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Wayne R. Dyksen

Department o( Computer Sciences
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West Lafayette, Indiana 479fJ7

CSD-TR 494
October 1984

ABSTRACT

We consider solving separable second order linear elliptic partial differential equations
in three independent variables. If the partial differential operator separates into two (acton,
one depending on x and y, and one depending on z. then we use the MetluJd of Planel to
obtain a discrete problem which we write in tensor product form as

(T~C?JBZ1 +/0AZ1 )C =F.

We apply a new iterative method, the Teruor Product Generalized Alternating Direction Implicit
method, to solve the discrete problem. We study a specifie implementation which uses Her·
mite bicubie collocation in tbe ry direction and symmetric finite differences in the z direc­
tion. We demonstrate that this method is a fast and accurate way to solve the large linear sys­
tems arising from three dimensional elliptic problems.

1980 Mrrr1l#1IUJlics SUb]«l Crtu~f/kiJrIOfl. Primu)'. 6SIllO, 65M20, 65N35.



A Tensor Product Generalized ADI Method for the Method of Planes

Wayne R. Dyksen

1. [ntrodoct!oD.

Let R be a rectangular domain. We consider solving second order linear elliptic problems

of the form

(1.1)

where

(12)

LXyu. +Lcu. =/(.r,y.z) inR0[a,..bzl
II. = g,,(x,y) onR0az

a(x,y)u +13(.r,y)u.. =g(.r,y,z) on aRfi!J(az,bc )

II. = gbo(X,y) on R 0bp

a(;r,Y)13(x.y)", 0 on aR

a 2(:t,y) + 132(x,y» 0 on aR

L, =-(P(z)uz)z +q(z)u, p>O,q2:0,

and LZJ is a general elliptic operator in x and y. We express a discrete problem in terms of

tensor products of matrices resulting from lower dimensional, Bnd hence much simpler, prob-

lems. We apply a new iterative tcchnique to solve this discrete problem. We obtain a fast

method for solving a large class of elliptic problenu in three dim~nsions.

Scction 2 presents a brief introduction to the Tensor Product Genualiud Alterll/lling

Direction Implicit (TPGADI) method. In Section 3 we extend the Method of Lines (Jones et ai,

[I8D to the Merhod of Planes to obtain a discrete problem which we write in tensor product

form as
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We present the TPGADI method for solving lIuch discrete problems in Section 4. We apply

the Method of Planes 115iog Hermite bicubics in x and y Bnd fini.te differences in z in Sec­

tions S. 6 and 7. We consider a specific implementation in Section 8; we show that the

Method of Planes together with the TPGADI method give a powerful tool for solving a large

class of eUiptic problems in three dimensions.

The TPGADI method has been used effectively to solve discrete elliptic problems arising

from olher discretizations in both two and three dimensions. We have used it in conjunction

with the Method of Lines (Dyksen, {8D and the Hermite bicubic coliocatioD equations (Dyk­

sen, [12D. In three dimensions. we have used it to solve elliplic problems on cylindrical

domains with holes (Dykscn. [13D·

2. The Two Dlftctlonal Tenmr Product General.lad Ani Methodlll

Let A.t and Bt be matrices of order NI; XNt • and consider the lineElI' IS)'Stem

(2.1)

We wi.!!h to solve the two directional problem (2.1) by using methods for one dircctional.

simpler problems involving Ah Bit A2 and B2' We usc the term dir~clional rather than di~n·

.rional since one direction may encompass more than one dimension.

For a glven set of positive tu:ul~ralion paramLur.r Ph k =1.2••••• we define the two

dircclional T~lUor Producl G~nuaJi;:ed Alt~rnazlnB Dlr~ctlon Implicit (TPGADI) iteration

method by

(22)

c lO) given

[(A I+ Pt+lBI)<&lB2]C(.t+\!I)=F - ~1 <&l(A2- P.t+1B2)]C 1i )

[BI@(A2+PI;+IBV]C(.t+l) =F - [(AI -P.t+lBl)0B2]C(t+lil).



3

The following results arc used in subsequent analysis; for details see Dykscn. [12].

lors P, and qJ' T~spec'ively. with corresponding po$itive eigenvaIlU!s AI and i/o}. respecriyely. TMrJ.

for a given ut of positive acceleration pararMurs P,l-. k. = 1,2••••• 1M two direclionol Ten.for Pro-

duct GeneraIi:z:ed Alternating Direction Implicit ;reralive ml!rhod. given by (22) is convergelll. and

C is its only solution.

