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Abstract

Compressive sensing investigates the recovery of a signal that can be sparsely represented in
an orthonormal basis or overcomplete dictionary given a small number of linear combinations
of the signal. We present a novel matching pursuit algorithm that uses the measurements
to probabilistically select a subset of bases that is likely to contain the true bases constitut-
ing the signal. The algorithm is successful in recovering the original signal in cases where
deterministic matching pursuit algorithms fail. We also show that exact recovery is possible
when the number of nonzero coefficients is upto one less than the number of measurements.
This overturns a previously held assumption in compressive sensing research.



Chapter 1

Introduction

Consider an underdetermined system y = Φc where Φ ∈ RMXN with M < N , c is a N-
dimensional signal and y is a length M set of measurements equal to linear combinations of
Φ. Suppose that c has S nonzero elements, and we wish to recover c from y. One possible
technique is to consider every subset ΦI of |I| = S columns drawn from Φ and test whether
it fits y by least squares leaving no residue. However this requires testing of C(N, S) subsets,
which is infeasible for even moderate values of N and S.

Recent papers [1,2] show that if c has S nonzero elements with S ≤ M
2

and the matrix Φ
satisfies some additional conditions, then c can be recovered either exactly or with a small
approximation error. For example, it is shown in [2] that if matrix Φ satisfies a Restricted
Isometry Property(RIP), then l1 minimization can recover the vector c. Explicitly, the matrix
Φ satisfies the RIP with parameters (m, δ) for δ ∈ (0, 1) if

(1− δ)||c||22 ≤ ||ΦIc||22 ≤ (1 + δ)||c||22 (1.1)

for every size m subset I of columns of Φ. If Φ satisfies the RIP with m = 2S and δ <
√

2−1,
then c can be recovered perfectly by solving

min ||c||1 such that y = Φc (1.2)

If c is not exactly sparse, but the components decay rapidly in magnitude, then c can be
approximately recovered with a distortion that is bounded by

||c∗ − c||l2 ≤ C0s
− 1

2 ||c− cs||l1 (1.3)

The linear program in (1.2) is a convex optimization problem that can be solved by
interior point methods. However it is difficult to prove that a matrix Φ satisfies the RIP,
and for large signals the convex optimization can still be computationally slow.

A second approach to this problem involves greedy algorithms such as Orthogonal Match-
ing Pursuit (OMP) [3] and its variants [4, 5]. In these algorithms, the projection z = ΦT y
of the data is used to identify a single or a few bases that is/are believed to be in the true
signal, and then the component of the data y that is spanned by all the bases selected so far
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is removed, leaving behind a residue r that is orthogonal to the bases selected. The residue
is then used to identify more bases using z = ΦT r.

The OMP algorithm [3] provides a weak result: If c is S-sparse and y = Φc is known
with Φ a M ∗ N sampling matrix consisting of zero mean normal random variables with
equal variances, OMP recovers c in S iterations except with probability N−1. Failure cases
are discussed in [6]. The CoSaMP algorithm [5] provides exact recovery for an S-sparse
signal by Matching Pursuit provided that the RIP constants δ2S < δ4S ≤ 0.1. This implies
a relatively small range of eigenvalues (1− δ2S, 1 + δ2S) allowed for each 2S column subset
of Φ, and verifying that Φ satisfies the RIP is also computationally difficult. In general,
deterministic Matching Pursuit(MP) algorithms suffer from an important weakness: it is
possible to construct signals y = Φc for which the MP algorithm makes a wrong choice for
a basis believed to be in the original signal, removes this basis from the samples, and then
is led astray in making future choices.

The literature also contains compressive sensing recovery applications where the recovery
works very well, even though the Φ matrix contains highly correlated columns which do not
satisfy any reasonable bound on the RIP constants for even small values of S. An example
is the face recognition work in [7] where a dictionary contains highly similar faces and
recognition is successfully carried out by l1 minimization. In this work the class of faces
that contains most of the resultant weights, is returned as the identifying solution. Indeed,
Restricted Isometry is a sufficient, but not necessary, condition for compressive sensing
recovery.

