Mesoscopic model of drying shrinkage and its application into control of shrinkage cracking

T. Nawa
Hokkaido University, Sapporo, Japan

ABSTRACT

Concrete shrinks when it is subjected to drying, whenever its surfaces are exposed to air of a low relative humidity. In such a situation, cracking is to be expected, since there are various kinds of restraint that prevent concrete from contracting freely. Unless the ambient relative humidity is kept at close to 100%, such shrinkage cracking presents a critical problem in concrete construction, in particular for thin, flat structures such as walls and slabs in buildings, highway pavements, and bridge decks. This paper review the state of the art of theory drying shrinkage from focus on the fact that microstructure in cement paste matrix consists of slit like pores as well as cylindrical shape pores. According to this fact, a new mesoscopic model of drying shrinkage is proposed. Our model can reproduce the experimental hysteresis loop of drying shrinkage for hardened cement paste, and reveals that drying shrinkage is closely related to the interaction potential between C-S-H nano-scale particles in cement systems. Meanwhile controlling cracking is essentially accomplished by reducing drying shrinkage. This paper also describes the efficiency of shrinkage reducing admixtures (SRAs) in controlling the restrained shrinkage cracking of concrete based on the mechanism of drying shrinkage.

Keywords: Hardened cement paste, Mesoscopic model, Drying shrinkage, Slit-like pore, C-S-H, Shrinkage reducing admixture.

1.0 INTRODUCTION

Drying shrinkage occurs in hardened concrete as a result of water movement. The major factors influencing drying shrinkage of concrete are the relative humidity, aggregate type and content, water content and the water-to-cement ratio (w/c). When concrete is wetted, it expands. This expansion phenomenon is referred to as swelling. Swelling is small compared with shrinkage in ordinary concrete and only when the relative humidity is maintained above 94% (Loman, 1940). The change in the moisture content of cement paste makes concrete shrink or swell. To better understand the influence of moisture content on drying shrinkage, one should consider the microstructure of the cement paste. The reaction of cement and water generates mainly a calcium silicate hydrate (C-S-H) gel with water-filled space. The size of the pores formed in the water-filled space is ranged form large capillary pores to smaller spaces in the C-S-H gel that are filled with adsorbed water.

The volume changes due to drying and wetting produces visible and invisible cracking in concrete under restraint conditions. Such cracks may influence the durability of reinforced concrete, e.g. the spoiling the surfaces of concrete structures, in particular for thin, flat structures such as walls and slabs in buildings, highway pavements, and bridge

Thus, the concrete shrinkage has been investigated for many decades, and multitude of mechanism has been proposed for shrinkage of hardened cement paste: capillary tension (Powers, 1965; Feldman, 1968), disjoining pressure (Bažant, 1972; Wittmann, 1973; Maruyama, 2010), surface energy (Wittmann, 1968; Feldman and Sereda, 1964), and changes in the basal spacing of layered hydrates (Feldman and Sereda, 1968, Beaudoin et al., 2010; Gutteridge and Parrott, 1976).

Deposit extensive studies of drying shrinkage, no complete theory has been proposed until now, combined theory of several mechanisms depending on the humidity have been commonly adopted to explain all of the observations (Wittmann, 2009). As drying occurs, disjoining pressure removes adsorbed water from the pores and capillary tensions form a meniscus that exerts stresses on the C-S-H skeleton causing the hardened cement paste to shrink. Thus capillary pressure becomes important when pore fills up water continuously, whereas disjoining pressure is prior to it at low degree of saturation.

Several researchers proposed the models to connect between measured sorption isotherms with pore structure to make clear the associated properties of porous materials. These models link the evaporation and condensation of water at a
given Relative Humidity (RH) with the width and connectedness of the pores over a range of scales (Baroghel-Bouny, 2007; Ranaivomanana et al., 2011; Bonnaud et al., 2012; Bonnaud et al., 2013).

