Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

1-5-2008

Putting the Automatic Back into AD: Part 1,
Dyilamic, Automatic, Nestable, and Fast (CVS:
1.1

Barak A. Pearlmutter

barak@cs.nuim.ie

Jeftrey M. Siskind
Purdue University, qobi@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Pearlmutter, Barak A. and Siskind, Jeffrey M., "Putting the Automatic Back into AD: Part II, Dynamic, Automatic, Nestable, and Fast
(CVS: 1.1)" (2008). ECE Technical Reports. Paper 369.
http://docs.lib.purdue.edu/ecetr/369

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages

Putting the Automatic Back into AD:
Part |1, Dynamic, Automatic, Nestable, and Fast
(CVS: 1.1)

Barak A. Pearlmuttérand Jeffrey Mark Siskirtd

1 Hamilton Institute, National University of Ireland Maynooth, Co. Kildareland
barak@s. nuimie

2 School of Electrical and Computer Engineering, Purdue Universy,Northwestern
Avenue, West Lafayette IN 47907-2035 Ugabi @ur due. edu

Summary. This paper discusses a new AD system that correctly and automaticadiptacc
nested and dynamic use of the AD operators, without any manual intemeThe system is
based on a new formulation of AD as highly generalized first-class citimeas.-calculus,
which is briefly described. Because thecalculus is the basis for modern programming-
language implementation techniques, integration of AD intoztttalculus allows AD to be
integrated into an aggressive compiler. We exhibit a research comgiiehwoes this inte-
gration, and uses some novel analysis techniques to accept coderigiobe dynamic use of
nested AD operators, yet performs as well as or better than the ngpgisage existing AD
systems.

Key words: Nesting, multiple transformation, forward mode, optimization

1 Introduction

Over sixty year ago, Church [2] described a model of computationtwinicluded higher-
order functions as first-class entities. Thigalculus as originally formulated, did not allow
AD operators to be defined, but Church did use the derivative opesatan example of a
higher-order function with which readers would be familiar. Althoughtoalculus was orig-
inally intended as a model of computation, it has found concrete applidatifjmogramming
languagewia two related routes. The first route came from the realization that extresnely
phisticated computations could be expressed crisply and succinctly \ad&leulus. This led
to the development of programming languagessfl. SCHEME, ML, HASKELL) that them-
selves embody the central aspects of Xhgalculus, in particular the ability to freely create
and apply functions including higher-order functions. The secontrase from the recog-
nition that various program transformations and programming-laregtiegpretic constructs
were naturally expressed using thealculus. This resulted in the use of thealculus as the
central mathematical scaffolding of programming-language thedi¥)(Poth as the formal-
ism in which the semantics of programming-language constructs are metihally defined,
and as the intermediate format into which computer programs are tedver analysis and
optimization.

2 B. A. Pearlmutter & J. M. Siskind

A substantial subgroup of the PLT community is interested in advancednatidnal
programming languages, and has spent the decades since thetimmoéphe LISP pro-
gramming language [7, 8] and its descendents inventing techniquesibly pdogramming
languages with higher-order functions can be made efficient. Theseidees are part of the
body of knowledge we refer to as PLT, and are the basis of the impletitentef modern
programming-language systems such/aaJct, theGHc HASKELL compiler,Gcc4.x, etc.
Some of these techniques are being gradually rediscovered by the ibwaaity. For in-
stance, a major feature in the AENADE AD system [3] is the utilization of a technique by
which values to which a newly-created function refer are separatattfre code body of the
function; this method is used ubiquitously in PLT, where it is referred tlarexbda lifting or
closure conversiofb).

