
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

3-15-2007

Implementation Guides for a Homogeneous
Architecture for Power Policy Integration in
Operating Systems
Nathaniel Pettis
Purdue University, pettis.eddie@gmail.com

Yung-Hsiang Lu
Purdue University, yunglu@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Pettis, Nathaniel and Lu, Yung-Hsiang, "Implementation Guides for a Homogeneous Architecture for Power Policy Integration in
Operating Systems" (2007). ECE Technical Reports. Paper 351.
http://docs.lib.purdue.edu/ecetr/351

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F351&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F351&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F351&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F351&utm_medium=PDF&utm_campaign=PDFCoverPages

Implementation Guides for a Homogeneous Architecture for Power
Policy Integration in Operating Systems

Nathaniel Pettis and Yung-Hsiang Lu
School of Electrical and Computer Engineering

Purdue University, West Lafayette, Indiana, USA
{npettis,yunglu}@purdue.edu

Abstract

A significant volume of research has concentrated on operating-system directed power management (OSPM).
The primary focus of previous research has been the development of OSPM policies. Under different conditions, one
policy may outperform another and vice versa. Hence, it is difficult, or even impossible, to design the “best” policy for
all computers. We present a software framework called the Homogeneous Architecture for Power Policy Integration
(HAPPI) that selects the best policy for a given workload at run-time without user or administrator intervention. This
framework is portable across different platforms running Linux. HAPPI specifies common requirements for policies
and provides an interface to simplify the implementation of policies in a commodity OS. HAPPI can select the best
policy among a set of distinct policies at run-time. This technical report describes HAPPI’s implementation and
provides a sample policy.

Contents

1 Introduction 2

2 HAPPI Overview 2
2.1 Policy Set 2
2.2 Measurements 3
2.3 Policy Selection 3

3 Implementation 3
3.1 Environment Setup 3
3.2 Configuring Hardware Specific Parameters 4
3.3 Inserting and Removing Policies 4
3.4 Recording Device Accesses and State Transitions 5
3.5 Maintaining Access History 6
3.6 Advanced Measurements 8
3.7 Evaluating and Changing Policies 8

4 Installation and Configuration 10
4.1 Configuring IDE Devices 10
4.2 Configuring PCI Devices 11
4.3 Configuring SCSI Devices 12
4.4 Compiling HAPPI 12
4.5 Loading Evaluators 12
4.6 Loading Policies 12

1

5 Sample Policy 13
5.1 Inserting and Removing Policies 13
5.2 Predicting Idleness and Changing Power States 14
5.3 Evaluation 14

6 Sample Measurement 15
6.1 Inserting and Removing Measurements 15
6.2 Updating Measurements 15
6.3 Providing Measurements to Policies 15

7 Running Experiments Using HAPPI 15
7.1 Testing a New Policy 16
7.2 Comparing Policies 16

8 Acknowledgments 16

1 Introduction

Power management has become an important design criterion for a variety of modern computing systems, from em-
bedded systems to high-performance computers. Power management research has focused on the creation of better
algorithms to reduce energy consumption. These algorithmsare calledpolicies. Existing studies assume that only a
single policy may be used to control a device’s power states.However, significantly different policies may be necessary
to save energy for different workloads.

In our previous work [9], we demonstrate that different policies should be selected at run-time based upon the cur-
rent workload. We call this mechanism automatic policy selection. This technical report describes the Homogeneous
Architecture for Power Policy Integration (HAPPI), a framework that selects the best power policy from a library of
policies at run-time. In HAPPI, policies are implemented askernel modules and manage power states at the operating
system (OS) level. HAPPI defines homogeneous requirements for all policies, allowing a single policy to control
multiple devices simultaneously. This interface allows policies to be reused between devices, in contrast to existing
methods in Linux [3] and Windows [8] that require policies tobe implemented in each device driver.

2 HAPPI Overview

HAPPI is currently capable of supporting power policies fordisk, DVD-ROM, and network devices but can easily be
extended to support other I/O devices. To implement a policyin HAPPI, the policy designer must provide:

1. A function that predicts idleness and controls a device’spower state.

2. A function that accepts a trace of device accesses, determines the actions the control function would take, and
returns the energy consumption and access delay from the actions.

2.1 Policy Set

Each device has a set of policies that are capable of managingthe device. A policy is said to beeligible to manage
a device if it is in the device’s policy set. A policy becomes eligible when it is loaded into the OS and is no longer
eligible when it is removed from the OS. The policy is consideredactive if it is selected to manage the power states of a
specific device by HAPPI. Each device is assigned only one active policy at any time. However, a policy may be active
on multiple devices at the same time. When a policy is activated, it obtains exclusive control of the device’s power
state. The policy is responsible for determining when the device should be shut down and requesting state changes.
An active policy may update its predictions and request device state changes on each device access or a periodic timer
interrupt. The set always includes a “null policy” that keeps the device in the highest power state.

2

2.2 Measurements

We refer to the data required by policies to make decisions asmeasurements. HAPPI always provides traces of
recent accesses for each device controlled by the policy. Whenever the device is accessed, HAPPI captures the size
and time of the access. These accesses are used by HAPPI to determine how well each policy controls the device.
Measurements may also be very complex. For example, some policies require more complex measurements, such as
probability matrices for access rates [5].

HAPPI also provides software energy and delay models that may be used to monitor the energy consumption
and performance of the computer. Energy is accumulated after each access and after every ten seconds of idleness.
We use simple state-based models to measure energy. This is consistent with other OS-based power management
schemes [12]. We define delay as the amount of time that execution blocks waiting for a device to awaken. We only
accumulate delay for the device’s first access while sleeping or awakening because Linux prefetches adjacent blocks
on each access.

