Actively Preventing Negative Transfer

Andrew Ulmer
Purdue University, ulmera@purdue.edu

Zohar Kapach
Purdue University, zkapach@purdue.edu

Daniel Merrick
Purdue University, dmerrick@purdue.edu

Karthik Maiya
Purdue University, kmaiya@purdue.edu

Abhay Sasidharan
Purdue University, asasidh@purdue.edu

See next page for additional authors

Follow this and additional works at: https://docs.lib.purdue.edu/purc

Recommended Citation

Ulmer, Andrew; Kapach, Zohar; Merrick, Daniel; Maiya, Karthik; Sasidharan, Abhay; Alikhan, Arshad; and Dang, David, "Actively Preventing Negative Transfer" (2019). *Purdue Undergraduate Research Conference*. 16.
https://docs.lib.purdue.edu/purc/2019/Posters/16
Presenter Information
Andrew Ulmer, Zohar Kapach, Daniel Merrick, Karthik Maiya, Abhay Sasidharan, Arshad Alikhan, and David Dang

This event is available at Purdue e-Pubs: https://docs.lib.purdue.edu/purc/2019/Posters/16
Problem – Negative Transfer in Computer Vision

- Weights and biases learned by deep learning models in a source domain, may negatively affect its ability to learn effectively in a new domain – think muscle memory.

Related Works – Domain Guided Dropout

- Analyze “impact” of neurons in a target domain, drop them and retrain if they negatively impact the model’s ability in the target domain.

Proposed Solution

- Expand and improve this "impact" analysis and prune method to all layers of the network.

Goals

- Eliminate “knowledge” gained in the source domain that is harmful in a target domain.
- Retain the “knowledge” that is helpful in the target domain.
- Identify a "cutting point" at which to begin the retraining process for best knowledge transfer.

Further Analysis

- Developing plans to use MIT’s Network Dissection tool to determine what low-level features were retained by the network when the cut is made before retraining.

Previous Results

- This analysis should also provide us with insight into our cross-dataset-generalization experiment results from a previous paper.