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Optimal Multi-Agent Coordination under Tree Formation Gtraints

Wei Zhang and Jianghai HMember, IEEE

Abstract

The optimal multi-agent coordination problem tries to fihe motions for a group of agents that start from a set
of initial positions and end at a set of destination posgiwaith the least energy expenditure. Often times, the proble
is formulated with constraints on the formation of the agenamely, distances between certain pairs of agents need
to be kept constant throughout the process. In this papemptimal multi-agent coordination problem is studied for
the special case when the graph describing the formatiosti@nt is a tree. The equations characterizing the optimal
coordinated motions are derived in a suitably chosen coatdisystem. The solutions to these equations, however,
may fail to be optimal once extended beyond certain pointed¢tdhe conjugate points due to the failure of second
order optimality condition. Two methods for computing th@njigate points are introduced. For an instance of the
problem where the agents try to rotate around a center gbimtconjugate points along a natural candidate solution
are characterized analytically and verified through nuoaérsimulations. Moreover, better solutions are found that

consume less energy than the candidate solution after Xténded beyond its first conjugate point.

I. INTRODUCTION

Due to their diverse applications in engineering fields,tragent coordination problems have attracted increasing
attention of the control community in the recent years. Thagiplications include, for example, air traffic
management (ATM [9], [17], [30]), robotics ([4]), UnmannAdrial Vehicle (UAVs [26], [31]), and spacecraft [13],
[29], etc. In these applications, the system under studysistmof a group of agents that can coordinate their
motions to achieve a common goal or complete a common tabjeuo some practical constraints. For example,
the motions of the aircraft flying at the same altitude in daegf the airspace are coordinated by the air traffic
controller for on-time arrivals and at the same time avajdionflicts, namely, events when two aircraft are within
5 nautical miles horizontally in en-route airspace and 3tioalmiles close to airports. As another example, a team
of mobile robots may coordinate their motions to carry a cammbject from one end of the room to the other
end without dropping it or running into the obstacles. As avéxample, a group of UAVS may need to fly in a
certain formation to reduce their fuel expenditure and kagfive communication links among them.

In all these examples, there are separation constraintsi@mgent pairs due to safety, physical, or efficiency

reasons. Such constraints can be classified as formatimtraonis. In this paper, we study a version of the optimal
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multi-agent coordination problem with formation constitai More precisely, we aim to find the coordinated motions
with the minimum energy cost that can move a group of agewot® fgiven initial positions to given destination
positions within a certain time horizon, while at the sanmaetisatisfy some formation constraint, namely, the
distances between certain pairs of agents need to be kegtaobrihroughout the process.

Compared with the many existing works on multi-agent camation, the focus of this paper has several distinctive
features. First, we study the centralized coordinatiorblemm for multiple agents, rather than the decentralized
ones studied in, for example, [14], [20], [22]. Second, martlyer works on formation-constrained multi-agent
coordination focus on aspects such as stability (e.g. M, [[LO], [25], [28]), feasibility (e.g., [23], [27]), and
consensus forming (e.g. [3], [21], [24]); whereas this papeamong the few (see, e.g., [7], [11], [12]) dealing
with optimality of the coordinated motions. Furthermoretliis paper, simple kinetic models are used for the agent
dynamics, and only holonomic constraints are considergtdrformation constraints, as opposed to the numerous
works dealing with nonholonomic constraints (e.g. [1],][1&7]). Other related references can be found in the
collection [18].

Although some of the above features are limiting in practibey allow us to formulate and solve the optimal
coordinated motion planning problem for multiple agentshwformation constraints analytically, and to obtain
higher order optimality conditions such as those charaetdrby conjugate points, thus making this paper one of
the few contributions that can accomplish these two goadsciically, the main contributions of this paper consist
of the following. By focusing on tree formation constrainfgeodesic) equations are derived to characterize the
solutions to the optimal coordination problem. Since thegeations are only necessary, their solutions may fail
to be optimal once extended too long for various reasons,obnghich is the occurrence of conjugate points.
For an instance of the problem where the group of agentserataiund a common centroid, we derive the Jacobi
equation that can be used to characterize the conjugatées@ong a candidate solution, and propose two methods
for its solution. These methods are tested on a family of toeeation constraints, where we derive analytically
the conjugate points, as well as the better solutions oneedindidate solution is extended beyond its conjugate
points.

The multi-agent coordination problem studied in this papariginally proposed in its preliminary form in [11],
and studied for a special case in [12]. This paper is a ganatian of these works, and contains several significant
improvements. First of all, this paper studies the much ngergeral tree formation constraints, for which the snake
formation studied in [12] is only a very special case. Secdnid paper derives equations for the optimal solutions
whose coefficients are matrices dependent on the graphilbiegcthe tree formation constraint, and in particular,
for the case studied in Section IlI-C, optimality condionn the initial positions of the agents in accordance
with the graph and their mechanical interpretations. Fergshake formation studied in [12], these conditions are
trivially satisfied. More importantly, from a computatidr@oint of view, the Jacobi equation derived for the tree
formation constraint in this paper is of the forint L4 + Loz = 0 for some nonzero matrices; and Ly, which
necessitates the solution of a general second order méffexeshtial equation through matrix polynomial and latent

roots/vectors analysis [19]; whereas in [12], the malrixis zero, and a simple eigenvalue/eigenvector analysis of
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Ly will suffice. Hence this paper deals with a much more chailepgroblem than the one studied in [12]. See
Remark 3 in Section IlI-D for further comments on this aspect

This paper is organized as follows. In Section II, the gelnéwemation constrained optimal multi-agent
coordination problem is formulated. Then in Section Ill, f@eus on the special case where the formation graph is
a tree. First, the problem is reformulated as an optimalrobptoblem in a more convenient new coordinate system
(Section 1lI-A). Then, first order optimality conditionseaderived by using the optimal control theory (Section IlI-
B). Next, for an important instance of the problem where theug of agents rotate around a common centroid, a
natural candidate solution is proposed based on the firsr @ahditions (Section 111-C). For this candidate solution
second variation is then carried out to derive the Jacobatgu that characterizes the conjugate points beyond
which the candidate solution will fail to be optimal (Sectidll-D). In Section IV, two methods are proposed
to solve the Jacobi equation. These methods are illustiate®ection V, where for a family of tree formation
constraints, we derive analytically the conjugate poitdsigthe candidate solution (Section V-A), and verify them
numerically (Section V-B). Better solutions are also dediwhen the candidate solution is extended beyond its

first conjugate point (Section V-C). Finally, some conchglremarks are given in Section VI.

II. OPTIMAL FORMATION CONSTRAINED MULTI-AGENT COORDINATION

In this section, the problem of optimal multi-agent cooetion under formation constraints is formulated. We
first introduce some notations.

Considern + 1 agents moving on a plarR?. Their positions are denoted by the ordetedr 1)-tuple (¢;)? , =
(q0,- - -,qn), Whereg; € R? is the position of agent, i = 0, ...,n. A formation constraint on the locations of the
n + 1 agents can be described in terms of an undirected gfagh(V, £), whose set of vertice¥ = {0,...,n}
consists ofn + 1 nodes that correspond to the+ 1 agents, and whose set of edgeéss a subset ofY x V.
An (n + 1)-tuple (¢;)?, is said to satisfy the&j-formation constraintif and only if for each edg€i,j) € €&,

0 <1,5 <mn, the distance of ageritand agenyj is at a prescribed value (say, unity):
llgi — q;]| = 1 for each(i, j) € &.

Note that in the above definition, {t, j) is not an edge i€, there is no constraint on the distance between agents
i andj: ||gi — g¢;|| can be either greater or smaller than 1.

