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ABSTRACT 
 
Increasing advancements in building digitization, smart sensing, and metering technologies have allowed large amount 
of data to be collected and saved for monitoring, analyzing, and controlling building systems. However, due to sensors 
or communications failure, the data collected are often incomplete and poor in quality. Data imputation approaches to 
replace the missing values, specifically based on both statistical and predictive models have been widely adopted for 
multivariate datasets. It is hence of interest to find an effective way to impute building system data by leveraging the 
mutual information from strongly correlated sensors. In this paper, we evaluate multiple data imputation approaches 
using data collected from a medium sized, mixed-use institution building situated in Stockholm, Sweden. Sensors with 
widely varying characteristics from the case study building were selected to test the imputation methods. Artificial 
test data with ground-truth was first created for validation by removing randomly selected portions of data. The 
imputation accuracy was computed for each method and the impact of the chosen method on a short-term building 
forecasting model was evaluated. Results demonstrate that incorporating time-lagged cross correlations within the k-
nearest neighbor (kNN) model provide the most accurate imputations. 
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1. INTRODUCTION 
 
Recent advances in monitoring systems, communication and information technology make it possible to collect and 
store large amounts of time series data. Such databases are utilized by data-driven methods and algorithms for solving 
complex problems in different disciplinary fields. One of the sectors that has greatly benefitted from the advances in 
big data is building sciences. Use of artificial intelligence, machine learning, and deep learning analysis have been 
proved to have remarkable impacts on various research domains such as building energy forecasting, pattern 
recognition, and fault detection and diagnosis (Ma et al., 2020).  
 
An essential prerequisite for implementing these technologies is high-quality data set from the building automation 
system (BAS). However, the databases obtained from the BAS are usually incomplete due to equipment failures, 
communication/transmission issues or data corruption, thus, leading to loss of valuable information. The issue of 
missing data exists in almost all kinds of data sets, and the size of the missing data can significantly affect the research 
outcomes since most data analysis and statistical tools are not designed to handle incomplete data. Before exploring 
methods to reconstruct the missing values, it is important to first understand the missing data mechanism. Rubin (1976) 
first described and categorized the types of missing data based on the assumptions for the missing data. In the literature, 
missing data mechanisms are generally divided into three categories (Allison, 2003; Rubin, 1976): 
 

• Missing Completely at Random (MCAR) – data are defined as MCAR when the probability of missingness 
is not related to either the specific values or the set of observed responses. If data are missing completely at 
random, then dropping cases with missing data does not bias the inferences. 

• Missing at Random (MAR) – defined when the probability of missingness depends on the set of observed 
responses, but the mechanism of data missingness is traceable or predictable from other variables in the 
database. 

• Not Missing at Random (NMAR) – defined when the probability of missingness depends on the missing 
variable itself. A model for the missing data must be created for the specific dataset to handle this type. 

 
Many approaches have been developed for handling missing values that are available in the literature. The simplest 
approach is to simply ignore it and perform the analysis based on the available data (also known as listwise deletion). 
This procedure, however, can lead to loss of efficiency due to discarding the incomplete observations and may output 
biased and unreliable results due to the systematic differences between the available and missing data. Hence, an 
effective technique for estimating missing values is through data imputation which retains the original sample size 
and allows subsequent analysis to be carried on the entire dataset and produce much reliable results. The imputation 
approaches vary from simple methods such as mean imputation to some more robust methods that leverage the 
relationships among variables within the dataset. The following section presents some popular imputation methods 
for data precleaning (Allison, 2003; Rubin, 1976; Schafer & Graham, 2002): 
 

• Mean or mode imputation: This method replaces the unknown value for a given variable by the mean 
(quantitative variable) or mode (qualitative variable) of all known values of that variable. A major drawback 
of this method is that replacing all missing records with a single value distorts the input data distribution. 

• Hot deck imputation: In this method, the missing values are substituted from the variables that are closest to 
the variable consisting of the missing values. This method attempts to preserve the input data distribution 
since the substituted values are based on the similarity with the other variables in the dataset. 

• Prediction models: These methods involve creating a predictive model to estimate values that will replace 
the missing data. The incomplete variables are used as target, and the remaining variables are used as inputs 
for the model. These methods leverage the relationships (correlations) among the different variables within 
the dataset. Those correlations can be used to create a predictive model for either classification or regression. 
If there are no strong correlations between the incomplete variables and the remaining variables, the imputed 
values will not be precise. Also, many prediction models must be designed for cases with many incomplete 
variables, making it computationally expensive. 

