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Abstract

This paper presents new algorithms for solving some geometric problems on a shared

memory parallel computer j where concurrent reads are allowed but no two processors

can simultaneously attempt to write in the same memory location. The algorithms are

quite different from known sequential algorithms, and are based on the use of a new

parallel divide-and-conquer technique. One of our results is an O(logn) time, O(n)

processor algorithm for the convex hull problem. Another result is an O(Iogn log log n)

time, O(n) processor algorithm for the problem of selecting a closest pair of points

among n input points.

Key Words. Parallel algorithms, computational geometry, divide-and-conquer, convex

hull problem, closest pair problem.

1 Introduction

Since they involve asking basic questions about sets of points, lines, polygons, etc., geometric

problems arise often in many applications (see lIS] for examples). We are interested in finding

parallel algorithms solving some of these problems which are efficient both in terms of their running

time and in the number of processors used. Efficient sequential algorithms for solving geometric

problems often use the divide-and-conquer paradigm: to solve a problem of size n solve two sub

problems of size n/2, and then "marry" the results of these two recursive calls. Unfortunately,

trying to "parallelize" sequential algorithms based on this paradigm often yields suboptimal parallel

solutions. Such is the case for the convex hull and the closest pair problems, for example. Indeed,

"This research was supported by the Office of Naval Research under contract NOO014-84-K-OS02 a.nd the Na~ionaL

Science Founda.tion under grant DCR.84.S1393, with ma.tching funds irom A.T.&T.
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the efficient parallel algorithms we give for solving these problems turn out to be quite different

from the known sequential algorithms.

Throughout this paper, the computational model used is the synchronous parallel model in

which processors ahare a common memory in which concurrent reads are allowed, but no two

processors can simultaneously write to the same memory location. We henceforth refer to this

model as the CREW PRAM (Concurrent Read Exclusive Write Parallel RAM), as it is commonly

called. Using this model of parallel computation, we are interested in achieving the highest speed-up

possible using only O(n) processors (this restriction on the numbers of processors is crucial, since

the problems we consider can trivially be solved in logarithmic time if the number of processors

used were of no concern, e.g., 0(n2».
The technique which is common to all of our algorithms is a new parallel version of divide~and

conquer. The main idea is to divide the problem into many subproblems (e.g., yn), instead of just

2, solve all the subproblems recursively in parallel, and, when the parallel recursive call returns,

marry all the subproblem solutions quickly in parallel. AB one may suspect, performing the marry

step quickly in parallel is the most difficult aspect of using this technique, and, as we demonstrate,

often times requires new insights into the structure of the problem being solved. In Section 2 we

use this technique to design an O(logn) time, O(n) processor parallel algorithm for constructing

planar convex hulls and related problems. (We have recently learned that the convex hull result

was independently discovered by Aggarwal et a1. [IJ.) This improves on the the previous parallel

algorithm for constructing planar convex hulls on a CREW PRAM, which ran in 0{1og2 n) time

using O(n) processors, given by Chow in [9]. Our algorithm is optimal with respect to both the time

and number of processors used, since this problem has an n(o log n) time sequential lower bound

[23J; hence, an obvious n(logn) time lower bound for the CREW PRAM computational model

when using O(n) processors. Another problem for which we use the parallel divide-and-conquer

technique is that of finding the closest pair among a set of n input points, which we present in

Section 3. Our algorithm for this problem runs in O{lognloglogn) time using O(n) processors.

In some of our algorithms we make use of the fact that the parallel prefix of a sequence of n

integers can be computed in O(logn) time using O(n/1ogn) processors {12,13J. Recall that in the

parallel prefix problem we are given an array of integers (al' a2, ... , an) and wish to compute all

the partial sums SA; = L:~= 1 ai. We also make use of the known result that, on this model of parallel

computation, n objects can be sorted in O(log n) time using O(n) processors [2,14J. Unfortunately,

the constant involved in the time complexity of these algorithms is very large. This does not mean

that our algorithms are impractical, however, for one can easily substitute a more practical sorting

algorithm, such as presented in [6,22], at any point where sorting is required in our algorithms.

