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ABSTRACT

We consider solving separable second order linear elliptic partial differential equations
in three independent variables. If the partial differential operator separates into two factors,
one depending on x and y, and one depending on z, then we use the Merhod of Planes to
obtain a discrete problem which we write in tensor product form as

(T, ®B,, +1 A, )C =F.

We apply a new iterative method, the Tentor Product Generalized Alternating Direction Implicit
method, to solve the discrete prablem. We study a specific implementation which uses Her-
mite bicubic collocation in the xy dircction and symmectric finite differences in the z direc-
tion. We demonstrate that this method is a fast and accurate way to solve the large linear sys-
tems arising from three dimensional elliptic problems.
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A Tensor Product Generalized ADI Method for the Method of Flanes

Wayne R. Dyksen

1. Introdaction

Let R be a rectangular domain, We consider solving second order linear elliptic problems

of the form
Lgu+Lu =f(x,y,z) in R®[a,b,]
u =g,(x,y) onR@a,
a(x,y)u +B(x,y)u, =g(x,y,z) ondR &(a,.b)
(1.1} u =g,(x,y) onR®bd,
afx,y)B(x,y)}=0 on aR

a?(x,y) +p¥x,y)> 0 on 3R
where
(12) L =—(p{z)u) +q(z)u, p>0,9q=0,

and L, is a general elliptic operator in x and y. We cxpress a discrete problem in terms of
tensor praducts of matrices resulting from lower dimensional, and hence much simpler, prob-
lems. We apply a new itcrative technique to solve this discrete problem. We obtain a fast

method for solving a large class of elliptic problems in three dimensions.

Scction 2 presents a brief introduction to the Tensor Product Generalized Alternating
Direction Implicit (TPGADI) method. In Section 3 we extend the Merhod of Lines (Jones et al,
[18]) to the Method of Planes to obtain a discrete problem which we write in tensor product

form as

(T, 9B, +1 QA )Y =F.




We present the TPGADI method for solving such discrete problems in Section 4. We apply
the Mcthod of Planes using Hermite bicubics in x and y and finite differences in z in Sec-
tions 5, 6 and 7. We consider a specific implementation in Section 8; we show that the
Method of Planes together with the TPGADI method give a powerful tool for solving a large

class of elliptic problems in three dimensions.

The TPGADI method has been used effectively to solve discrete elliptic problems arising
from other discretizations in both two and three dimensions. We have used it in conjunction
with the Method of Lines (Dyksen, {8]) and the Hermite bicubic collocation equations (Dyk-
sen, [12]). In threc dimensions, we have used it to solve elliptic problems on cylindrical

domains with holes (Dyksen, [13]).

2. The Two Directional Tensor Product Generalized ADI Methads
Let A, and B, be matrices of order N XNy, and consider the linear system
(2.1) (A1®82+BI®A2)C =F.

We wish to soive the two directional problem (2.1} by using methods for onc directional,
simpler problems involving A4y, By, A2 and B;. We use the term directional rather than dimen-

sional since one direction may encompass more than one dimension.

For a given set of positive acceleration parameters py, k=12,..., we define the two
directional Tensor Product Generalized Alternating Direction Implicls (TPGADI) iteration

method by

Cc® given

(22) [(A 1+ 4181) OB, [CEI=F — [31 (A2 —p: +132)]C ®)

[31 RA2+p +1B?J]Cu " =F - [(41 ~p1 4181y ®B2{CEH,



The following results are used in subscquent analysis; for details sce Dyksen, [12).

THEOREM 2.1. Let A, and B, be matrices of order Ny XN, and consider the linear sys-
tem (2.1) for F given. Suppose that By IAl and B{IAZ have complete sets of normalized eigenvec-
tors p; and gy, respectively, with corresponding positive eigenvalues X, and .y, respectively. Then,
for a given set of positive acceleraiion parameters py., k =1,2,..., the two directional Tensor Pro-
duct Generalized Alternating Direction Implicit iterative method, given by (22) is convergens, and

C ix its only solution.

Proof. Let E®Y=C® —C denote the error of the k™ iterate. A straightforward compu-

tation shows that the error E*) may be expressed in terms of the initial error E® g«

N'l NZ l‘ P
;A
23) E(*):E 2 [ — T
falj=1 {wl Atpr By +py

] ISD}PI ®q 7.