We point out that—like it or not—the AD transforms are higher-order fiams: functions
that both take and return other functions. As such, attempts to build imptetizers of AD
which are efficient and correct encounter the same technical prebirith have already
been faced by the PLT community. In fact, the technical problems fimcAB are a superset
of these, as the machinery of PLT, as it stands, is unable to fully exgresseverse AD
transformation. We have embarked upon a sustained project to bringalseand techniques
of PLT to bear on AD. To this end, we have found a way to incorporatediass AD operators
(functions that perform forward- and reverse-mode AD) intoxtealculus. This solves a host
of problems: (1) the AD transforms are specified formally and gédige(2) nesting of the AD
operators, and inter-operation with other facilities like memory allocationsssrrad; (3) it
becomes straightforward to integrate these into aggressive compddlgtsAD can operate
in concert with optimization rather than beforehand; (4) sophisticateditgeds can migrate
various computations from run time to compile time; (5) a callee-derivelsifABupported,
allowing AD to be used in a modular fashion; and (6) a path to a formal séesaf AD, and
to formal proofs of correctness of systems that use and implemenisA&id out.

Due to space limitations, the details of how thealculus can be augmented with AD
operators is beyond our scope. Instead, we will describe the basic intuitiat underly the
approach, and exhibit some preliminary work on its practical benetitis. Starts (Section 2)
with a discussion of modularity and higher-order functions in a numenitexd, where we
show how higher-order functions can solve some modularity issuestisat in many cur-
rent AD systems. We continue (Section 3) by considering the AD tramsfais higher-order
functions, and in this context we generalize their types. This leads uiq®g to note a
relationship between the AD operators and the pushforward and pultbaskructions of dif-
ferential geometry, which motivates some details of the types we desitvell as some of
the terminology we introduce. In Section 5 we discuss how constructsghatato the pro-
grammer to involve run-time transforms can, by appropriate compilantqaes, be migrated
to compile-time. Section 6 describes a system which embodies these psntigiarts with
a minimalist language (the-calculus augmented with a numeric basis and the AD operators)
but uses aggressive compilation techniques to produce object cadetbmpetitive with the
most sophisticated currentoRTRAN-based AD systems. Armed with this practical benefit,
we close (Section 7) with a discussion of other benefits which this new fisrméor AD has
now put in our reach.

2 Functional Programming and Modularity in AD

Let us consider a few higher-order functions which a numeric prograr might wish to use.
Perhaps the most familiar is numeric integration,

Automatic AD: Part Il 3

doubl e ni nt (doubl e f(double), double x0, double x1);
which accepts a functioh : R — R and range limit& andb and returns an approximation of
jg’ f(x) dx. In conventional mathematical notation we would say that this function lesty e

nint :(R—-R)xRxR—R.

There are a few points we can make about this situation.
First, note that the caller aii nt might wish to pass an argument function which is
not known, at least in its details, until run time. For example, in the straigidial code to

evaluate N
; cos(x/i)d
i:§ /1(S|nx) X

the caller needs to make a function which maps (sinx)°°3*/!) for each desired value of
Although it is possible to code around this necessity by givingt a more complicated API
and forcing the caller to package up this extra “environment” informatiois, is not only
cumbersome and error prone but also tends to degrade perfamEme notation we will
adopt for the construction of a function, “closed” over the values gfratevant variables in
scope at the point of creation, is & &xpression,” after which the-calculus is named. Here,
it would be(\x . (sinx)*(cogx/i))).

Second, note that it would be natural to define two-dimensional numeeégration in
terms of nested application of nt . So for example,

doubl e ni nt2(doubl e f2(double x, double y),
doubl e x0, doubl e x1,
doubl e yO, double y1)
{return nint((Xx . nint((\y . f(x,y)), y0, yl)),
x0, x1); }

Third, it turns out that programs written in functional-programming laggs are rife
with constructs of this sort (for instanceap which takes a function and a list and returns
a new list whose elements are computed by applying the given functionrtesponding
elements of the original list); because of this, PLT techniques have @toged to allow
compilers for functional languages to optimize across the involved guveecall barriers.
This sort of optimization has implications for numeric programming, asarimtode often
calls procedures likai nt in inner loops. In fact, benchmarks have shown the efficacy of
these techniques on numeric code. For instance, code involving a dotdgeal of the sort
above experienced an order of magnitude improvement when suutidees were used.