Using the parallel merge-sort algorithm of [6,22J introduces an additional factor of log log n in our

time complexity bounds, but significantly reduces the constant term. Thus, our algorithms are of

2



both theoretical and practical interest.

To simplify the exposition, we assume that no three points in the input set are collinear and

that the points ha.ve distinct z (resp. y) coordinates (our results can easily be modified for the

general case).

2 Convex Hull

Given n points in the plane, the planar convex hull problem is that of finding which of these

points belong to the perimeter of the smallest convex region (a polygon) containing all n points.

This problem has applications in many fields, including computer graphics, computer vision, and

statistics [15]. As mentioned earlier, the convex hull problem has an O(nlogn) time sequential

lower bound [23]' and this bound is achievable [11,18,19J.

Several authors have addressed the question of finding parallel solutions t.o this problem.

Chazelle [8] shows how to solve the problem on a linear array of processors in a systolic fash

ion in O(n) time. Miller and Stout, in reference [16], present an O( v'fi) time solution on an n-node

mesh-connected computer. Although both of these algorithms are optimal for the computational

models for which they were designed, implementing them on a CREW PRAM would lead to sub

optimal algorithms. The only known previous parallel algorithm solving this problem OD a CREW

PRAM is due to Chow [9J, and runs in O(log2 n) time using O(n) processors. In this section we

present a new parallel algorithm which solves the planar convex hull problem in O(log n) time on

a CREW PRAM with O(n) processors. As mentioned earlier, our algorithm is optimal (to within

a constant factor).

We first present some definitions and observations. Let R be a set of points in the plane. We

denote a clockwise listing of the points which belong to the convex hull of R by CH(R). Let u

and tI be the points of R with the smallest and largest x-coordinate) respectively. Clearly, u and tI

are both in CH(R). They divide CH(R) int.o two sets: an upper hull, consisting of points from u

to tI, inclusive, in the clockwise listing of CH(R), and a lower hull, consisting of points from tI to

u, inclusive. We denote a clockwise listing of the points in the upper hull of R by UH(R), and a

similar listing of the points in the lower hull by LH(R). Given a set S of n points in the plane the

following algorithm will compute C H(S).

Algorithm CH:

Input: A set S of n points in the plane.

Output: The list CH(S). That is, the points of the convex hull of S listed in clockwise order.

Method: The main idea of our algorithm is to divide the problem into .;n subproblems of size .;n
each, solve the subproblems recursively in parallel, and combine the solutions to the subproblems

quickly (that is, in O(Iogn) time) and with a linear number of processors.
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R, R, R,

Figure 1: A partitioning of S into ..;n sets, an example with n = 25.

Step 1. Sort the n points by x-coordinate, and padition S into sets R 1, R2 , ••.• R..;n, each of size

.;ii, divided by vertical cut-lines, such that R; is left of R j if i < j (see Figure I).

Step 2. Recursively solve the convex hull problem for each ~', i E {1,2, ... , y'n}, in parallel. After

this parallel recursive call returns we will have CH(Ri) for each Ri .

Step 3. Find the convex hull of S by computing the convex hull of the union of the ..;n convex

polygons CH(R1 ), ••• , CH(R,;;:;). This is done using algorithm COMBINE which will be

described later in this section.

End of algorithm CH.

Theorem: Algorithm CH finds the convex hull of a set of n points in the plane in O(logn) time

on a CREW PRAM with O(n) processors_

Proof: We give this proof assuming that algorithm COMBINE (used in Step 3) is correct and takes

D(Iogn) time and D(n) processors. (This will be justified once we describe algorithm COMBINE

later in this section.) That Step 1 can be done in D(logn) time and D(n) processors follows from the

results of [2,14]. Thus the running time, T(n), of the algorithm can be expressed in the recurrence

relation T(n) = T( vnl+b log n, where b is some constant, which has solution T(n) = D(log n). The

number of processors needed, Pen), satisfies the recurrence Pen) = max{ ylnP(.J1i), cn}, where c

is a constant, which has solution Pen) = D(n). This completes the proof, subject to the already

stated assumption about Step 3 and algorithm COMBINE (yet to be described).•

The rest of this section deals with the problem of implementing Step 3 of algorithm CH in time

D(Iogn) and with D(n) processors. This is done by using algorithm COMBINE, described below.