Since by the hypothesis the eigenvalues A, and w; are positive, it follows from (23) that for

positive acccleration parameters g;

lim 1E{ 1 = lim
Fpys 5 t—ﬂElM"‘P: (TRl T}

N =P By =0 ESQ)I_
(0 =

so that

jtliu-. HE® 1 =00

COROLLARY 2.2. The TPGADI iterative method (22) can be exact (except for round-off)
in @ number of iterations equal 1o the number of unknowns In either direcilon; that 1s, in NiorN,
iterations.

Proof. Let M., hy be the eigenvalues of B{ "4, and set p; =A;. Then by (23) we

have for all §

24) (Hﬂ H — Pt Pr }E‘so)

Tw] At"'pl P-j +PI




Thus,
E®Y=o,

The analogous argument for N, iterations completes the proof O

3. The Tensor Product Formaolation of the Method of Planes
Let {1, and ). be the unit squarc and the unit cube, respectively. We consider partial

differential equations of the form

Lyu+Lu=f infl,
(3.1) 4 =0 onaf,,

where L, has the form (12) and L., is a general second order linear elliptic partial differential
operator in x and y, with the coefficients of »,, and u,, being strictly negative. For simpli-
city, we first consider homogenecous Dirichlet problems; we consider more general boundary

conditions in Section 6.

In order to solve (3.1), we extend the Method of Lines in a natural way to obtain the

Method of Planes, For a fixed positive integer M, we place in [1, the M “horizontal" planes

1

5 =k b= T

y J =1 M.

We look for an approximate solution of (3.1} in the form of a sct of M functions

{U l(x s)’)!UZ(I sJ’)s' Uy (.1' ,)’)},

g0 that U, approximates u on plane j; that is,
Ul(x vy)= "(-‘:J’ lzj)'

We first discretize the z variable by applying the standard equally spaced, O (h2) sym-

metric finite difference approximation to L, so that (1.2} becomes



LU, =d;U;q+d;U; +d; U4, j=1,.,M,

where
o - 2U 0
IR AL TR LS
42U EBR)

b2

Note that Uglx,y)= u(x,y,0)=0 and Uy (x,y)=u(x,y,1)=0. The problem of solving
(3.1) is now replaced by that of finding suitable functions U ((x,y). Us(x.¥),e.., U (x,¥), cach

of which satisfies

Lry Uj(x ,}') +dJ_UJ'1(: !y) + djvj(x Iy) + d]+Uj+1(x ly) =! (x Y lz])l in 03 F
(32)
Uyx,y)=0, on afl,.

Thus, since the original operator in (3.1) separates into two factors, we arc able to reduce a

three dimensional problem to a coupled system of two dimensional problems.

We now choose N linearly independent functions {d,(x,y)}%; which are twice continu-

ously differentiable and satisfy the boundary conditions. On each plane 2z =z;, we set

N
UsGe,y)=3cydi(x.y), j=1...,.M
=1

for some constants ¢;;. We determine the MV unknowns ¢; by choosing N distinct points
{(xg, )}~ in 2, and collocating the equations in (32) at these points. We obtain an
MN xMN system of simultancous linear equations in the unknowns c;; which can be written

in tensor product form as

33) (7. @B, +1®A, )X =F,



where
T, =tridiag[d,‘ d; d,*]. 1=1..,M,
I is the M x M identity matrix,
k=1,....N
(34) Ag =L, )y Bu=&ib,nd =1,...N,
i=1,...N k=1l...,.N

Cu=cys joq,,. M, B Fu=fGynzd j=q,, p
4, The TPGADI Method for the Method of Planes

Convergent TPGADI iterative schemes are derived by adding weighted, approximate
values of u to both sidcs of the original lincar system. For the Method of Plancs we observe

that

N
[(I ®B”)C]U = Iz_lcud’: (Xg 2 ¥e)

Uy Cxeaye)

i

u(xt 1Yr ,ZJ).

Thus, for a given sct of positive acceleration parameters p;, k =1,2,.., the TPGADI iterative

method for the Method of Planes is

c® given

@) (7. +oeni) @8, ]C* =F — [t @A ~prriBo)|c®
[t @y +orsB]C® I =F - [T, ~prat) @B JC* 2.