Other numeric routines are also naturally viewed as higher-order funsctiumeric opti-
mization routines, for instance, are naturally formulated as procedinieh take the function
to be optimized as one argument. In mathematics other concepts areldefihegher-order
functions, and if we are to raise the level of expressiveness of sateptifigramming we
might wish to consider using similar conventions when coding such ctsc&p enormous
number of functions spring to mind: the continuous Fourier transforrhjgher-order func-
tions that map differential forms and boundary conditions (each oftwhiight be thought of
as a function) to their solution. Even more sophisticated sorts of numeripwations that
are difficult to express without the machinery of functional-prograngnimguages, such as
pumping methods for increasing rates of convergence, are pealyadiscussed elsewhere
[4] but stray beyond our present topic.

4 B. A. Pearlmutter & J. M. Siskind
3 The AD transformsare higher-order functions

The first argument to theni nt procedure of the previous section obeys a particular API:
ni nt can callf, but (at least in any mainstream language) there are no other operation
(with the possible exception of a conservative test for equality) that egmeblformed on a
function passed as an argument. We might imagine impraving s accuracy and efficiency

by having it use derivative information, so that it could more accuratety efficiently adapt

its points of evaluation to the local curvaturefofOf course, we would want an AD transform
of f rather than some poor numeric approximation to the desired derivpan deciding to

do this, we would have two alternatives. One would be to change the sigmdihirnt so that

it takes an additional argumedt that calculates the derivative bfat a point. This alternative
requires rewriting every call tai nt to pass this extra argument. Some call sites would be
passing a function argumentmd nt that is itself a parameter to the calling routine, resulting
in a ripple effect of augmentation of various APIs. This can be seerealvehereni nt 2
would need to accept an extra parameter—or perhaps two extra garanienis alternative,
which we might callcaller-derivesrequires potentially global changes in order to change a
local decision about how a particular numeric integration routine operatesis therefore a
severe violation of the principles of modularity.

The other alternative would be foi nt to be able to internally find the derivative bf
in a callee-derivesliscipline. In order to do this, it would need to be able to invoke AD upon
that function argument. To be concrete, we posit two derivative-tatgegators which per-
form the forward- and reverse-mode AD transforms on the functioey are passetiThese
have a somewhat complex API, so as to avoid repeated calculation airtired function dur-
ing derivative calculation. For forward-mode AD, we introdu;é which we for now give
a simplified signature7 (R = RM — (R"x R") — (RM™x RM)). This takes a numeric
functionR" — R™ and returns an augmented function which takes what the original func-
tion took along with a perturbation direction in its input space, and returns tivbariginal
function returned along with a perturbation direction in its output space.majgping from
an input perturbation to an output perturbation is equivalent to multiplicagiadhdJacobian.

Its reverse-mode AD sibling has a slightly more complex API, which wecazaitature as
:ﬂ (R" - RM) — (R" — (RMx (R™— R"))). This takes a numeric functidR" — R™ and
returns an augmented function which takes what the original functionaodketurns what
the original function returned paired with a “reverse phase” functionrtizgs a sensitivity in
the output space back to a sensitivity in the input space. This mappingoeftpuat sensitivity
to an input sensitivity is equivalent to multiplication by the transpose of thebia.

These AD operators are (however implemented, and whether comdirrepre-processor
or supported as dynamic run-time constructs) higher-order functiorn$hey cannot be writ-
ten in the conventional-calculus. The machinery to allow them to be expressed is somewhat
involved [10, 11, 12].

Part of the reason for this complexity can be seemiimt 2 above, which illustrates
the need to handle not only anonymous functions but also higher-aurdetions, nesting,
and interactions between variables of various scopes that correspahd distinct nested
invocations of the AD operators. ifi nt is modified to take the derivative of its function
argument, then the outer call 1o nt insideni nt 2 will take the derivative of an unnamed
function which internally invokesi nt . Since this inneni nt also invokes the derivative

operator, they and? operators must both be able to be applied to functions that internally

3 One can imagine hybrid operators; we leave that for the future.

Automatic AD: Part Il 5

invoke? and?. We also do not wish to introduce a new special “tape” data type onto which
computation flow graphs are recorded, as this would both increase thigenwf data types
present in the system, and render the system less amenable to stastadaizhtions.