For convenience, we choose to describe the algorithm for the problem of computing the upper hull,

since that of computing the lower hull is symmetrical. In the algorithm description, when we talk

about the upper common tangent between CH(Ri) and CH(Ri), we mean the common tangent

such that both CH(Ri) and CH(Ri) are below it. Also, when we say that a point p is "to the left"



of another point q, we mean that the x-coordinate of p is less than that of q.

Algorithm COMBINE:

Input: The collection of convex polygons CH(R1),CH(R2), ... ,CH(Rvn). Recall that these input

polygons are separated by vertical lines, and that none of them has more than vn vertices. Also

recall that CH(R;) is to the left of CH(R;) if i < j.

Output: The upper convex hull UH(S) of the vertices of the union of the C H(~·)'s.

Method: The main idea is to find, in parallel for each CH(Ri), which of its vertices are on U H(S).

This is done by assigning vn processors to each CH(R;) and having each of these processors

compute the upper common tangent between CH(R;) and one of the other input polygons. The

details follow.

Step 1. In parallel for each i E {1,2, ... , vnJ use vn processors to find those points of CH(Ri )

which belong to U H(S) by doing the following:

Step 1.1. Find the vn-1 upper common tangents between CH(R;) and the remaining vn-1
other input polygons. Let Ti,i denote the upper common tangent between CH(R;)

and CH(Ri), where Ti,i is represented by its point of contact with CH(Ri ) and its

point of contact with CH(Ri ). A tangent Ti,i is easily computed in O(logn) time by

one processor, using a binary-search technique due to Overmars and Van Leeuwen

[17]. Therefore all of Ti,l, ... ,Ti ,vn can be computed in O(logn) time by the.;n

processors assigned to CH(Ri).

Step 1.2. Let Vi be the tangent with smallest slope in {Ti,l, ... ,Ti,i-l} (i.e., Vi is the smallest

slope tangent which "comes from the left" ofCH(Ri)), and let Wi be the tangent with

largest slope in {Ti,i+1,.'.' T i ,0i} (i.e., Wi is the largest-slope tangent which "comes

from the right" of CH(Ri )). Let Vi be the point of contact of Vi with CH(Ri), and

let Wi be the point of contact of Wi with CH(Ri ). Both Vi and Wi can be found in

O(Iogn) time by the .;n processors assigned to CH(R i ).

Step 1.3. Since neither Vi nor Wi can be vertical, they intersect and form an angle (with interior

pointing upward). If this angle is less than 1800 (as in Figure 2), then none of the

points of CH(Ri) belong to UH(8). Otherwise, (as in Figure 3) all the points from

Vi to Wi, inclusive, belong to UH(8).

Step 2. Step 1 has computed, for every i E {I, ... , yIn}, all the points of CH(R i ) which belong

to UH(8) (possibly none). This step compresses each of these lists into one list to get

U H(S). This can be done in O(Iogn) time and O(n) processors (e.g., by using a parallel

prefix computation).

End of algorithnJ. CO:M:BINE.

That COMBINE runs in time O(Iog n) and O(n) processors should be clear from the comments

made in the algorithm description. The correctness of COMBINE depends on the corredness of
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Step 1.3. The correctness of Step 1.3 for the case when the angle between Vi and Wi is less than

1800
, depicted in Figure 2, follows from the fact that in that case the straight-line segment joining

the other endpoints of Vi and Wi (shown dashed in Figure 2) is entirely above CH(Ri); hence, no

vertex of CH(R;) can belong to UH(S). The correctness of Step 1.3 for the case when the angle

between Vi and Wi is greater than 1800
, depided in Figure 3, follows from the fact that the points

from all the other CH(Rj)'s are below Vi and Wi. This establishes the correctness or algorithm

COMBINE.