2.3 Policy Selection

Policy selection is performed by theevaluator. When the evaluator is triggered, it asks all eligible policies to provide
an estimate of potential behavior for the current measurements. Anestimate consists of energy consumption and total
delay for the measurement data and provides a quantitative description of a policy’s ability to manage the device. To
accomplish this, each policy must provide a function, called anestimator, that uses HAPPI’s measurement data to
analyze what decisions the policy would have made if it were active when the measurements were taken. The energy
and delay for these decisions are computed by the estimator and returned to the evaluator. An active policy for each
device is selected by the evaluator after it receives estimates from all policies. The evaluator selects each active policy
by choosing the best estimate for an optimization metric, such as total energy consumption or energy-delay product.
If another policy’s estimate is better than the currently active policy, the inferior policy is deactivated and returned to
the set of eligible policies. The superior policy is activated and assumes control of the device’s energy management.
Otherwise, the current policy remains active. If the null policy produces the best estimate, none of the eligible power
management policies can save power for the current workload. Under this condition, power management is disabled
until the evaluator is triggered again.

3 Implementation

This section focuses on HAPPI’s implementation. We implement the architecture in the Linux 2.6.17 kernel to demon-
strate HAPPI’s ability to select policies at run-time and provide a reference for future OSPM. HAPPI’s implementation
is split into two halves: statically compiled code and loadable kernel modules. The statically compiled code includes
the recording of device accesses, wrapper functions for state transitions, and glue logic to maintain lists of policies
and devices. Policies, evaluators, and most measurements are implemented as loadable kernel modules that may be
inserted and removed at run-time. These modules are described in Section 3.3, Section 3.6, and Section 3.7, respec-
tively. The only measurement that is statically compiled into the kernel is a device’s access history. This measurement
will be discussed in Section 3.5.

3.1 Environment Setup

The Linux kernel is optimized for performance and exploits disk idleness to perform maintenance operations such as
dirty page writeback and swapping. To facilitate power management, we use the 2.6 kernel’slaptop mode option,
which delays dirty page writeback until the disk services a demand access or the number of dirty pages becomes too
large. Withoutlaptop mode, the disk is accessed at least once every five seconds and is never idle long enough
to save energy. We must also adjust the commit interval of journaling file systems, such asext3 andReiserFS,
becauselaptop mode does not delay commits. Increasing the commit interval increases the amount of data loss
during power failure, similar to usinglaptop mode. For our experiments, we use a five minute commit interval.
Usinglaptop mode and longer commit intervals pose an increased risk of data loss in the event of a system crash

3

need to register
initialize, remove,

and estimate functions

use measurement
to initialize data

structures
need notification

of events

pointers with policy
save function

find pointer to
measurement

add notification for
each manageable
device with event

add to policy list
for manageable

devices

POLICY HAPPI

insmod

acquire spinlock

HAPPI_ID

function_ptr

need measurements

wait for selection
release spinlock

happi_register_policy()

happi_register_init()happi_register_remove()happi_register_estimate()

happi_request_measurement()

happi_request_event()

Figure 1: Timeline for policy insertion. Arrows indicate function calls and returns. Dotted lines indicate synchroniza-
tion points. Notifications include accesses, state transitions, and file operations.

or power outage. However, we note that this risk of data loss is a fundamental property of dirty page writeback and
unavoidable even if we disablelaptop mode. The aforementioned environment setup merely increases the window
of vulnerability.

3.2 Configuring Hardware Specific Parameters

The Advanced Configuration and Power Interface (ACPI) specification [1] describes hardware power parameters that
modern hardware should provide to ensure power management support. Although processors are widely supported, I/O
devices and peripherals often lack ACPI support. Hence, theOS cannot automatically obtain the power consumption
of these devices. HAPPI provides hardware parameters to policies through two methods: a statically compiled header
file and run-time modification. HAPPI includes a header file (include/linux/happi.h) that contains locations
to specify each device’s power consumption. HAPPI also provides an interface through theproc virtual file system
where power parameters may be changed at run-time to simulate different hardware.

3.3 Inserting and Removing Policies

Figure 1 illustrates a timeline of actions for policy insertion. The left column indicates actions taken by the policy. The
right column shows actions taken by HAPPI. Arrows indicate function calls and return values. A policy must register
with HAPPI before it may be selected to control devices. Registration begins when a policy is inserted into the kernel
usinginsmod. A spin lock protects the policy list and must be acquired before the policy can begin registering with
HAPPI. We use a spin lock rather than a semaphore because HAPPI’s data structures may be called from both process
and interrupt context [2]. The policy calls thehappi register policy function to inform HAPPI that it is being
inserted into the kernel and indicates the types of devices the policy can manage. HAPPI responds by returning a
uniqueHAPPI ID to identify the policy on all future requests. The policy registers callback functions to begin the
policy’s control of a device (initialize), stop the policy’s control of a device (remove), and provide an estimate
to the evaluator for a device (estimate). Then, the policy initializes local data structures for each eligible device.

After initializing local data structures, the policy requests notification of specific system events by calling the
happi request event function. These events, listed in Table 1, include notification after each device access,

4

Name Description
HAPPI NOTIFY BLOCK Filtered block device requests
HAPPI NOTIFY BLOCK SHORT Unfiltered block device requests
HAPPI NOTIFY BLOCK STATE Block device state change
HAPPI ALL BLOCK EVENTS All block requests and state changes
HAPPI NOTIFY NET Filtered network device requests
HAPPI NOTIFY NET SHORT Unfiltered network device requests
HAPPI NOTIFY NET STATE Network device state change
HAPPI ALL NET EVENTS All network requests and state changes
HAPPI ALL ACCESSES Filtered requests from all device types
HAPPI ALL STATES State changes from all device types
HAPPI FILE OPEN File opened by application
HAPPI FILE CLOSE File closed by application
HAPPI FILE READ File read by application
HAPPI FILE READ DISK File read from disk by application
HAPPI FILE WRITE File written by application
HAPPI FILE WRITE DISK File written to disk by dirty page writeback
HAPPI FILE OPS Any file access by application

Table 1: All notifications provided by HAPPI. Filtered blockdevice requests occur 1000 ms after the previous access.
Filtered network device requests occur 250 ms after the previous access.

(b)

(a)

Figure 2: Accesses pass through a short filter before being seen by policies. (a) Unfiltered accesses with filter shown.
(b) Filtered accesses.

state transition, and file access. However, these events arereceived by only the active policy to reduce the overhead
of multiple policies running simultaneously. All registered measurements receive all requested notifications because
measurements are common to all policies. After the notifications have been created, the policy releases the spin lock
and is eligible for selection. Since policy registration uses theinsmod command, administrator privilege is required
to add new policies. Hence, policies do not cause any security breaches.