Problem 1 (Optimal Formation Constrained Multi-Agent Cdimation): Given a formation graply, and the
starting position(a;)? , and the destination positioth;)? , of the n + 1 agents, find the motionég; (¢))?,
of the agents over a time intervf, ¢ ;] so that

1) for each agent, it starts froma; at time0 and ends ab; at timety, i.e., ¢;(0) = a;, qi(ty) = b;;

2) the locationg¢;(t))™, of then + 1 agents satisfy thg-formation constraint at all timesin [0, ¢/];

3) the total energy expendituteis minimized, whereJ is defined by

J:Z/O ld:]1? dt. (1)
=0
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Remark 1:A justification for choosing the energy expenditufeas the cost function for the problem can be
found in [11]. Intuitively, J is the sum ofn 4+ 1 terms; and minimizing each terrfgf lld;||* dt will tend to make
the motiong; (¢) for agent: follow a straighter path with less speed variations. In cargon, if termfotf lg: |l dt is
used in the definition off instead ofjof lld;||? dt, then, asfof lld:|| dt is the length of the curve;(t), 0 <t < ty,
motions that follows the same path will have the same costp éhiough some may be smoother than others.
Obviously, in practice, smoother motions should be favored

For brevity, in the rest of the paper, the above problem wélicalled the OFC problem. Thus the OFC problem
tries to find the coordinated motions of the+ 1 agents that can move them frofu;)?"_, at time 0 to (b;)7
at time ¢ty with the minimal energy expenditure, while at the same timantaining theG-formation constraint,
namely, the distance between agentnd; is kept at the constant 1 at all times f@r j) € €.

The starting positioda;)?_, and the destination positioi; )7, are calledalignedif they have the same centroid:
n_+1 S = n_+1 St obi =c. In[11], it is proved that the general OFC problems can beiced to the OFC
problem where the initial and the destination positionsaigned. Hence without loss of generality we assume in
the rest of this paper that;) , and (b;)!_, have a common centroid say, at the origin.

Assumption 1:Assume that the initial and the destination positions aignatl at the same centroid= 0:

n

n+1Z n+1zb_0

Under this assumption, the following result can be used dkma:e the complexity of solving the OFC problem.
Lemma 1 ([11]): Suppose that in the OFC problem the starting positiey)}_, and the destination position
(bi)7—, are aligned at the common centraid= 0. Then the optimal solutiong;), to the OFC problem under

any formation constraing satisfy

i(t) =0, VYtel0,tr].

—) Zq [0, 2]

In other words, the positions of the+ 1 agents during the optimal coordinated motions are alsceceditat the
origin under arbitrary formation constraints. This in effeeduces the dimension of the problem by two: the optimal

solution (qo, . . ., g,) as a curve iR?("*+1) lies in a subspace of codimension two.

IIl. OFC PROBLEM UNDER TREE FORMATION CONSTRAINT

In this paper, we focus on the OFC problem with a particulamfgtion constraint structure, namely, whéris
a tree. A connected undirected graph is callgceaif it has no loop. For a treg = (V, &), typically a node, say,
node O, is identified as the root, and a layered structure eaestablished for the rest of the nodes according to
their distances to the root. More precisely, a partial orglaran be defined o so that two nodes and k satisfy
1 <X k if and only if nodei is a predecessoof nodek, or equivalently, if and only if nodeé is on the shortest path
between nodé: and the root. Otherwise, we writeZ k. Note thati < 4, and that it is possible that bothZ£ k
andk £ i are true for certain nodesand k. As an example, in the tree shown in Fig. 1, we have 6, while
346 and6 A 3.
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Fig. 1. An example of arfn + 1)-tuple satisfying a tree formation constraint £ 6).

A. A New Coordinate System

It turns out that in studying the OFC problem with a tree fatiovaconstraing, it is more convenient to work in
a different coordinate system than the canonigg). . ., g,,) for representing the agents’ positions, as the formation
constraint is not intrinsically encoded in the latter systdo see this, le{g;)?_, be an(n + 1)-tuple satisfying
the G-formation constraint. For each edgek) € £ where node is an immediate predecessor of nddewe can
associate an angle, defined as the phase angle of the vectpr ¢;. See Fig. 1 for an example when= 6.
Note that sincdi, k) € £ and(q;)!"_, satisfies th&j-formation constraint, we must hayle; — ¢x|| = 1. Thus if we
identify R? with the complex plane&, then from the above definition, we hayg — ¢; = /% wherej = /—12.
As a result, the positiog; of an arbitrary nodeé can be expressed in terms of the positignof the root and the
angles associated with all the edges on the shortest pathtfre root to node as:
4 = qo + Z % i=0,...,n. (2)
k=i, k#0
Note that the summation in (2) is over all the predecessordes, including node; itself, except the root.
By Assumption 1 and Lemma 1, the optimal solutidng?-, must satisfyd ;" ; ¢; = 0 at all times. Substituting
in (2), we have
n
(n+1)q + Z Z el =0,
i=1 k=i, k#£0

or equivalently,

n

1 S 1 Xk 0
S DD M W ®
n+l i=1 k=i, k#£0 1 " +1

1in this paper, can either denote/—1 or be an integer index. There should be no ambiguity in itsnimgpas we have ensured thatvith
the two different interpretations will not appear in the saexpression in the rest of the paper.
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In the above equation, for an arbitrary nodether than the rooty; is an integer associated with nodelefined

as the number of successors of nadecluding node; itself. More precisely,

Xi =#{k#0: i =k} (4)

As an example, in Fig. 1, we hawg = 5, x2 = x3 = X5 = X6 = 1, and 4 = 3. Using (3), we can rewrite (2) as

n n
. n+1—xk i Xk o .
q; = Z ‘ni—i-le k— Z .n—+1€ k, Z—O,...,TL. (5)
k=1, k=i k=1, kA
Equation (5) defines a coordinate transformation betweenctmonical(qo,...,q,) and the new coordinates
(01,...,6,). Note that in the new coordinate system, the formation camgt namely,||¢; — gx|| = 1 whenever

(i,k) € €, is implicitly encoded.

We now derive the expression of the enerfjgefined in (1) in the new coordinate system. Differentiat{By

and taking the norm square, we have

2

) n+1l—xk. 9, Xk . 04
ll4sl* = Zﬁjeﬂwk— n—HJGka
k=i kZi
n+1—Xxk. o5 Xk - iows n+1l—Xk. _jg.; Xk . _ig g
= Zije kG — —— el | - —2736 J k9k+z—je Ik Q)
Py n-+1 kﬁn—i—l =t n-+1 kﬁ,n—i—l
(n+1—xk) 2 (n+1—xk)(n+1— xks) w
=y =20+ Y . 2 cos(0k, — Ok, )Or, O
2 k D) 1 2 1Vko
=t k1 =i, ko <, k1 £k (n+1)

2

Xk 72 Xk1 Xk 4

+ Z (TL + 1)2 ek + ‘ Z (TL ¥ 1)2 COS(@kl - 9k2)9k19k2
kZi k12, kaAi, k1#k2

n+1-— ..
-y P o, — 0,
ks <, ka2 n

for = 0,...,n. Note that the running indice’s, k1, k2 in the above equation are all assumed implicitly to take

values in the range, ..., n. Moreover, the summations involving and k. are over ordered pairgk;, k) and
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(ke, k1) are counted separately. As a result, the enefgan be written as

tf n
1=/ (Z ||qi||2>dt
0 i=0
2

_/Of{z[(n—l-l—)(k) 'Xk+(n§—k1)2.(n+1—Xk) 9%

(n+1)2

(n+1—xr)(n+1—Xk) Ak 2 ke <)

+ 2 :
k7 (n+1)

Xk1 Xk2 . . .

e ik k

(n +1- Xkl)xk2 . : ;

— . c k1 Xi,k
Xk (R + 1 — Xk) . . , o
— L (n T 1)2 2. #{Z : kl f 7, kg j ’L} . COS(9k1 — 9k2)9k19k2 dt
ty n .
:/ < Z Ak, iy c0s(0, _9k2)9k19k2>dt- (6)
0 \gy k=1
The constantg\, , in equation (6) can be determined by comparing the coefligiesith the previous equation.
Specifically, for eactk = 1,...,n,
(n+1-x)? X Yi(n+1—=xz)
A = . R 1— = - 7
Forky,ko=1,...,n with k1 =< ko,
("+1—Xk1)(”+1—xkz) Xk1 Xk2 (”+1—Xk1)sz
A - . AkiAks 1 — _ . _
k1ko (7’L+ 1)2 ke T+ (7’L+ 1)2 (TL—|— Xkl) (7’L+ 1)2 (Xkl Xk2)
_ (41— Xk )Xks
n+1 '

Similarly, for ki, ke = 1,...,n with ko < ky,
Xka (1 + 1 — Xgp)
Ak1k2 = E n+1 2 .