Proof. Let E(i) =C(i) -C denote the error of the kIll iterate. A straightforward compu-

ration shows that the error E (k) may be expressed in IcI'II13 of the initial error E (0) 115

(23)

Since by the hypothesis the eigenvalues Al and ~J are positive, it follows from (23) that for

positive acceleration parameters PI

I-'-} -1'/

iJoj +1'1

so that

lim lIE{.l:)lI =0 [],..
COR.OLLARY 2.2. The TPGADI ;uraJive ~Ihod (22) can be uact (acept for roJUfd-off)

in a numh~r of ituarions ~qual to tM nwnb~r of unknown.! in ~;ther dlr~Clion; lharls, In N lor N 2

it~ral;ons.

have for all i

(2.4)
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Thus.

The analogous argument for N 2 iteratrollS completes the proof []

3. The TeD!IIIr Product FormalatloD of tbe Metbod of Planes

Let Os and fie be the unit square and tbe unit cube, respecti.vely. We consider partial

differential equations of the (orm

(3.1)
L~Il+Lzll=f ian e

u=O onan c •

where L. has the form (12) and L.I;1 is a general second order lincar elliptic partial differential

operator in ;c and y. with the coefficients of "'u and "" being strictly negative. For simpli·

city. we first consider homogeneous Dirichlet problems; we consider more general boundary

conditions in Section 6.

In order to solve (3.1), we extend the Method of Lines in a natural way to obtain the

Method of P!aMS. For a fixed positive integer M. we place in Oe the M "horizontal" planes

1
h=-

I M +1 • J =l•.•••M.

We look for an approximate solution of (3.1) in the form of a set of M functions

(U ,(x ,y),U ,(x ,y ),. "", UM (x ,y»,

go that UJ approximates II on plane j; that is,

We first discretizc the % variable by applying the standard equally spaced, 0 (h.2) 5)'Dl"

metric finite difference approximation to L. 50 that (12) becomes
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where

Note that U 0<% ,J) ~ u (x ,J.D)!!!! 0 and UII +l(x ,J)!!!! U (x.J ,1)'" O. The problem of solving

(3.1) is now replaced by that of finding suitable functions U I(x .y). Ui.,x oJ ),•• '. UJi (x oY). each

of which satisfies

(32)
on an~.

Thus, since the original operator in (3.1) separates into two factors, we arc able to reduce B.

three dimensional problem to a coupled system of two dimensional problem.s.

We now choose N linearly independent functions {~j(..r.y)}r_lwhich are twice continn-

Qusly differentiable and satisfy the boundary conditions. On each plane Z =zJ. we set

N

UJ(.r,y)=~cIJcP,(x,y). j =l,•• "M,-,

for some constants elj' We determine the MN unknowns ell by choosing N distinct points

{(Xl:>Yk)}f"'l in n, and collocating the equations in (32) at these points. We obtain an

MN xMN system of simultaneous linear equations in the unknowns eq which can be wriuen

in tensor product form as

(33) (T~ fSB'9 +1@A.<J}C =F.
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where

I is the M xM identity matm.

(3.4)
k =l•••••N

Bi , =~I(%i.y.t). i=l•••.•N.

i =l,••••N
Cfj =Clj. j =l,...,M,

k = I,.. .,N
j =t•.•••M.

4. The TPGADI Method ror the Method or Planet

Convergent TPGADI iterative schemes arc derived by adding weighted, approximate

values of u to both sides of the original linear system. For the Method of Planes we observe

N

= ICI/~I(XhYJ:),-,

Thus, for a given sct of positive acceleration parameters P.t. k = 1.2•...• the TPGADI iterative

method for the Method of Planes is

c(O) given

(4.1)

The convergence of (4.1) depends on the eigenvalues of T~ and the generalized eigen-

values of A.IJ'c = A.B..,c. The eigenvalues of Tc arc disliact. real and positive. The generalized
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eigenvalues of A..,c=)"B""c arc the collocation approximations to the eigenvalues of LZJ

(de Boor and Swartz, [4]. [SD. which. for a largo:: class of opera~ors.are distinct, real and posi-

five, or at least have positi.....e real parts. Thus. we assume that ~hese eigenvalues at least have

positive real parts so that Theorem 2.1 applies.