PI

Figure 2: An illustration of the case when none of CH(Ri)'S points are m U H(S),

because lIi and Wi form an angle which is less than 1800
•

Pi W;

Figure 3: The points P2, P3, and P4 are in UH(S), because Vi and Wi form an angle

which is at least 1800
•

Thus, we can construct the convex hull of n points in O(1og n) time using O(n) processors on a

CREW PRAM. The convex hull problem is a fundamental problem in computational geometry and

is used as a building block in many other geometric algorithms. For example, our algorithm can be

used to find the common intersection of n half-planes in O(logn) time using O(n) processors, by
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using a duality transformation of [7,20J. It can also be used as a preprocessing step in conjunction

with the algorithm of [10] for finding the diameter of a convex polygon to find a farthest pair of

points in O(log n) time using O(n) processors. The problem of finding a closest pair of points does

not follow from the convex hull problem, however. We deal with the closest-pair problem in the

next section.

3 Closest Pair

Given n points in the plane, the closest pair problem is that of choosing two points that are

closest (i.e., the distance between them is smallest). This problem has applications in answering

basic proximity questions of sets of objects, such as monitoring airplanes in air-traffic control. We

are not aware of any previous work done in finding parallel solutions to this problem. A trivial

O(log n) time parallel algorithm exists, but it requires a quadratic number of processors. Here we

are investigating what time bound can be achieved with only O(n) processors. Parallelizing what

seems to be the most promising sequential algorithm [4,5J on O(n) processors only leads to an

O(log2 n) time algorithm. Applying a divide-and-conquer technique similar to the one we used in

the convex hull problem, we show how to solve the closest-pair problem in O(log n log log n) time

using O(n) processors on a CREW PRAM.

As in our solution to the convex hull problem, we will be dividing the input set of points into

.;n subsets divided by vertical cut-lines. Let RI , ... , R.,;n be these subsets in left-to-right order,

i.e., R j is left of R j if i < i. We define the region-width of a point set Ri to be the distance between

the two vertical cut-lines separating R j from Ri - 1 and R,·+l, respectively. Note: the region-width

of R I and R.,;n is defined to be 00. We present the closest pair algorithm CP below.

Algorithm CP:

Input: A set S of n points in the plane.

Output: A closest pair of points in S.

Method: Before giving the details, we present a high-level description of the various steps of the

algorithm. First, we partition S into vn sets, of size yn each, using vertical cut-lines, and recur

sively solve the closest pair problem for each. Taking the closest of the yn pairs returned by the

parallel recursive call gives us a closest pair of points in S not separated by a cut-line. Let 8 be the

distance between these two points. For our combining step to run quickly (i.e., in O(logn) time)

there should not be more than a constant number of cut~lines which are within 0 of one another.

Since this may not presently be the case, we do not perform our combining step at this point.

Instead, we repartition S by removing cut-lines between adjacent point sets with region-widths

which are <Ctoo small," thereby coalescing the two sets into one. This gives us a better distribution

of the remaining vertical cut-lines. Even after coalescing, we still do not combine the subproblems,
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because in removing a cut-line we coalesce previously solved subproblems into conglomerates which

must now be re-solved. Consequently, for each conglomerate point set, we use the vn divide-and

conquer technique again, dividing the conglomerate horizontally, and solving each of the resulting

horizontally divided sets recursively. Dividing the conglomerate point sets horizontally guarantees

that cut-lines will be far enough from each other so as to allow for a combining step which runs in

O(logn) time. So, after recursively solving the horizontal problems, we are now ready to combine

the solutions to the subproblems. We do this by first combining the solutions to the horizontally

divided sets. and then combining the solutions to the vedicaUy divided sets. Below we give a

high-level description of each step in the algorithm. We define the smallest distance, S(R), of a

point set R to be the distance between a. closest pair of points in R. If we always associate a specific

closest pair of points with a smallest distance, then we can reformulate the closest pair problem as

the following: given a set S of n points in the plane, compute 15(8). This is the formulation we will

use.