_ Xkl(n+ 1 _sz)

Xk (n T 1)2 * Xk2

On the other hand, ik; A k2 andks £ k1, then
(n +1- Xk )sz .

Xk1 Xko
A = 1— — _
kik2 (n+ 1)2 (n+ Xk1 sz) (n+ 1)2
_ _thkz
n+1"
To sum up, the energy expenditufein the new coordinate system becomes

tr [ & .
J = A <Z Aij COS(@i - 9J)919J> dt, (8)

ij=1

where the constantd;;, 1 <4,j <n, are defined as

(n+1-xi)x; if i<

n+1 ?
Ay = Xv(”:i_&l—xj)7 if j <4, 9)
— XXy otherwise.

n+1"?
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and the matrix

Define the (column) vectof = (64,...,6,) € R™
Then (8) can be simplified as
ty .
J= / 07 G(6)6 dt. (11)
0
Thus the OFC problem is reduced to the following optimal cminproblem:
(12)

Minimize /tf luT(t)G(t9)u(t) dt subject to u(t) = 0(t), t € [0,ts], 0(0) = o, O(ty) = 0;.
0

Herefy, 6y € R™ are chosen to match the initial positi¢a;)], and the final positior{b;)"_,, respectively.
Remark 2: The matrixG(0) is indeed the Riemannian metric in the coordinate syst®m . ., 6,,) transformed

from the canonical Euclidean metric ®?("+1) via the coordinate transformation (5), aridn (11) is the energy

of the curved(t), 0 < t < ty, as measured by this metric. Thus the optimal control prol(#2) is equivalent to

finding the shortest distance curves frémto 6, parameterized with constant speed [5].

B. Optimality Condition Obtained by First Variation
We now solve the optimal control problem (12). Define the Haomian

H = %UTG(H)U + A,

where\ € R” is the co-state. Then by the Maximum Principle [2], the oplim is determined by

u = argmin, H = argmin, %uTG(e)u + Ayl = GO)u+ =0,

while the dynamics of\ is given by

0H 10 ;¢
A== = 2gg v GO
Combining the above two equations, we obtain
\ = ~G(0)i— +-G(0)
u dt u

10
~350 [UTG(O)U} =)A=

Sinceu = 6, the above equation can be rewritten as
. 10 [ap . d :

GO = 555 [9 G(@)e} ~ =G(0) 6. (13)

Equation (13) is called thgeodesic equatiorand its solutions are called geodesics, as the optimal aontr

problem (12) under study is an instance of the shortestrdistproblem under a suitable Riemannian metric [5]

(see Remark 2).
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Evaluating thek-th component of the above vector equation (13), we obtain

[609), = 33, [i7o0] - [ 0014,

Z Ay cos(b; —9) 'j + Z AkjSiH(ek—ej)(ék—éj)éj

1,j=1 1<i<n

1<j<n 1<j<n

9
00y,
1
:§|: Z Ay sin(0x — 0,)0x0; + Z Ajysin(8; — 01,)6;0%

+ Z Akj sin(@k - Hj)(ék — 6‘7)97

1<j<n
=— > Apsin(0k — 0;)060; + > Ayysin(0r — 0;) (0 — 60;)0;
1<j<n 1<j<n
=— > Ayysin(0y, — 0;)02,

1<j<n
where[-], denotes thé-th component of a vector. Therefore, the geodesic equétiBhis equivalent to
[G(e)é]k S é;n Agjsin(6, — 6,)62, k=1,...,n. (14)
From the standard result of optimal control theory, equefibl) gives a necessary condition for a cuéye) to
be a solution to the OFC problem. Conversely, a cw#tid, ¢ € [0,t¢], satisfying the geodesic equation (14) is a
solution to the OFC problem i is sufficiently small [2], [5]. However, for large;, the optimality ofé(¢) may be
lost due to various reasons. Later in this section, we wildgtone of them, namely, the occurrence of conjugate

points.

C. A Special Instance of the OFC Problem and Its Candidatet®ols

Instead of studying the general solutions to the geodesiatean (14), we consider a special case. Suppose that
the initial position{(a;)? , and the destination positiotb;)_, of the n + 1 agents are not only aligned at the
common centroid), but they can be obtained from each other by a rotation artlhumarigin. More precisely, we
assume thal; = Rtf(ai), 1 =0,...,n, where for eactw € R, R, denotes the rotation operation around the origin
by the anglex counterclockwise.

Under this assumption, a natural candidate solutivn= (¢;)?_, to the OFC problem under any formation
constraintG can be described as follows; (t) = R(a;), t € [0,t¢], 2 = 0,...,n. In other words, all thex + 1

agents rotate at unit angular velocity counterclockwiseiad the origin from{a;)? , at time0 to (b;)!"_, at time

ts. In the coordinate systetth= (61, ...,6,) constructed in Section lll-A, this candidate solutighcorresponds
to

0" =0y +1t-1, (15)
wheref, = (6?,...,60%) is the new coordinate corresponding to the initial positiep)?” ,, and1 € R™ is the

vector whose components are a8.
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In order forg* to be a solution to the OFC probleri; must satisfy the geodesic equation (14). Sifite= 0,
0% =1, andd; — 0% = 6 — 6" are constant foil < j,k < n, we must have
> Apsin(@) —69)=0, k=1,...,n. (16)
1<5<n
Equation (16) is the condition ofy so that starting from the corresponding initial positi@n)?_,, the coordinated
motion ¢* obtained by rotating around the origin satisfies the firseomptimality condition (13).

1) A Mechanical Interpretation of Condition (16Y0 better understand the implication of condition (16), ve&tn
develop a mechanical analogy. To this purpose, we first paaveeful identity. Suppose thé, ..., 8,) is the new
coordinate for arfn + 1)-tuple (¢;), satisfying theG formation constraint under the coordinate transforman
described in Section IlI-A, and leh;; be defined as in (9).

Lemma 2:For eachl = 1,...,n, we have
Z q; = Z Alk eij . (17)
{i:1=4} 1<k<n

Proof: Substituting in (5), we have

DV D R P L

{i: 14} {2:14} \k=Xi kA1
n+1-— .
I R R
{k: 1=k}
n+1-— Xk i0 Xk 14
+ Z xp el — Z ﬁ.xlejk
{k: =1} {k: kAL, 12K}
_ Z (n+1—x1)xx Ci0k Z xi(n+1—xk) cit Z XXk o,
n+1 n+1 n+1
{k: 1=k} {k: k=1} {k: k21, 12k}
The desired conclusion can be obtained by comparing thdideets in the last equation with (9). ]
Now supposé), = (67,...,6°) is the new coordinate corresponding to the initial positiap?_,, and that it
satisfies condition (16). By Lemma 2, for eatl 1,...,n
DL BV
{i:1=4} 1<k<n
Thus, if Im[:] denotes the imaginary part of complex numbers, then
m [ S ] e =im | Y Ap e = N Apsin(0) - 6f) =0, (18)

{i:1=4} 1<k<n 1<k<n
where the last equality follows from condition (16). Sinceey step of the above derivation is reversible, we

conclude that condition (16) is equivalent to the following

the vector > a, is of the same direction ad? fori=1,...,n. (19)
{i: 14}
Note that for eacli = 1,...,n, since nodd is not the root, it has an immediate predecessor, say, hogg the

definition of 69, 7%’ is the direction of the vectar, — a;. Hence condition (19) says that the sum of the positions
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\ Ya . Yi
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Fig. 2. Examples of different initial positions: (a) and &gtisfy condition (19) while (b) does not. However, (c) does satisfy Assumption 1.

of all successors of node including noded itself, is of the same direction as the vector pointing frdma position

of the immediate predecessor of ndd® the position of nodé. In particular, if node is aleaf, namely, a node
with no other successors other than itself, then conditi®) éays that its immediate predecessor must be located
on the line connecting; and the origin. For example, the agentin Fig. 2-(b) is a leaf, but its predecessaris

not on the line connecting, and the origin; thus the initial position in Fig. 2-(b) doest satisfy condition (19).