The convergence of (4.1) depends on the cigenvalues of T, end the generalized eigen-

values of A, ¢ =\B,c. The cigenvalues of 7, 2re distinct, ren! and positive. The generalized



cigenvalues of Ajc=MAB,e arc the collocation approximations to the cigenvalues of Ly,
(de Boor and Swartz, [4], [5]), which, for a large class of operators, are distinct, real and posi-
tive, or at least have positive real parts. Thus, we assume that these eigenvalues at least have

positive real parts so that Theorem 2.1 applies.

In subsequent applications, the acceleration parameters p, are taken to be the eigen-
values of T,. If the sum A +p; in (2.4) is bounded away from zero for cach generalized cigen-
value A of A, € =ABy¢, then Corollary 22 applics so that (4.I) is “convergent” as a direct
method. Experience shows that only a very small number of iterations is required to achieve

“discretization™ accuracy.

5. The Method of Planes with Hermite Blcablcs

For given fixed positive integers N, and N,, the unit square {1, is subdivided with a rec-

tangular, tensor product grid with N N, rectangles. The grid lines, given by
=n_h, h =L and = =1
x.x—n; ey N, ’ .V.l’ "yhy: h’_N, >

are the knots of the Hermite bicubics. The Hermite bicubic basis functions are formed as ten-
sor products of the standard one dimensional Hermite cubics. For the case of homogencous
Dirichlet boundary conditions, there are 4¥.¥, Hermite bicubic basis functions which we

dcnote by

[on(x 3 et ? = (T o) D1 ) 7 12 Ve P, 1) F e, 1(x), ¥ n ()}
(¥ e(¥) 21 11O ) - -.‘T’N’ Al )s‘l'nr, -y ).‘l’n,ﬁr’)}

so that

w,H,

Uilx,y)= ‘2_;1 cf;-#:(x.y}: ulx,y,z).



N
"y
The 4¥.N, unknowns ¢y arc determined by choosing 4NN, distinct points {(z; v;) }i=

in 1, and collocating the coupled system of partial differential equations in (32) at these
points, The 4N, ¥, collocation points are placed at the four Gauss points of cach subrectangle
(Houstis, [15]), (Percell and Wheeler, [25]).

The system of linear equations arising from this particular instance of the Method of
Planes may be written in tensor product form (3.3) where the x,,y; in (3.4) are replaced by
1;,v;. If the collocation points and Hermite bicubic basis functions are ordered in a natural
tensor product way, then A, and B,, have bandwidth 4¥, +2. For example, the pattern of

non-zero elements in Ay, and By, is illustrated in Figure 7.1 for the case N, =N, =3.

6. Convergence of the Tensor Product Generalized ADI Method

We now apply the TPGADI iterative method (4.1) to the discrete elliptic problem (33
resulting from the Mcthod of Planes using Hermite bicubic collocation in the xy direction and
symmetric finite differcnces in the z direction. We establish the convergence of the TPGADI

method for the Model Problem

=y —Hy —u, =f infl,
u=0 onafl,.

The Discrete Model Problem is given by (3.3) where
T, =tridiag[—-&2 252 ~h?],

ald 3%
[Aq]H == ?-;- (Tl Iul')_‘aj;_ (T;,‘IJ'; )| and [Bq]" =¢.i'('rh”l)'

THREOREM 6.1. For a given set of positive acceleration parameters py. k =1,2,..., the

TPGADI method (4.1) applied to the Discrete Model Problem is convergens.



Proof. Tt is well known that the M cigenvalues of T, are distinct, real and positive. We
must show that the 4NN, generalized eigenvalues of A, ¢ =AB, ¢ are distinct, real and posi-

tive. We first observe that the matrices A, and B, may be written in tensor product form as
A, =A ®B,+B. ®A, and B, =B, ®B,
where A;, B; and A,, B, sare defined by [A/]lm =—®n(1)), [B:)m =Pu(r;), and
[4,); =—¥a(v;), [B,])s =¥a(v;). Note that A,, B, and 4,, B, have dimensions 2N, X2N,
and 2N, X 2N, , respectively.
Now, let p, A and q, p satisfy A, p=AB,p and A,q =pB,q. Then, by the propertics of
tensor products of matrices, it follows that A4, (p®q)=(x +p)B,(p®q). Thus, the gencral-

ized eigenvalues of Ayc =AB, ¢ are given by the sums of pairs of the gencralized eigenvalues

of A,c=\B, ¢ and A, e =AB,c.