3.4 Recording Device Accesses and State Transitions

Simunic et al. [11] observe that policies predict more effectively if a 1000 ms filter is used for disk accesses and 250
ms filter is used for network accesses. These filters allow bursts of accesses to be merged into a single access. This
process is demonstrated in Figure 2. Figure 2(a) shows a sequence of accesses, represented by solid bars. The shaded
area represents a filter. The filter window restarts after each access. Each access that occurs after the filter expires is
considered a new access. Figure 2(b) illustrates how policies view the accesses after the filter. An access is defined by
a time span of activity extending from the first access of the burst to the completion of the last access of the burst. This
representation preserves the amount of idleness between the end of an access and the beginning of the next access.

5

The filtering mechanism also prevents policies’ predictions from being skewed by rapid bursts of accesses. Without
the filtering mechanism, we observe that policies significantly mispredict the amount of idleness between accesses.

These bursts of accesses occur because an I/O access consists of two parts: a top-half and a bottom-half [7]. When
the application performs a read or write operation, it uses system calls to the OS to generate requests. The OS passes
these requests on to the device driver on behalf of the application. This process is called the top-half. The application
may continue executing after issuing write requests but must wait for read requests to complete. The device driver
constitutes the bottom-half. The bottom-half interfaces with the device, returns data to the application’s memory
space, and marks the application as ready to resume execution. The mechanism allows top-half actions to perform
quickly by returning to execution as soon as possible. Bottom-half tasks are deferred until a convenient time. This
mechanism allows the OS to merge adjacent blocks into a single request or enforce priority among accesses. Since the
bottom-half waits until a convenient time to execute, the mechanism is referred to asdeferred work. Since accesses
may be deferred, multiple accesses may be issued to a device consecutively.

We insert functions to record device accesses after the access completes because a significant delay may occur
between an access’s issue and completion during state changes. By recording accesses after completion, policies may
assume that the device is in the active power state and make decisions immediately, rather than wait until the device
is fully awake. We record block requests in theend that request first function ofblock/ll rw blk.c.
Network requests are recorded at several places throughoutthe kernel. We record network sends after each call to the
hard start xmit function pointer and network receives in thenetif rx function ofnet/core/dev.c.

Deferred work plays an important role in managing state transitions in Linux. When a state transition is requested,
a command is passed to a bottom-half to update the device’s power state. The actual state transition may require
several seconds to complete and does not notify Linux upon completion. The exact power state of a device during
a transition is unknown to Linux because the commands are handled at the device driver-level. Device accesses are
managed in device drivers, as well, implying that the statusof outstanding requests are also unknown and cannot be
used to infer power states. HAPPI could obtain the exact power state of a device by modifying the bottom-half in the
device driver. However, drivers constitute 70 percent of Linux’s source code [4]. Any solution that requires modifying
all device drivers is not scalable. Modifying the subset of drivers for the target machine is not portable. Hence, we
estimate state transition time using ACPI information and update the state after the time expires.

3.5 Maintaining Access History

All policies require knowledge of device accesses to predict idleness and provide estimates for policy selection. The
method for measuring device accesses directly affects HAPPI’s ability to select the proper policy for different work-
loads. In Section 3.4, we describe how a filter merges deferred accesses into a single access. When a request passes
through the filter, HAPPI records the access in a circular buffer. We use a circular buffer rather than a dynamically-
allocated list to reduce the time spent in memory allocationand release and limit the amount of memory consumed
by HAPPI. After HAPPI records the access, the active policy and all measurements are notified of the event. Since
all policies require information about device accesses, these functions are statically compiled into the kernel. Access
histories are the only components of HAPPI that are not loaded or removed at run-time.

We determine the circular buffer’s length experimentally because the proper buffer length depends on workloads.
We choose five different workloads to induce different levels of idleness on three different devices (a IDE disk, a
CD-ROM, and a PCI network card). These workloads are described below:

Workload 1: Web browsing + buffered media playback from CD-ROM.

Workload 2: Download video and buffered media playback from disk.

Workload 3: CVS checkout from remote repository.

Workload 4: E-mail synchronization + sequential access from CD-ROM.

Workload 5: Kernel compile.

Figure 3(a) illustrates an access trace consisting of five unique workloads for the IDE disk. Each workload is
separated by a vertical line and labeled above the figure. Figure 3(b) illustrates the amount of history (in seconds)

6

Figure 3: Accesses, history buffer length, and overlap between workload histories for different window sizes for
desktop workloads.

retained by HAPPI for circular buffer sizes of 4, 8, 16, and 32entries. When no accesses occur, the history length
increases linearly. If a new access overwrites another access in the circular buffer, the history length decreases sharply.
An ideal history provides full knowledge of the current workload and zero knowledge of previous workloads. The
ideal history would appear as a linear slope beginning at zero for each workload. A circular buffer naturally discards
history as new accesses occur. Figure 3(c) shows how much history overlaps with previous workloads. This plot
appears as a staircase function because history is discarded in discrete quantities as accesses are overwritten in the
circular buffer.

Our implementation targets interactive workloads, commonto desktop environments. We use an 8-entry buffer
because this buffer quickly discards history when workloads change but maintains sufficient history to select policies
accurately. We observe from Figure 3(c) that the 8-entry buffer requires 107 seconds to discard Workload 2 (indicated
at point A) and 380 seconds to discard Workload 3 (point B). Incontrast, the 16-entry buffer requires 760 seconds to
discard Workload 3 (point C) and cannot completely discard Workload 2 before Workload 3 completes. The 4-entry
buffer discards history more quickly than the 8-entry buffer but does not exhibit a sufficiently long history to estimate
policies’ energy consumption accurately. Systems with less variant workloads, such as servers, may use a larger buffer,
such as a 32-entry buffer. A larger buffer requires longer todiscard past workloads but allows for a better prediction
of the current workload in steady-state operation. The buffer length is set by the administrator.