High Level Description of CP:

Step 1. Partition 8 into point sets Rr , R2, ••. ,R.,;n, each ofsize.,fn, separated by vertical cut-lines,

such that 14 is left of Rj if i < j (see Figure I). Let I denote the index set {I, 2, ... , .,fn).

Step 2. Recursively compute S(R j ) for each I4, i E I, in parallel.

Step 3. Compute 5 = min{5(R;) liE I}.

Comment: The pair associated with 5 is a closest pair of points in 8 not separated by any of the

vertical cut-lines which separate the R/s from one another.

Step 4. Repartition S into {Hr,H2•••• ,Hz), f::; ..;n so that there is never more than 2 vertical

cut-lines which are within 5 of each other. The new partition is obtained by starting with

Rr,···. R.;n, and repeatedly removing cut-lines between pairs of adjacent regions whose

region-widths are both less than 5. coalescing two sets into one each time. Let If denote

the new index set {I, 2, ... , f}.

Comment: From this point on in the algorithm when we refer to vertical cut-lines we mean the

ones which survived this repartitioning step.

Step 5. In parallel for each Hj , check if 5(Hd < 5, and, if so, assign 5. = S(Hi). This method we

use to test this is such that we only compute 5(H j ) if it's less than 5. If we detect that

5(Hj ) ~ 5 (without explicitly computing 5(Hi )), then we assign 8j = 5. Note that if Hi

is one of the original sets (Hi = Rj for some i), then we can assign 5j = 5 immediately.

Otherwise, if Hi resulted from coalescing 2 or more of the original sets (Hi = Riu. . ·URj +d

for some i and d), then this computation is done by using the vn~divide-and-conquer

technique again. We divide each such Hi by horizontal cutwlines into Vf1lJ subsets ri,t>

solve each ri,i recursively, and combine all the subproblem solutions in O(logn) time.

Step 6. Compute 5' = min{5. liE [I}.
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Comment: Note that 5' S 5. and that the pair associated with 5 f is a closest pair of points in

S not separated by any of the vertical cut-lines which separate the Hi'S from one

another.

Step 7. Find all pairs of points in S which are separated by a vertical cut-line and are closer than

5' to one another. If there are such pairs of points then S(8) is the distance between a

closest such pair; otherwise, 5(8) = S'.

End of High-Level Description of CPo

We now show how to perform each of the above steps quickly in parallel. It is trivial to do the

partitioning of Step 1 and the computation of Step 3 in O(logn) time using O(n) processors. So

we begin our detailed description of the algorithm CP with Step 4. Recall that at this point in the

algorithm we have found a closest pair of points in S not separated by any of the vertical cut-lines

that separate the Rj's from each other. and that 5 is the distance between this pair of points.

Details of Step ./. We perform this repartitioning step by the simple divide·and-conquer proce

dure REPARTITION which follows. For simplicity of expression let k = ..;n.
Procedure REPARTITION:

Step 4.1. Let lR = {R1, R2•••• , RAJ. Divide the collection lR into two contiguous collections

lRl = {RI, ...• R k / 2 } and lR2 = {Rk / 2+!, ... ,R,l:} (!)h being to the left of!R:2). Assign

to Rk / 2 the same region-width in !R:1 as it had in!R:. Similarly, assign to R k / 2+1 the

same region-width in !R:2 as it had in !R:.

Step 4.2. Recursively apply procedure REPARTITION to!R:1 and !R:2 in parallel. Assume that

after the parallel recursive call returns there will be no two adjacent point sets in !R: 1 ,

or in !R:2 , which both have region-width less than 5. (This is the invariant we will

maintain.)