A mechanical interpretation of condition (19) can be giverfalows. Corresponding to the + 1 agents, there
aren + 1 unit point masses located a§, . .., a,. For each edgéi, j) € £, there is a rigid rod of zero mass and
unit length connecting théth and thej-th agents. Moreover, for each ageénthere is a centrifugal force pointing
from the origin toa, with the strengthj|a;||. Then it can be easily verified that the initial conditign)}’_, satisfies
condition (19) if and only if the mechanical system desatibbove is in equilibrium, namely, all the forces acting
on each agent, including the centrifugal force and the ®inethe rods connecting to it, add up to zero.

By noting the constraint tha} . ,a; = 0, an alternative mechanical interpretation can be giveno#ews.
Instead of the centrifugal forces, assume that in(the- 1)-point mass system connected by rods described above,
for each pair0 < ¢,j < n, the point mass located at has a repulsive force af; — a; acting on the point mass
located ata;. Then it can also be verified that condition (19) is equivatenthat this mechanical system is in a
balance of forces.

If the initial position satisfies condition (19), or equigatly, condition (16), thel@* defined in (15) is a solution
to equation (13), hence is a candidate solution to the qooreting OFC problem. The above mechanical analogies
provide much easier-to-use criteria for checking whettewith a given initial position is a candidate solution.
As examples, one can immediately see thiais a candidate solution for the initial position shown in .Fy(a),
but not for (b) and (c). The reason is that the point-massgystorresponding to (b) is not in a balance of forces,

while although (c) satisfies condition (19), it violates Aswption 1.

D. Optimality Condition Obtained by Second Variation

Consider the special instance of the OFC problem describeSetction 1lI-C. Suppose thau,)} , satisfies

condition (16). Then the candidate solutiéhdefined in (15) satisfies the first order optimality condit{@4), and,
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as a result, is an optimal solution to the OFC problentyiis sufficiently small.

However, as the time horizoty increasesf* may fail to be an optimal solution to the OFC problem. One
possible reason is the occurrence of conjugate points fidhely, the failure off* to meet the second order
optimality condition. Intuitively, a conjugate point is @vuntered along a geodesic when infinitesimally there are
more than one geodesic connecting its two end points. Fosithplest example of conjugate points, consider a
sphere. Geodesics on the sphere are great circles. A grekg eimitting from the south pole will no longer be
distance-minimizing between its two end points after pap#is first conjugate point, namely, the north pole. The
reason that the north pole is a conjugate point is because ihanore than one great circle connecting it to the
south pole.

In order to characterize the conjugate points al8hgwe need to find the variation @fin equation (14) around
the nominal solutiord*. To this purpose, leff(t) € R™ be a variation ob*(t) for ¢ € [0,¢/]. Since the two end
points of8* are fixed, the variation must be proper, i#(0) = é6(t;) = 0. Taking the variatiordd in (14) along
the solutiond*, we obtain

[G(o*) .60 + 6G(0%) - 9} = > Ayjcos(B; — 07)(00x — 60;)(6;)* — > 24 sin(6}, — 07) 6 66;,

1<5<n 1<5<n
for k =1,...,n. Note thatd* = 0, 9'; =1, and6; — 05 = 6 — ). Thus, the above equation is reduced to

[G(e*) : 5‘9]k == 3 Aujcos(0) — 09)(60, — 66;) — > 284 sin(69 — 09)36;

1<j<n 1<j<n

=—| > Agjcos(0) —09)] 66k + Y Ag;cos(B) — 69)56;
1<5<n 1<552n
— D 2 sin(6]) — 69)00; . (20)
1<j<n

To simplify the above equation, define the constants

pe= Y Agjcos(0) —09), k=1,..n (21)

1<j<n

Define the matriced. and G5(6*) € R"*" as

A=diag(p, ..., pmn), Gs(0%) = [Aysin(6] —67)] 1<ij<n" (22)
Then equation (20) can be written in matrix form as
G(07) 60 = —A 66 + G(0%) 60 — 2G4 (6%) 80,
or equivalently,
60 = —2G(0%) " G (0%) 60 — [G(0*) T A — 1] 66. (23)

Equation (23) is called thdacobi equationA conjugate point along* (or alongg* in the canonical coordinates)
occurs at timer if there is a nontrivial solution to the Jacobi equation thaishes at both time 0 and timei.e.,

if there is a solutionyd(t) not identically zero fort € [0, 7] with §6(0) = 66(7) = 0. By the standard result of
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optimal control theory [2], [15], once; > 7, 6* will no longer be optimal, or equivalently, the corresporgi*
will no longer be the optimal coordinated motion of the- 1 agents from(a;);, at time0 to (b;)}"_, at timety.

In the next section, we will find the conjugate points ala@tgby solving the Jacobi equation. From the above
discussions, this will give us upper bounds fgnfor the optimality ofg*.

Remark 3:In theory, the Jacobi equation (23) can also be derived girapurely differential geometric approach
by computing the curvature tensors of the Riemannian méit(@), similar to the one adopted in [12] in studying
the special snake formation case. However, such an appi@atinost infeasible here due to the increased problem
complexity caused by the general tree formation structdesce the direct variational approach is adopted here.

Remark 4:As another remark, although in this section we only carry thet second variation for the special
instance of the OFC problem described in Section IlI-C, Baequation similar to equation (23) can be derived for
an arbitrary instance of the OFC problem around any cangliglalution satisfying equation (14) by using a similar
approach. In these general cases, however, the coefficiatnices in the Jacobi equation are no longer constant,

but time-varying instead. Thus the solution of the Jacohia¢ign becomes a much more challenging task.

IV. SOLUTION OF THE JACOBI EQUATION

To solve the Jacobi equation (23), we first write it in the genform
Lod + L1 + Loz = 0, (24)
wherex = 66, and Ly, L, and L, are constant matrices defined by
Ly=1, L;=2G0")'G.0%), Lo=G(O) 'A-1.

From the discussions at the end of Section IlI-D, in ordertd the conjugate points alor#tj, we need to solve
equation (24). In particular, we need to find those nontris@dutionsz(t) that vanish at both time 0 and a positive
time 7. For each such solution, a corresponding conjugate polotaed a¥* (7). In this section, two methods are
proposed to solve equation (24): a direct method suitablarfialytical calculation and an indirect method suitable

for numerical verification.

A. Direct Method

The equation (24) is a second order homogeneous matrixeliffiel equation (MDE) with constant coefficient
matricesLg, L1, Lo € R™*". A standard way of solving a general MDE is described in [19] @an be adopted
to solve our problem. In the following, we review some of thepbrtant results. The interested reader can refer
to [19] for proofs and other details.

Definition 1: Consider the homogeneous constant-coefficient MDE of drderen by
Liz® () + L2V () + - 4 LiaW (t) + Lox(t) = 0, (25)

whereLg, Ly, ..., L; € C"*", det(L;) # 0, andz : R, — C™ is I-time differentiable. Define thmatrix polynomial
l
as:L(\) = >, ML, for A e C.
3=0
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1) X is alatent rootof L(A) if det(L(X\g)) = 0;
2) A nonzero vectow, € C” is alatent vectorof L(\) associated with a latent rody if L(Ag)vo = 0;
3) A sequence of vectorsj,vi,...,vx—1 € C™ with vg # 0, is a Jordan chainof length k& for L(\)

corresponding to the latent rody if the following & relations hold:
L()\())Uo = O,

1
L(Ao)v1 + FL(D(/\O)UO =0,
. (26)

1
L()\O)Uk—l + FL(l)(/\o)Uk—Q + -+ L(k_l)()\o)vo =0.

(k—1)!
Here LU)()\) denotes the-th order derivative off,(\) with respect to\.

The above definitions for a matrix polynomial is conceptualmilar to the eigenpairs and the Jordan chains of
a numerical matrix except that the number of the latent rodt5(\) (counting multiplicity) isl - n, and that the
latent vectors associated with different latent roots arenecessarily linearly independent. Vectors in the same
Jordan chain of.(\) could also be linearly dependent. On the other hand, most ¢dlats about the Jordan chains
of numerical matrices still apply here. For example)jfis a latent root ofL.(\) with algebraic multiplicityn; and
geometric multiplicitym;, then there aren; sets of Jordan chains associated withand the numbers of vectors
in these Jordan chains sum uprtp See [19] for more details.