Instead, driven by the need to handle nesting and a desire for unifomeityeneralize the
AD operatorsy> and(] to apply not only to numeric functior®" — R™ but to any function
a — B, wherea andf3 are arbitrary types. Note thatand8 might in fact be function types, so
we will be assigning a meaning to “the forward derivative of the highdeofunctionmap,”
or to the derivative ofi nt . This generalization will allow us to mechanically transform the
code bodies of functions without regard to the types of the functions oaltaéh those code
bodies. But in order to understand this generalization, we briefly digness mathematical
domain that can be used to define and link forward- and reverse-Aldde

4 AD and Differential Geometry

We now use some concepts from differential geometry to motivate arghhp explain the
types and relationships in odrcalculus augmented with AD operators. However it is im-
portant to note that we give a cartoon description here, with many detaiisessed or even
altered for the sake of brevity, clarity, and intuition.

In differential geometry, a differentiable manifald” has some structure associated with
it. Each pointx € 4" has an associated vector space called its tangent space, whose mmember
can be thought of as directions in whickban be locally perturbed int”. We call this atangent
vector of x and write it X . An elementx paired with an element’ of the tangent space
of x is called a tangent bundle, writteR = (x, 7). A function between two differentiable
manifolds, f : 4" — ., which is differentiable ax, mapping it toy = f(x), can be lifted to
maptangent bundlestg diﬁeren&able geometry this is called the pushforward ofWe will
write Y =(y, y) = f (X)= f (x, X). (This notation differs from the usual notation of
T 4 for the tangent space afc .Z.)

We import this machinery of the pushforward, but reinterpret it quitecoetely. Wherf is
a function repreﬁnted in a concrete expression in our augmeiEdulus, we mechanically
transformitinto f = ?(f). Moreover wherx s a particular value, with a particular shape,
we define the shape ok, an element of the tangent spacexpfin terms of the shape of
x. If x: a, meaning thak has type (or shape), we say thatx : o and X : . These
proceed by cases, and (with some simplification here for expositopppas) we can say that
a perturbation of a real is reaR = R; the perturbation of a pair is a pair of perturbations,
m =a x ﬁ and the perturbation of a discrete value contains no informatiorsy se
void whena is a discrete type likbool or int. This leaves the most interesting:— ﬁ, the
perturbation of a function. This is well defined in differential geometrigiohr would give
a— Z§ =d— f’; but we have an extra complication. We must regard a mappirg— 3
as depending not only on the input value, but also on the value of asyvégables that
occur in the definition off. Roughly speaking then, if is the type of the combination of
all the free variables of the mapping under consideration, which we vwgife & RA B, then

at ﬁ -d E’ However we never map such raw tangent values, but always tangen
bundles. These have similar signatures, but with tangents alwaysasgowith the value
whose tangent space they are elements of.

6 B. A. Pearlmutter & J. M. Siskind

The powerful intuition we now bring from differential geometry is that jastthe above
allows us to extend the notion of the forward-mode AD transform to arbithjects by re-
garding it as a pushforward of a function defined usinghtoalculus, we can use the notion
of a pullback to see how analogous notions can be defined for renerde-AD. In differ-
ential geometry, a cotangent space is the vector space of linear mamgfiatements of the
tangent space to reals. We can think of a gradient as a mapping thatptiebations to
reals, where the mapping operation is the dot product. A cotangent is@ deneralization
of this notion, giving a sort of generalized gradient. We call the elemédntiseocotangent
space “sensitivities,” in keeping with nomenclature from other fields witichvthe present
authors are familiar. However it would also be reasonable to call thennadplues, as in
physics. The cotangent is usually writt€f.#y but we instead writex : a where' x is the
sensitivity associated witkandx is of typea. The shape of a sensitivity is defined so that a
generalized dot-product operator could be defimeda x o — RR. This induces the types of
the sensitivities of functions, so for instanae % B = B — (‘a x ' y). R