Figure 4 depicts the second disk of a server containing threedisks running the SPECWeb99 benchmark with 20–
460 simultaneous connections, increasing in increments of40. This figure illustrates 32, 64, and 128-entry buffers.
We notice in Figure 4(a) that accesses begin at 60 connections, decrease at 260 connections, and increase at 340
connections. This effect occurs because each of the three disks in the system contain different data sets. At 20
connections, all accesses are serviced from the first disk. At 260 connections, most of the files on the disk are cached
in memory. At 340 connections, the working set exceeds the size of physical memory, so the disk becomes active
again. The best opportunities to save energy occur between 260 and 340 connections. We observe at points A and
B that only the 32-entry buffer discards the previous history before the workload changes. The 32-entry buffer also
maintains a linear increase in history length in Figure 4(b). Hence, we choose a 32-entry buffer for server workloads.

7

0 10000 20000 30000 40000 50000

A
cc

es
se

s
0 10000 20000 30000 40000 50000

0

5000

10000

H
is

to
ry

 le
ng

th
 (

s)

0 10000 20000 30000 40000 50000
0

5000

10000

Time (s)

O
ve

rla
p

le
ng

th
 (

s)

32 entry
64 entry
128 entry

32 entry
64 entry
128 entry

20 60 100 140 180 220 260 300 340 380 420 460 connections

A

B

(a)

(b)

(c)

Figure 4: Accesses, history buffer length, and overlap between workload histories for different window sizes for server
running SPECWeb99.

3.6 Advanced Measurements

HAPPI always provides an access history for each device to facilitate policy selection. However, some policies require
more complex data than access history, such as probability matrices for access rates [5]. Advanced measurements can
be directly computed from the history of recent accesses. Since such information is not required by all policies, HAPPI
does not provide the information directly. HAPPI provides the minimum common requirements for policies. This
design is based upon the end-to-end argument of system design [10] by providing the minimum common requirements
to avoid unnecessary overhead. Although it does not directly provide these complex measurements, HAPPI provides
an interface for measurements to be added as loadable kernelmodules. A new measurement registers a callback
function pointer with HAPPI that returns the measurement and requests events similar to the other policies. If a policy
requires additional measurements, the policy calls thehappi request measurement function with an identifier
for the measurement. HAPPI returns a function pointer to thepolicy for retrieving the measurement data.

We implement measurements as separate kernel modules because several policies may require the same measure-
ment. By separating the measurement from the policies, the measurement is computed once for all the policies in
the system. Since measurements are always needed, they receive all requested events, whereas inactive policies do
not respond to events. If policies were individually responsible for generating measurements, their measurements
would only consider the time when the policy has been active.Thus, policies would consider different time spans in
their estimator functions. Implementing measurement as separate modules also allows measurements to be improved
independently of policies.

3.7 Evaluating and Changing Policies

HAPPI automatically chooses the best policy for each devicefor the current workload and allows power policies to
change at run-time, whereas existing power management implementations require a system reboot. HAPPI’s eval-
uator is responsible for selecting the active policy. The evaluator is a loadable kernel module, allowing the system
administrator to select an evaluator that optimizes for specific power management goals, for example, to minimize
energy consumption under performance constraints. Since the evaluator is a loadable module, the administrator may
change evaluators without rebooting if power management goals change. The administrator inserts the module using
theinsmod command. From this point onward, the evaluator selects power policies automatically. When a policy
is inserted into the kernel usinginsmod, the evaluator is notified that a new policy is present and re-evaluates all

8

initialize data
structure and

activate timers

new policy selected
by evaluator

disable interrupts
acquire spinlock

release spinlock
enable interrupts

HAPPIOLD POLICY NEW POLICY

deactivate timers

for old policyold−>remove()

for new policy
enable notifications

disable notifications

or timer expiration
wait for notifications

new−>initialize()

Figure 5: Timeline for policy selection. Arrows indicate function calls and returns. Dotted lines indicate synchroniza-
tion points. Notifications include accesses, state transitions, and file operations.

policies. After the best policy is selected for each device,the policy controls the device until the next evaluation.
If the evaluator changes the active policy, the old policy must relinquish control of the device’s power states and

the new policy must acquire control. Figure 5 illustrates how HAPPI changes policies at run-time without rebooting.
The left column indicates actions taken by the old policy. The middle column describes HAPPI’s actions. The right
column indicates the new policy’s actions. When notified by the evaluator to change the active policy, HAPPI disables
interrupts and acquires a spin lock protecting the device. Disabling interrupts prevents any of the old policy’s pending
timers from expiring and blocks accesses from being issued or received from the device. Acquiring the spin lock
prevents HAPPI from interrupting the old policy if it is currently issuing a command to the device. Once the spin
lock is acquired, we are guaranteed that the old policy is notcurrently controlling the device. HAPPI deactivates all
notifications for the old policy and calls the old policy’sremove function to delete any pending timers and force
the policy to stop controlling the device. After the old policy has successfully stopped controlling the device, HAPPI
enables the notifications for the new policy and calls the newpolicy’s initialize function. The new policy uses
this function to update any stale data structures and activate its timers. At this point, HAPPI enables interrupts and
releases the device’s spin lock, allowing the new policy to become active. The performance loss for disabling interrupts
and acquiring locks is negligible.

Replaced policies may elect to save or discard their currentpredictions. If history is saved, the information may
be used when selected in the future. In our policies, we electto discard all previous history when a policy is replaced
in favor of a different policy. A policy is replaced because its estimate indicates that it is incapable of saving as much
energy as another eligible policy for the current workload.Replacement implies that a policy’s idleness prediction
is poor. Hence, discarding previous history resets the policy’s predictions to an initial value when providing another
estimate and often allows the policy to revise its prediction much more quickly than by saving history.

Changing policies indicates that (a) the old policy is mispredicting or (b) the new policy can exploit additional
idleness. HAPPI must evaluate policies frequently enough to detect these conditions. Figure 6 illustrates two work-
loads where these conditions occur. Vertical bars indicatedevice accesses. Figure 6(a) depicts a workload changing
from long to short idleness. This transition is likely to induce mispredictions because policies over-predict the amount
of idleness. Policies quickly correct their predictions toavoid frequent shutdowns. When the previous workload is
discarded from HAPPI’s access trace, a new policy is selected that predicts idleness more effectively and consumes
less energy for the new workload. Figure 6(b) depicts a workload changing from short to long idleness. Policies that
make decisions on each access cannot recognize and exploit long periods of idleness because no accesses occur to
update the policies’ predictions.