In subsequent applications, the acceleration parameters P1: arc taken to be the eigen-

values of T•. If the sum A. + P.I: in (2.4) is bounded away from zero for each generalized cigen-

value A of AZJc = A.Bryc, then Corollary 22 applies so that (4.1) is "coQ\lcrgent" as a direct

method. Experience shows that only a very small number of iterati.ons is required to achieve

"discretization" accuracy.

S. The Melbod or Planes with Hermite Bh:ablcs

For given fixed positive integers N ~ and N7' the unit square n 6 is subdivided with a ree-

tangular, tensor product grid with N:t.Ny rectangles. The grid lines. given by

are the knols of the Hermite bicubiC!l. The Hermite bicubic basis functions are formed as ten-

sor products of the standard one dimensional Hcrmite cubics. For the case of homogeneous

Dirichlet boundary conditions, there are 4N::t.Ny Hermite bicubic basis functions which we

dcnotc by

so that

4N.H, .

UJ(X,y)= I CfJ~I(X'y)=:: "(X'Y'%J)·,-,
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4N.Ny

The 4N
i
Ny unknowns elJ BI"C determined by choosing 4Ni N, distinct points {(TI.'tJl) },-t

in n .. and collocating the coupled 5)'Stcm of partial differential equations in (32) at these

points. The 4N.. Ny collocation points are placed al the four Gauss points of each subrectanglc

(Houstis. [IS]). (percell and Wheeler, [25]).

The system of linear equations arising from this particular instance of the Method of

Planes may be written in tensor product form (33) where the xl: ,YJ: in (3.4) arc replaced by

1'1>1)/_ If the collocation points and Hermite bicubic basis functions are ordered in a natural

tensor product way. then A.., and BXy have bandwidth 4N, +2. For example, the pattern of

non.zero elements in Azy and B.., is iIlU5trated in Figure 7.1 for the case N.. =N., =3.

6. Convcl1l:cnce of the TCtl!Of Product Generallud Ani Method

We now apply the TPGADI iterative method (4.1) to the discrete elliptic problem (3.3)

resulting from the Method of Planes using Hermite bicubic collocation in the Xl direction and

symmetric finite differcnces in the % direction. We establish the convergence o[ the TPGADI

method [or tbe Model Problem

-u.u-u,,-uu=f inn c

u=O ODan c .

Thc Discrete Model Problem is given by (33) where

THEOREM 6.1. For a given set of positive aueleralion parameters Pl' k =1,2••••, tM

TPGADI ~t""d (4.1) applied to tM Discrete Model Problem is corrvergenl.
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Proof. It is well known that the M eigenvalues of T: are distinct, real and positive. We

must show that the 4N... N, generalized eigeo\laIues of A..,c =1l.B..,.c arc distinct, rcal and posi-

live. We first observe that the matriccs A.17 and B.., may be written in tensor product form as

where A... Hz and A,> B, are defined by [A.. 1111o =-~~(Tf). [H... lt. ='P",('I'f). and

[Ay ]j" = - 'i'~'(uJ)' [B, h. = 'l'" (vJ)' Note tbat A... H... and A,.. B, ha'Ye dimensions '2N.. x 2N..

and 2N, x'2N,. respectively.

Now, let P. >.. and q, IJ. satisfy A.. p =1l.Bz p and Ayq =~.1q. Then, by tbe properties of

tensor products of matrices, it follows that A..,.(p@q)=(A +1-L)B..,(p@q). Thus, the general-

ized eigenvalues of A.l:)'c =AB..,c are given by the sums of pairs of the generalized eigenvalues

of Azc = kB.. c and Aye = AB,e.

Dykscn [12, Theorem 5.1] has shown that the 2Hz generalized eigenvalues ofAxc = ABJlc

36
AO=2 'h,

where

A.= _ 7d +9=F6Yd 2 +90d +81
I - h}(4d +3)

• I =l,••••NJI -l,

d~lan'[-' ""J.N, 2

Since d > 0 for aU 1= 1•••••NJI-l. and since

[
1 ~ 1 [' +1 ~ 1lan-- <tao---,

NJI 2 NJI 2
I =1•••••NJI-2.
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it follows that the 2Nz - 2 generaliz.cd cigenvalu'es A.l are distinct, real and positive. Hence.

the 1N,. generalized eigenvalues of Azc =AB.. c arc distinct, real and positive. An analogous

result holds for A,.c. =AB:/c. The proof now followll directly [rom Theorem 2.1 []

7. EJ:temoDl to More General BODndary CoadlOoDl

We first consider a general. second order. linear elliptic partial differential operator L$J

on a rectangular domain R together with ll1JCoupl~d boundary condiJions; that is, an elliptic

problem of the fonn

(7.1)

L:qll :::: f
a(x,yp. +~(x,y)u. =g(x,y)

a(. ,y )~(x ,y) ~ 0
0.2(X.1) +~2(Z.Y) > 0

inR

on aR
on aR
on aB.