Step 4.3. If the region-width of the rightmost point set in !R 1 and the region-width of the

leftmost point set in!R:2 are both less than 5, then coalesce them into one point set by

removing the cut-line between them. Otherwise, do nothing. In coalescing two point

sets we must compress the list of point sets, removing one point set. This can be

done in 0(1) time using O(n) processors, giving the new partition {H 1 ,H2 , .•. ,HI},

I <:: .,;n.
End of REPARTITION.

Analysis of Step 4. The correctness of the above implementation of Step 4 follows by a simple

inductive argument. The time complexity T4,(n) of Step 4 is determined by the recurrence relation

T4,(n) = T4,(n/2) + b4,. where b4, is some constant. which has solution T4,(n) = O(logn). The

processor bound P4,(n) is determined by the recurrence relation P4,(n) = max{2P4,(n/2), C4n}, for

some constant C4,. which has solution P4,(n) = O(n).

Details of Step 5. Recall that in Step 5 we wish to check if 5(H;) < S. and, if so. aSSIgn
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--+- ri,S

---------.

Figure 4: A horizontal partitioning of a point sel; Hi with nj = 36.

5; = S(H;) (and, if not, then assign 5j = 5). The main idea of Step 5 is to perform essentially the

same computation as Steps 1-3 above for each Hi. except that cut-lines in Step 5 are horizontal

instead o(vertical. The main idea behind the method for combining subproblem solutions is to

construd for each subproblem set ri,i two special "candidate" sets, which consist of points in ri,;

which could be close to points in some other ri,k, and then for each point p search in a constant

number of these sets to find a point closest to p which is separated from p by a horizontal cut-line.

The details follow.

Step 5.1. Sort the points in Hi by y-coordinate and partition Hi into subsets ri,1, ri,2,···, ri,.,fiii/2>

separated by horizontal cut-lines, each of size 2..;tii (where ni = IHi !), and such that

ri,; is below ri,l. if j < k (see Figure 4). Let J i denote {1,2, ... , ..;tii/2}.

Step 5.2. Recursively compute c(ri,;) for each ri,;. j E J j , in parallel.

Step 5.3. Compute min{S(ri,;) I j E J i }, and let €j be the smaller of this value and c.
Comment: €i is no greater than the distance between a closest pair of points in Hi not separated

by a horizontal cut-line. We are now ready to do the combining stcp of the divide

and-conquer.

Step 5.4. In parallel for each j E J j construct the set N j ,; and Si,;, where N j ,; (Si,;) is the set

of points in ri,; which are within €i of Ti,;'S northern (southern) cut-line. (This can

be done by a parallcl prefix computation.) Sort the points of each N i ,; and Sj,i by

x-coordinate.

Step 5.5. In parallel for every point p E Hi construct the set Di(p), where Dj(p) is defined

as follows: If ri,; is the point set containing p, then Di(p) is the set of all points

in N i ,;_3 u Ni,i-2 u Ni,;_l U Si,i+1 U Si,i+2 U Si,i+3 with x-coordinate within €j of

p's x-coordinate (if one the sets in the above union is not defined, then use 0 in its

10
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Figure 5: The upper bound on number of points in Q which were all in one of the

original point sets is 4.

place). We will show later (in Lemmas 3.1 and 3.2) that there can be no more than

3 horizontal cut-lines within €j of one another and that ID,.(p)j = 0(1). Thus, Dj(p)

can be construded for any p by performing 0(1) binary searches, and this step can

be performed in O(lognd time using D(n;) processors.

Step 5.6. In parallel for each p E Hi find a point in Vi(p) closest to p (provided tha.t Di(P) =j:. 0).

Call this point q(p) for each p, and let d(p) be the distance from p to q(p) (d(p) = 00

if D,(p) = 0).

Step 5.7. Compute min{d(p) I p E Hi} and take 5,. to be the minimum of this distance and €j.

Comment: Note that if 8(Hi ) < 5, then 5; = 5(Hi ), and 5; = 5 otherwise.

Analysis of Step S. The analysis of Step 5 is quite involved. We begin the proof of correctness

by proving the following lemma.