The cotangent space in differential geometry is usel_d by the pullback. :If(x,?) —
(y,V) is a pushforward off : x — y, then the pullback isf : W X, virlich must obey
the relation’ ye y = xe x.If _# maps functions to their pushforwardf , and # maps
functionsf to perform the original mapping dfbut return the original output df paired with
the pullback off, then some type simplifications occur. The most important of these is that
we can generaliz§¢> and? to apply not just tdunctions that map between objects of any
type, but to apply t@ny object of any type, with functions being a special ca}é: a—a
andy ‘o — a. A detailed exposition of this augmentaetalculus is beyond our scope
here. Its definition is a delicate dance, as the new mechanisms musfibesty powerful to
implement the AD operators, but not so powerful as to preclude theirtcamsformation by
AD. We can give however give a bit of a flavor: constructs I;l()e(?) and its cousins require

novel operators likeZ ~*.

5 Migration to Compile Time

In the above exposition, the AD transforms are presented as firstfulastfons that operate
on an even footing with other first-class functions in the system,Hikdowever, compilers
are able to migrate many operations that appear to be done at run timepidectime. For in-
stance, the code fragmeg2+3) might seem to require a run-time addition, but a sufficiently
powerful compiler is able to migrate this addition to compile time. A compiler leehlzon-
structed, based on the above constructs and ideas, which is able to ralgrast all scaffold-
ing supporting the raw numeric computations to compile time. In essencegadge called
VLAD consisting of the above AD mechanisms in addition to a suite of numeric prasits/
defined. A compiler fovLAD called STALIN O has been constructed (manuscript in review)
which uses polyvariant union-free flow analysis. This analysis, fanymexample programs
we have written, allows all scaffolding and function manipulation to be migredecompile
time, leaving for run time a mix of machine instructions whose floating-pagnisidy com-
pares favorably to that of code emitted by highly tuned AD systems basedeprocessors
and FORTRAN. Although this aggressive compiler currently handles only the formande
AD transform, an associated. AD interpreter handles both the forward- and reverse-mode
AD constructs with full general nesting. The compiler is being extendeiirtidesly optimize
reverse-mode AD, no significant barriers in this endeavor are arttcipa

Automatic AD: Part Il 7

Although it is not a production-quality compiler (it is slow, cannot handlgdaexam-
ples, does not support arrays or other update-in-place data sesicaurd is in general un-
suitable for end users) remedying its deficiencies and building a prodemtiality compiler
would be straightforward, involving only known methods [9, 13]. Thenpder’s limitation
to union-free analyses and finite unrolling of recursive data structoelsl also be relaxed
using standard implementation techniques.

6 Some Preliminary Performance Results

We illustrate the power of our techniques with two examples. These wesegho illustrate
a hierarchy of mathematical abstractions built on a higher-order griagiierator. They were
not chosen to give an advantage to the present system or to compronfizeragrce of other
systems. They do however show how awkward it can be to express ¢besepts in other
systems, even overloading-based systems. Variants of these egamepéeused to exhibit the
utility and expressiveness of first-class AD [12].

Figure 1 gives the essence of the two examples. It starts with codaldbetveeen these
examples:imul ti vari at e- ar gnm n implements a multivariate optimizer using adaptive
naive gradient descent. This iterates; = nOf x; until either||Of x|| or ||Xj+1 —X;|| is small,
increasing) when progress is made and decreagjnghen no progress is made. Omitted are
definitions for standard SHEME primitives and the functionsqgr that squares its argument,
map- n that maps a function over the lis® ...n— 1), r educe that folds a binary function
with a specified identity over a list,+ andv- that perform vector addition and subtraction,
k* v that multiplies a vector by a scalamgni t ude that computes the magnitude of a vector,

(define ((gradient f) x)
(let ((n ?Iength x)}) ((map-n (lanbda (i) (tangent ((j* f) (bundle x (e i n)))))) n)))