Firstly models for mesoporous materials are typically extensions of the Kelvin-Laplace theory. But cement paste has a multiscale pore structure leads to hysteresis over the whole range of RH from 0% to 100%. For cement paste, the water in C-S-H gels plays the key role in drying shrinkage behavior as well as clay materials, but in contrast to Vycor glass, the volume at a given RH is smaller during wetting than during drying. Thus a self-consistent model of both sorption and drying shrinkage that can explain the hysteresis and the difference between cement paste and other mesoporous materials is requested.

This paper first reviews the previous studies on water-vapour sorption isotherm and drying shrinkage, and consequently proposes a new mesoscopic model of shrinkage accounting into the microstructure of C-S-H gel. Next the new model is applied into the methodology for reducing the shrinkage to control drying cracking; that is, new concept to reduce drying shrinkage is proposed and confirmed the validity of our mesoscopic shrinkage model by our past experiment data of shrinkage reducing admixture.

2.0 PREVIOUS STUDIES ON WATER SORPTION ISOTHERM: CLASSIFICATION OF WATER IN HARDENED CEMENT PASTE

Hysteresis of sorption isotherm associated with absorbate condensation and evaporation in mesoporous materials such as cement paste (see in Fig. 1) has been the subject of enormous interest for several decades because of its use in the characterization of pore size distribution. The hysteresis loop indicates the insight into the structure of the pore array that cannot be deduced from either the adsorption boundary or the desorption boundary of the hysteresis loop in sorption isotherm.

Using the Kelvin equation, which describes the thermodynamic equilibrium of a curved gas–liquid interface, Cohan proposed that irreversibility of capillary condensation is due to the different geometries of the gas–liquid interface upon adsorption and desorption (Cohan, 1938). However, adsorption in mesoporous materials such as hardened cement paste takes place in two distinct steps. During adsorption at low pressure, the fluid becomes adsorbed on the pore walls so that a multilayered liquid-like film grows. The thermodynamic properties of such a film are determined by the attractive interactions with the pore walls and surface tension γ_{GL} at the gas-liquid interface. At a certain thickness t_c, the surface tension makes the film thermodynamically unstable and capillary condensation takes place so that the pore is filled with a liquid-like adsorbate. This corresponds to a certain pressure P_e, which strongly depends on the pore size. In the reverse process, when desorption takes place from a liquid-filled pore, the system passes the P_e point and equilibrium capillary evaporation occurs at the pressure P_c, at which the grand potential of a filled pore equals the grand potential of the pore with a liquid film of a certain thickness. The difference between P_e and P_c is the most common origin of hysteresis observed in adsorption isotherms in mesoporous materials.

![Sorption Isotherms for hardened cement paste: W/C = 0.40 (Setzer, 2008)](image)

Describing capillary condensation and evaporation using the Kelvin equation has a fail to ignore the formation of a film adsorbed at the pore wall surface prior to capillary condensation. For large pores, such approximation by omitting an adsorbed film is reasonable, but it becomes inaccurate for micro- and meso-pores of which diameters are the same order of magnitude as the thickness of the adsorbed film. In 1974 Saam and Cole developed a theory of the thermodynamics and dynamics of thin films adsorbed in porous materials (Cole and Saam, 1974). In 1976 Derjaguin and Churaev also proposed a thermodynamic model which allows describing both the formation of an adsorbed film at the pore surface and capillary condensation–evaporation (Derjaguin and Churaev, 1976). In this model, adsorption and pore filling are described as the growth of an adsorbed film whose instability at a given pressure provokes capillary condensation. Due to the fact that the limit of stability of the film differs from the pressure at which the adsorbed phase is in phase equilibrium with the confined liquid separated from the gas external phase through a hemispherical meniscus, the model proposed by Derjaguin and Churaev allows describing the hysteretic behaviour of capillary condensation and evaporation. In this model, which is derived in the frame of the Gibbs dividing surface theory, the grand free energy Ω of a system comprises a cylindrical
Fig. 2. Adsorption−desorption isotherms of argon using Grand Canonical Monte Carlo simulation at 87 K in mesopore arrays consisting of two cavities and three necks: (a) This array has all three necks smaller than the critical width, H_c; (b) This array has two necks smaller than the critical width H_c and the neck connecting the large cavity to the gas surroundings greater than H_c (Klomkliang et al., 2015).

