to

broadcast staling, especially if the network is large.

The multicast staling protocol is self-adapting in the following sense. If a file is

written, only the sites thL:.t are i~terested in it will be notified. If a file is written

very rarely, it will eventually be replicated everywhere and allow for efficient reads.

Few staling messages will be sent; in particular, the staling messages should be less

frequent than polling messages. If a file is written frequently (for instance, tem­

porary files are written about as often as they are read), replicates will rarely develop

and no staling messages wlll be necessary. A network file system with these proper­

ties is being developed at Purdue [3,8].

If a node faiis and is restarted, it enters a polling mode for secondary copies,

just as in broadcast staling. Polling mode terminates once all secondary copies have

been touched. Since [he lists of sites which have replicates may be corrupted, the

node also enters broadcast mode for primary copies. Broadcast mode reverts to mul­

ticast mode once aU primary copies have been touched.
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2.5. Weighted Voting

In weighted voting [9], each write operation writes W copies, and each read

operation inspects R copies. Wand R are chosen such that W+R > N. where N is the

tota! number of copies of each file in the network. In this fashion, the read opera­

tion is guaranteed to find the latest version of a file. If the read and write operations

have a sufficiently large overlap, node failures can be tolerated. A degenerate case

of weighted voting is full replication: Write operations duplicate their data on all

nodes. Then read operations need to access only the local copy.

Weighted voting, and full replication in particular, are highly reliable. but also

extremely expensive. Full replication, for instance, has the effect of burdening every

node with all updates in the entire network. Weighted voting may be acceptable for

a small number of nodes, but its cost becomes impractical as the number of nodes

increases. We shall therefore exclude it form further consideration.

3. MODELLING AND ANALYSIS

For modelling file access costs, we consider only the number of file transfers

and the number of polling and staling messages being processed by each site. Thus,

we ignore the cost of local file operations. Our goal is to measure the overhead

placed on each processor for supporting a network file system-.

File transfers generate a significant load for each node involved in the transfer.

By contrast, polling and staling messages are lightweight and require only the check­

ing of time stamps or the change of state attributes, respectively. We therefore

regard the number of file transfers as the major criterion, and the auxiliary messages

as the minor criterion. Note also that a staling message is one-way, whereas a pol­

ling message requires a reply. We ignore the cost of the reply, because the boolean

return value can easily be piggybacked onto the acknowledgement required in a reli­

able system.

We assume furthermore that every read or write operation accesses an entire

file. Thus, a remote access has the same cost as a file transfer. This assumption is

reasonable, since sequential file I/O predominates, at least for UNIX-like operating

systems [10], and sequeiltiaL 110 is a strong indication that the entire file is being

• From our measures. il is possible 10 derive lhe load on lbe interconnection network, but
since lhe local area ncLwo-rk is nOL normally Ihe bOlllcneek, we leave lbis computation as an
exercise 10 the reader.
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processed. However> it should be noted that the notion of a file in OUi" model is an

abstraction, and our results apply to individual blocks or records of files as well.

The analysis proceeds in two steps. First, we compute the cost of accessing a

single file, and then use the results to compute the cost for the entire file system. In

the second step. we consider the following two cases. The symmetric scenario is a

net in which all nodes have identical storage capabilities, and tbe file system is evenly

distributed over all nodes. The asymmetric scenario is a net in which 3. shared file

server stores all files, whereas the other nodes have little or no storage capacity_

3.1. Access Cost Cor a Single File

The access sequence to the file is characterized by two independent random

variables OP and SITE. The value of OP is either read or wrire, specifying the opera­

tion. If n is the number of sites in the network, SITE takes on a value in

{1.2, n}. indicatiilg the requesting site. We assume the following probabilities:

P{OP = read } =r. P{OP =wrire} =w, r +w =I,and

,
P {SITE = i } = At> 1 sis n, :~>'f = l.,-,
Among the n sites, site p is distinguished. In case of the remote access scheme

we assume the file resides at site p; for the other protocols, the p,iimary copy :s

assumed to be located there.