With the above definitions, the following lemma describes thlationship between the Jordan chains i)
and the primitive solutions of the MDE (25).

Lemma 3:Let L(\) be the matrix polynomial associated with MDE (25).

1) If vy andwv; are two latent vectors of(\) associated with latent roots, and \; (Mg # A1), respectively,
thenzo(t) = vo e*? andz (t) = vy et are two linearly independent solutions of the MDE (25).

2) If vg,v1,...,vx—1 is @ Jordan chain of length for L()\) corresponding to the latent roag, then

Aot

3

xo(t) =voe
x1(t) =(tvg + v1) et

(27)
k—1 s
xp—1(t) —<Z %vk1j> ot
j=0
arek linearly independent solutions of the MDE (25).
3) Solutions of the form (27) but belonging to different Jamdchains ofZ(\) are linearly independent.
MDE (25) has ari - n-dimensional solution space. By Lemma 3, a Jordan chainngftiet for L(\) can provide
exactlyk independent solutions. Thus the whole solution space dffbg (25) is fully characterized by the Jordan

chains of the corresponding matrix polynomial\), as is summarized in the following theorem.



PURDUE ECE TECHNICAL REPORT: TR ECE 07-14 15

Theorem 1:Let L(\) be the matrix polynomial associated with the MDE (25), whinets a total ofs different
sets of Jordan chains of sizes, . .., ns. Let X be ann x In matrix whose columns consist of all the vectors in these
Jordan chains. Corresponding to these Jordan chains, weedefblock diagonal matri¥, = diag{Ji, ..., Js},
where J; is a Jordan block of size;, j = 1,...,s. Then(X,J;) is called aJordan pairof L(\), and every

solution of MDE (25) has the form

z(t) = Xelt'z (28)

for somez € C'™.

The conjugate points alorgf can be located by finding particular solution&) to the equation (24) that start
from zero and come back to zero at a later time. Since equéibnis just a second order MDE, by Theorem 1,
its 2n-dimensional solution space is spanned by linearly indépenvector functions defined in terms of the latent
roots and the corresponding Jordan chaind.©f). Therefore, the problem of finding the conjugate point®df

can be transformed to computing the latent roots and theadarHains ofZ.(\).

B. Indirect Method

X
Another way of solving equation (24) is to transform it intdist-order MDE. Denote; = € C?", Then

T
equation (24) is equivalent to
. 0 I A
y= . | v= Ay (29)
—Ly;"Ly —L3;"Ly
Hence, by the standard result of linear system theory, thdiso to equation (29) is
t 0 My1(t) Miyo(t 0
y(t) = x(t) _ A z(0) | o 11(t)  Mia(t) z(0) ' (30)
a(t) i(0) Mo (t)  Maa(t) #(0)

We are interested in those non-trivial solutian@) that start from0 at time 0 and come back t0 at some finite

time 7 > 0, i.e., z(0) = z(7) = 0. Sincez(0) = 0, by (30), such a solution is of the form
z(t) = Mia(t) - £(0).

For non-trivial solutions;i:(0) # 0. In order forz(7) to be zero,M;»(7) must be singular. Thus, we can find the
conjugate points of* by looking for thoser > 0 at which M;2(7) is singular.

The indirect method is conceptually much simpler than tmeadimethod. However, in our case, it is difficult to
analytically compute the matrix exponential’ and thus in turn the conjugate points. On the other hand,runde
tree formation constraints, the matrickg, L, and L, usually have some special structures that one can employ to
analytically characterize the latent roots, latent vextand in turn the solutions to the Jacobi equation (24). én th
next section, we will illustrate this by using first the direeethod to analytically compute the conjugate points of

0* for a particular class of tree formation constraints andh ttie indirect method to numerically verify the results.
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Fig. 3. Initial position for an example formation of agentghan = 5.

V. AN EXAMPLE

Consider the tree formation patteth= (V, £) where the root node 0 has(n > 2) immediate successors, i.e.,
Vv ={0,1,...,n} and&= {(0,i) : i = 1,...,n}. Suppose that the starting positiofis)}"_, of the n + 1 agents
are give by:ag =0, a; = (cos((i — 1)¢p),sin((i — 1)¢py)), i = 1,...,n, where

6 = 2T (31)
n

In other words, at time¢ = 0, agent0 is located at the origin while all the other agents are eveldributed on
the unit circle. Thus in the new coordinate systen,= (09)", = ((i — 1)¢,)",. See Fig. 3 for an example
whenn = 5. Suppose that the destination positions @rgj", = (R, (a:))j—,- As in Section IlI-C, we consider
the candidate solutiog*(t) = (¢} (¢))7_y = (R¢(a:))i—y, 0 <t < ¢y, which in the new coordinate system is given
by 6* defined in (15). It is easy to see that;)!" , satisfies condition (19), hence condition (16). Thlsis a
solution to the geodesic equation (13). As a resultyifs sufficiently small, the coordinated motion described by
q*, namely, agent 0 remains at the origin while all the othené&gyeotate around it at constant unit angular velocity,
is a solution to the OFC problem. However, the first conjugetiat alongd* occurs atd*(r,,) for some positive
time 7,, dependent om, implying thatf*, henceg*, is no longer optimal ift; > 7,,. In this section, we shall use

the two methods in Section IV to derive .

A. Analytical Solution

The analytical computation of the conjugate points aléhgan be broken up into three steps. First, we compute
the constant coefficient matrices in the Jacobi equatiorthisr particular example. To solve the Jacobi equation,
we next find all the latent roots and latent vectors of the eggonding matrix polynomial. Using these latent

roots/vectors, we can then obtain the general solutionkeflacobi equation, as well as the conjugate points.
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1) Computation of the Coefficient Matrices in the Jacobi Bauma To find the conjugate points alordj, we

need to solve the Jacobi equation (24). First we compute tledficient matricesLy, Li, and L,. Under the

formation patterrg, we haveyxo =n + 1, andy; =--- = x, = 1. ThusA,; defined in (9) becomes
o ifi=7,
A =" 1<4,j<n, (32)
=, ifit],

and the matrixG(6) defined in (10) evaluated alor®f can be simplified to

G(0") = [9i]1<ij<n = [Aij cos(0] — 0)]1<ij<n = [Auj cos((i = 5)bn)]y<; i< - (33)

Similarly, the matrixG,(6*) defined in (22) becomes

Gs(0%) = [Aijsin(0] — 0))]1<ij<n = [Aijsin((i — j)¢n)]1<ij<n = |— 7 sin((s —J)én) :
n+ 1<i,j<n

The following lemma is needed for computing the inverse ima®(6*)~*.

Lemma 4:Letm be an integer that is not an integer multiplergfi.e.,m # [-n, VI € Z. Let 5 € R be arbitrary.

Then the following relations hold:

n—1 n—1
> cos(kmen +8) =0, > sin(kme, + 8) = 0.
k=0 k=0

s 2mT

Proof: Sincem is not an integer multiple of,, we havee’/™?» = 7“5 £ 1. Thus,

n—1 n—1 i n P
, , , 51— (edmon) 51 — edmnén
J(kmen+B) _ 48 imeén\F _ 3B — B _
Z € =€ Z (8 ) =¢ 1— ejm¢n =¢ 1— ejm¢n - O
k=0 k=0
Taking the real and imaginary parts of the above identity giile us the desired conclusions. ]

Using Lemma 4, we can derive the following results.