Lenuna 3.1: There are no more than 9 horizontal cut-lines which are within €i of one another in

any point set Hi conS1·dered in Step S, i E 1'.

Proof: Since €i :$; 5 for all i E I', it is sufficient that we prove that there are no more than 3

horizontal cut-lines which are within 8 of one another in any point set Hi. Suppose there are 4

horizontal cut-lines within 5 of one another in some Hi. Let Q = ri,; U ri,;+1 U ri,;+2, j E J i , be

the set of points which are bounded by these lines. Let d ;::: 2 be the number of original point sets

which were coalesced to create Hi. Then "i = IHi ] = dvn, and Iri,;1 = 2...;ni = 2d1
/

2 n1/4, for all

j E J;. Since -Iii;::: d, Iri,;1 ~ 2d, for all J. E Jj. Recalling the method of Step 4, note that each of

the d original point sets must have had region-width less than 8 to have been coalesced. The value

5 was found by solving the closest pair problem for each original point set, so there can be at most

11
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Figure 6: The upper bound on number of points in any Dj(p) selected from anyone Ni,j

or Si,j is 6.

4 points in Q for any of the d original point sets which were coalesced to form Hi (see Figure 5).

Thus, IQI ~ 4d. But since Q contains 3 ri./s, IQI ;:::.: 6d. This is obviously a contradiction.•

Lemma 3.1 and the definition of Dj(p) imply that for every point p in Hi> if a point q E Hi has

x and y coordinates both within €j of p's x and y-coordinates (respectively), then q E Dj(p). Thus,

when we find a closest point to pin n..(p) we are in fact finding a closest point to p in Hi separated

from p by a horizontal cut-line (provided D;(p) i:- 0). Recall tha.t, for each p, if d(p) < 00, then

d(P) is the distance to such a point. Also recall that €j is the smaller of 6" and min{5(ri,i) IJ. E Jj}.

Therefore, t;aking t;he minimum of €i and t;he minimum d(p) value in St;ep 5.7 gives us S(Hi ) if

o(Hil < 0, and gives us 6 otherwise. This est;ablishes the correcl;ness of Step 5.

We now turn to t;he complexity bounds of St;ep 5. We first; prove the following lemma.

L.=a 3.2: IDi(p)1 = 0(1) 10' e."y p E Hi.

Proof: Recall t;hat; €i is no great;er t;han t;he dist;ance between a closest; pair of points in Hi not;

separated by a horizontal cut-line. Thus, there can be no more than 6 points in any 2€j X €i

rectangular subset of any ri,i (see Figure 6), for any Hi. Hence, there can be at most 6 points in

Di(p) taken from any Nj,i-k or Sj,jH, k = 1,2,3. Therefore, IDj(p)1 :$ 36 for any p.•

Lemma 3.2 implies t;hat Steps 5.5 and 5.6 run in O(Iog nil and 0(1) time, respectively, using

O(ni) processors, for any Hi. From observations already made in this paper we know that; Steps 5.1,

5.3,5.4, and 5.7 run in O(logni) time using O(ni) processors, for any Hj. Thus, the running time

T5(n) of Step 5 is characl;erized by the recurrence relation T5{n):=; max{T(2vnJ+b510gni liE ['},

where b5 is some constant and T(n) is the time complexit;y of the entire CP algorithm. Since n i S n

for all i E 1', we can rewrite t;his as T5(n) :$ T(2y'n) + b5 log n (this is the formulation we will use

12



in analyzing the time complexity of the a.lgorithm CPl. The processor bound Ps(n) is determined

by the recurrence relation Ps(n) = :LiEl, max{lJiiiP(2yfiii),csni}, where Cs is some constant and

P(n) is the number of processors needed by the algorithm CPo

Details of Step 6. It is clear that we can compute 6' = min{S; liE I'} in O(logn) time using

O(n) processors.

Details of Step 1. Recall that in Step 7 we wish to find all pairs of points in S which are

separated by a vertical cut-line and are closer than S' to one another. The method is essentially

the same as the combining steps of Step 5 (Steps 5.4-5.7). The details follow.