3.1.1. File Transfers

In a remote file access system, all operations requested from s:tes other than p

require file transfers, because of our assumption about full-file access. Therefore,

the probability of transferring a file for reading or writing is

r~(J = l-Ap •

In the polling and staling schemes, a secondary copy at some site i (i '* p) alter­

nates between two states: it is fresh (F), Le., identical to the primary copy, or not

fresh (S). If it is not fresh, it is either stale or not existent. PoWng and both vari­

ants of staling cause the same number of file transfers, because in all three cases, a

secondary copy is created or refreshed during a read operati.on, and the copy

becomes stale during a write operation. The only difference is that in the staiing

schemes, it is possible to determine locally whether a file is stale, whereas the polling

protocol interrogates the primary copy.
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The above assumptions about 01' and SITE imply that the state oi the copy at

site i is a Markov chain with the following transition matrix (see also Fig. 1):

The probabilities of a secondary copy at site i being fresh Cpu) or not (PS,i) are thus

as follows:

Since a read operation from a site with a stale copy results in reading tbe primary

copy and refreshing the local one, it requires a file transfer. In addition, all write

operations requested from sites other than p need remote accesses. The probabili~y

of transferring a file (for reading or writing) in the polling and staling schemes is

tbus:

+ 11.' (l-Ap ).

3.1.2. Auxiliary Messages

Remote file access does not require any auxiliary messages for maintaining a

network file system.

In the polling scheme, all read operations from sites other than p need to poll

the primary copy. The expected number of polling messages received at site p for a

primary is therefore

Opt> = r (1 - Ap ).

In the broadcast staling scheme. the primary copy sends a staling message to all

nodes when its state changes from multiple (M) to unique (U). Similar to the above

analysis for the secondary copy, the state of the pri.mary copy is a Markov chain with

the following transition matrix (see also Fig. 1):

[r(1 ~ Ap} II' +WrAP ]

Hence the probabilities of the primary copy at site p being in state M or U are

'(1 - A,) _-",W-.,--
PM = I Pu = ~

1-rAp 1 rAp
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The primary copy generates a staling message whenever i'~ is in state M and

there is a write operation. If we assume that the network provides a broadcasting

facility, the staling message is sent to all n - 1 other sites. Consequently, the

expected number of staling messages received per file operation anywhere in the net

is

r(l-Ap )
., - w (n -1)----

~t I-rAo .
p

In the multicast staling scheme. messages are sent only to those nodes that have

a secondary copy_ Since a site receives a staling message for a particular file if and

only if there is a fresh secondary copy in it and a write operation occurs, the

expected number of staling messages received per file operation anywhere in the net

is

a/IU/ = w ~ ---,'-,-',--,­
f.,.pw+rAI

3.1.3. Number of Replicates

The number of replicates created per file on nodes otber than p in the polling

and staling schemes is

3.2. Performance of the Network File System

Based on the analysis in the preceding section, we can now determine the per­

formance of the entire network file system. Let the number of files be q. We

assume that each file f j (1 ::S j ::S q) satisfies the assumptions we made in the last sec­

tion. The access sequence to f J is parameterized by r U>, wU) and >.P>, i = 1, ...• n. To·

simplify our discussion further, we assume the requests for all files have the same

rate and the same distribution. That is, for all 1 s.j s.q we have

rU>=r w U) = II', ,

'AP)=AI, l:si:s n.

We study two different scenarios of network file systems. In the symmetric

scenario, all sites have identical storage capabilities, and the files (or the primary

copies) are evenly distributed across all sites. In the asymmetric scenario, one dis­

tinguished site, the file server, issues no requests but provides a file store shared by
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all otber sites.

3.2.1. The Symmetric Scenario

We assume that for each file the request rate from its storage site (for remote

access) or primary site (for the other three cases) is hp • and all other sites have the

1-k
same request rate. namely. p

n - 1

Let iJ. be the total arrival rate of file requests from a site. which is assumed

identical for all sites. Recall that the results derived to the previous section reflect

the cost (the Dumber of file transfers and the number of auxiliary messages to be

processed by each site) caused by one request. We can easily compute the total file

transfer rate in the entire network, and then divide by n to get the file transfer rate

T of each site. Recall that polling and staling cause the same number of transfers.

T,o
n 1.1. 'ro.

=~(1-k,)=
n

T"
n I-l. Ips [ r'(1-k,)]

~

=1-l.(I-hp ) 1- wen -I)+r(l-h
p

)n

The rate A of receiving auxiliary messages (polling. broadcast staling or multicast

staling) at a node is:

A,o
n I-l. apa = I-l. r (1 - hp )=

n

Absl
n I-l. abJI (n - 1) (1 - kpl

= = I-l. r w
n (1-rk,)

A=,
n IJ. a nur (n - 1)(1 - k,)

= =lJ.rw
n w (n - 1) + r(1 - hp )