 
This paper aims to explore potential data imputation method for building systems data and is structured as follows: 
Section 2 provides a review of existing literature on data imputation methods. Section 3 describes the proposed method 
and Section 4 present the case study building used to evaluate and compare different imputation methods. The results 
are discussed in Section 5 and Section 6 presents the current conclusions and future work. 
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2. LITERATURE REVIEW 
 
Existing literature on data imputation methods for building data has primarily been focused on univariate time series 
data using statistical methods. For example, Jin et al. (2006) used a stochastic binning method to estimate the missing 
weather data (outdoor temperature) for the estimation of building energy. Ouyang et al. (2017) implemented linear 
interpolation to tackle the missing values when predicting wind power. Kasam et al. (2014) focused on a Gaussian-
distributed auto-regressive model to interpolate the missing meteorological data for use in building simulations. 
Although statistical methods are easy to implement and perform well for low rates of missing data, their performance 
is limited when the datasets are more complicated since these methods are based on linear assumptions and do not 
account for the nonlinearities of the dataset. 
 
In order to address this issue, nonlinear machine learning and deep learning methods are utilized to fill in the missing 
values. For example, Garnier et al. (2012) implemented Artificial Neural Network (ANN) to estimate the missing 
values for energy resources management in buildings. Ma et al. (2020) have proposed a bi-directional missing data 
imputation scheme based on deep learning and transfer learning for building energy data. Rahman et al. (2018) and 
Yang et al. (2019) have used deep Recurrent Neural Networks (RNN) models to first perform imputation on the 
missing data and then forecast the building energy usage. 
 
Since the single imputation method may not work for various types of sensors in a building system, ensemble methods 
that include both statistical and learning methods that utilize multiple imputation methods to make an improved 
prediction of the missing values are used. Inman et al. (2015) utilized two data imputation methods prior to performing 
clustering analysis on building energy consumption data. More recently, Zhang (2020) developed a pattern 
recognition-based ensemble framework to first create validation data that have similar characteristics with the missing 
data and then, use the optimal imputation method for each sensor. Research on ensembles methods have shown good 
performance compared to single imputation methods for building system data. 
 
However, there remains a few key problems that the existing literature fails to address. First, most of the existing 
studies only explores univariate time series data, hence, these methods do not leverage the mutual information from 
other variables when a multivariate dataset is available. Since many building system sensors are strongly correlated 
with each other, there is potential in utilizing information from other variables. Secondly, almost all the studies and 
developed methods only consider short time periods of missing data and the more challenging case of continuous 
missing data for long time periods is not explored by these methods. 
 
Given the limitations in existing literature for handling multivariate datasets in BAS data, studies from other fields 
such as biomedical, traffic flow, and radio transmission are investigated. A probabilistic principal component analysis 
(PPCA) based method is developed for traffic flow dataset by Qu et al. (2009). In PPCA-based imputation, the PCA 
is used to separate the significant and dominant parts of the traffic flow, whereas the maximum likelihood estimation 
(MLE) is applied to estimate the missing values based on the obtained significant parts determined by the PCA. A 
drawback of this method is the requirement of a large amount of historical data to train the model. 
 
Another widely adopted method was the k-Nearest Neighbor (kNN) imputation method in which k nearest neighbors 
for a missing instance are identified using the observed instances of other variables. The missing instance is then 
estimated by combining the k estimates using approaches such as the weighted average or a kernel function (Rahman 
et al., 2015). These kNN-based methods are most appropriate for a multivariate dataset, and when the missing variables 
are correlated with the other observed variables. One drawback of kNN is that, because it relies on the values of other 
variables, it cannot impute a value when all variables are missing in an instance and may be less accurate as more 
variables are absent.  
 
To overcome this issue, Rahman et al. (2015) developed a combined method using the Fourier transforms which uses 
past values of each variable and an extension of kNN called the lagged-kNN which also considers the time lagged 
cross-correlation between each of the variables. The Fourier lagged-kNN method (FL-kNN) overcomes the limitation 
of the nearest neighbors methods which require observed data to be presented at each instance and improves accuracy 
by handling both MAR and NMAR missing data. In their research, the imputation accuracy for multiple biomedical 
data using this method was reported to be the highest when compared with other imputation methods for up to 50% 
of the dataset missing. 
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Motivated by the limitations in existing literature for imputing continuous missing data for long time periods and the 
potential of the FL-kNN method, in this paper, we applied five different imputation methods to a multi-stream building 
dataset. Artificial test data with ground-truth was first created for validation by removing randomly selected portions 
of data. The imputation accuracy was computed for each method. Considering that the sensor measurements are 
typically used for further data analytics, it is of interest to also examine how data repaired by different imputation 
schemes might affect the quality of data analytics.  Hence the impact of the chosen method on a short-term building 
forecasting model was also evaluated. The imputation schemes chosen for the study are as follows: (i) linear 
interpolation (from pandas library), (ii) kNN imputer (from sklearn library), (iii) lagged-kNN, (iv) Fourier method 
and (v) combined Fourier lagged-kNN imputation method (FL-kNN). 
 