The Hermite bicubic collocation equations resulting [rom (7.1) contain 4N..N, equations

and unknowns associated with the partial differential operator and 4{N,. +N" +1) correspond-

iog to the boundary conditions. Since the Hermite bicubic polynomials arc the dual basis with

respect to function and derivative evaluation at the grid points. the equations and unknowns

associated with the boundary conditions uncouple from the resulting linear system. To iIIus-

trate this, we show in Figure 7.1 the pattern of non·zero elements in the Hermite bicubic col·

location equations arising from (7.1) with Il =0 using the tensor product ordering of the collo-

cation points (equations) and basis functions (unknowns) for the case Hz =N:J =3. Figure 72

shows the same linear system, rearranged with the boundary collocation points and basis func·

tions ordered first. The first 28 equations and unknowns arc associated with the boundary

conditions, and uncouple from the 64 x 64 linear system, leaving the 36 equations and

unknowns associated with the interior collocation points. The unknowns 8S5OCiated with the

boundary conditions can be computed and eliminated from the resulting lincar system

cntirely, dnrma the dlscretlza1l.on pIlaR.
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~E~'ijj£~·nnnn ....
··~······II~I.::·n.... ..iliL~EilD;Hllli;' ••••••••••••••••
•••••••••• ·".llil".llil~~iIlilliijill
~j]1~i~l[i~~~~jj~:\]jl\;~~~~~~~~[~~i:~1~1:~
••••••:•••:••••':..~E~E~E~E., .......••••••••,.•.,.....""...~n~~:~n~
;:;;::::::::::::::::::::::::::::::;;;::::::::::: .. ::::::::::

~~~Hj::::![E~~~~~~::HE~Hn~:::[;::: :: .. 'L~~~~~
Flgur-e 7.1 The pattern of non-zero elements in the Hermite bicubic collocation
equations with the tensor product ordering for the case Nz,N, =3

Figure 7.1. The pattern of non·zero elements in the Hermite bicubie collocation
equations with the boundary equations and unknow'ns ordered fimt for the case
N:z,N, =3
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Now. we use this idea with the Method o[ Plancs using Hermite bicubic collocation in

the ry directi.on and 5)'D1Inctric finite differences in the % directi.on together with the

TPGADI method to solve elliptic probleMs of the form

L~u+L,u""f(%.y.%)

II =g,,(x,y)

o.(.%.y)" +~(%.y)u .. =g(x,J,:)

u =8&(X.Y)

in R ~[a,. ,b, J
on R ~a.

on aR@(a•• b.)

on R O:Ob••

where L;q and L. arc defined in (3.1), and a. and flo satisfy

a(%.y)p(x,y)~O and a'2(x.y)+~2(x.y»O,oDoR.

U we apply the Method of Planes in a straightforward manner. including the equations

of the boundary conditions in the discrete problem, and if we order the equations and

unknowns associated with the boundary conditions first, then the matrix in the linear system

hu the general form

D o

o

o
o

After solving for the boundary unknowns ("inverting" D) and eliminating the DJ I the block

tridiagonal matrix involving A.17 and B..,. can be split up into tell50r product form giving

(T, fl)B", +I fl)A",)C ~F.

It is important that the DJ are eliminated without modifying the block tridiagonal matrix

involving A..,. and B..,.; otherwise, its tensor product form would be destroyed.
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In practice, the equations of the boundary conditions are eliminated from the discrete

problem in a way similar to that for the Method of Lines. The Dirichlet boundary c:onditions

on R <9az and R ~bz are subtracted from the right side F in the usual way for finite differ-

coees. The 4(N~ +Ny +1) ''precalculated'' unknowns efJ BS50Ciatcd with the uncoupled boun-

dary conditions arc eliminated for each plane R ~zJ' Each unknown e,j interacts with three