We assume that for each broadcast and multicast, a node sends out exactly one

message. We also assume a broadcast scheme with efficient acknowledgement. The

network would easily clog if each broadcast would result in n replies. In reliable

networks, a node does not need to acknowledge until it has received n messages

from the broadcasting node. This arrangement results in one acknowledgement per

broadcast on the average. A similar consideration applies to multicast.
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Figure 2 shows tbe rates of file transfers and auxiliary messages to be handled

by each node as tbe size of the network increases. The parameters were chosen as

follows: Ap = 1 / n (bence k{ = 1/ n for all 1 :s i So n), Le., all sites have identical

arrival rates for each file. The read ratio was set to r = 0.8 and w = 0.2, according to

the file access rates given in reference [10]. The solid curves stand for the file

transfer rates at each site, while the dashed-curves represent the arrival rate of pol­

ling or staling messages. Even under the assumption that there is no locality of

reference, polling and staling require about 30% fewer file transfers. At the same

time, read availability increases, because replicates are created. The number of repli­

cates created under the present assumptions approaches r /w = 4 as n increases.

Note that the number of file transfers rises gradually in all cases and is limited

by ~ (1 - Ap ). The number of broadcast staling messages grows linearly with the

number of nodes, making this method impractical [n large. symmetric networks.

Clearly. multicast staling is the method of choice, since it produces the least amount

of auxiliary messages.

3.2.2. TiLe Asymmetric Scenario

For the remote access file system. we assume that all files are in site 1. the file

server. For the polling and staling schemes. the primary copies of all files are in the

file server, and some of them are replicated to other sites on demand. There are no

file accesses from the file server. while all workstations generate the same arrival rate

to each file. Thus, p = 1. Ap = O. AI = 1 / (n - I), i = 2•...• n.

In tbis scenario. the cost to the file server and that to a workstation are

different. Let ~ be tbe total arrival rate from a workstation. Clearly, the total

arrival rate for the computing engine is w(n - 1). The file transfers per time unit for

the file server are:

~ ~ (n - I) [ 1 - ---;---'-'..,,'--,-]
w(n -1) +r

The file transfer rates for the workstations are the above rates divided by (n - 1).

The polling scheme adds more load to the file server. The arrival rate of polling

messages at the file server is:
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IA",I ~ ~ (n - 1) a" ~ ~ r (n - 1) I
The generation !ate of polling messages at the workstations is the above rate divided

by (n - 1),

In broadcast staling, the arrival Tate of auxiliary messages at a workstation

equals the generation rate of staling messages at the file server (provided each broad­

cast sends out a siIi.gle mes..age.) These rates are as follows:

IA,,," ~ --L.. ~ (n - 1) a,,, = ~ r w (a - 1), 1 SiS •. 1
n - 1

In multicast stoiiling, the generation rate of multicast messages a: the file server

equals the one for broadcast staling. The reason is that in both cases, a staling mes­

sage must be sent if there is a write operation to a file which has replicates (state M

or non-empty liSt of sites, resp.).

IA IlUI •1 = A bJ1 ,l = ~ r w en - 1) I
In contrast. the arrival rate of multicast messages at a workstation is:

AllUr,1
1

~-- ~(n
n -1

(n - 1) .
-l)al7Ul=~rw ( ) .2SISnwn-l+r

Figure 3 shows the rates of file transfers and auxiliary messages to be handled

by the file server as the size of tbe network increases. The parameters are

r =0.8, W =02. Clearly, the number of file transfers and auxiliary messages to be

handled by the file server increases linearly with the size of the network. Thus. the

file server will be the bottleneck in any asymmetric network sooner 0 .. later. Com­

pared to remote access, both polling and staling reduce the number of file transfers

by almost 30%. In general, the reduction depends on the read ratio r. and is, of

course, greatest if r is close to 1. Staling and polling may therefore allow the net­

work to expand farther tban with remote access, before the file server becomes a

serious bottleneck. At the same time. reliability increases. <:os the number of repli­

cates created approaches r jw = 4, as in the symmetric case.

Unfortunately, polling generates a large number of aux:iiary messages, and that

number increases rather than decreases as r approaches uliity. Thus. the polling

messages might easily overwhelm the gain in reduced file transfers, such that polling

might be slower than remote access in a large net. In contrast, the number of multi­

cast staling messages decreases as r approaches unity. Furthermore, the number of
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staling messages generated by tbe files server is significantly smaller than the !lumber

of polling messages received at the file server. More precisely, Apo • l ! AllUf , 1 = 1/ w.

For the parameters in Fig. 3, this means that the file server must handle five (!) times

as many polling messages as multicast messages.
\

Finally, the bottom line in Figure 3 shows the number of multicast Staling mes-.

sages received by each workstation. The number of these messages is bound by II. r,

a small constant independent of the size of the network. This means that the over·

head on a workstation does not increase as the network expands. (The same is true

for polling, but not for broadcast staling.)