Step 7.1. In parallel for each i E I' construct the set Ei and Wi, where Ei (Wd is the set of

points in Hi which are within 6' of the eastern (western) cut-line for Hi. (This can

be done by a parallel prefix computation.) Sort the points of each E i and Wi by

y-coordinate.

Step 7.2. In parallel for every point pES construct the set D(p), where D(P) is defined as

follows (similar to Di(p)): If Hi is the point set containing p, then D(p) is the set of

all points in Ei-2 U Ei-l UWi+1 UWi+2 with y-coordinate within S' of p's y-coordinate

(if any set in the above union is not defined, then use 0 in its place). Clearly, D(p)

can be constructed for any p by performing 0(1) binary searches.

Comment: Recall that from the repartioning done in Step 4, there cannot be more than 2 vertical

cut lines within S of one another.

Step 7.3. In parallel for each pES find a point in D(p) closest to p, and call it q(P). Let d(P)

be the di,'anee fwm p to q(p) (d(p) ~ 00 if D(p) = 0).

Step 7.4. Compute min{d(p) I pES} and take S(S) to be the minimum of this distance and

.'.
Analysis of Step 1. It follows [roman argument similar to the one used in the proof ofLemma 3.2

that ID(p)1 = 0(1) for all pES. Thus, Step 7 can be performed in O(logn) time using O(n)

processors. We turn to the proof of correctness. For each p, if a point q is separated from p by a

vertical cut-line and has x and y coordinates both within 81 of p's x and y coordinates (resp.), then

p E D(P). This is because after performing the repartition procedure of Step 4, there are at most

2 vertical cut·lines which are within 8 of one another (hence, within 6' of one another). So, it is

correct to set 6(5) to the smaller of min{d(p) IpES} and 6'.

End of Algorithm CPo

We summarize the above discussion in the following theorem.

Theorem 3.3: The algorithm CP finds a closest pair oJn po£nts in the plane in O(lognloglogn)

time using O(n) processors on a CREW PRAM.

Proof: The correctness of CP follows from a simple inductive argument based on the discussion
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presented above. Combining the time complexity analysis for each of the above steps we get that

the time complexity T(n) of the algorithm CP is characterized by the recurrence relation T(n) ::;

T(Vri) +T(2..fii) + blogn, where b is some constant, which has solution T(n) = O(log n log log n).

The processor bound Pen) of the algorithm CP is characterized by the recurrence relation

1
P(n) = max{cn, ynP{;In), L max{c5 n;, -"fniP(2Vn"iJ} },

iE]' 2

where c and C5 are constants. Using the fact that :LiE]' ni = n, we get that Pen) = O(n) .•

It is worth mentioning that our algorithm will work with any of the L lc distance metrics_ Recall

that in any of the LJ; metrics every point within a specific distance ~ from a point p has x and

y coordinates both within ~ of p's x and 'J coordinates. Therefore, since we define Di(p) (D(p))

so that it contains all points separated from p by a horizontal (vertical) cut-line and with x and

y coordinates both within fj (5') of p's x and y coordinates (resp.), then 5(8) will be computed

correctly no matter which LJ; metric we use to define distance.

4 Conclusion

We gave efficient parallel algorithms for solving some geometric problems. Namely, we have shown

how to solve the planar convex hull problem, and related problems, in O(log n) time and the closest

pair problem in O(lognlog logn) time on a CREW PRAM with O(n) processors. This, of course,

implies that given a fixed number of processors, say k, one can solve the planar convex hull problem,

and related problems, in O((n/k) log n) time and the closest pair problem in O((n/k) logn log log n)

time, by using the k processors to simulate the O(n) processors used in our algorithms. The

new parallel divide-and-conquer technique we presented for solving these problems is very general,

and can be helpful in tackling other geometric problems as well. For example, the authors used

this technique, in conjunction with a parallel technique analogous to plane-sweeping, to solve the

problem of triangulating a simple polygon in O(1og n log log n) time using O(n) processors [3].
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