The theoretical predictions from the models mentioned above is often different from experimental data since theories are usually developed using regular pores of a simple geometry which depart from real materials. In contrast, molecular simulations allow studying the thermodynamics and dynamics of fluids confined in more realistic and complex pores with considering several topological or morphological parameters such as constrictions, interconnectivity, and surface defects. Molecular simulations are thus an available tool to link theories and experimental results obtained for real mesoporous materials.

On the other hand, the desorption branch from a completely filled pore, the condensed fluid in the two cavities is stretched to Point A7, at which evaporation from the two cavities occurs via the cavitation mechanism. In previous studies, pore blocking has been recognized as a possible emptying mechanism in pores such as ink-bottle pore with disordered shape and connectivity, cavitation has only been proposed and identified as another mechanism recently. The emergency of pore blocking or cavitation depends on the relative stability of the liquid confined in the constriction and the liquid confined in the cavity.
Starting with a completely filled pore, the liquid trapped in a cavity isolated from the gas phase through a filled constriction experiences a depression as the pressure decreases. Pore blocking is observed if the liquid in the cavity can resist such a depression until the liquid in the constriction evaporates. In that case, the desorption of the liquid located in the constriction spontaneously triggers the evaporation of the liquid cavity (the latter being already at a pressure below its equilibrium pressure). On the other hand, cavitation is observed if the liquid in the cavity cannot resist the depression until the liquid in the constriction evaporates. In that case, the desorption of the liquid located in the constricted pore occurs through the spontaneous nucleation of a gas bubble while the constriction remains filled by the liquid. These two desorption mechanisms, cavitation and pore blocking, are illustrated in the inset of Fig. 2.

The information about the width \((H_c) \) of neck pore can be determined from the desorption pressure. Also the large cavity width \(H \) can be estimated from the condensation pressure by assuming that it corresponds to the evaporation pressure of a cylindrical pore having the same diameter. It should be emphasized that in the case of very small pores, the cavitation pressure depends on the cavity size, the desorption mechanism in disordered pores is governed by \(H_c/H \) instead of \(H_c \).

The evaporation mechanism in constricted pores depends on the size of the constrictions in the pores. If the desorption can occur through pore blocking, the cavities will be empty when the constrictions that isolate them from the external bulk phase empty. On the other hand, if the desorption can occur through cavitation, the nucleation of a gas bubble within the cavity and consequently the cavities will be empty while the constrictions remain filled by the liquid. Furthermore, there is the difference of pressure to empty the cavities. Pore blocking occurs at a pressure determined by the size of the constrictions, while cavitation occurs at a pressure determined by the spontaneous nucleation of a gas bubble that mainly depends on the bulk properties of the fluid and temperature.

Indeed, when one neck pore shown in Fig. 2(b) is changed to one larger than the critical width, changing one neck shown in Fig. 2(b) to a large pore with larger width than the critical width \(H_c \), the adsorbate in the large cavity empties first along the vertical segment \(C_9-C_{10} \) by a pore blocking mechanism, because it is connected to the gas through the large neck pore whose width is greater than \(H_c \). On further reduction of cavitation of adsorbate takes place in the small cavity at \(C_{11} \), which empties along the segment \(C_{11}-C_{12} \).

Comparing the isotherm for matured cement paste (Roper, 1966, See Fig. 3) with the results Grand Canonical Monte Carlo simulation as shown in Fig. 2, we can divide water in hardened cement paste into four categories based on its local environment within the microstructure: Interlayer water, gel water, capillary water, and surface-adsorbed water.