4. LOCAl..ITY OF REFERENCE

This section studies the influence of file access locality on the performance of

network file systems. File access locality means that if a file is accessed by a site. this

site has higher probability of issuing the next request for the file than any other site.

It is obvious that locality does not affect the performance of the remote file

access scheme, since files are not cached in the requesting sites at all. However,

locality influences the performance of the pol(ing and staling schemes. This section

generalizes the model of the previous section and strengthens the results.

4.1. Access Cost for a Slogle Flle

Consider a particular file in a computing engine with n sites fl. 2•...• n}. Assume

that tbe file's primary copy is at site p. The access sequence to the file is character­

ized by two discrete-time random processes OP, and SITE,. For example, the r-th

request for this file is a read operation from site i if OPt = read and SITE, = i_We

assume that SITE, is a homogeneous Markov chain with transition matrix

Q _ r
q

1
-['lj',."

"Iqlj =1. l~ i ~ R.
1 -1

That is, if tbe current request is from site i, the probability of the next request from

site j is qlj. We assume that the Markov chain SITE, is irreducible and aperiodic,

and all states are positive recurrent, hence there is a unique stationary distribution

satisfying:

;: = ;: Q.
1- 1
I A r = I,

where A = (AIt A2••..• An) and the notation:. : stands for the sum of all elements in a

vector.
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Assume that OP, is an independent sequence with identical distribution ror all

r:

P{OPt = read } =r, P{OPr = write } =W, r +w =1.

Define random processes STATE/n, 1 s i .s n. STATEr(l) takes its value in

{M. U } x { 1,2, ...• n } if j =p. or in { F • S } x { 1, 2, ...• n J otherwise.

STATE/I) = (F. j ), ior example, means that the (secondary) copy in site i is fresh at

time l and the current request for this file is from site j. Based on the assumptions

made earlier, each STATE/il, (1'S. j :s; n) is a Markov chain with 2n states.

We study secondary copies first. If the secondary copy at site i i,; fresh, Le., in

one of tbe (F. j) states, 1:s j :5 n. then it remains fresh if and only if the next

operation is a read operation, no matter where the request comes from. On the

other hand, if the secondary copy is stale or absent, Le., in one of the (s, j) states,

1 oS j oS n, then it becomes fresh if and only if the next operation is a read operation

requested from the site j itself. Consequently, the transition matrix of

STATE,(ll. i =1= P is as follows (see also Fig. 4):

[ rQ WQ]
rQj Q-rQf '",.'"

where Ql is the matrix with all 0 elements except its j -th column is the same as the

j-th column of Q. Let T(I) = if In, ...• f ,,(f). sCn = (se). , s,,(/), where fP), s}O

(1 oS j oS n) are the stationary distribution of STATE,(I). They satisfy

T(n = T(i) , Q + sCI) r QI,

,r{n = T(I) 1\1 Q + sCf) Q - .s!'), Qi'

T(/) + sCI) = r.

Solving for T(f) and ;(/), we have:

T(n = ,): Qj (I - ,Q + ,Q,)-I,

;(1) = w>: (I - ,Q + ,Qr)-I.

The probabilities of a secondary copy at site beioci fresh (PF,t> or not (ps ./) are

thus as follows:

1-(1)1 I-;:-{i) I
PI',I = If I_ P S • l = IS I'
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Using this result, we can compute the expected number of fib transfers (for

reading or writing) per file operation in the polling and staling schemes. Namely,

tpJ = .I. :s<I) r Q{

'"

,
(1 - A,) ~, ~ ~'i"qj'

''*91=1
+ w (1 - A,).

Funhermore, the expected number of multicast staling messages received per

file operation anywhere in the net is:

The expected number of replicates in the polling or staling schemes is:

'" ~ ~ :J[" :~ ~ ifln.
{"'P ['fOp i-I

Similarly, the primary copy at site p changes its states among

{(M. 1).1 •..• (M. II), (U. I), .._, (U. n)}. The transition matrix of STATEtfrl) is (see also Fig.

4):

wQ ]
wQ+rQp .

"."
Hence its stationary distribution satisfies:

m=mr Q+iir Q-iir Qp,

ii = iii IV Q + ii IV Q - ii r Qp,

m+ii=~.

where iii = (m 10 __ ., mil), ii = (u 10 "0' u,,).