Dykscn [12, Theorem 5.1} has shown that the 2%, gencralized cigenvalucs of A;c =AB,c

are
ho=23
A = 7d +9T5(V4:!:3S;0d +81 =1,...N,-1,
where
d =tan2[ﬁ;— l;' ]
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it follows that the 2¥,; —2 generalized cigcnvall.ics A/ are distinct, real and positive. Hence,
the 2N, gencralized cigenvalucs of A,e =AB, e are distinct, real and positive. An analogous

result holds for A, ¢ =AB,e. The proof now follows directly from Theorem 2.1 0

7. Extensions to More General Boundary Condltions

We first consider a general, second order, linear elliptic partial differential operator Ly,
on a rectangular domain R together with uncoupled boundary conditions; that is, an elliptic

problem of the form

Lou=f in R
alx,y)u +B(x,y), =g(x,y) on R

1) a(x,y)B(x,y)=0 on 3R
a®(x,y}+8%x,y)> 0 on 3R.

The Hermite bicubic collocation equations resulting from (7.1) contain 4NN, cquations
and unknowns associated with the partial differential operator and 4N, +N, +1) correspond-
ing to the boundary conditions. Since the Hermite bicubic polynomials are the dual basis with
respect to function and derivative evaluation at the grid points, the equations and ucknowns
associated with the boundary conditions uncouple from the resulting linear system. To illus-
trate this, we show in Figure 7.1 the pattern of non-zero clements in the Hermite bicubic col-
location equations arising from (7.1) with § =0 using the tensor praduct ordering of the collo-
cation points (equations) and basis functions (unknowns) for the case N, =N, =3. Figure 7.2
shows the same linear system, rearranged with the boundary collocation points and basis func-
tions ordered first. The first 28 cquations and unknowns are associated with the boundary
conditions, and uncouple from the 64X 64 lincar system, leaviﬁg the 36 cquations and
unknowns associated with the interior collocation points. The unknowns associated with the
boundary conditions can be computed and climipated from the resulting lincar system

cntirely, during the discretization phase,



1

Figore 7.1 The pattern of non-zero elements in the Hermite bicubic collocation
cquations with the tensor product ordering for the case N; N, =3

Flgure 7.2 The pattern of non-zero elements in the Hermite bicubic collocation
equations with the boundary equations and unknowns ordered first for the case
N, N, =3



Now, we use this idea with the Method of Planes using Hermite bicubic collocation in
the xy direction and symmetric finite differences in the z direction together with the

TPGADI method to solve elliptic problems of the form

Lou+L,s=f(x,y,2) in R ®[a,,5,]
u=g,(x,y) onR@Qa,
afz,yu +8(x,y)u, =g(x,y,z) ondR&(q,,5,)
u=gy{x,y) - on R ®b,,

where L., and L, are defined in (3.1), and & and p satisfy

-

alx,y}B(x,»)=0 and az(x,y)+§2(x,y)>0,onak.

If we apply the Mecthod of Planes in a straightforward manner, including the equations
of the boundary conditions in the discrcte problem, and if we order the equations and
unknowns associated with the boundary conditions first, then the matrix in the linear system

has the general form

D U - - [ .
D, AntdiB;, diBy
D, d;B, A,+dB, diBy,
Dy d;_IBq A tdy ...IB,, dl:-lB,t_r
Dy, 0 dub, Ay tduB,

After solving for the boundary unknowns (“inverting” D} and eliminating the D, the bleck

tridiagonal matrix involving A, and B,, can be split up into tensor product form giving
(T, ®B, +1 ®A,)XC =F.

It is important that the D; are climinated withont modifying the block tridiagonal matrix

involving A,, and B,,; otherwise, its tensor product form would be destroyed.