Interlayer water in spaces with width of 2nm or less is bound strongly and is removed only at low RH. Traditionally, interlayer water is defined as residing between the silicate-rich layers of solid C-S-H integral to the structure of the solid. At that situation the water is in contact with rough surfaces built from silicate tetrahedra with nonhydroxylated dangling oxygen atoms. Furthermore, Jennings reported that substantial collapse and swelling of the interlayer space occur when water is removed and reinserted, respectively (Jennings, 2008). Thus it implies that the insertion of water into the interlayer space confers a mechanical disjoining effect.

Gel pores have also been defined as pores within the C-S-H gel. The gel pores has widths between approximately 2 and 10 nm. According to Aono et al. the structure of C-S-H varies with drying, gel pore changes greatly when compared before and after drying (Aono, et al., 2007).

Water in capillary pores with width greater than 10 nm are responsible for the hysteresis between drying and rewetting above 85%RH (Jennings, 2008; Jennings, 2004). NMR experiments (Muller, 2013) show that 85% RH is a relevant threshold value for the capillary pores to be empty. Since capillary pores is difficult to be filled up unless the sample is immersed; hence, pores of greater than 100 nm can be considered devoid of condensed water and simply lined with a thin shell of adsorbed water.
Surface-adsorbed water in empty pores is defined as the water present in gel and capillary pores after pores are empty of bulk water, present as a thin adsorbed layer on the walls. This adsorbed water is influential in determining shrinkage because it affects the surface energy of the solid-pore interface.

\[\sigma_s = \left(\frac{\partial \Omega}{\partial V} \right)_\mu_T \]

Hence volume changes with a slit-like pore with two immobile plates can be written as (Schiller et al., 2008):

\[\frac{\Delta V}{V} = \frac{\sigma_s}{K_{eff}} \]

where \(K_{eff} \) is the effective elastic modulus of the hardened cement paste, which responds to interior tensions produced by pores.

The thermodynamic approach overviewed above gives adsorption stress can describe deformation of mesoporous solids such as MCM-41 and Vycor glass in the course of adsorption-desorption hysteretic cycles as shown in Fig. 4 although it leaves the elastic modulus \(M \) in Eq. (4) as a fitting parameter (Gor et al., 2017).

However, cement paste exhibits completely opposite hysteresis (see Fig. 5). That is, swelling during the adsorption process is smaller than shrinkage during the desorption process over the whole range of RH from 0% to 100%.

Pinson et al. predicted the swelling and shrinkage behaviour of hardened cement paste using continuum model of deformation induced by RH change. Their model based on poromechanics can accounts separately for the three categories of pressure from gel and capillary water, interlayer water and surface water (Pinson et al., 2015). The results indicated that the hysteresis in swelling and shrinkage due to capillary pressure shows opposite direction, while the swelling effect of interlayer water plays a major role in hysteresis in swelling and shrinking behaviour. Feldman and Sereda pointed out that the reversal phenomenon does not occur when rewetting is initiated before drying below 25% RH (Feldman and Sereda, 1966). This indicates that the desorption and evaporation of interlayer water and some gel water, which holds water even at 25% RH, is the cause of hysteresis in swelling and shrinkage of hardened cement paste. However, they derivate the swelling and shrinkage due to the change in quantity of interlayer water based on a simple model that the strain is linearly proportional to the quantity of the interlayer water. This is empirical model and does not make clear the detailed action mechanism in which shrinkage occurs. Thus a self-consistent model of drying shrinkage that captures the hysteresis and explains the difference between cement paste and other mesoporous materials, like Vycor, is still lacking.
4.0 NEW MESOSCOPIC MODEL OF DRYING SHRINKAGE

In order to construct a self-consistent model of drying shrinkage, it is necessary to know the microstructure of hardened cement paste, in particular, the structure of C-S-H which strongly affects drying shrinkage of cement paste.