To reduce missed opportunities to save energy, we evaluate policies frequently. HAPPI evaluates all policies once
every 20 seconds to determine if a better policy is eligible among the available policies. We select this interval because

9

(a)

(b)

time

time

Figure 6: Vertical bars indicate device accesses. (a) Workload changing from long to short idleness. (b) Workload
changing from short to long idleness.

it exhibits quick response to workload changes without thrashing between policies. Here, thrashing means changing
policies too often, in particular, changing policies everytime policies are evaluated. Policy thrashing is a problem
because deselected policies discard their previous predictions. Hence, a momentarily deselected policy may require
several minutes to refine its prediction, reducing opportunities to save energy. Shorter intervals detect changes in
workload more quickly, but policies thrash when changing workloads, whereas a longer interval reduces thrashing at
the cost of slower response to workload changes. We observe that a 20 second period evaluates quickly but does not
frequently cause thrashing. To further reduce the likelihood of thrashing, we assign a small bonus to the currently
selected policy. The bonus reduces the current policy’s energy estimate by 5%. Our experiments demonstrate that this
bonus significantly reduces thrashing and improves overallenergy savings.

4 Installation and Configuration

HAPPI does not automatically detect system hardware. Hence, some manual steps must be performed to make HAPPI
work with new hardware. These instructions assume a basic understanding of C and the tools necessary to compile the
Linux 2.6 kernel.

4.1 Configuring IDE Devices

The power parameters for IDE devices are described in terms of buses and master-slave configuration. The configura-
tion of a system’s devices may be determined from the /sys filesystem as shown below. Usingbash syntax, the “#”
symbol represents comments and “$” represents commands.

$ cd /sys/bus/ide/devices

List the different IDE buses on the system. This machine has two buses.
The .0 indicates that device is master. (.1 indicates slave)
$ ls
0.0 1.0

$ ls 0.0
block:hda # Device hda lies on bus IDE0 as master

$ ls 1.0
block:hdc # Device hdc lies on bus IDE1 as master

This information indicates that the machine has two buses,IDE0 andIDE1. The diskhda is the master device
onIDE0. The CD-ROMhdc is the master device onIDE1. If the disk and CD-ROM are located on the same bus as
master and slave, the information will appear similar to thefollowing:

10

List the different IDE buses on the system. This machine has one bus
with two devices. 0.0 is IDE0 master. 0.1 is IDE0 slave.
$ ls
0.0 0.1

$ ls 0.0
block:hda # Device hda lies on bus IDE0 as master

$ ls 0.1
block:hdb # Device hdb lies on bus IDE0 as slave

After determining the master-slave configurations for eachbus, the devices may be configured. The header file
include/linux/happi.h provides macros that describe each device’s power parameters. As described in Sec-
tion 3.2, this information is defined in the ACPI device specification but often unavailable for I/O devices. A subset
of these macros are shown below. The IDE macros use the first number to indicate the bus number and the second
number to indicate master (0) or slave (1). The power parameters include active power (D0), standby power (D1),
transition time, and transition energy. Here, we use C comment syntax (/* */).

/* See include/linux/happi.h -- ide0 master */
#define IDE00_POWER_D0 850 /* active power (mW) */
#define IDE00_POWER_D1 250 /* standby power (mW) */
#define IDE00_TIME_D1_D0 MS_TO_JIFFIES(4500) /* transition time (jiffies) */
#define IDE00_ENERGY_D1_D0 17100000 /* transition energy (uJ) */

/* ide0 slave */
#define IDE01_POWER_D0 -1 /* -1 indicates no device */
#define IDE01_POWER_D1 -1 /* -1 indicates no device */
#define IDE01_TIME_D1_D0 -1 /* -1 indicates no device */
#define IDE01_ENERGY_D1_D0 -1 /* -1 indicates no device */

4.2 Configuring PCI Devices

HAPPI supports fine-grained power management of PCI devices, such as network cards. To enable network power
management, HAPPI needs to know the vendor and device numberfor the device. To obtain this information, perform
the following steps.

Some output not shown for brevity.
$ lspci
02:00.0 Ethernet controller: Broadcom Corporation NetXtreme BCM5705M Gigabit
Ethernet (rev 01)

Locate the PCI address of the device in the output oflspci. This number is in the first column of information.
In this example, the network card is located at PCI address 02:00.0. We can use this information to locate the vendor
and device number from the /sys filesystem.

$ cd /sys/bus/pci/devices

All PCI devices are located under this directory, listed by PCI address
$ ls
0000:02:00.0

Choose the PCI device
$ cd 0000\:02\:00.0

11

Display the vendor and device numbers
$ cat vendor
0x14e4
$ cat device
0x165d

These numbers must be provided to HAPPI ininclude/linux/happi.h to allow power management. In
this file, change the macros forPCI0 VENDOR andPCI0 DEVICE to the numbers determined previously.

/* In include/linux/happi.h */
#define PCI0_VENDOR 0x14e4
#define PCI0_DEVICE 0x165d

The PCI device number has no significance in these macros. Thenumbers exist to allow many PCI devices to
be managed by HAPPI. Note that the PCI device driver must support power management for HAPPI to successfully
control its power states.

4.3 Configuring SCSI Devices

The procedure for configuring SCSI devices is identical to PCI devices, except that the vendor and device number are
written to theSCSI0 DEVICE andSCSI0 VENDOR macros.

4.4 Compiling HAPPI

The compilation process for HAPPI is the same as for any Linuxkernel, except that theCONFIG HAPPI and
CONFIG HAPPI ACPI configuration options must be set. These options may be set manually in the.config file or
through themenuconfig option. The configuration options for HAPPI may be found under the Power Management
options. To compile the kernel in three commands:

$ make menuconfig
$ make all
$ sudo make modules_install install && reboot

4.5 Loading Evaluators

The evaluator is responsible for selecting the best policy for each device in the system. Evaluators are implemented as
loadable kernel modules. To compile an evaluator, type the following command, whereHAPPI SRC is the location of
the HAPPI kernel code, or use the supplied Makefile:

$ make -C ${HAPPI_SRC} SUBDIRS=${PWD} modules

After compiling the evaluator, insert the evaluator into HAPPI usinginsmod evaluator.ko. An evaluator
must be loaded before any policy may become active.