We present below an algorithm, Probabilistic Matching Pursuit, that selects size K sub-
sets of the columns of Φ by examining the probability that a base might be a component
of the true signal x. Each subset ΦJ , where J is a size K index set, is selected to have a
significant probability of containing the S columns that truly make up signal x. If this is the
case, the residue y−ΦJ(ΦT

J ΦJ)−1ΦT
J y has zero energy, providing a simple test for whether the

true components have been found. Our algorithm may be regarded as exploring a previously
overlooked middle ground in compressive sensing: Recall that directly checking all C(N, S)
subsets of size S columns of Φ is infeasible. At the other extreme, OMP and its variants
sequentially find a single set of bases that is proposed as the solution. Our algorithm tests
a reasonable(i.e. non-exponential in problem size) number of likely solutions, much smaller
than C(N, S), but more than the single choice of OMP.

The maximum number of bases selected in our algorithm is K. The larger K is, the
greater the probability that all the true bases will be present. We assume that every set of
K ′ ≤ M bases in Φ are linearly independent. Then for the residue test described above to
work, we need K ≤ K ′ − 1, so that if the chosen set J of size K does not include a base
Φi that is present in the sample vector y, ΦJ∪{i} is still linearly independent, and the least
squares fit will leave a non-zero residue. In the sequel, let Km = K ′ − 1.

We note that a probabilistic approach to matching pursuit was previously suggested
in [8] in the context of denoising. There the denoised signal is found as a weighed sum of
expansions, with the weights for each expansion depending on the correlation between the
noisy samples and the bases involved in the expansion. Although it is named similarly to the
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1: // Input: M by N matrix Φ, sample vector y = Φc
2: // Output: A K ′ − 1 sparse approximation u of c
3: for n = 1 to MaxIter do

4: J ← ∅, R← {1..N}, r ← y
5: k ← 1
6: while k ≤ Km and ||r|| > 0 do

7: z ← ΦT
Rr.

8: For each i ∈ R, assign pi.
9: Select base j from R according to pi.

10: J ← J ∪ {j}, R← R− {j}
11: ĉJ ← (ΦT

J ΦJ )−1ΦT
J y.

12: r ← y − ΦJ ĉJ

13: k ← k + 1
14: end while

15: if ||r|| = 0 then

16: u← 0
17: ui ← ĉi for i ∈ J
18: return u
19: end if

20: end for

21: return No solution found

Figure 1.1: Probabilistic Matching Pursuit
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algorithm we propose here, our algorithm was developed independently and is completely
different from that work. It finds the single set of bases actually present in the signal, as
opposed to a weighed sum. The noise in our case results from the cross correlation between
true signal components and false ones.

In Chapter 2 we describe the Probabilistic Matching Pursuit algorithm and analyze the
number of iterations needed to recover the true components in Chapter 3. In Section 4 we
show that this algorithm can recover the true bases even if 2S > M and Chapter 5 describe
our experimental results.
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Chapter 2

Probabilistic Matching Pursuit

The algorithm is listed in Figure 1.1. It generates several (upto MaxIter) subsets of bases
and tests whether each contains all the bases present in the original signal. If all the bases
have been selected, the least squares residue is zero and the algorithm terminates. Let R
be the set of bases not yet selected for inclusion in the basis set J . To generate each subset
of bases, we maintain a residual r at each iteration and use it to generate z = ΦT

Rr. Let
A = ΦT

RΦR − I. Then we have cR = zR − AcR, or

ci = zi −
∑

j 6=i;i,j∈R

aijcj (2.1)

Here aij = ΦT
i Φj . At each iteration we consider only ci from R. To each basis in R we

assign a probability pi, and select a base j from the bases in R according to probabilities
pi, that is, j ← i with probability pi, ∀i ∈ R. As in the standard OMP algorithm, we find
the least square estimates for coefficients in J and then the residue r after removing the
components corresponding to J . This process is repeated a maximum of Km times. If the
residue is found to be zero (assuming no rounding error or sensor noise), the true bases must
be present in J , since we have assumed that every set of K ′ bases is linearly independent.