In practice, the equations of the boundary conditions are eliminated from the discrete
problem in a way similar to that for the Method of Lines. The Dirichlet boundary conditions
on R g, and R ®b, are subtracted from the right side F in the usual way for tinite differ-
cnces. The 4(N; + XN, +1) “precalculated™ unknowns r;; associated with the uncoupled boun-
dary conditions are eliminated for cach plane R ®z;. Each unknown ¢ interacts with three
planes, z =z,_y, 2;, 2;4;. Thus, to eliminate ¢;; 2t the [ collocation point (z; ;) on the J2

plane z =z;, the right side F must be modified on each of these three planes by
Fiim- FJJ+I_JJ+C|U¢E(7HUI)
Fiy = Fyy —cy[Laydi(rrv) +dpdi(a,v0)]

Fig-1+ Fig1 _dj-cud’i("l Wi

8. Computer Implementation and Performance Evaloation

We use some of the advanced features of ELLPACK! to graft an experimental version

of the Mcthod of Plancs and the TPGADI method into ELLPACK (Rice and Boisvert, [27]).
ELLPACK automatically discretizes tae xy-direction operator by generating the Hermite bicu-
bic collocation equations and computing the unknowns associated with the boundary condi-
tions (Houstis et al, [16], [17]). ELLPACK “thinks” that it's solving a two dimensional prob-
lem. We supplement ELLPACK with Fortran subprograms which diseretize the z-direction
rator and solve the resulting discrete problem using the TPGADI mcthod. A sample

ELLPACK program is given in Appendix A.

The computational complexity of the TPGADI iterative methad (4.1) derived for the

Method of Planes can be estimated from the results given by Dyksen [12]. We assume that

1
M+1

ELLPACK i a very high level computer language developed at Purdue University for solving second ond-
er lincar elliptic partial differcotial cquatdons.

and that N, =N, =N 60 that b, =hy =h = o

b, = . Thus, in (T, ®B,, +1 ®4,), T,
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bas dimension M XM, and A, and B, each has dimension 4N?x4N? with approximatc
bandwidth 2¥. We give in Table 8.1 the work required to compute the z-dircction and the

xy-direction sweep of the TPGADI method.

Table 8.1
Work to computc one sweep of the TPGADI method for the Method of Plancs
z-dircction sweep xy-direction sweep

Operation Work Operation Work
Wa=A, —prwiby 1N? Wi=T; —=pp+d WM
W= ®W,)c® 16MN* W =(W,®B,)Ct*™ BMN2+16MN3
W=F -W AMN? |w=F-w 4MN?
W1=Tx +pi+l’ ! W2=Aﬂ +pk+1B_,, 16”3
ct) =(w,®8,)'W M + 328 ¢ CEN=(1 @W,)"'W  32N*+24MN>

+ 12MN2 + 24MN >

The work required per iteration for the each direction sweep is O (32N * +40MN) so that the
total work per itcration is O (64N *+80MN?). Since the TPGADI iterative method can be a

direct method (depending on the choice of the acceleration parameters) in min(M 4N % itera-

tions, it follows that the total work is O [(64N 4 + 8OMN Yy min(M AN z)].

The matrix (T, ®B,, +1 ®A.,) has dimension 4MN? x4MN? and approximate bandwidth
4N? so that the work to factor it using band Gauss elimination with partial pivoting is
O(128MN*®). Since the xy direction collocation discretization error is O(h*), whereas the z
direction finite difference discretization error is O (k,2), one would usually require M to be
much larger than ¥ . For example, if M =N?, then the work to solve (T, ®B,, +1 ®A,)C =F
by the TPGADI method and by Gauss elimination is O(80N7) and O (128N®), respectively.
Hence, even if ooe uses the TPGADI method as a direct method, it is asymptotically much

fastcr than the simple approach of applying band Gauss elimination.
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Qur implementation of the TPGADI method requires O (12MN? +24N%) words of
memory, whereas O (48MN %) words are required just to store and factor (7, ®B,, +I @A)
using band Gauss elimination. If M =N2, then these cstimates simplify to O(12¥*%) and
O (48N %), respectively. Note that the memory used by the TPGADI mecthod is only three
times the number of unknowns, 4N?, and hence represents a considerable savings for three

dimensional problems.