By solving the above equation, we get

- - [ w ]m=A-jJ=Ar 1- Qpo
1 - rqpp

Therefore, the probabilities of the primary copy being multiple and unique are:

I _ I
PM = I m 1= r

1 - (WA p + rqpp)

1 - rqpp
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I-reAp -q",,)

1 - rqpp

Using this result, we can compute tile expected number of broadcast staling

messages received anywhere in the net per file operation

a!m = (1'1 - 1) : mw Q : = rw (n: - 1)
1 - (WA;:r + :-Q11P)

1 - rqpp

Note tbat in both broadcast iind multicast staling schemes, the Dumber of messages

generated at the primary site is a!:S! _
n - I

4.2. Perfonnance of Network File Systems with Locality

To simplify the modelling of Locality, we consider a special case known as

Easton's model. Easton's model was originally introduced for modelling the locality

of page references in database systems. We adopt it to model our random process

SITE!.

In this model, the transition matrix Q is given as

q/i =l +(I-I)zl.

q/j=(l-I)zj. i*-i.

"where 1 (0 s I < 1) and Iz{ = 1.
i"l

"Clearly L% = I, 1 s i oS n and SITE, is an
j-I

irreducible aperiodic Markov chain with all states positive recurrent. Hence it has a

unique stationary distributi.on ~ = 0"1> ...• A,.). It is easy to verify that

~ = z = (zt. ...• ZII)' Therefore, Easton's model requires n + 1 parameters rather than

n2 parameters to specify its transition: the stationary distribution ~ and the locality

parameter I. If 1 is 0, the process is in fact an independent sequence. With 1 near I,

the next operation has high probability for coming from the same site as the current

operation. By tuning 1, we can model file operations with various degrees of locality.

Figure 5 illustrates the performance of a symmetric scenario which has the same

parameters as in Figure 2 (r = 0.8, w = 0.2, Ai = 1 / n, 1 sis n), except the locality

is 0.5 (in Figure 2. the locality is 0). It shows that the demand updating requires 40%

fewer file transfers than the remote file access. The multicast staling messages are

only about half of the polling messages. Figure 6 shows the effect of the locality

parameter 1 in a symme[ric scenario of eight sites. Note that locality does not affect

the number of polling messages, and hardly affects the number of broadcast
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messages. However, the number of file transfers and multicast stai.'::6 .:nessages ~rops

with increasing locality. such that their sum becomes less than tile number t)f file

transfers of a remote access system.

Figure 7 illustrates the performance of an asymmetri~ sc:::nario which has the

same parameters as in Figure 3. except that locality is 0.5 instead of o. Replic~tion

saves about 40% of file transfers compared with remote file access. Figure 8 shows

the effect of the locality parameter in an asymmetric scenario of eight sites (i.e., one

file server and seven workstations). Again. the polling messages 3.Ie unaffected. The

number of multicast messages generated at the file server are, of course. also

unaffected, but already quite low. However. locality significantly reduces the

number of file transfers, and somewhat reduces the number of multicast messages

received at each workstation.

s. CONCLUSIONS

Both polling and staling replicate files on demand. Our study shows that these

schemes save a significant number of file transfers compared to remote tile access,

provided the frequency of read operations is higher than that of write operations.

File access locality reduces the number of file transfers in the polling and staling

schemes further, while remote file access cannot take advantage of locality. Remot~

access may require up to twice as many file transfers as the other schemes.

The polling and staling schemes require auxiliary messages, while remote access

requires none. Surprisingly, the sum of file transfers and auxiliary messages in the

multicast staling protocol is less than the number of file transfers in a remote access

system. No such claim can be made about the polling and broadcast staling protQo.

cols. However, auxiliary messages are much cheaper than file transfers.

Polling performs poorly if the read ratio is high, because it generates numerous

auxiliary messages to check whether files are up-tQo.date. Furthermore, the number

of polling messages is unaffected by locality.

Broadcast staling performs poorly for large networks, because it loads each

node with an auxiliary message for every write operation in the net. Broadcast stal­

ing performs worse than polling in the symmetric case, but better in the asymmetric

case. The number of auxiliary messages is only insignificantly affected by locality.

Multicast staling clearly generates the smallest number of auxiliary messages,

and this number decreases with increasing locality of reference. POlling requires

twice the number of auxiliary messages in the symmetric case, and five times in the
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asymmetric case. Compared to broadcast staling in the asymmetric case, multicast

staling has the advantage of generating a fixed load for each workstation indepen­

dent of tbe network size, whereas broadcast staling generates a load proportional to

the Dumber of nodes.

An area for further study is automatic file migration: If a file is accessed fre­

quently from a particular node, the primary copy should move to that node. File

migration exploits the locality of write operations.
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