planes, z =%/-1. zJ. %J+l' Thw;. to eliminate elJ at the llh collocation point (T"V,) on the jl1J.

plane:z =z/. the right side F must be modified on each of these: three planes by

8. Computer' lmplementlltloD and Performance EnloadoD.

We usc some of the advanced features of ELLPACKt to graft an experimental vcrtlion

of the Method of Planes and the TPGADI method into ELLPACK (Rice and Boisvert. [27D.

ELLPACK automatically discretizcs the xy-direction operator by generating che Hermite bicu-

bic collocation equations nnd computing the unknowns associatcd with the boundary coodi-

tions (Houstis et al. [16], r17D. ELLPACK "thinks" that it's solving a two dimensional prott-

tern. We supplement ELLPACK with Fortran subprograms which discretize the z-direction

opci"atoc and sol\'e the resulting discrete problem using the TPGADI method. A sample

ELLPACK program i.s given io Appendix A.

The computational complenty of the TPGADI iteratL\'e method (4.1) derived tor the

Method of Planes can be estimated from the results given by Dyk.sen [12]. We assume that

~ =~ and that Hz =N7 :o:.N &0 that hz ='7 =h = ~ . Thus. in (T~ ~Bzy +1 @Azy ), T~

tELLPACK il • YCI')' hip level computer Iac&US&c developed III Purdue Uc.ivendty for IOlYiullCCoDd ord-
er linear cUJptic parlill.l diffcrcDlill.l cqulllior..l.
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bas dimension M XM. and .4..,. and 81:1 each hu dimension 4N 2 X4N 2 with approximate

bandwidth 2N. We gi'Ye in Tabl~ 8.1 the work required to compute the z-dircction and the

.%)'-direction sweep of the TPGADI method.

Table 8.1
Work to compute onc sweep of the TPGADI method for the Method of Planes

z-direclion sweep .%)I-direction sweep

Operation Work Operation Work

W 2 =A..o:r -p.l+IB.<y 16.'1' W t =T~ -pJ:+ll 'hM

W =(I@W 2)C(J:) 16MN J W =(Wt@B..,.)C(l+\l) 8MN 2+16MN3

W =F-W 4MN2 W =F-W 4MN'

W1=Tz +PJ:+IJ 'hM W2 =.4..,. +P.l+IB..,. 16.'1'

C(l:+"I) = (W I@B",)-IW 2M +32N' C(t+I)=(/@Wz)-IW 31N 4 +24MNJ

+l2MN 2+24MN 3

The work required per iteration for the each direction swccp i5 O(32N4+4OMN~ so that the

total work per iteration is O(64N4+80MN~. Since the TPGADI iterative method can be a

direct method (depending on the choice of the acceleration parameters) in min(M .4N'1 itera­

cions. it follows tbat tbe total work is o (64N 4 +80MN 3) min(M .4N2»).

The matrix (T. @B~ +/ @A~) has dimension 4MN2 X4MN2 and approximate bandwidth

4N 2 so that the work to factor it using band GauS! eliminaCion with partial pivoting is

O(128MN~. Since the:ry direction collocation discretization error is O(h4). whereas the z

direction finite difference discretization error is 0 (h,'1. one would usually require M to be

much larger tban N. For example, if M =N\ tben the work to solve (T. fi!JB.., +I@A..,)C =F

by tbe TPGADI method and by Gauss elimination is O(SON) and O(l28N~. respectively.

Hence. even if one uses the TPGADI method 85 B direct method, it is asymptotically much

faster than the simple approach o[ applying band Gauss elimination.
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Our implementation of the TPGADI method requires O(12MN2+24N~ words of

memory, whereas O{48MN 4) words are required just to store and factor (T. (f9B~ +10A.I7)

using band Gauss elimination. If M =N 2, then these estimates simplify to O(l2N') and

O(48N1, respectively. Note tbat the memory used by the TPGADI method is only three

times the Dumber of unknowns, 4N4, and hence represents a considerable savings for three

dimensional problems.

The following numerical results were computed OD a VAX 111780 (UNIX, 4.lBSD) with