The following numerical results were computed on a VAX 11/780 (UNIX, 4.1BSD) with
a floating-point accelerator using the Fortran compiler £77 with optimizer in single precision.
Tbe eigenvalues of the symmetric tridiagonal matrix T, as computed by the EISPACK routine
IMTQL1 (Smith et al, [28]) (Wilkinson, [30]) are used as the acceleration parameters p;; the
time requircd to compute these cigenvalues is always included in timings of the TPGADI
method. The acceleration parameters are used in increasing order (Lyach and Rice, [21]), and

the initial itcrate, C ®, is always taken to be zero.
EXAMPLE 8.1, Performance of the TPGADI Method with M and N Varied

The thrce dimensional Model Dirichlet Problem is defincd by

— Uy — iy, —u, =f infl,
u=g ondfl,,
where f and g are given functions of x, y and z. We solve the Model Dirichlet Probiem in
which f and g are chosen so that u(x,y,2z)=x%%3 We compute the maximum relative

error at the grid points on cvery interior planc. The results are summarized in Table 82.
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Table 82

The Mcthod of Planes and the TPGADI method applied to the

Model Dirichlet Problem

R Number of | Number of Solution Maximum
Unknowns | Iterations | Time (Secs) Ertor

4 4 256 4 592 6.54842-08

8 8 048 8 14977 65772e-07

12 | 12 6912 12 91441 4.1562e-06

15 | 16 16384 16 412795 4316406

A logarithmic fit of this timing data gives Time = 0.00879¥*® which agrees with the
theoretical work estimate of O (144N¥) operations. This method is theoretically exact for this
problem, and we sce that machine round-off is achieved and that the round-off errors do not
grow significantly as M and N increase.

EXAMPLE 8.2, The Mcthod of Plancs and the TPGADI Method applied to Problem 18

We prove in Section 6 that the TPGADI method derived for the Method of Planes con-
verges if applied to the Discrete Model Problem. We now solve a discrete problem arising
from a more gencral elliptic operator. We extend to three dimensions the two dimensional
elliptic operator of Problem 18 of the population of partial differential equations of Rice et al

[26]; in particular, we consider

—u, — (1 +xy)u,, —(sin(z)u, ), —cos(x)u, +e™x, +(B+2u=f infl,
u=g onofl,..

where f and g are chosen so that u(x,y,z)=sin(2nx)cos(d4my)e”. We use k, =h? to balance

the errors between the xy and z direction discretizations. The results are given in Table 83.
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Table 83
The Method of Planes and the TPGADI method with 24 itera-
tions applied to Problem 18

M| Number of | Number of Solution Maximum
Unknowns | Iterations | Time (Secs) Frror

15 4 950 8 2700 1.4691e-01

35 6 5040 12 245.10 1.895%-02

63 8 16128 16 1499 .40 7.1656e-03

143 | 12 82368 24 14298.65 13471e-03

For this case, the experimental rate of convergence is Error = 455%21= 458211 which agrees
with the theoretical rate of convergence, O (h*). We give in Figure 8.1 a typical contour plot

of a cross section of the computed solution and the error.

Although the solution time for the case N =12 and M =143 is almost four hours,
moderate accuracy is achieved by teking a relatively small number of iterations (24) compared
to the number of unknowns (82368). This is because each eigenvaluc of 7, annihilates 576
components of the error. Herein lies the power of the TPGADI method. By contrast, it

would take approximately 12 days to solve this problem using band Gauss elimination.

The memory efficiency of the TPGADI method is striking for three dimensional prob-
Iems. For example, with ¥ =12 and M = 143, our implementation of the Method of Planes
and the TPGADI mcthed requires approximately 300,006 words of computer memory. By
contrast, the number of words required in this case just to store (T, ®B,, +7 ®4,,) to factor it

using band Gauss elimination is on the order of 140,000,000,

We believe thet our implementation could be made more efficient by using 8 discretiza-
tion method in the z direction which achieves an O (4,*) discretization error such as & HODIE
type method (Boisvert, [3]), (Lynch and Rice, [22]). We could then reduce M from N2 to N,

so that the work reduces by a factor of N2 from O (80N 7) to O (80N%).
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Figure 8.1 A contour plot of a cross section on the plane z =1/2 of the computed
solution and the error for Problem 18 for the case & =1/8 and &, =1/64
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EXAMPLE 8.3, The Method of Planes and the TPGADI Mcthod Applied to a Prablem

in Heat Conduction

Let us consider the steady siate temperature distribution on the unit cube £}, with a

heat source at the center of the cube together with certain boundary conditioas. In particu-
{ar, we consider

— Uy —Hy, — 4, =6400x(1 -x)y(1-y)z(1-2)F in 1,

=0 onz=0,1
(8.1) Xr (Y Yu +x:(yJu, =0 on x=0
Xr(1—y)u +x:{1—y)u, =0 onx=1
Xr(x)u +xi(x}y =0 on y=0
Xr(l1—x)u +x;(1—x)u, =0 ony=1,

where x, and x; are defined by

0 s<% 1 ex ¥
Xr(s)=11 s> 8nd x(3=1g s>u-

The boundary conditions on a cross scction of the cube arc illustrated below in Figure 82.