 

3. COMBINED FOURIER LAGGED-KNN METHOD 
 
The combined Fourier lagged-kNN method is a combination of two imputation methods presented by Rahman et al., 
(2015). This imputation method consists of an extension of kNN imputation with lagged correlations, and the Fourier 
transformation. For each missing data point, the final estimated value is calculated by averaging the estimates from 
the lagged-kNN imputation and the Fourier method. 
 
3.1 Lagged-kNN Method 
First, a kNN with a time lag parameter (𝑝) is developed to incorporate the time dependent correlations that may persist 
between the variables. In this step, cross-correlation is used to identify which variables are correlated and at which 
time lags. The cross-correlation 𝑟௫௬ between variables 𝑥 and 𝑦, for time delay 𝑑 is defined as: 
 

 
𝑟௫௬(𝑑) =

𝐶௫௬(𝑑)

ඥ(𝐶௫௫(0)𝐶௬௬(0)
 

(1) 
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 (2) 

 
where 𝑇 is the length of the series, 𝑥̅ and 𝑦 are the mean of 𝑥 and 𝑦 respectively, 𝑑 varies from – (𝐷 − 1) to (𝐷 − 1) 
and 𝐷 is the maximum time delay. Based on the strength of the correlation, matrices are constructed for each of the 𝑝 
lags, with the correlations ordered from 1 . . . 𝑝 by decreasing strength. For each pair of variables, (𝐿ଵ) contains the 
lag, 𝑑, with the strongest correlation (𝑚𝑎𝑥 |𝑟௫௬|) and 𝐿௣ the lag with the weakest. Each 𝐿 is an 𝑁𝑥𝑁 matrix, where 
elements represent the time lags for each correlation between the 𝑁 variables. 
 
In contrast to kNN, the multiple lags that differ across variable pairs must be accounted for while forming the training 
and testing vectors with candidate values. In the lagged-kNN method, for a variable 𝑥 that has missing value at time 
𝑡 and has a time lagged relationship with variables 𝑦 and 𝑧, with lags 𝑙௫௬ and 𝑙௫௭ respectively, the test vector is formed 
using the values of 𝑦 and 𝑧 at 𝑡 +  𝑙௫௬  and 𝑡 + 𝑙௫௭. Training vectors are formed in a similar way and the values of 𝑥, 
which are the candidate values for imputation, are stored separately. Training vectors are generated from the existing 
values of 𝑥 and the time instances resulting after adding the lags must be within 1 to 𝑇 (length of data). 
 
A weighted modification of the Euclidean distance is used as a proximity measure while finding the nearest neighbors 
for each missing instance. Since the strength of the correlation between variables and across the 𝑝 lags may differ 
substantially, a weight is incorporated into the distance measure. This ensures that neighbors based on highly 
correlated variables with their associated lags are given more weight than weakly correlated variables. The distance 
between instance 𝑥 and 𝑦 is calculated through: 
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𝑑(𝑥, 𝑦) =  

ට∑ [(𝑥௜⋀𝑦௜)(𝑥௜ − 𝑦௜)ଶ × 𝑤௜]ே
௜ୀଵ

∑ (𝑥௜⋀𝑦௜)ே
௜ୀଵ

 
(3) 

 
where 𝑁 is the number of variables, and 𝑤௜  is the weight, which is the normalized correlation coefficients between 
missing variables and 𝑖௧௛ variable. The result is 𝑝 sets of 𝑘 nearest neighbors (one set of neighbors for each 𝐿 matrix). 
We then average the values for the 𝑘 neighbors with the lowest weighted distance (out of the set of 𝑝 𝑥 𝑘 neighbors). 
 