4.6 Loading Policies

Policies are implemented as loadable kernel modules. To compile policies, type the following command, where
HAPPI SRC is the location of the HAPPI kernel code, or use the supplied Makefile:

$ make -C ${HAPPI_SRC} SUBDIRS=${PWD} modules

After compiling the policy, insert the policy into HAPPI using insmod policy.ko. An evaluator must be
loaded before the policy may become active.

12

1 static int __init exp_average_init(void)
2 {
3 unsigned long flags;
4
5 spin_lock_irqsave(&happi_mutex, flags);
7
8 /* Policy may control block and network devices */
9 HAPPI_ID = happi_register_policy(HAPPI_BLOCK_POLICY |
10 HAPPI_NETWORK_POLICY);
11
12 /* Register all required functions */
13 happi_register_init(HAPPI_ID, &initialize_variables);
14 happi_register_eval(HAPPI_ID, &evaluate);
15 happi_register_exit(HAPPI_ID, &restore_core_structures);
16
17 /* Initialize all local data structures */
18 initialize_all_pdevice();
19
20 /* Request block and network device accesses */
21 happi_request_device_event(HAPPI_ID, HAPPI_NOTIFY_BLOCK,
22 &handle_device_access);
23 happi_request_device_event(HAPPI_ID, HAPPI_NOTIFY_NETWORK,
24 &handle_device_access);
25
26 spin_unlock_irqrestore(&happi_mutex, flags);
27 return 0; /* success */
28 }
29 module_init(exp_average_init);

Figure 7: Initialization code for EXP. Called when a policy is inserted into the kernel.

5 Sample Policy

This section provides a full sample policy with descriptionof its various parts. The policy described here is the
exponential average policy [6]. For brevity, we will abbreviate the exponential average policy as EXP. This policy
uses exponential averages to predict the length of the next idleness interval based upon previous intervals. The length
of the next idleness interval is computed by the equationI[k +1] = αik +(1−α)I[k], whereik is the actual length of
the last idle interval,I[k] is the previous idleness prediction, andα is a weight factor in the range(0,1). If I[k +1] is
longer than the breakeven time of the device, EXP shuts down the device. The breakeven time is defined as the amount
of time that the device must remain asleep to save energy. IfI[k + 1] is shorter than the breakeven time, the device
remains in the active state until the next access occurs.

5.1 Inserting and Removing Policies

Figure 7 contains the initialization code for HAPPI. The basic structure described in Section 3.3 is evident. Line 5
acquires the spin lock. Lines 8–10 register the policy with HAPPI and indicate that the policy can control both block
and network devices. Lines 12–15 provide HAPPI with the policy’s callback functions. Lines 17–18 initialize local
data structures. Lines 20–24 request notification of deviceaccesses on block and network devices. Line 26 releases
the spin lock, allowing the kernel to resume execution. Line29 is a macro provided by Linux to indicate the function
that should be called oninsmod.

Figure 8 contains the code required to remove the policy fromthe kernel. Line 5 acquires the spin lock. Line 6

13

1 static void __exit exp_average_exit(void)
2 {
3 unsigned long flags;
4
5 spin_lock_irqsave(&happi_mutex, flags);
6 delete_all_pdevice();
7 happi_unregister_policy(HAPPI_ID);
8 spin_unlock_irqrestore(&happi_mutex, flags);
9 }
10 module_exit(exp_average_exit);

Figure 8: Removal code for EXP. Called when a policy is removed from the kernel.

frees all the local data structures that have been created during initialization. Line 7 removes the policy from HAPPI.
Line 8 releases the spin lock. Line 10 is a macro provided by Linux to indicate the function that should be called on
rmmod.

5.2 Predicting Idleness and Changing Power States

Figure 9 provides the code for idleness prediction and stateselection. This function is called after every unfiltered
access, as described in Section 3.4. Line 8 locates the localdata structure associated with the device. This data
structure contains the device’s idleness prediction (pd→predict), breakeven time (pd→tbe), and prediction history
(pd→old predict). Line 9 locates the device’s circular buffer of accesses. Lines 11–15 compute the idleness between
the current and the previous access. Line 14 determines the time between the first access of each burst. Line 15 sub-
tracts the duration of the first burst. Recall that Figure 2 illustrates how an access is interpreted by policies in HAPPI.
Lines 17–18 save the previous prediction. This is used by theevaluator in Section 5.3 to improve the estimator’s
accuracy. Lines 20–21 compute the predicted idleness for the next period. The code for this function is shown on
Lines 32–40.

At this point, pd→predict contains the prediction for the next idle period. OnLine 24, the policy checks if the
idleness exceeds the device’s breakeven time. If the idleness is shorter than the breakeven time, the device should
not be shutdown. In this case, shown on Line 25, the policy returns to HAPPI. If the predicted idleness exceeds the
breakeven time, the policy sets a timer to shutdown the device. This is shown on Lines 27–28. We use a timer to delay
the shutdown because the filter has not yet expired. By waiting until the filter expires, we reduce the likelihood that
another access will immediately awaken the device. This behavior is described previously in Section 3.4.

5.3 Evaluation

Figure 10 provides the code for EXP’s evaluation function. This function is called by the evaluator periodically to
determine EXP’s ability to control the device’s power states. Lines 5–9 locate the data structures for the device and
initialize the estimate’s energy and delay to zero. Lines 11–13 compute the initial idleness prediction. If the policy is
not currently active for the device, the initial predictionis equal to the breakeven time (pd→tbe). However, if the policy
is currently active, the policy must determine its actual prediction for the access. Recall that this value is recorded on
Line 21 in Figure 9. Neglecting this initial value causes a large estimate error.

Lines 15–37 compute the energy consumption and delay for each access. Lines 20–22 compute the actual idleness
(t) between the current and the previous accesses and the time required for any state change to occur (awake time).
Recall that a short timer is used to wait until the access filter expires before shutting down the device. Line 25 checks
if the policy would have shut down the device before the current access. If not, the energy for remaining in the active
state is accumulated in Line 26, and execution jumps to the end of the loop. If the device would have shut down, Lines
30–34 are executed to accumulate the energy for shutting down afterawake time and awakening the device after
t - awake time. Line 35 saves the current prediction in case the policy is selected. Line 36 updates the predicted
idleness before the next loop iteration.