Lemma 5:Forn > 3, the inverse of7(6*) defined in (33), denoted b§(6*)~* = [¢"/]1<; j<n, iS given by

n+4 s
y s =7,
gi = +2 (34)
25 cos ((i = )¢n), i
Proof: Foreachi =1,...,n,

;gik‘gki - Z n_—:l COS((i - k)¢n) ’ 2 92 COS((k - Z)(bn) + " . ntd

oy n+ n+1l n+2
B Z -2 14 cos(2(i — k)¢n) n(n +4)
B = (n+1)(n+2) 2 (n+1)(n+2)
—(n—1) 1 n(n +4)

T Dm+2) ThrDmr2 ThrDmy2 ¢
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where in deriving the second last equality we have used Lerdhmih m = 2. On the other hand, if # 7,

Sau = 3 ol K)ol - 6

ki, kg

+ nL—f—l : n—2i-2 cos((i — j)on) + _Tllcos((z’ —§)bn) - Zi;l

3 cos((i = j)gn) + cos((i + j — 2k)én)
kz::l n+1) n+2) 2

4 2n n—+4 o
T )m+2) T Dmr2  (m+ 1)(n+2)} cos((i = 7)¢n)
= " . 2n — ntd cos =

[(”+1)(n+2)+(n+1)(n+2)+(n+1)(n+2) (n+1)(n+2)} (= 4)én) =

This completes the proof of the lemma. [ ]
Remark 5:Lemma 5 is only valid whem > 3, as can be seen from its proof. In the subsequent discussions
we shall assume > 3 temporarily, and then deal with the= 2 case separately.
Furthermore, using Lemma 4, we can compute the matrixdiag(u,...,u,) defined in (22). For each

k=1,...,n, u defined in (21) is simplified to

—1 n 1 n
> Aijeos(k—)on) = 3 eos((k = )n) + g = g+t
1<j<n Jj#k

Therefore A =diag(u1, ..., un) = I is simply the identity matrix.

Given the simplifiedG(6*)~! and A, the coefficient matrices in equation (24) can now be conthate

Ly=1,  [Loly = [GO) A1, = 2 5 008((i = 5)én),

and, by applying Lemma 4 again,

[L1];; = [2G(6")7'G,(67)] Zn:
k=1

-1 2
=2 —sin((i — )n) +2) —

n
+ k=1

—sin(( — 1))

= n_+11 sin((i = j)én) + Y 2 fsin((i — 5)dn) — sin((2k — i — )n)]

— 5 sin((i — j)én).

As a result, the matrix polynomial associated with the MDE)(Becomes, fol < i, j < n,

2 /\2 2 T
:[§:M14 =7 o (35)
k=0 ij =5 sin((i — j)dn) A + 735 cos((i — j)pn), i # j.

2) Latent Roots and Latent Vectors of the Matrix Polynondiéh): By Theorem 1, solutions to equation (24)
can be expressed in terms of the latent roots and the Jordamsobf L(\). We now compute these for the matrix

polynomial L(\) defined in (35). We will show thal(\) has a zero latent root with multiplici(n — 1), associated
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with which there arex — 1 Jordan chains of length 2, as well as four distinct nonzetentaroots of multiplicity
one.

First observe that each row df(0) = Lo = [nl” cos((i — j)onli<i,j<n SUMS Up to zero. This indicates that
A = 0 is a latent root ofL()\) with a corresponding latent vectdr= (1,...,1)T. However, this is only part of
the latent vectors associated with the latent root 0. To fireddther latent vectors, observe that the rowd. (f)
are cyclic permutations of the same vector that can be thoofgds the real part of a basis of the Discrete Fourier
Transform (DFT). In light of the orthogonality of the DFT lea&s it is possible to find the other latent vectors
corresponding to the latent roat= 0 from the set of DFT bases defined as follows.

Lemma 6:Define a set of vectors;,v; € R*, k=0,...,n, as
v§ = [cos(kon), cos(2kdn), . .., cos(nkd,)|”,  wvi = [sin(kon),sin(2ken), . . ., sin(nke,)]”.

LetVEVeUVs £ {vf:0<k<[2]}U{v]:1<k< 2}, where[] denotes the integer part of a real number.
Then V is an orthogonal basis &".
The proof of Lemma 6 is a simple application of Lemma 4; hends omitted here.

Remark 6: v andv% (whenn is even) are zero vectors; thus they are not includedinlt is easily seen that
V defined above contains exactlylinearly independent vectors &", for anyn > 2.

Using Lemma 6, we are able to characterize all the JordamsludiZ(\) associated with\ = 0.

Proposition 1: Ao = 0 is a latent root of the matrix polynomi@l(\) defined in (35), and for eache V\{v§, v§},
the pair of vectorqv, v} constitute a Jordan chain @f(\) corresponding to\, of length 2.

Proof: We need to verify thaf.(0)v = 0 and thatZ(0)v + L™ (0)v = 0, where L(Y)(0) is the derivative of

L()) evaluated at = 0. By (35), L(0) = Lo = [;25 cos((i — j)én)l1<ij<n @and L1 (0) = Ly = [=% sin((i —
J)0n)]1<ij<n. Eachv € V'\ {vf,v7} is of the formv = vj; for some0 < k < [§] with & # 1, or v = v}, for some

2 <k < 5. In the former case,

n n

L(0) = Lov = Y _ ~ i 5 cos((i = j)dn) cos(jkdn) = >

j=1 j=1

cos((i — j + jk)pn) + cos((i — j — jk)dn)
n—+2

207

where we have used Lemma 4 and the fact that1 is not an integer multiple of.. In an entirely similar way,
we can prove thaL (" (0)v = 0, and that forv = v for some2 < k < 2, L(0)v = L™ (0)v = 0. Together, this
completes the proof of the lemma. [ ]
SinceV \ {v$,v§} hasn — 2 vectors, Proposition 1 describes- 2 Jordan chains, each of which is of length 2.
Together, by Lemma 3, these Jordan chains characterize4 independent solutions of the Jacobi equation (24).

Indeed, letu;, i = 1,...,n — 2, be an enumeration of the vectorstn\ {v{,v;}, and define
Uo(t) é [ul, tul, ceey Un—2, tun,g]. (36)

Then any linear combination of the columnsl@f(¢) is a solution to equation (24). On the other hand, equatidh (2
should havern independent solutions in total. It turns out that the foussitig independent solutions are provided

by the latent vectors associated with the nonzero laterts rofol (\).
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Proposition 2: Define the complex vectar, = v§+ jv§, wherej = +/—1. Its conjugate ig; = v — jv§. Define

—n++/2n(n+1) —n — «/2n(n+1). (37)

) W2 =
n+2 n+2

w1 =

Then the nonzero latent roots &{\) and their corresponding latent vectors can be characteaggollows:

1) A\ = jw; and X, = —jw; are two latent roots of.(\) with latent vectors; and o, respectively;

2) A3 = jwe and Ay = —jw, are two latent roots of () with latent vectors;; andv,, respectively.

Proof: Note thatv; = v§ + jvi = [cos(idy) + j sin(idn)]1<i<n = [€7'%"]1<i<n. Thus, for each = 1,...,n,
2 . "1 . . no .
L i = , — k " Jjkdn — J(i—k)¢n —j(i=k)$n] ikdn — Jign
Eomls = 3 g coslli = Rgn)e =3 sle te Jehon = el
~ Jeon _ N~ _I2 (iR o i Rbn) kb _ T2 i,
[Liv]s = Z nt2 sin((i — k)¢n)e = Z n—+2[€ +e le =5
k=1 k=1
or equivalently,
72n
Lovi = Livi = ) 38
o1 n+2”17 101 n+2111 (38)
In other words,v; is an eigenvector of., and L; corresponding to the eigenvalyé; andan—fQ, respectively.

Since L, = I, we have

(n+2)A2 + j2n\ +n
n+2

n n 72n
n+2 n+2

L()\)’Ul = (L() + L1+ )\2L2)111 = < A+ /\2) V1 = U1.

It is easy to verify that\; and \3 are two roots of the quadratic equatiom+ 2)\? + j2n\ +n = 0. Hence, from
the above equatior’,(\)v; = 0 and L(\s)v; = 0, which implies thatv; is a (common) latent vector associated
with the two latent roots\; and A3 of L(\). By taking the complex conjugate, we conclude that= ); and
A4 = A3 are two latent roots of (\) with a common latent vectar, . [ |

By Lemma 3, there are four independent solutions to the MDE @rresponding to the four distinct nonzero

latent roots\;, i = 1,...,4. We arrange these solutions into the columns of a matrix eefy
Us(t) = [71t0y, eIwity,, edwaty, | e—dwatp] =V - [e(llt ngt} ’ (39)
whereVi, 1, andQs are complex matrices defined by

Jwi 0 Jwa 0
i=lv o], = L Q= . (40)
0  —jw 0 —Jjws
Any complex linear combination of the columns @§(¢) of the formz(t) = Ug(t)z for somez = [21, 22, 23, 24
in C* is a solution to equation (24). However, we are only inte@sh those real solutions. For this purpose,
must be chosen so that = z; andz4 = z5. Plugging intox(t) = U;(t)z, we conclude that the four dimensional

real solution space of equation (24) corresponding to theem latent roots of.(\) is spanned by the columns
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of two real matrices iR™*2:

UF(t) = [Re(evr), Im(e fvn)] = [vg o] CO.S(L(‘”ti) Sm((‘”lg , (41)
— Sm(wi COS(W1

U (1) = [Re(e™> ), Im(e*'vn)] = [ug o] CO.S(L(‘J?ti) Sin((‘”gg . (42)
— SIn(ws2 COS(W2

To sum up the results in this section, we can now charactatizée real solutions to equation (24).