(define (nultlvarlate argmn f x)

(let ((g radi ent
?Ioop Ia da x fx gx eta i

? (real 1le-5)) x)

oop X fx(Ex (* (real 2; eta) (real 0)))

nce x x-prine) (real 1le-5))
-prime (f x-prine)))
Ioop X- rnlenfe X-pri (g x-prine) eta (+ i 1;;
(loop x (f x) (g x) (real 1e-5) (real O))sj)) xox (I eta (real 2)) (real 93N
(define (nultivariate-argmax f x) (multivariate-argmn (lanbda (x) (- (real 0) (f x))) x))
(define (nultivariate-max f x) (f (multivariate-argmax f x)))

(define (saddle)
(let* ((start Ilst real 1 greal 1)))
da (x x2 - (* (sqr x1) (sar y1)) (+ (sqr x2) (sqr y2)))))

(st x1x m.nltlvarlate argmn
(lanbda ((list x1 y1)) (rrultlvarlaema
X | anb (list x2 y2)) f x1 yl x2 y2)) stal) start))
. (list x2« y2%) (nultivariate-argmax (lanbda (Ilst x2 y2)) (f x1x ylx x2 y2)) start

(list (list (wite x1x) (wite ylx)) (list (wite x2x) (wite y2*)))))

(define (naive-euler w

(letx ((charges (list (list (real 10) (- (real 10) w)) (list (real 10) (real 0))))
x-initial (list (real ?Breal
xdot-initial (list (real .75) (real 0)))
delta-t (real le-1))
p (lanbda (x) ((reduce + (real 0)) ((map (lanbda (c) (/ (real 1) (distance x c)))) charges)))))
(letrec ((loop (lanmbda (x xdot
(let* ((xddot gk*v (real -1) ((gradl ent p) x))) (x-new (v+ x (kxv delta-t xdot))))
(if ositive? (list-ref x-new
Foop X-new (v+ xdot k*v de a-t xddot))
let* ((delta-t-f (/ (real 02 $I|st ref x 1)) (list-ref xdot 1)))
x-t-f (v+ x *v_del ta: xdot))))
(sqr (list-ref x-t-f 0))))))))
(loop x-initial xdot-initial))))

(define §part e)
(letx (\MJ)S;eaI 0)) ((list we) (multivariate-argmn (lanbda ((list w)) (naive-euler w) (list w0))))

Fig. 1. The essence of treaddl e andpar ti cl e examples.

8 B. A. Pearlmutter & J. M. Siskind

Table 1. Run times of our examples normalized relative to a unit run time fa8\ [

L anguage/l mplementation
Example STALINC ADIFOR TAPENADE FADBAD++

saddl e 1.00 0.49 0.72 5.93
particle 1.00 0.85 1.76 32.09

di st ance that computes th& norm of the difference of two vectors, aedthat returns
thei-th basis vector of dimensiam

The first examplesaddl e, computes a saddle point: nify,) ma&XZ_yz)(xlerylZ) —
(%22 +y,?). The second examplegarti cl e, models a charged particle traveling non-
relativistically in a plane with positior(t) and velocityx(t) and accelerated by an electric
field formed by a pair of repulsive bodies(x;w) = ||x — (10,20—w)|| 1 +||x — (10,0)|| 1,
wherew is a modifiable control parameter of the system, and hitx{tves at positior(t).

We optimizew so as to minimizeE (w) = Xo(t)2, with the goal of finding a value faw that
causes the particle’s path to intersect the origin.

Naive Euler ODE integration¥(t) = — Dx P(X)[x—x(); X(t +At) = X(t) + AtX(t); x(t +
At) = x(t) + Atx(t)) is used to compute the particle’s path, with a linear interpolation to find
the x-axis intersect (whemy (t + At) < 0 we letAts = —xq(t)/X1(t); tr =t + Ats; x(t5) =
x(t) + Atsx(t) and calculate the final error &w) = xo(t)2.) The final error is minimized
with respecttav by mul ti vari at e- ar gmi n.