3.2 Fourier Method 
The Fourier imputation method uses past values of each variables to impute each missing value. First, a data segment 
is formed with the data from the beginning of the signal up to the last non-missing data point. For example, if values 
𝑣ଵ through 𝑣௣ିଵ  are present (or imputed), and 𝑣௣ . . . 𝑣௤ are missing, the Fourier descriptors are obtained with: 
 

 𝐹௞ =  ෍ 𝑣௝ × 𝑒ି(ଶ௜గ/௣ିଵ)(௝ିଵ)(௞ିଵ) 

௣ିଵ

௝ୀଵ

 

 

(4) 

 
where 𝐹௞ is the 𝑘௧௛ Fourier descriptor with 1 ≤  𝑘 ≤  (𝑝 − 1) and 𝑖 =  √−1 Then, the imputed value for time 𝑚, 
where 𝑝 ≤  𝑚 ≤  𝑞, calculated from the Fourier descriptors with: 
 

 𝑣௠ =
1

𝑝 − 1
 ෍ 𝐹௞ × 𝑒(ଶ௜గ/௣ିଵ)(௝ିଵ)(௠ିଵ)(௞ିଵ) 

௣ିଵ

௞ୀଵ

 (5) 

 
The proposed method estimates each missing value based on the observed data, hence, it is found that if the given data 
does not capture the high frequency components (i.e. sampling frequency is less than 2 * Nyquist frequency), the 
imputed value will not be accurate. 
 
 

4. REAL BUILDING CASE STUDY 
 
4.1 Multi-Stream Building Data 
The study utilized data from a 13,434 sq. meter, mixed-use institution building situated in Stockholm, Sweden. It is 
acclimatized by an intelligent demand-control ventilation (DCV) system where the airflow can independently vary 
within and between different rooms, carbon- and temperature sensors controlling the air volume within in conference 
rooms, modern building management system (BMS) and energy meters throughout the building. Datapoints collected 
from the building include the heating, ventilating and air conditioning (HVAC) system, occupancy data for individual 
offices, and the energy-meter. 
 
The RealEstateCore (REC) ontology is utilized for data integration in the building. RealEstateCore, which is described 
in more detail by Hammar et al. (2019), is a universal language that facilitates data-driven building control and the 
development of new services.  REC implementation in the case study building enabled two-way communication which 
additionally allows operators to send control signals back to the BMS (called SAIA) and the DCV system (called 
Lindinvent) in REC format (Halleberg & Martinac, 2020). Both the BMS and the DCV system communicate by 
Modbus Transmission Control Protocol (TCP) and are translated using Internet-of-Things (IoT)-Edge Modules. The 
modules are written in C# and can be configured to poll the source system at different intervals. 
 
A Microsoft Azure digital platform was also developed for the case study building by combining the potential of the 
cloud with security using an IoT-Edge solution (Halleberg & Martinac, 2020). Data from BMS and DCV system are 
extracted (according to the configuration specified in the two REC tag lists) using an IoT-Edge module running on an 
Edge Device physically located in the building. Additionally, data from the tenant’s system for managing space 
booking, forecasted weather data from Swedish Meteorological and Hydrological Institute (SMHI) and energy 
management system (called Energiportalen) are imported and processed via application programming interfaces 
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(APIs) within an Azure Data Factory that triggers every hour. This digital platform solution enables storing, processing 
big data, and hosting various automated data-driven strategies for the building in the future. 
 
To study the data quality and compare multi-stream data imputation strategies, thirteen (13) different sensors from the 
case study building were selected to test the imputation methods. A systematic feature selection procedure developed 
by Zhang & Wen (2019) was used to identify the air handling units (AHUs) and zones with the largest impact on the 
building electricity and heating energy. Additionally, typical sensors found in weather station, BMS and DCV system 
that cover different sensor types were included in study. The sensor list is presented in Table 1. Data collected from 
March 1st to 7th, 2021, with a 5-minute sample interval was used. 
 