Proposition 3: Every real solution to the MDE (24) is of the form
ZC(t) = Uo(t)C() + UlRe(t)Cl =+ UQRe(t)CQ, (43)

for some constantg, € R2("=2), ¢; € R?, andc, € R2. Here the matrice&/y(t), U{*(t) andUL*(t) are defined
in (36), (41), and (42), respectively.

3) Conjugate Points Along*: To find the conjugate points aloréf, we need to look for those nontrivial real
solutionsz(t) to the Jacobi equation (24) that start frérand return td) at some positive time, i.e.,z(0) = 0, and
x(7) = 0. Letz(¢) be one such solution. By Propositiona3¢) is of the forma(t) = Uy (t)co+U{(t)c1 + UL (t)co
for some constants), ¢; andc,. Observe that the first teriiiy (¢)co is an affine function of time, and always lies
in the subspace spanned by the- 2 basis vectors iV \ {v{,v§}, whereV is the set of bases given in Lemma 6.
On the other hand, the second and the third teliifi§(¢)c; andUZ<(t)c, always lie in the 2-dimensional subspace
spanned by the other two basis vectofsandv{. Hence, in order for:(0) = z(7) = 0 to hold for somer > 0,
we must haveyy = 0. Thusz(t) = U (t)c; + UFe(t)co.

By (41) and (42), at tim@, U¢(0) = UF¢(0) = [v¢, v{]. Hence to satisfyr(0) = 0, we must have

2(0) = UR(0)e; + UR(0)es = [vf vﬂ (c1 +¢2) =0,
which implies thatc, = —c; by the linear independence of andv;. Thus, if we writec; = [a,b]”, then
a(t) = Ui (t)er + Us (1)) (—c1) = [U{*(t) = Uz (t)]ex
a(cos(wit) — cos(wat)) + b(sin(wit) — sin(wat))
- [Uf US} —a(sin(wit) — sin(wat)) + b(cos(wit) — cos(wat))
— 9sin(wt) {vf Uf] —asin(wyt) + bC(.)S(Wth) 7 (a4)
—acos(wyt) — bsin(w4t)

wherew, andw_ are constants defined by

w :w1+w2:_ n w _Wimwa 2n(n+1) (45)
+ 2 n+2 - 2 n+2

Note thate andb can not be zero at the same time (otherwi$e® = 0 is trivial). Under this constraint, it can be
easily checked that the two entries of the last factor in,(44)sin(w;-t)+b cos(wt) and—a cos(w-t) —b sin(w t),
can not be zero at the same time. Thus, in order to satigfy = 0 for somer > 0, we must havein(w_7) =0,

e, 7= U’j—’j for somek = 1,2,.... This gives us the times when conjugate points aléhgre encountered.
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a n=4 1 n=6
0.5} 0.5
1 = 2.9809 1 =2.7428
o o
o 1 2 3 4 o 1 2 3 4
1 n=9 i Nn=11-
051 0.5
1 t=2.5763 1 t=25141
o o
o 1 2 3 4 o 1 2 3 4
1 n=15] 1 n=19/
051 0.5
1 t=2.4382 1 t=2.3937
o o
o 1 2 3 a o 1 2 3 4

Fig. 4. The smallest singular value of the matfi;2(t) as a function of for different n.

Theorem 2:For the particular OFC problem studied in this section, #teo§ conjugate points along the candidate
solution#* is given by
0" (r): 7= kln+ 2)m k:l,?,...}.

V2n(n + 1)’

As a result, the first conjugate point alofiy occurs at time
i (n+2)m

w-  nmil) (48)

Th =
From the expression (46), we can see thatlecreases as increases, and,, — % asn — oo.

Since a geodesic is no longer distance-minimizing beyandirt conjugate point, we have

Theorem 3:6* is not an optimal solution to the OFC problemtf > 7,,.

As mentioned in Remark 5, the above derivations are valigg ander the conditiom > 3. Whenn = 2, the
coefficient matriced.q, L1, and Ly in equation (24) are alt x 2. Hence, analytical solution can be obtained much
more easily compared with the generatase. After some careful computation, the first conjugatat@ong 6*
occurs at the timey = % for n = 2, which, interestingly, is exactly the limit of, asn — oc.

Remark 7:In then = 2 case, there are three agents, with the root agent at theerididhe other two. Thus the
example tree formation degenerates into the snake formatiedied in [12]. The time that the first conjugate

point occurs computed above is consistent with the resu#iioéd in [12] using a different approach.

B. Numerical Verification

We now use the indirect method discussed in Section IV-B tmemically verify our results in Theorem 2.

Our approach is as follows. Given the agent number1, we first compute the coefficient matricés, L, and
L, in equation (24), and assemble them into the mattiaccording to (29). Then we compute the exponential
matrix e for ¢ starting from0 and increasing at a certain step size. For elaaie partitione? into blocks as

defined in (30) and compute the singular values\hk (). If the smallest singular value d¥/,(t) is sufficiently
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n 4 6 9 11 15 19
T (analytical) || 2.9804 | 2.7422 | 2.5758 | 2.5136 | 2.4377 | 2.3931
T (numerical) || 2.9809 | 2.7428 | 2.5763 | 2.5141 | 2.4382 | 2.3937

TABLE |
COMPARISON OF THE NUMERICAL AND THE ANALYTICAL RESULTS ON THETIME EPOCHT, WHEN THE FIRST CONJUGATE POINT ALONG

6* OCCURS

close to0, then we declare that/;2(t) is singular, and that the first conjugate point is found. SeetiGn 1V-B
for the detailed explanation of the above procedures.

To illustrate our results, the above procedures are caoigdor six integers selected randomly betweeand
20. In Fig. 4, for eachn, we plot the smallest singular value df;5(t) as a function of the time and annotate the
smallestt such thatM2(t) is singular. In Table I, the numerical results are comparét the analytical results
obtained according to (46) and roundedttdecimal digits. As can be seen from the table, consideriagithmerical

errors, the numerical results agree very well with the aiedlyones.

C. Better Solutions Beyond the Conjugate Points

Once extended beyond its first conjugate pdiiitwill no longer be an optimal solution to the OFC problem. The
reason is that, although it still satisfies the first ordefroglity condition, namely, the geodesic equation (13)ailsf
to meet the second order optimality condition, and bettéutimms can be obtained by infinitesimal perturbations
aroundd*. We will illustrate these for the example studied in thistget

We first derive the second-order variation of the cost flarcti(0) at6*. Recall that/(#) as defined in (11) can

be written as

J(0) = /Otf L(6,6) dt,

where L(,6) = 7G(0)f. Let = = 36 be a proper variation of* over [0,t¢]. Thenz(0) = z(t;) = 0. The
first variation of J aroundf*, % o/ (0" + €x), is zero since* satisfies the geodesic equation (13). The second

variation of J aroundf* can be computed as

2
52007 x) = L

ty
o3| SO Fer) = /0 (2" Logx + 22" Lyyd + 27 L) dt,

e=0

where Lgg, Ly, and L, aren x n matrices with entries defined by

d2L(6,6)

_0%L(0,0)
90,00, B

90;00;

~0%L(0,0)

L), = 2%
pe i i 06;00;

[Lee]ij = ) [Leé} ij (47)

0=0+%,0=0*

0=0%,0=0*

Recall thatt* = 6, + t1; thus§* = 1. From L(6,0) = 67G(#)6, we can compute

Lo = 2G(07) — 20, L5 = —2G(6%), Lgg = 2G(67). (48)
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These computations are mostly straightforward, excepttierdiagonal entries of,,. Hence we only list the

detailed derivation of these entries below: for eaeh1,...,n,
d2L(0,0) 0 "
[Logl, = —2 = > 2[G(9));;0; = —2ZA” sin(0; — 03) = 0.
06:00); 0=6*,6=6* "lg=g+ j=1

Here we have used the fact that(6)];; = A,; cos(6; — 6;) and that@;‘ =1forall j =1,...,n. In addition, the
last equality follows from condition (18), which is satifiby 6* since it is a geodesic.