a floating-point accelerator using the Fortran compiler f77 with optimizer in single precision.

The eigenvalues of the symmetric tridiagonal matrix T. as computed by the EISPACK routine

IMTQL1 (Smith el ai, [28D (Wilkinson, [30D are used as [he acceleration parameter'S P.l:; the

time required to compute these eigenvalues is always included in timings of the TPGADI

melhod. The acceleration parameters are used in increasing order (Lynch and Rice, [21D, and

the initial iterate, C(O), is always taken to be zero.

EXAMPLE 8.1. Performance of the TPGADI Method with M and N Varied

The three dimensional Model Dirichlet Problem is defined by

-U.z::r -u,., -Un ""1 in fie

u""g onan e,

where 1 and 8 are given functions of;(, y and z. We solve the Model Dirichlet Problem in

which f and 8 are chosen so that u(..t,y,:)"".x3y3z3. We compute Ihe maximum relative

error at the grid points on every interior plane. The results are summarized in Table 82.
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Table 8.2
The Method of PIanell and the TPGADI merhod applied to the
Model Dirichlet Problem

M N
Number of Number of Solution Maximum
Unknowns Iterations Time (Sees) Error

4 4 256 4 592 65484e·08
8 8 2048 8 149.77 65772e·07

12 12 6912 12 914.41 4.1562e·06
16 16 16384 16 4127.95 43164e-06

A logarithmic fit of thi~ liming data gives Time::::: O.oo879N 4
.ti9 which agrees with the

theoretical work estimate of O(l44N~ operations. This method is theoretically exact for this

problem, and we see that machine round-off is achieved and that the round-off errors do not

grow significantly il5 M and N increase.

EXAMPLE 8.2. The Method of Planes and the TPGADI Method appli.ed to Problem 18

We prove in Section 6 that the TPGADI method derived for the Method of Plancs con-

verges if appli.ed to the Discrete Model Problem. We now lIOIve a discrete problem arising

from a more general elliptic operator. We extend to three dimensions the two dimensional

elliptic operator of Problem 18 of the population of partial differential equations of Rice et a1

[261; in particular. we consider

- U.u - (1 +ry)~ -(sin(%)uz)z -cos(.x)u,r +e -:r." +(3 +%1)" = f in n c

"=8 on ao c '

where f and 8 are chosen so that M(.x ,Y 1%) = sin(21f.x )cos(41ry)e·. We use hz =h1 to balance

the errors between the ry Bnd %direction discretizations. The results Bre gi....en in Table 8.3.
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Table 83
The Method of Planes and the TPGADI method with 2N itera·
tions applied to Problem 18

M N
Number of Number of Solution Maximum
Unknowns Itcrations Timc (Sees) Error

15 4 960 8 2700 1.4691e-Ol
35 6 S040 12 245.10 1.895ge-02
63 8 16128 16 1499.40 7.1656e·03

143 12 82368 24 14298.65 l.3471e-03

For tbis case. the experimental ratc of convergence is Error::::: 45h4.21:::; 45h}·u which agrees

with the theoretical ratc of convergence, 0 (h'I). We give in Figure 8.1 a typical contour plot

of a cross secti.on of the computed so~ution and the error.

Although the solution time for the case N == 12 and M = 143 is almost foue hOUIS.

moderate accuracy is achieved by taking a relatively small number of iterations (24) compared

to the number of unknowns (82368). This is because each eigenvalue of T~ annihilatcs 576

components of the crror. Herein lies the power of the TPGADI method. By contrast, it

would take approximatcly 12 days to solve this problem using band Gauss elimination.

The memory efficiency of the TPGADI method is striking for three dimensional prob-

fems. For example, with N = 12 and M "" 143, our implementation of the Method of Planes