These examples were chosen because they both illustrate severdabimipbaracteristics
of our compilation techniques. First, they use standard vector arithmetathwiithout our
techniques, would require allocation and reclamation of new vector objéatse size might
be unknown at compile time. Furthermore, access to the componenisiof/ectors would
require indirection. Second, they use higher-order functions: onestig- n andr educe,
that are familiar to the functional-programming community, and onesdikadi ent and
mul tivari at e-ar gm n, that are familiar to numeric programmers. Without our tech-
nigues, these would require closures and indirect function calls to cifispetargets. Third,
they compute nested derivatives, i.e., they take derivatives ofifurscthat take derivatives of
other functions. This involves nested application of the AD primitives.

STALIN O performed a polyvariant union-free flow analysis on both of thesmpies, and
generated BRTRAN-like code. Variants of these examples were also codedEME, ML,
HASKELL, c++, and FORTRAN, and run with a variety of compilers and AD implementations.
Here we discuss only the++ and FORTRAN versions. Forc++, we used the&ADBAD++
implementation of forward AD and compiled with++. For FORTRAN, we used both the
ADIFOR and TAPENADE implementations of forward AD and compiled wigv7. In all of
the variants, we attempted to be faithful to both the generality of the mathehtwiitzepts
represented in the examples and to the standard coding style typicallyongsath particular
language. This means in particular that we used “tangent-vector” mbeeavailable, which
put STALIN O at a disadvantage of about a factor of two from repeated primal ctatiqos.
(Although SraLiNn O does not implement a tangent-vector mode it would be straightforward
to add such a facility.)

Implementing these examples in other AD systems required consideffaiotethe details
are described in a companion paper. Table 1 summarizes the run tirnes @famples nor-

Automatic AD: Part Il 9

malized relative to a unit run time forr&LIN [0.% This research prototype exhibits an increase
in performance of one to three orders of magnitude when comparedtvetbverloading-
based forward AD implementations for both functional and imperativguages (of which
only the fastest is shown) and roughly matches the performance ofat&fdrmation-based
forward AD implementations for imperative languages.

7 Discussion and Conclusion

The TAPENADE 2.1 User’s Guide [3] Sect. 10 p. 72 states:

10. KNOWN PROBLEM S AND DEVELOPMENTSTO COME

We conclude this user’s guide oAPENADE by a quick description of known prob-
lems, and how we plan to address them in the next releasgsé focus on missing
functionalities. [..]

10.4 Pointers and dynamic allocation

Full AD on FORTRANIS supposes pointer analysis, and an extension of the AD
models on programs that use dynamic allocation. This is not done yet.

Whereas the tangent mode does not pose major problems for pugiigtpointers
and allocation, there are problems in the reverse mode. For exampishioold we
handle a memory deallocation in the reverse mode? During the reveesp sthe
memory must be reallocated somehow, and the pointers must pointriiacthis
reallocated memory. Finding the more efficient way to handle this is still @m op
problem.

The Future Plans section on theENAD web siteht t p: / / www uni x. nts. anl . gov/
~ut ke/ OpenAD/ states:

4. Language-cover age and library handling in adjoint code

2. language concepts (e.g., array arithmetic, pointers and dynamic memory al-
location, polymor phism):

Many language concepts, in particular those found in object-orientedidgeg,
have never been considered in the context of automatic adjoint codeagjen. \We
are aware of several hard theoretical and technical problems tbdttade consid-
ered in this context. Without an answer to these open questions the cesofrihe
adjoint code cannot be guaranteed.

In programming-language theory, semantics are defined by redsetioich transform a
program from the source language into ¥iealculus, or an equivalent formalism like SSA
[1, 6]. Since we have defined the AD operators ik-@alculus setting in an extremely gen-
eral fashion, these operators inter-operate correctly with all othestreans in the language.
This addresses, in particular, all the above issues, and in fact alissigs: by operating in
this framework, the AD constructs become available to the programmedymamic fash-
ion, with extreme generality and uniformity. This framework has anotleaefit: compiler
optimizations and other compiler and implementation techniques are alreadyléted in
the same framework, which allows the AD constructs to be integrated int@it®and
combined with aggressive optimization. This gives the numeric progeartime best of both

4http://ww. bcl . hami | ton.ie/ ~qobi/tr-08-03/ contains the source code
for all variants of our examples, the scripts used to produce Tabledltherog produced
by running those scripts.