14

We omit the energy computation since the final access in the buffer. This code is very similar to the loop in Lines
15–37, except for two omissions. First, the device is not awakened after being shut down because no access has
occurred. Second, the prediction is not updated. After computing the energy consumption since the final access, the
estimate is returned to the evaluator on Line 40.

6 Sample Measurement

This section provides a sample measurement with description of its various parts. The measurement described here is
a probability matrix for access rates [5]. This particular measurement considers four types of accesses: an access oc-
curring after a previous access, no access after an access, an access occurring without a previous access, and no access
after no access. These probabilities are necessary to perform stochastic optimizations for power management [5].

6.1 Inserting and Removing Measurements

Figure 11 contains the initialization code for the state transition probability model measurement. The basic structure is
similar to the description for policies in Section 3.3. Line8 acquires the spin lock. Line 10 registers the measurement
with HAPPI provides a callback function to return the measurement to a policy. Lines 13–23 configure a periodic
timer for each device. The measurement wakes up everyEVAL PERIOD and determines if an access has occurred
during the previousEVAL PERIOD. Since the measurement is not called on every access, the measurement does not
need to request notification of events. Line 25 releases the spin lock, allowing the kernel to resume execution. Line 28
is a macro provided by Linux to indicate the function that should be called oninsmod.

6.2 Updating Measurements

Figure 12 contains the code that is called everyEVAL PERIOD to compute the state probability matrix. Lines 3–4
determine the individual device being measured. Line 7 checks if an access occurred the last time the measurement
was called. Line 10 checks if an access occurred in the previousEVAL PERIOD by observing the circular buffer.
Lines 12–15 subtract the oldest access from the measurement’s history. Lines 17–22 add the current access to the
measurement’s history. Lines 24–25 records if an access occurred to be used the next time the measurement is called.

6.3 Providing Measurements to Policies

A measurement’s purpose is to provide information to a policy. To accomplish this, the measurement provides a
callback function to HAPPI that policies may use to obtain the measurement. Figure 13 details this process. Lines 1–5
are provided by the measurement. The function returns the measurement associated with the device as void pointer
to facilitate a generic interface with HAPPI. Recall from Line 10 of Figure 11 that the measurement registers this
function with HAPPI. Lines 7–11 are provided by the policy. Line 8 is a header file containing the description of
the measurement’s data structure. Line 9 is a function pointer that stores the callback for multiple uses. Line 10
obtains the measurement callback from HAPPI using thehappi request measurement function. This function
accepts a string containing the name of the measurement and returns the measurement. Line 11 demonstrates how the
measurement is called from the policy. The policy may use thedata as necessary to compute idleness.

7 Running Experiments Using HAPPI

One of HAPPI’s greatest advantages is the ability to performexperiments easily on actual hardware. This section
describes how to setup common experiments using HAPPI. The evaluator must haveprintk statements included
to print each policy’s estimate to the Linux kernel log. These print statements may be extracted by shell scripts to
compute the policy’s effectiveness.

15

7.1 Testing a New Policy

HAPPI includes a null policy to compute the energy consumption of a computer system without power management.
To determine a policy’s effectiveness, it should be compared to the NULL policy. To insert the policies into HAPPI,
type the following commands.

$ sudo insmod evaluator.ko
$ sudo insmod null.ko
$ sudo insmod new-policy.ko

Run experiment
$ dmesg > kernel-log.txt

Thekernel-log.txt file may be parsed to determine each policy’s estimates and the active policy. Estimates
are indicated by theEVAL keyword. Policy assignments are indicated by theASSIGN keyword.

7.2 Comparing Policies

When comparing multiple policies, both policies should be inserted simultaneously. The following commands should
be executed.

$ sudo insmod evaluator.ko
$ sudo insmod null.ko
$ sudo insmod new-policy-1.ko
$ sudo insmod new-policy-2.ko

Run experiment
$ dmesg > kernel-log.txt

After the experiment is completed, thekernel-log.txt file may be parsed to determine what workloads favor
each policy.

8 Acknowledgments

This work is supported by NSF CAREER CNS-0347466. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors anddo not necessarily reflect the views of the sponsors.

References

[1] Advanced Configuration Power Interface. http://www.acpi.info.

[2] D. P. Bovet and M. Cesati.Understanding the Linux Kernel. O’Reilly Media, 2006.

[3] D. Brownell. Linux Kernel 2.6.17 Source: Documentation/power/devices.txt. http://www.kernel.org, July 2006.

[4] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An Empirical Study of Operating Systems Errors. InACM
Symposium on Operating Systems Principles, pages 73–88, 2001.

[5] E.-Y. Chung, L. Benini, A. Bogliolo, Y.-H. Lu, and G. D. Micheli. Dynamic Power Management for Nonstation-
ary Service Requests.IEEE Transactions on Computers, 51(11):1345–1361, November 2002.

[6] C.-H. Hwang and A. C.-H. Wu. A Predictive System ShutdownMethod for Energy Saving of Event-driven
Computation.ACM Transactions on Design Automation of Electronic Systems, 5(2):226–241, April 2000.

16

[7] R. Love. Linux Kernel Development. Sams Publishing, 2004.

[8] Microsoft Corporation. OnNow Pow. Mgmt. Architecture for Applications, December 2001.

[9] N. Pettis, J. Ridenour, and Y.-H. Lu. Automatic Run-TimeSelection of Power Policies for Operating Systems.
In Design Automation and Test in Europe, pages 508–513, 2006.

[10] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-To-End Arguments in System Design.ACM Transactions on
Computer Systems, 2(4):277–288, November 1984.

[11] T. Simunic, L. Benini, P. Glynn, and G. D. Micheli. Dynamic Power Management for Portable Systems. In
International Conference on Mobile Computing and Networking, pages 11–19, 2000.

[12] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. ECOSystem: Managing Energy As A First Class Operat-
ing System Resource. InInternational Conference on Architectural Support for Programming Languages and
Operating Systems, pages 123–132, 2002.