Since we have selected bases probabilistically, it is possible that some base Φi that is
present in the true sample y may be excluded from J . In this case the least squares residue
has significant energy. We repeat the inner loop upto MaxIter times in the hope of choosing
all the correct bases atleast once.

The probabilities can be assigned in several ways. One approach stems from considering
an estimate for each ci from Equation(2.1). We model each ci as a normal random variable
with mean zi and variance σ2

η = σ2
cσ

2
a(S − e). We then find pi as the probability that ci has

the largest magnitude among all the coefficients. We have

pi = P (|ĉi| > |ĉj |, ∀j ∈ R \ {i}) (2.2)

=
∫ ∞

ĉi=−∞
pĉi

(ĉi)
∏

j 6=i,j∈R

∫ ˆ|ci|

−|ĉi|
pĉj

(ĉj)dĉjdĉi (2.3)
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However we found that calculating pi in this way is slow and in fact unnecessary.
Instead, we find the largest h magnitudes from the set {|zi|, i ∈ R}. Let the index set

corresponding to these h coefficients be L. Then we set

pi =







1−ǫ
h

for i ∈ L
ǫ

|R|−h
for i /∈ L

(2.4)

Here ǫ is a small positive number independent of the problem size. We used ǫ = 0.01
and h = 8. The intuition is that as long as all the bases actually present in the signal are
selected with some constant probability, they will certainly be discovered in a finite number
of iterations. In our analysis we use this simplified probability assignment.

6



Chapter 3

Analysis of Complexity

We analyze the number of iterations needed by the algorithm to find the true nonzero
components of the signal. We assume that each column of Φ is unit norm, and let ai,j = ΦT

i Φj .
Let ti, 1 ≤ i ≤ S, be the indices of the nonzero locations of the signal c. We assume that
the coefficient magnitudes are in decreasing order, i.e. |ct1 | > |ct2 | > ..|ctS |. Also, let I be
the index set of all zero coefficients, so that cj = 0, ∀j ∈ I.

Let p be the probability that all S bases are recovered in Km = K ′ − 1 iterations of the
inner loop. We wish to estimate p. Let ij denote the index of the jth true (i.e. nonzero)
coefficient recovered, for 1 ≤ j ≤ S, and let kj be the number of selections made by the
inner loop after ij−1 is found upto and including the selection of ij. Let ij(kj) denote the
event that kj selections are made by the inner loop after ij−1 is found upto and including
the selection of ij .

Then we have

p =
∑

(i1,i2..iS)

∑

∑S

i=1
ki≤Km

P (i1(k1), i2(k2), ..., iS(kS)) (3.1)

The first sum is over all possible orderings in which the true coefficients are found, and
the second is over all possible (k1, k2, ..kS) sets with each ki > 0. Let pj be the probability
of selecting a true coefficient after j − 1 true coefficients have been selected. Let qj be the
probability of selecting a zero coefficient between the selection of the (j − 1)st and jth true
coefficients.Since N ≫ S, qj is approximately constant over this range, and qj = 1− pj.