Using (48), the second-order variation Hfcan be simplified to
ty
§2J(0%;x) = 2/ [:cT(G(H*) — Nz — 227G, (0")d + :bTG(H*):b} dt. (49)
0
Integrating by part and using the fact th@t6*) is a constant matrix, the above equation reduces to

ty ty
§2J(0%;2) = 2/ [27(G(0%) — Nz — 227 G, (6%)2] dt + 22" G(0%)i f)f - 2/ 2T G(0*)i dt
0 0

—9 / Y [(G(67) — M)z — 2G(6")i — G(0%)7] dt
0

ty
= —2/ 2T G(0%) (¥ + L1 + Lox) dt. (50)
0

Note that the last factor of the integrand is exactly the thefihd side of the Jacobi equation (24).

Having derived the second variation Sfaroundé* with respect to the proper variatianin (50), we now show
that, if n > 2 andt; > 7,,, a proper variationz; can be constructed such th&t/(6*;z;) < 0. As a result, for
e small enough, the perturbation éfalongx ¢, 6*(¢) + € - xf(t) for t € [0,ty], will correspond to a smaller cost
function J, leading to a better solution thati.

Assumety > 7,,. Considerz; of the form
=W (let _ ngt) 2, (51)
T
wherez = [21 gl} € C? for somez, € C; V;, and{), are defined in (40); ant; is defined by

jw 0 2
Qf: Gl with (.Uj—LUQ—F—?T (52)
0 —Jwy ty
It is easy to check that; defined above is a real function satisfying(0) = z;(t;) = 0. Thusx is a proper
variation over[0,¢/]. In the Appendix, we compute that

16n2n2(ty — 7)1 212

2 *. _

/ tf sin?(wt/t ;) dt. (53)
0

By (45), w; < 0. Since the integral in (53) is positive angd > 7,,, we haves2.J(6*;z) < 0.

As aresult, ifty > 7,, a solutiond} better tharf* can be obtained by an infinitesimal perturbatiorgtfalong
thez direction:0} = 6* +¢-x for e small enough. In Fig. 5, we illustrate the coordinated mutioorresponding
to 6* and 6} by plotting the snapshots of these two motions at six evepbced time epochs betweénand
tp=2m > 713 forn =3t=0,2 4 9% 57 57 For illustration purpose, a relatively largeis chosen in the

plots to better render the difference between the two metibnFig. 6, the phase angles that the three outer agents
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tl t2 t3 t4 t5 t6
50 50
=50 @ -50
-50 0 50 -50 0 50 -50 0 50 -50 0 50 -50 0 50 -50 0 50

Fig. 5. Snapshots of the coordinated motions correspontiritf (dashed) anuﬁ;: (shaded), fom = 3.
(Diamond: Agent 1; Circle: Agent 2; Square: Agent 3)

Relative Phase

Fig. 6. Comparison of the phase angles that agent 1, 2, anck8 with respect to agent 0 in the motions correspondin@;tand 0*, n =3.

make with respect to the center one are comparedfandd;: their differencegd; — 6*]; = ¢ - [;]; are plotted

over[0,ty] fori=1,2,3.

VI. CONCLUSION

In this paper, the problem of optimal multi-agent coordimatunder tree formation constraint is formulated.
The geodesic equation characterizing the optimal cooteléhenotions is derived in a suitably chosen coordinate
system. For a special instance of the problem when the grbagemts rotate around a common centroid, optimality
conditions of a natural candidate solution are studied.drtigular, we conclude that, under certain condition on
the initial position, the candidate solution is optimal whghort enough, and is no longer optimal after surpassing
its first conjugate point. To compute the conjugate poini®) tnethods, one analytical and one numerical, are
proposed to solve the corresponding Jacobi equation. Tinesigods are illustrated through an example where the
first method is applied to obtain the analytical expressioiall the conjugate points, and the second method is
used to verify the results. Furthermore, better solutiditer ahe candidate solution is extended beyond its first
conjugate point are also derived for this example.

The approaches adopted in this paper are general enougtkéosthgaresults meaningful in a variety of applications
involving optimal multi-agent coordination. As extensimur future research will focus on the OFC problem with

general formation constraints that are not necessarilgritessi by trees.
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APPENDIX

DERIVATION OF EQUATION (53)

In this appendix, we will derive the results in equation (33)st, we introduce a useful lemma.

Lemma 7:Given the matrices?;(6*) andV; as defined in (22) and (52), respectively, we have

G W= | Tl ] (54)
0 smrpd

Lemma 7 can be easily verified using Lemma 4; hence we omitrd@sfghere.
Let V1, 1, Q, be defined as in (40). For arbitragye C2, by the discussion after equation (40)) £ V;e%tz,
i = 1,2, are both solutions to the Jacobi equation (24). Substigutl”) into (24), we have

i 4+ L1329 + Loz = (V1Q2 + LiViQ; + LoVi) etz = 0. (55)
Since the above equality holds for arbitraryand e’ is nonsingular, we must have
ViQZ + LiViQ + LoV =0, i=1,2. (56)
Taking the difference of (56) for = 2 andi = 1, we get

LiVi(Q2 — ) = —Vi(Q3 — OQF) = (w3 —w)V1. (57)

Define = |7% wherew = f—;r ThenQ; in (52) isQ; = Qs + Q, andz; defined in (51) can be

0 —jo
written asz; = Vie®rty — Viettz = x;l) —z® wherex;l) 2 V1e%tz. Sincex? satisfies (55), we have

=[Vi(Q2 +Q)? + L1Vi(Q + Q) + L0V1]eﬂftz
= [Vi(2Q:Q + Q%) + L1V1QJe® 'z (by equation (56))

= [~(2waw + @*)V1 + L1 V1 Qe 2

2waiw + @2 _ .
=L\ _%(Qz — )+ Q| etz (by equation (57))
w2 — wl
| W, 0
— v |’ Oty (58)
0 —Jjwm

wherew,, is given by

Qo + @2 C o(w —wr — @) @w —w/2) @W(E ) 2ty — Ty
wy — wy w1 + wa W4t w4 7'7115]0(.«14r

Sincet; > 7, andw, defined in (45) satisfies; < 0, we havew,, < 0.
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Recall thatL; = 2G(6*)~1G4(6*). Therefore, plugging (58) into (50), we have

52 0* _ * T o* o* -1 o* ]Wm 0 Qst d
J(O" zp) = -2 ry G(07) - 2G(0%) " Gs(07)W . ety de
0 0 —jwm
b Jwm
= —4/ I?GS(G*)Vl Stz dt
0 0 —jJwm
2nwnm (Y o g
= n+1/0 Ve zdt, (60)

T
where we have used Lemma 7 in deriving the last equation. lassumption, we choose = [21 gl} for
somez; € C, thenzy = Vi(e™ — ez is real. Hencep} = zff = 2H(emt — e~ ®")VH where the
superscriptd denotes conjugate transpose. Moreover, it is easily verifiatv v, = ||v1||? = n and, forn > 2,

vfiﬁl = Z?:l e~1%i¢n — (), Thus,

H H
vy UL U701 n 0
Vlel = = = ’rLI
ooy ofo; 0 n

With the above results, equation (60) can be simplified to

2nwn, [
52J(0*7xf) _ nw \/é ZH(e—th _ e—Qgt)‘/lH‘/lletZ dt

n+1
212 m ty _
e / (I — M)z dt
om2w,, [P || |1 - et 0
- / B
n+l Jo |z 0 1-e®
212w,

ty
_ 9 _ pd®t _ it 2 g
o [T e

8 2 m 2 ty
_ Sntwnlla]® / sin(@t/2) dt.
n -+ 1 0
B 16022 (ty — 1) 21
(n+ 1)Tnt?W+

ty
/ sin?(t/t ) dt.
0
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