Recently, Jennings proposed a new hybrid model of C-S-H, which treats C-S-H as a gelled colloid and a granular material as shown in Fig 6 (Jennings, 2008). In his model the LD (low density) C-S-H gel is composed of aggregates of lamellar particles called globules. The globule pack together as colloids or grains of solid, and aggregates of globule fill space with specific packing densities. Notice that the globules have one set of properties, but their larger scale packed arrangement has another set of properties.

He also indicated that in the cement paste there exist small gel pore (SGP), large gel pore (LGP) and intraglobular pore (IGP) as well as capillary pores which are the voids which were originally filled in the hydrate by the space occupied by the kneading water. Form the Fig. 6 it seems that capillary pore and LGP may be not like slit-like pore, but rather as cylindrical pore. In contrast, both SGP and IGP are consists of slit-like pores. Furthermore, Jennings also insisted irreversible drying shrinkage is due to rearrangement of packing of the globules often with the effect of reducing the volume of gel pores in the 5 - 12 nm range (Jennings, 2007).

The interplanar distance without humidity change can be determined by the minimum value of the grand thermodynamic potential Ω of the adsorbed phase with respect to the pore width h at a given temperature and absorbate chemical potential. This condition can be given by the following equation:

$$\left\{ \frac{\partial \Omega}{\partial h} \right\}_{\mu,T} = 0$$

where λ is the decay length, a is the surface area for plate consists of slit-like pore and $\Pi_0 (\text{N/m}^2)$ is disjoining pressure. The unknown parameter for $\omega(h,\lambda)$ can be obtained from the experimental data about the thickness of water film on cementitious material surface.

Several researchers have been proposed the different type formulas to represent $\omega(h,\lambda)$. In this study, the author adopts the following two-parametric expression for slit-like pore proposed by Marceja and Radic (Marceja and Radic, 1976):

$$\frac{\omega(h,\lambda)}{a^2} = \lambda \Pi_0 \frac{\exp(h/\lambda) + 1}{2 \sinh(h/\lambda)}$$

where λ is the decay length, a is the surface area for plate consists of slit-like pore and $\Pi_0 (\text{N/m}^2)$ is disjoining pressure. The unknown parameter for $\omega(h,\lambda)$ can be obtained from the experimental data about the thickness of water film on cementitious material surface.
Badmann et al. quantified the statistical thickness of adsorbed water film on two nonporous C2S and C3S at 293°K (Badmann et al., 1981). The thickness of water film h is determined from the equation, and is represented as a function of vapour pressure P/P_0. On the basis of our fitting we obtain the values of the parameters to be used for modelling water adsorption on hardened cement paste surface: $P_0 = 20 \times 10^6$ N/m², $\lambda = 1$ nm.

Based on the thermodynamics, the expansion of slit-like pore due to an increase of the relative humidity from P/P_0 to $(P+\Delta P)/P_0$ requires the work $W(h)$ that put the water of increased volume ΔV into the slit-like pore. This work should be done against the interaction force, so-called disjoining pressure acting between the two parallel flat plates, which is given by the following equation:

$$W(h) = \int_{h=0}^{h=\Delta h} \frac{\partial \omega(h, \lambda)}{\partial h} dh$$

(8)

where Δh is the increment of width of slit-like pore due to change in the relative humidity from p/p_0 to $(P+\Delta P)/P_0$.

It should be noted that, in the grand canonical potential of the state at relative humidity of $(P+\Delta P)/P_0$ is equal to the sum of grand canonical potential of the state at relative humidity of P/P_0 and the excess work expressed in Eq. (8). According to this procedure, we can calculate the pressure increment ΔP corresponding to the increase of the width of slit-like pore.

For the shrinkage in the desorption process, we should consider the work to extract the water of ΔV from the slit-like pore, and the canonical potential of the state at relative humidity of $(P-\Delta P)/P_0$ is equal to that to subtract the excess work ΔW from the grand canonical potential of the state at relative humidity of p/p_0. Further, the volume changes are calculated using Eqs. (3) and (4).