Table 1: Sensors used to evaluate data imputation accuracy 
 

System Sensor Name Sensor Type Description 

BMS LB100/GP11/MV Pressure sensor AHU supply air static pressure 

BMS LB101/GF11/MV Flow sensor AHU  supply air flowrate 

BMS LB101/GT11/MV Temperature sensor AHU supply air temperature 

BMS LB101/TF11/R Fan speed sensor AHU supply fan speed 

BMS LB101/SV21/R Valve position AHU cooling coil valve position 

BMS VS130/GT11/MV Temperature sensor Radiator hot water temperature 

Weather Station R1B17/GM51/MV Hygrometer Outdoor humidity 

Weather Station VS110/GT31/MV Flow sensor Outdoor temperature 

DCV 3B13/TD10:61/GF Flow sensor Actual supply-air flow 

DCV 3B13/TD10:61/GT Temperature sensor Actual supply-air temperature 

DCV 3B13/TD10:61/GP Pressure sensor Actual supply-air pressure 

DCV 3B13/TD10:61/GT Temperature sensor Actual room temperature 

DCV 3B13/TD10:56/CO 
Carbon-dioxide 
sensor 

Actual carbon dioxide 
concentration 

 
4.2 Creating Validation Dataset 
Artificial validation dataset was created by generating a non-uniform set of random indices through the Python 
‘pd.DataFrame.sample’ function for each sensor. To ensure that the same index is removed for each imputation 
method, ‘rng default’ function was used to select the random seed.  
 
‘Randomized missing’ validation sets for up to 40% missing ratios were created by removing the datapoints at the 
randomly generated indices. Similarly, ‘continuous missing’ validation sets were created by generating a random 
index, then removing the next instances of datapoints until the desired missing ratio wass met. Figure 1 presents the 
two categories of validation datasets created. 
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Figure 1: Categories of validation dataset for evaluating data imputation methods 
 
4.3 Energy Forecasting Model 
Following the data imputation, a building energy forecasting model was used to evaluate the impact of the imputation 
method on the energy forecasts. The energy modeling procedure utilizes a multi-input-single-output regression model 
called Multivariate Adaptive Regression Splines (MARS). MARS is a nonparametric regression which constructs 
underlying relationship from a set of coefficients and basis function that are determined by training data. Since MARS 
operates as multiple piecewise linear regression, it can handle the nonlinearities in the datasets. Mathematically, 
MARS is defined as: 

 𝑓(𝑥) =  𝛾଴ +  ෍ 𝛾௜ℎ௜(𝑥)

௠

௜ୀଵ

 (6) 

 
where, 𝑥 represents the features, 𝑚 is the number of features, 𝛾 is the constant coefficient of the combination whose 
value is jointly adjusted to give the best fit to the data and the basis function ℎ௜(𝑥) (Gints, 2011). The basis function 
ℎ௜ can be represented as: 

 ℎ௜(𝑥) =  ෑൣ𝑆௞,௠. ൫𝑥௩(௞,௠) − 𝑡௞ , 𝑚൯൧
ା

௤
   

௄೘

௞ୀଵ

 (7) 

 
where 𝐾௠ is the number of splits given to the 𝑚௧௛ basis function, 𝑆௞,௠  =  ±1 indicates the right/left sense of the 
associated step function, 𝑣(𝑘, 𝑚) is the label of the features, and 𝑡௞,௠ represents values (often called knot locations) 
of the corresponding variables. The superscript 𝑞  and subscript +  indicate the truncated power functions with 
polynomials of lower order than 𝑞. More details of fundamentals of MARS can be found in Gints (2011). 
 
The forecasting model was trained to predict the building electricity and heating energy using data collected from the 
case study building from March 1st to 7th, 2021, and tested using data collected from March 8th to 11th, 2021 
 
4.4 Performance Metric 
Normalized Root Mean Squared Error (NRMSE) was used as the performance indicator to measure both the 
imputation accuracy and the energy forecast accuracy. The NRMSE is defined as: 
 

 𝑁𝑅𝑀𝑆𝐸(𝑦, 𝑥) =
1

𝑚𝑒𝑎𝑛(𝑥)
ඨ

∑ (𝑦௜ − 𝑥௜)ଶ௡
௜ୀଵ

𝑛
 (8) 

 
where, 𝑦 is the imputed or predicted value, 𝑥 is the actual value and 𝑛 is the number of imputed data points. The 
overall performance metrics of the imputation method was calculated by averaging the metric values for each sensor. 

X0 X1 X2 X3 X4 X5 Xn-1 Xn 

Randomized Missing

Continuous Missing

X0 X1 X2 X3 X4 X5 Xn-1 Xn 

X6 X7 X8 

X6 X7 X8 

Randomly selected indices

Randomly selected start index

Data points removed 
to meet missing ratio

 Existing Data

Removed Data
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5. RESULTS AND DISCUSSION 
 
The performance of the data imputation method and the impact on the short-term energy forecast was evaluated using 
the NRMSE. The results are summarized in Table 2 and Table 3, respectively. The best performing imputation method 
under each category is highlighted in bold. 