8=0 & =0

u, =0 u=0

1
T

v, =0 u=0

Figare 8.2 The boundary conditions on a cross section of the unit cube
for a heat conduction problem

The boundary conditions in (8.1) correspond physically to perfectly insulating two oppo-
site “corners” of the cube while maintaining the top (z =1) and bottom (z =0) and the other
two corners at 0°. These boundary conditions are of the uncoupled type discussed in Section 7

so that our implementation of the Method of Planes with INTERIOR COLLOCATION and
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the TPGADI method applies.

We solve (8.1) using k& =1/8, &, =1/64, giving 16,128 unknowns to compute. We use 16
iterations of the TPGADI method resuiting in z solution time of 153887 seconds. Figure 83
shows contour plots of the computed solution on the planes z =1/4 and 2 =1/2. The tempera-
ture is greater on the plane z =1/2 which is closer to the heat source. Morecover, the heat
flows out of the “upper right” and “lower left” corners of the cross sections, and not through

the insulated corners.
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Flgure 8.3 A contour plot of the cross section on the planes z =1/2 (top) and
z =1/4 (bottom} of the computed solution to a heat conducticn problem for the

case h =1/8 and h, =1/64
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10. Appendix A - A Sample ELLPACK Program

The experimental version of the Method of Planes and the TPGADI method is imple-
mented within the ELLPACK system (Ricc and Boisvert, [27]). We use an ELLPACK pro-
gram supplemented with Fortran subprograms. A sample ELLPACK program is given Fig-
ure 10.1 for the Poisson problem on the unit cube. Note that ELLPACK “thinks” that we are
solving a two dimensional problem. The discresizarion module INTERIOR COLLOCATION
gencrates the Hermite bicubic collocation equations and computes the unknowns associated
with the boundary conditions (Houstis et al, [16], [17]). The ELLPACK version of INTE-
RIOCR COLLOCATION was modified to compute the Gramian matrix Bxy, and to climinate
the equations of the boundary conditions on each plane. The former is trivial whereas the
latter is rather substantial. The z direction operator, Lz = —(p(z )4, ), +¢(z)u, is specificd in
the function subprograms ZPCOE and ZQCOE. The z variable is made available to all sub-
programs through global common. The maetrix Tr approximating Lrzu is computed by n
BILDTZ. The z direction operator, L, == (p(z)u,), +¢(z)u, is specified in the function sub-

programs ZPCOE and ZQCOE.

The discrete problem is solved by TPGADI which implements the TPGADI method
(4.1). The routine BLDAXY interfaces the output from INTERIOR COLLOCATION for
input to TPGADI. The acceleration parameters p; are computed to be the eigenvalues of the
symmetric positive definite matrix Tz by SETRHO which uscs the EISPACK routine IMTQL1
(Smith et al, [28]), (Wilkinson, [30]). They arc used in increasing order (Lynch and Rice,
[21]). The initial iterate, U, is always taken to be zcro. Although the source for these sup-
plementary program could be included in the SUBPROGRAMS scgment of the ELLPACK pro-

gram, we automatically lozd them from a scparate, precompiled library.
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. SAMPLE ELLPACK PROGRAM FOR THE METHOD OF PLANES WITH [NTERIOR .
. COLLOCATION AND THE TPGAD! [TERATIVE METHD .
GLOBAL

COMMDN /| TPZZZZ | Z
DECLARATIONS .

PARAMETER (NGTZMX = 10)

PARAMETER (NPLNVX = NGDZMX-2

PARAMETER (NBUMAX = 2°S$LINGRY + 3)

PARAMETER (NCOLMX = 2°NEDMAX + 1

PARAMETER (NAXLXY = $1IMNEQ"(NBIMAX + 1))

OOMMON / TPRSID / TPRSID{$IIMNEQ,NPLRMX)
COMMDN / TPUNKN / TPUNKN($I IMNEQ,NPLNMX)
OOMMON / TPEUNK / TPBUNK(4,$[IMNEQ,NPLNMX)
OOMMON ! TPGRAM / TPGRAM(ST IMNEQ, $ I 1MNCO)
OMMON / TPTZZZ / TZ{NPLNMX,2)