On the other hand, the dry shrinkage of the cylindrical pores is estimated using the model proposed by Schiller et al. (Schiller et al. 2008).

Figure 8 shows the obtained theoretical swelling-shrinkage isotherms assuming that (a) all pore are slit-like and (b) all pores are cylindrical by using the experimental data of water-vapour sorption isotherms and swelling-shrinkage isotherms for cement paste published by Feldman and Sereda (Feldman and Sereda, 1968) of which sample is dried by degassing at 80°C. It can be seen that as compared with experimental data, the hysteresis in the shrinkage of cylindrical pores shows the opposite direction and underestimates the shrinkage. On the other hand, the shrinkage hysteresis of slit-like pore shows the same direction, but overestimates.

From the previous discussion on the microstructure of C-S-H, we assume that capillary pore and LGP consist of cylindrical pores, while SGP and IGP consist of slit-like pores, and calculate the deformation induced by humidity change in cement paste. The results is illustrated in Fig. 9 along with the experimental data (Feldman and Sereda, 1968). It can be seen that our model successfully reproduces the magnitude and general shape of the hysteresis in the reversible drying strain. Since our model can apply the other porous materials, we can construct a self-consistent model of drying shrinkage that captures the hysteresis and explains the difference between cement paste and other mesoporous materials. In addition, it can be seen that the changes in interlayer and small gel water may translate or upscale to macroscopic volume changes.
5.0 APPLICATION OF MESOSCOPIC MODEL OF SHRINKAGE INTO CONTROL OF SHRINKAGE CRACKING

There are two most common methods of reducing the potential for cracking in early ages of concrete (Weiss and Berke, 2002). The first approach is to reduce the magnitude of shrinkage, namely the intensity of stress in the material, while the second method is to reduce the rate of shrinkage, namely the rate of stress development, providing time to allow the cracking resistance to increase. Concrete containing shrinkage reducing admixture (SRA) generally shows a lower rate of shrinkage and a reduction in the overall magnitude of shrinkage. Thus, it is possible that the utilization of SRA presents a novel approach to minimizing drying shrinkage.

SRA that serves to reduce the surface tension of the pore fluid in concrete, was first developed in the 1980’s in Japan (Sato et al., 1983; Tomita et al., 1986). For the last few decades, several different SRAs have appeared on the market. The amount of shrinkage reduction due to SRA depends on its concentration, and the amount of reduction in drying shrinkage appears to be relatively independent of the w/c when the aggregate volume and the type are the same. The presence or absence of SRA does not significantly change the amount of water lost, however, it is a significant factor in the length change (Weiss and Berke, 2002).

Most researchers indicate that the use of an SRA, typically 2% - 5% by weight of water, results in a substantial reduction in overall shrinkage. A study of restrained shrinkage shows an increase in the resistance to early age cracking when an SRA is used. Experiments performed using slabs restrained at both the base and the ends indicate that the use of SRA can substantially increase the distance between cracks (Shah et al., 1997). This is significant, in that it may provide a justification for permitting larger joint spacing in concrete containing SRA. SRA also contributes to a reduction in autogenous shrinkage in high performance low w/c concretes (Bentz and Jensen, 2004; Weiss et al., 1999) and improves the resistance of concrete to plastic shrinkage cracking (Lura et al., 2007). Therefore, SRA has proved to be extremely beneficial in reducing the risk of shrinkage cracking in concrete elements.

The influence from SRA has been explained by the reduction in the surface tension of a pore fluid. The surface tension of the pore fluid affects the capillary tension. Thus, the shrinkage reducing mechanism of SRA has been mainly explained by the reduction of capillary tension in surface tension of a pore fluid. Based on our mesoscopic model, the mechanism of conventional SRA can be interpreted by the decrease of second terms in Eq. (6).