Let T =
∑S

i=1 Ki. We have p = P (T ≤ Km). Each kj is a geometric random variable with
mean 1

pj
and variance 1−pj

p2

j

. We can compute the distribution of T by a S-fold convolution

of the distributions of ki, or approximate T as a normal random variable with mean µT =
∑S

j=1 pj and variance σ2
T =

∑S
j=1

1−pj

p2

j

. Then p = G(Km−µT

σT
), where G is the cumulative

distribution function for a normal distribution.
Consider the situation between the selection of the (j−1)st and jth true coefficients. Let

the S−j+1 unselected bases which are components of the signal have indices n1, n2...nS−j+1,
in decreasing order of magnitude of the original coefficient values. Let E(ni, j) denote the
event that |zni

| is among the h largest |z| values and Sni
the event that ni is selected by the
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algorithm.
We have

pj =
S−j+1
∑

i=1

P (Sni
) (3.2)

where

P (Sni
) = P (Sni

|E(ni, j))P (E(ni, j))

+ P (Sni
|E(ni, j))P (E(ni, j))

(3.3)

Then

pj ≈
S−j+1
∑

i=1

(1− ǫ)

h
P (E(ni, j)) (3.4)

=
(1− ǫ)

h

S−j+1
∑

i=1

P (E(ni, j)) (3.5)

In practical compressive sensing problems, the coefficients have a rapidly decaying magni-

tude. We model the S nonzero coefficients as having a Laplacian distribution pci
(c) = 1

2β
e

−|c|
β .

In the algorithm the bases corresponding to the top h magnitudes are each selected with
probability 1−ǫ

h
. We assume that at intermediate stages of the algorithm, the distribution of

the unselected bases remains Laplacian with the same β. Let r = β
ση(j)

where σ2
η(j) is the

noise variance just before the jth true base is selected. We find by simulation that

S−j+1
∑

i=1

P (E(ni, j)) ≈ h(1− (1− S − j + 1

N
)e−δr2

j ) (3.6)

Here δ ≈ 4 for h = 8. We can use this approximation to predict the probability of recovery.

3.1 Sources of noise in z

We discuss the different factors that produce noise in the projections zi. Let J represent the
index set of false bases(with ci = 0) selected until a particular iteration of the algorithm, let
I be the true bases also selected by then, and let I ′ be the true bases not yet selected by
then. The residue at this stage is

r = y − ΦI c̃I − ΦJ c̃J (3.7)

where c̃I and c̃J are the least square estimates of the coefficients corresponding to ΦI and
ΦJ . Then the projection zi = ΦT

i r for each i ∈ R is

zi = ci + ΦT
i ΦI(cI − c̃I) + ΦT

i ΦI′cI′ − ΦT
i ΦJ c̃J (3.8)
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The false bases ΦJ have two effects: they can distort the least square estimates so that
(cI − c̃I) is not negligible, and they add additional distortion −ΦT

i ΦJ c̃J to each zi. This last
term can reduce the magnitude of zi corresponding to ci 6= 0 and pull it out of the largest h
|z| values, and also increase the magnitude of zi corresponding to ci = 0.

Also, even if no false bases have been selected, (cI − c̃I) can be significant because of the
correlation of the bases in ΦI with those in ΦI′.
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Chapter 4

Recovery when the number of

nonzero components exceeds half the

number of samples

A common belief in previous work [4, 5] is that perfect recovery is possible only if M ≥ 2S.
The argument made is the following: Suppose that M < 2S. Then each set of 2S columns
from Φ is linearly dependent. Let y = Φ1c1, where c1 is the length S coefficient vector that
constitutes the true signal and Φ1 be the corresponing S column subset of Φ. Let Φ2 be
another S column subset disjoint from Φ1. Since [Φ1Φ2] is linearly dependent, there exists
a length S vector c2 such that [Φ1Φ2]c = 0, where c = [cT

1 cT
2 ]T . Then Φ1c1 + Φ2c2 = 0,

or y = Φ1c1 = −Φ2c2. Thus there exists a false solution c2 that would make the residue
||r|| = 0.