and the TPGADI method requires approximately 300,000 words of computer memory. By

contrast, the number of words required in this case JUS! (0 store (Tr@B.q +10A..,.) to factor it

using band Gauss elimination is on the order of 140,000,000.

Wc believe that our implementation could be made more efficient by using a discretiza-

tion method in the :z: direction which achieves an 0 (h/,) discretization error such as a HOOlE

type method (Boisvcrt, [3D, (Lynch and Rice, [22D. We could then reduce M from N 2 to N,

so that the work reduces by a factor of H 2 from o (8ON 7) to o (80Ns).
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EXAMPLE 8.3. The Method of Planes and tbe TPGADI Method Applied to a Problem

in Heat Conduction

Let us consider tbe Jl~ady Slale temperature distribution on the unit cube n c with a

heat source at the center of the cube together with certain boundary conditio4S. [n partieu-

lar. we consider

-u..... -Il." -Uu =6400z(l-.r)y(l-y)[z(l-z}f in fie

(8.1)

"=00D.:=O,1
>:Ay)u +xdY)u.., =0 on %=0

X.(1-y)u +",(1-y)u.r=0 ODx=1

X:r(x)u + XI (x)u,. = 0 on y =0

Xr(I-x)" +Xj(1-.x)~=0 ony=1,

where x. aod X, are defined by

The boundary conditions on a cross section of the cube are illustrated below in Figure 82.

"=0 ":1=0

u =0 u.. =0

u.. ""0 u =0

u, =0 u =0

Figure 8.2 The boundary conditions on a cross section of the unit cube
for a heat conduction problem

The boundary conditions in (8.1) correspond physically to perfectly insulating two oppo-

site "corners" of the cube while maintaining the top (z = 1) and bottom (z = 0) and the other

two corners at 0". These boundary conditions are of the uncoupled type discussed in Section 7

so that our implementation of the Method of Planes with INTERIOR COLLOCATION and
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the TPGADI method applies.

We solve (8.1) using h. "" 1/8, h~ = 1/64, giving 16,128 unknowns to compute. We use 16

iterations of the TPGAO[ method resulting in a solution time of 1538.87 seconds. Figure 8.3

shows coolour plols of the computed solution on the planes z = 1/4 Bod % = 1/2. The tempera­

ture is greater on tbe plane z = 1/2 which is closer to the heat source. Moreover, the heat

flows out of the "upper right" Bnd "lower left" corners of the cross sections, and not through

the insulated corners.
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10. Apptlldls A - A Sample ELLPACK Program

The experimental version of tbe Method of Planes and the TPGADI method is imple­

mented within the ELLPACK system (Rice and Boisvert, [27D. We use an ELLPACK pro­

gram supplemented with Fortran subprograms. A aample ELLPACK program is given Fig­

ure 10.1 for the Poisson problem on the unit cube. Notc that ELLPACK "thinks" that we arc

solving a two dimensional problem. The dlscTelualion module INTERIOR COLLOCATION

gencrates the Hermite bieubic collocation equations and computes the unknowns associated

with the boundary conditions (Houslis et al, [16]. [17]). The ELLPACK 'Version of INTE­

RIOR COLLOCATION was modified to compute the Gramian matrix Bry. and to eliminate

the equations of the boundary conditions 00. each plane. The formcr is trivial whereas the

latter is rather substantial. The % direction operator. L: = -(P(z)u.)~ +q(z)". is specified in

the function subprograms ZPCOE and ZQCOE. The % variable is made available to aU sub­

programs through global comnum. The matm T% appro:rimating uu is computed by a

BILDTZ. The %direction operator, L. =- (p (% )M.). +q(%)M, is specified in the function sub­

programs ZPCOE and ZQCOE.