OOMMDN [ GRIDZZ / GRIDZ(NGDZMX)

REAL
A TZ(NPLNVX, 2},
B AXY($1IMNEQ, NOOLMX) ,
C BXY( $ I IMNEQ, ROOLMX) |
D BXYFCT (8 I IMNEQ, NOOLMX ) ,
E WORKMM(NPLINMX, 2},
F WORKBMN( § 1 IMNEQ , NOOLMX) ,
G VWORKMN(NPLMNVX, § 1 1IMNHD) ,
4 WRKRXY ( MAXLXY) .
I WORK ( NWXLXY) ,
i RHD(NPLNVX )
EQUATION. - XX - UYY = -6.0 * (X°Y"*3°Z**3 + X**3°Y"Z""3 + X*"3'Y**3°Z)
BOUNDARY. U = TRUE(X, Y} ON X = 0.0
NX=1.0
N Y =10.0
MNY=1.0
GRID. 5 X POINTS $§ 5 Y POINTS
FORTRAN .,
c
C DEFINE Z GRID
C
AZ = 0.0
BZ = 1.0
NGRIDZ = 5
HZ = (BZ-AZ)!(NCRIDZ-1)
NGRDZD = NODZMX

NGIZM2 = NGRIDZ-2
CRIDZ(1) = AZ
DO 10 KZ = 2, NGRIDZ-1
GRIDZ(KZ) = AZ + (KZ-1)*HZ
10 CONTINUE
GRIDZ(NGRIDZ) =

Flgure 10.1 Sample ELLPACK program implementing the Method of Plancs w:th
INTERIOR COLLOCATION and the TPGADI iterative method
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c
c DISCRETIZE X.Y OPERATOR, BUILD THE RIGHT SIDE, TPRSID
C
DISCRETIZATION. INTERIOR COLLOCATION
INDEX NG . NATURAL
FORTRAN .
c
C DISCRETIZE THE Z OPERATOR - (P(Z)U ) + Q(Z)U
c zZ
c
CALL BILDTZ (TZ,NPLNMX)
c
c [NTERFACE [NTERIOR COLLOCATION OUTPUT FOR INPUT TO TPGADI
c
CALL BDABXY (R1ODEE,TPGRAM,AXY,BXY,I1IDOD,IIMNEQ, I1MNCO,
A I IENDK. [ 1UNCIX , NBANDU , NBANDL )
c
C OOMPUTE TIIE [TERATION FARAMETERS RHD(K)
C
IR = 1
NITERS = NGRIDZ-2
CALL SETRHD (IRIID,RHE},NGRIDZ,NITERS,TZ ,NPLNMX WORK)
c
C GUESS TPUNKN
c
CALL GUESSC (TPUNKN ,MXNB2, NUMBEQ, NGDZM2 )
c
c SOLVE ( TZ X BXY + [ X AYX ) TPUNKN = TPRSID
c
NZBAND = 1
MXYBND = MAX0 (NBANDL ,NBANDU)
CALL TPGADI (TZ,BZZ NPLNMX,NGOZMZ2 ,NZBAND,AXY ,BXY, [ IMNEQ, [ INECQN,
A MXYBND . TPRS [ D, TPUNKN , BZFACT , ESCYFCT , WORKMM  WORKIN,,
B WORKMN , WORKBZ ,WRKEXY ,WORK , NITERS , RHID)
c
c EVALUATE SOLUTION AND ERROR ON EACH PLANE
c

DO 20 K2 — 1, NGDZM2
Z = GRIDZ(KZ+1)
PRINT ®, '*** PLANE Z =", Z
INITL = 1

OUTPUT. MAX(TRUE} $ MAX(ERROR)

20 CONTINUE

SUBPROGRAMS .

C
C
C

00

END.

COEFFICIENTS OF THE Z DIRECTION OPERATOR

FUNCTION ZPCOE(Z)
ZPCOE = - 1.
RETURN

END

FUNCTLON ZQOOE(Z)
ZC0E = 0

RETUKN

END

TRUE SOLUTION

FUNCTION TRLE(X.Y)
COWDN | TP2ZZZ | Z

TRUE = X**3 * Y*"3 = 2°°3
RETURN

END

Figure 10.1 (Continued)
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