However, this is overly pessimistic. We show that the probability that such a false solution
is found is negligible. Assume that every set of Km+1 bases is linearly independent, and that
the algorithm selects upto Km bases until ||r|| = 0. At a particular stage of the algorithm,
suppose that a subset of bases ΦI from Φ1 has been selected, and let ΦI′ represent the
remaining bases from Φ1. Let cI and cI′ represent the corresponding components of the
true sparse vector c1 that produces y = Φ1c1. Also suppose that a set ΦJ of bases disjoint
from Φ1 has also been selected. A false solution is found if there exists a vector v1 such
that ΦI′cI′ = ΦJv1. This requires the columns of the matrix A = [ΦI′ΦJ ] to be linearly
dependent. If |I ′| + |J | ≤ Km + 1, the columns of A are linearly independent and a false
solution cannot exist.

Consider the situation where |I ′| + |J | ≥ Km + 2. Let N(A) denote the nullspace of A,
and dNA

the dimension of N(A). Since the rank of A is Km +1, by the rank-nullity theorem,
dNA

= |I ′|+ |J | −Km − 1.
Let Z = {v : ΦI′v ∈ span{ΦJ}} be the set of vectors v such that ΦI′v is in the intersection

of span{ΦI′} and span{ΦJ}. This is the subset of coefficients of ΦI′ for which a false solution
can result because some linear combination of ΦJ can match ΦI′v. We have dim(Z) =
dim(span{ΦI′} ∩N(A)) = min(|I ′|, dNA

).
Since |J | ≤ Km, we have dNA

= |I ′|+ |J | −Km − 1 ≤ |I ′| − 1. Then dim(Z) < |I ′|, and
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a false solution is limited to a subspace of cI′ with dimension less than |I ′|. The probability
that cI′ lies in this subspace is negligible. This implies that the probability of finding a false
solution is negligible.

Note that this result does not depend on any particular method of selecting bases, either
probabilistically or deterministically. As long as |J | ≤ Km, we have dim(Z) < |I ′|, and the
set of cI′ for which a false solution is obtained is small.

A simple intuitive example for perfect recovery is the following: Consider the constant
magnitude coefficient case. Suppose that we have zk = ±c + η when ck 6= 0, and zk = η
when ck = 0. The variance σ2

η ≤ (S − 1)σ2
ac

2, and the signal to noise ratio is c
ση
≥ 1

σa

√
S−1

.

If the ratio is high enough, we have |zk| ≈ c for ck 6= 0 and |zk| ≈ 0 for ck = 0. Then even if
2S > M , it is easy to pick the true signal components just by observing the |zk| magnitudes.
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Chapter 5

Experimental Results

We tested the performance of the algorithm for y = Φc where Φ is a M ∗N random matrix
with unit norm columns. We constructed Φ from random column permutations of [I|G],
where I is the M ∗M identity matrix and G a M ∗ (N −M) matrix consisting of ± 1√

(M)
,

with signs equally likely positive and negative. We found that this construction gives a lower
variance σ2

a than a similar Gaussian random matrix.
In table 5.1 we show the results for different values of M, N and S. For each set of

parameters we tested 50 different matrices Φ and found the number of outer iterations
needed to find the true signal components with MaxIter=25 and β = 10. The Recovery
Fraction column indicates the fraction of trials (out of 50) where the true components were
perfectly recovered.

Table 5.1: Recovery results for Laplacian coefficients with β = 10

N M S σ2
a Recovery Mean

Fraction Iterations

900 800 400 0.000263 1.0 1.01

900 800 450 0.000263 1.0 1.02

900 800 500 0.000263 1.0 1.46

900 800 550 0.000263 1.0 1.1

1000 800 400 0.000450 1.0 1.1

1000 800 450 0.000450 1.0 1.1

1000 800 500 0.000450 1.0 1.01

1100 800 400 0.000589 1.0 1.0

1100 800 450 0.000589 1.0 1.0

1100 800 500 0.000589 0.92 4.8
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Figure 5.1: Histogram of number of iterations needed to recover all true bases over 50 trials
for N=1100,M=800,S=500 and Laplacian coefficients with β = 10
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