10 B. A. Pearlmutter & J. M. Siskind

worlds: the ability to write confidently in an expressive higher-order naydidynamic style
while obtaining competitive numeric performance.

TheX-calculus approach also opens some exciting theoretical questionsuirbat sys-
tem is based on the untypédcalculus. Can the? and? operators be incorporated into
a typed\-calculus? Many models of real computation have been developedhisasystem
be formalized in that sense? Can the AD operators as defined be mawvedt, in the sense
of matching a formal specification written in terms of limits or non-intuitiveetintial geo-
metric constructions? Is there a relationship between this augmem@dulus and synthetic
differential geometry? Could entire AD systems be built and formally gmasorrect?

Acknowledgement. This work was supported, in part, by NSF grant CCF-0438806, Seienc
Foundation Ireland grant 00/P1.1/C067, and a grant from the Highac&ion Authority of
Ireland. Any opinions, findings, and conclusions or recommendaérpsessed in this mate-
rial are those of the author(s) and do not necessarily reflect the wite funding agencies.

References

1. Appel, A.W.: SSA is functional programming. ACM SIGPLAN Noticg3(4), 17-20
(1998)

2. Church, A.: The Calculi of Lambda Conversion. Princeton UmitgiPress, Princeton,
NJ (1941)

3. Hascét, L., Pascual, V.: TAPENADE 2.1 user’s guide. Rapport technB@ INRIA,
Sophia Antipolis (2004). URIhtt p: //ww. inria.fr/rrrt/rt-0300. htm

4. Hughes, J.: Why functional programming matters. The Computendt32(2), 98—-107
(1989). URLht t p: // www. nd. chal mer s. se/ ~rj mh/ Paper s/ whyf p. ht m

5. Johnsson, T.: Lambda lifting: Transforming programs to reeersguations. In: Func-
tional Programming Languages and Computer Architecture. Spriertag, Nancy,
France (1985)

6. Kelsey, R.A.: A correspondence between continuation passingastglistatic single as-
signment form. ACM SIGPLAN Notices, Papers from the 1995 ACM IR Work-
shop on Intermediate Representati@a€3), 13—22 (1995)

7. McCarthy, J.: Recursive functions of symbolic expressions agid¢bmputation by ma-
chine, part 1. Comm. of the ACIg, 184-95 (1960)

8. McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.Rin, &1.1.: LISP 1.5 Program-
mer’'s Manual. MIT Press, Cambridge, MA (1962). Reprinted Feb519

9. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program AsialySpringer-Verlag,
New York (1999)

10. Pearlmutter, B.A., Siskind, J.M.: Reverse-mode AD in a functimenework: Lambda
the ultimate backpropagator. ACM Trans. on Programming LanguaggsSgstems
(2008). To appear

11. Siskind, J.M., Pearlmutter, B.A.: First-class nonstandard irgtafions by opening clo-
sures. In: Proceedings of the 2007 Symposium on Principles of@roging Languages,
pp. 71-6. Nice, France (2007)

12. Siskind, J.M., Pearlmutter, B.A.: Nesting forward-mode AD in icfional framework.
Higher-Order and Symbolic Computation (2008). To appear

13. Wadler, P.L.: Comprehending monads. In: Proceedings ofd#@ ACM Conference on
Lispand Functional Programming, pp. 61-78. Nice, France (1990)

	Purdue University
	Purdue e-Pubs
	1-5-2008

	Putting the Automatic Back into AD: Part II, Dynamic, Automatic, Nestable, and Fast (CVS: 1.1)
	Barak A. Pearlmutter
	Jeffrey M. Siskind