17

1 static int handle_device_access(struct happi_device *hd)
2 {
3 struct pdevice *pd;
4 struct blk_q *q;
5 int recent, previous;
6 unsigned long diff, idleness;
7
8 pd = get_pdevice(hd); /* Local data structure*/
9 q = hd->accesses; /* Recent accesses for device */
10
11 /* Compute time since last access */
12 recent = q->last;
13 previous = (recent + REQ_QUEUE_SIZE - 1) % REQ_QUEUE_SIZE;
14 diff = q->jiffies[recent] - q->jiffies[previous];
15 idleness = diff - q->elapsed_time[previous];
16
17 /* Save the previous prediction for estimator */
18 pd->old_predict[recent] = pd->predict;
19
20 /* Predict length of next idle period */
21 pd->predict = compute_prediction(pd, pd->predict, idleness);
22
23 /* If idleness shorter than breakeven time, stay awake */
24 if (pd->predict < pd->tbe)
25 return 0;
26
27 /* If longer, set shutdown timer to expire after filter */
28 reset_timer(hd);
29 return 0;
30 }
31
32 /* Computes idleness prediction */
33 static inline unsigned long
34 compute_prediction(struct pdevice *pd, unsigned long predict,
35 unsigned long diff)
36 {
37 unsigned long new = pd->alpha * (diff / 1000) +
38 (1000 - pd->alpha) * (predict / 1000);
39 return new;
40 }

Figure 9: Idleness prediction and state selection code. Called after every filtered access is completed.

18

1 static struct estimate *evaluate(struct happi_device *hd)
2 {
3 /* Variable declarations omitted for space */
4
5 pd = get_pdevice(hd); est = &pd->est;
6 s = hd->dstates; q = hd->accesses;
7
8 /* Initialize estimate */
9 est->energy = 0; est->delay = 0;
10
11 /* Compute initial prediction */
12 predict = initialize_estimate_prediction(pd);
13 i = q->first; pd->old_predict[i] = predict;
14
15 /* Compute prediction, energy, and delay for each access */
16 for (i = q->first, then = q->jiffies[q->head];
17 (i != q->first) || firsttime;
18 i = (i + 1) % REQ_QUEUE_SIZE, then = now, firsttime = 0) {
19
20 /* Compute time since previous access */
21 now = q->jiffies[i]; t = now - then;
22 awake_time = q->elapsed_time[i] + pd->wait;
23
24 /* Was predicted idleness longer than breakeven time? */
25 if ((predict < pd->tbe + q->elapsed_time[i])||(t < awake_time)){
26 estimate_for_state(est, hd, ACPI_STATE_D0, t);
27 goto next;
28 }
29
30 estimate_for_state_transition(est, hd, ACPI_STATE_D0,
31 ACPI_STATE_D1, awake_time);
32 estimate_for_state_transition(est, hd, ACPI_STATE_D1,
33 ACPI_STATE_D0, t - awake_time);
34 next:
35 pd->old_predict[i] = predict; /* Prediction before access */
36 predict = compute_prediction(pd, predict, t); /* New predict */
37 }
38
39 /* Energy since final access omitted for space */
40 return est;
41 }

Figure 10: Estimator code for EXP. Called by evaluator to compute the energy and delay for a given device.

19

1 static int __init model_markov_init(void)
2 {
3 struct list_head *hds;
4 struct happi_device *d;
5 struct list_head *d_scan;
6 unsigned long flags;
7
8 spin_lock_irqsave(&happi_mutex, flags);
9
10 HAPPI_ID = happi_register_measurement("MARKOV", &return_measurement);
11 initialize_all_device_markov()
12
13 /*
14 * Markovian transition probability matrix is periodic, so it doesn’t
15 * need to know about any device accesses or state transitions. It
16 * will read these later when it wakes up.
17 */
18 hds = get_all_happi_devices();
19 list_for_each(d_scan, hds) {
20 d = list_entry(d_scan, struct happi_device, list);
21 happi_set_timeout(HAPPI_ID, RESTART_NOW, d, EVAL_PERIOD,
22 &handle_periodic);
23 }
24
25 spin_unlock_irqrestore(&happi_mutex, flags);
26 return 0; /* Loaded successfully */
27 }
28 module_init(model_markov_init);

Figure 11: Initialization code for state transition matrixmeasurement. Called when the measurement is inserted into
the kernel.

20

1 static void handle_periodic(unsigned long hd_ul)
2 {
3 struct happi_device * hd = (struct happi_device *) hd_ul;
4 struct device_markov * d = get_device_markov(hd);
5
6 int i;
7 enum sr_states cstate = d->cstate; /* Current state */
8 enum sr_states nstate, oldstate; /* Next/old state */
9
10 nstate = did_access_occur(hd, jiffies - EVAL_PERIOD, jiffies);
11
12 /* Subtract off the current window value from the transition matrix */
13 i = d->ptr[cstate];
14 oldstate = d->window[cstate][i];
15 d->matrix[cstate][oldstate]--;
16
17 /* Insert the new value into the window and increment pointer */
18 d->window[cstate][i] = nstate;
19 d->ptr[cstate] = (i + 1) % WINDOW_SIZE;
20
21 /* Add the access to the transition matrix */
22 d->matrix[cstate][nstate]++;
23
24 /* Update the current state */
25 d->cstate = nstate;
26 }

Figure 12: Measurement update code. Called periodically toupdate the measurement.

1 /* Callback provided by the measurement */
2 static void *return_measurement(struct happi_device * hd)
3 {
4 return (void *) get_device_markov(hd);
5 }
6
7 /* Obtaining the measurement for the policy */
8 #include <markov.h>
9 static void * (*get_markov_model)(struct happi_device *);
10 get_markov_model = happi_request_measurement("MARKOV");
11 struct device_markov *md = (struct device_markov *) get_markov_model(hd);

Figure 13: Measurement return code. Called by a policy to obtain the measurement’s data.

21

	Purdue University
	Purdue e-Pubs
	3-15-2007

	Implementation Guides for a Homogeneous Architecture for Power Policy Integration in Operating Systems
	Nathaniel Pettis
	Yung-Hsiang Lu