 
Table 2: Averaged imputation error for each validation dataset 

 

Validation Dataset 
Imputation Method 

Linear kNN Imputer Lagged kNN Fourier 
Fourier-

Lagged kNN 

10p-Continous 0.772 0.291 0.207 1.229 0.664 

20p-Continous 0.630 0.486 0.273 0.935 0.525 

30p-Continous 0.874 0.436 0.338 1.092 0.594 

40p-Continous 1.089 0.455 0.210 1.113 0.545 

10p-Scatter 0.087 0.161 0.098 0.111 0.081 

20p-Scatter 0.105 0.193 0.063 0.166 0.099 

30p-Scatter 0.127 0.292 0.086 0.257 0.153 

40p-Scatter 0.118 0.430 0.093 0.269 0.160 
 

 
Table 3: Averaged energy forecasting error for each validation dataset 

 

Validation Dataset 
Imputation Method 

Linear kNN Imputer Lagged kNN Fourier 
Fourier-Lagged 

kNN 
10p-Continous 0.025 0.025 0.024 0.025 0.025 

20p-Continous 0.042 0.038 0.036 0.038 0.039 

30p-Continous 0.066 0.076 0.063 0.074 0.072 

40p-Continous 0.082 0.091 0.072 0.076 0.079 

10p-Scatter 0.021 0.021 0.021 0.022 0.021 

20p-Scatter 0.020 0.020 0.020 0.020 0.020 

30p-Scatter 0.024 0.024 0.024 0.024 0.023 

40p-Scatter 0.025 0.025 0.024 0.025 0.025 
 
 
From the results presented above, several conclusions can be drawn in terms of imputation and energy forecasting 
accuracies: 

• The lagged-kNN method has the best performance in 7 out of the 8 validation sets evaluated for data 
imputation. Identifying the strongly correlated building system measurements using the kNN algorithm helps 
the method to utilize the shared mutual information among the different measurements, hence, resulting in 
more accurate estimation of missing values.  

• Incorporating the time-lagged cross-correlation in the lagged-kNN method helps to significantly improve the 
imputation accuracy as well. Since building system measurements usually have a delayed response to changes 
in external weather conditions or supervisory control signals, using a set of time-lagged nearest neighbors to 
perform the data imputation result in better performance. 
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• The combined Fourier-lagged kNN method has comparable performance with the lagged-kNN method for 
lower missing ratios in the randomized scattered set, however, the error increases when applying the 
combined method for larger missing ratios. Since the Fourier imputation uses past values of each variable to 
impute each missing value, this method requires a large amount of historical data which is not satisfied by 
the 8-days of data collected from the BAS. The inaccuracies from the Fourier method, thus, leads to larger 
overall error for the combined method. 

• While statistical methods (such as linear interpolation, backward fill, forward fill etc.) are simple and 
relatively easy to implement, these methods do not perform well for datasets with high missing ratios and/or 
when data is continuous missing. These methods also lack the capability to utilize the strong correlations that 
exist between various building system measurements. 

• Results from the building energy forecasting model again show that the dataset imputed using the lagged-
kNN has the best performance. However, the forecasting accuracy is comparable among all imputation 
methods. Since the forecasting model was tested using limited data under similar building operating and 
weather conditions, the choice of imputation method does not have a significant impact on the short-term 
building energy forecast. 

 
 

6. CONCLUSIONS 
 
This paper evaluates different data imputation methods using data collected from a multi-stream building dataset. 
Since building system sensors are often correlated with each other, there is potential in utilizing information from 
other variables to impute the missing values in a dataset. Recent development in machine learning models such as 
kNN methods allow to identify such existing correlations that improve the estimates of the missing values by 
leveraging the shared information. 
 
To evaluate the effectiveness of such methods, five different imputation methods of varying sophistication were tested 
by creating artificial validation sets that consists of different ratios and patterns of missing data. Results demonstrate 
that incorporating time-lagged cross correlations within the kNN framework help to significantly improve the 
imputation accuracy. In terms of the impact of the chosen imputation method on building energy forecasting, results 
from limited testing showed comparable accuracy between the different imputation methods. Although the choice of 
the imputation method showed minimal impact on the performance of the forecasting model reported in the paper, 
additional validation is required for forecasting models that use larger datasets under diverse system operating 
conditions. Furthermore, the impact on other data-driven applications such as fault detection or fault diagnosis, where 
the strategies require complete dataset and are more sensitive to the data quality needs to be further investigated in the 
future. 
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