However, since the change of free energy is smaller, it is too difficult to be explained theoretically the effect of SRA from view point of surface tension. Indeed Tomita points out that the relation between drying shrinkage and the specific surface tension of the SRA varies depending on the type of SRA (Tomita, 1992). The author attempted to verify the effect of w/c on autogenous shrinkage, based on the changes in capillary pressure with the w/c. It can be seen that the capillary pressure theory is not capable of explaining the influence of the surface tension on autogenous shrinkage. This implies that some other driving force, such as disjoining pressure, is contributing to the effect of SRA.

Conventionally, it is thought that the capillary tension is dominant in dry shrinkage at high relative humidity, but based on our mesoscopic model it suggests theoretically that disjoining pressure is superior even at high relative humidity. This also coincides with the result of Fig.6 which shows that the drying shrinkage of the silt-like pores dominating the disjoining pressure dominates the total drying shrinkage of hardened cement paste. These discussion leads to a conclusion that one of methodologies to control shrinkage cracking of concrete is the control of disjoining pressure in hardened cement paste.

Ferraris and Wittmann introduced that disjoining pressure is essentially the sum of a series of attractive forces such as the Van der Waals force and repulsive forces such as a double-layer repulsion due to surface charge and the structural force of water molecules on pore wall (Ferraris and Wittmann, 1987). Double-layer repulsion is strongly affected by the chemical composition of the pore solution. These forces act not only on the surfaces of cement particles but also on the surfaces of the finer particles of hydrates such as C-S-H gel. The ionic concentrations of the pore solution vary according to the w/c. As the w/c decreases, the ionic concentration gradually increases and then the double-layer repulsion decreases. At this moment, the fine particles in the C-S-H gel flocculate, so that the total C-S-H gel shrinks macroscopically.

It is well known that the steric interaction between two adsorbed polymer layers absorbed on the pore plates consist of silt-like pore can also influence the disjoining pressure. Indeed, as shown in Fig. 10, the SRA that we used this time consists of a polycarboxylate-type polymer with a larger number of hydrophobic groups that is capable of strongly adsorbing onto cement particles (hereinafter referred to as NSR-1) with a surface tension similar to or slightly lower than water, and shows a higher drying shrinkage-reducing effect than the conventional SRAs that serve the lower surface tension of a pore solution in concrete (Masanaga et al., 2006).
Fig. 10. Relation between dosage of SRA and shrinkage strain at 28 days: SRA-1, SRA-2 and SRA-3 are commercial SRAs of which component is poly-oxalkylenegrycol, low-molecular-weight alcohols-alkylene oxide adduct and polyoxyalkylenegrycol alkyl ether, respectively.

From the results of Fig. 10, it is confirmed that the water in IGP and SGP plays the important role in the swelling and shrinkage in cement paste. Further, the result also shows that the disjoining pressure between the surfaces of globule in C-S-H gel is the main driving force of drying shrinkage. This fact implies the possibility of development of new SRA which can control the disjoining pressure in C-S-H gel by the other way.

6.0 CONCLUSIONS

This paper has first reviewed the development of theoretical mesoscopic approach for sorption isotherm and shrinkage of porous materials such as cement paste. Previous studies on sorption isotherms indicates that there are four different water in the interlayer space, gel pore, and capillary pores, and adsorbed water on the pore wall. The review also indicates that for the previous shrinkage model of the other porous materials cannot reproduce the shrinkage of hardened cement paste and a continuum model can be consistent with measurement data using semi-empirical fitting parameters, but they does not make clear the driving force and mechanism of hysteresis.

The new mesoscopic shrinkage model is proposed without any adjustment based on the microstructure of C-S-H and interaction potential energy between globules and/or aggregates of globules which are the unite particles of C-S-H. The most important feature of our model is to introduce the slit-like pore which is formed between two globules. It does not bond chemically but only by physical intermolecular forces and consequently it can be moved by the interactions between the two globules. Our model successfully reproduces the magnitude and general shape of the hysteresis in the reversible drying strain. Our model also can explain the mechanism of reducing shrinkage admixture. This mechanism is confirmed by the experimental data using shrinkage reducing admixture without reducing surface tension.

References