The discrete problem is solved by TPGADI which implements the TPGADI method

(4.1). The routine BLDAXY interfaces the output from INTERIOR COLLOCATION for

input to TPGADI. The acceleration parameters Pi are computed to be the eigenvaluC5 of the

symmetric positive definile matrix Tz by SETRHO which uses the EISPACK routine IMTQLl

(Smith et ai, [28D, (Wilk.inson, [30D. They ELI'e used in increasing order (Lynch and Rice.

[21D. The initial iterate, U{O), is alwaY' taken to be zero. Although the source tor these sup­

plementary program could be included in the SUBPROGRAMS segment of the BLLPACK pro­

gram, we automatically load them from a separate. precompiled library.
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...••......••••......••.••...•.•••••..•...•••••••••••..............•...•.
•
• SAMPLE Eu..PAlX E'RO:iRAM FOR nIB r.£lHID OF PLANES Willi INIERIOR

OJLLOCAT£{N AN) nIB 11'G'DI I1ERATIVE MEIHID

•
•
•
•

TZ(NPUWC.2) •
AXY( Sl )~.M:XX.MX:),
8XY( S I lr.HOO.NOJl.MIC) •
8XYl'CT ( S I IM>JB). NCXJU,O(') •
WJRI<M,{( NPI..N.1X. 2) •
\\ORKNN( S11~.N:lX.MI{) ,
~(!"o'PLN.OC. S [1r.ND) •
lMlKBXY(NJ«LXY) •
\\ORK.(NNXLXY) •
mD(NPlNo«)

.........................................................................
GLOBAL.

a::MIJN I TPZZlZ I Z

DECLARATICliS.
pAR,.V,EIER (N:iI:lZMX. = 10)
pARI\l.ETER (NPLN.« .. MDZMX:. 2 )
pAJtN,ETER (NBI:M\X .. 2· S [ 1NiRY + 3)
PARAMITER (MXlL.MX: ", 2· NBDNoX + ])
p.ARNo£TER (Nn!KLXY ", SI n,fiEQ" (NBDN.X' + 1»
(Q,f,ffl J TPRSID I TPRSID{SllP.fa),NPUMIC)
CCP.f,Ool' I TPlNO'l I TI'UNKN(Jllr.N:O.NP~)

<D.MJN I TPILINK I TPBI..Jr«(4.SIlPoN:Q.NPLNdK)
co.MJN I TPGRAM I TPORAM(SIlr.N:O.SIll.N:O)
aM.IJN' I TPT22Z I TZ(NPlN>«.2)
co.MJN I GRIIlZZ I GlIDZ(N:JlZMl()
REAL

A
B
C
o
E
F
G
Ii
I
1

~. U'" TR1JE(X,Y) m X .. 0.0
CNX"'I.O
CNY=O,O
CfiY=1.0

GRID. S X POINrS S S Y POINrS

FOR'I1<AN .
C
C DEFINE Z GRID
C

AZ .., 0.0
BZ '" J.O
KiRIUZ = S
HZ = (BZ·AZ) I (N:JRIIlZ.])
rou;rm • >G7lM>l
rD:JZM2 .,. NJRIDZ· 2
GRIIYl.( 1) = AZ
00 10 KZ - 2. l'Gt1Ul.·l

GRIOl.(KZ) .. AZ + (KZ·l)"HZ
]0 C(Nnl'UE

GRIIll(M3RIUL) = BZ

Figure 10.1 Sample ELLPACK program implementing the Method of Planes with
INTER£OR COLLOCAnON and the TPGADI iterative method
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c
C DISCRETlZE X.Y OPERATOR, BJIID n:JE RIaiT' SIDe. TPRSID
C
DISCRETIZATIGI. INTERIOR ~TIOi
I NlEX Il'I:i . No\'IURAL
FCI<1llAN .
C
C Of SCRETIZE mE Z OPERA'IOR • (P(Z)U ) + Q(Z)U
C Z Z
C

CALL B[lDIZ (12.NPI.N.«)
c
C INTERFACE [NlEtIeR COLLCCrtt.TIQ<i <XTrPUT FCIt INPUT 10 TI'G\D[

C
CALL ElDo\BXY (RICOEF. TPGRAM,AX.Y ,BKY. [1 [lXX>, Il~. I IMC).

A I I ENI:z<. [ IlNJX •NBAl'IJU•NBANX..)
c
C <XMPUre TIlE ITERA.TICN PARM1EI'ERS R1D(K)
C

lRlID = 1
NITERS = NGRIDZ-2
CALL SEIRlID ([RID, RHO. N:iRIIlZ, NI'IERS ,rr ,NPLH-OC.v.oRK)

c
C GUESS TPlNICN
C

CALL QJES SC (TP1..NKN', M:(NB). tu.4BOO.N:DZM2 )
C
C SOLVE ( TZ. X BXY + [X AYX ) TPUNKN .. TPRSID
C

l'llJ1.IIN) = 1
MI(YBN) '" WlXO (NlWDL. NIWOJ)
CALL TPGADL eT"L, BZZ.NPI.N.«,KDlM2 ,N'Z..BND,AXY.8XY. [lPoH:Q. (INEQi.

A MlCYBN:>.TPRS [D.TPUNKN ,8ZFACT .mcYFCf.WJRKP,M.VIORKNN,
B ~.\\ORKBZ ,WRKBXY ,v.oRK, Nll'ERS .REID)

c
C EVALlIr\TE SQU1I'ICN N:m ERRClR ON EACH PLANE
C

00 20 KZ = 1, lG:lZM2
Z ... GRIIIZ.(KZ+l)
PRINT •• • ••• PlANE Z ..... Z
INITI.. ~ 1

a.Jnur. Mo\X(l'RIJE) S WVC(ERRal)
FCI<1llAN.

20 a:NTINJE

SUBPRO:iRAMS .
C
C CDEFFICIENrS OF THE Z OIREC1'IOO OPERATOR
C

FtN::T I CN ZP<X)E( Z)
ZPCCE. '" • I.
RETIJRN
El<>
FLN:TICN ZOO)E(Z)
ZOCOE = 0
REnJI<N
EN>

c
C TRl.JE SOLurION
C

FUCrICN TRl.JE(X. Y)
a:r.t.£N , TPZ2ZZ , Z
TRIJE = X·"3 • Y·"3 • Z·"J
REnJI<N
EN>

EN).

Flgu.re 10.1 (Continued)
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