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Abstract

A significant volume of research has concentrated on operatingasyditected power management (OSPM).
The primary focus of previous research has been the developfm®&RM policies. Under different conditions, one
policy may outperform another and vice versa. Hence, it is difficultyenémpossible, to design the “best” policy for
all computers. We present a software framework called the Homogerferchitecture for Power Policy Integration
(HAPPI) that selects the best policy for a given workload at run-timeowitiuser or administrator intervention. This
framework is portable across different platforms running Linux. ®ABpecifies common requirements for policies
and provides an interface to simplify the implementation of policies in a cortyn@&. HAPPI can select the best
policy among a set of distinct policies at run-time. This technical repestdbes HAPPI's implementation and
provides a sample policy.
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1 Introduction

Power management has become an important design criteri@mMariety of modern computing systems, from em-
bedded systems to high-performance computers. Power raiareag research has focused on the creation of better
algorithms to reduce energy consumption. These algorigmagalledoolicies. Existing studies assume that only a
single policy may be used to control a device’s power stadesvever, significantly different policies may be necessary
to save energy for different workloads.

In our previous work [9], we demonstrate that different piels should be selected at run-time based upon the cur-
rent workload. We call this mechanism automatic policy cid@. This technical report describes the Homogeneous
Architecture for Power Policy Integration (HAPPI), a franark that selects the best power policy from a library of
policies at run-time. In HAPPI, policies are implementedeshel modules and manage power states at the operating
system (OS) level. HAPPI defines homogeneous requirementlifpolicies, allowing a single policy to control
multiple devices simultaneously. This interface allowtigies to be reused between devices, in contrast to existing
methods in Linux [3] and Windows [8] that require policiedi®implemented in each device driver.

2 HAPPI Overview

HAPPI is currently capable of supporting power policiesdmk, DVD-ROM, and network devices but can easily be
extended to support other I/O devices. To implement a pati¢yAPPI, the policy designer must provide:

1. Afunction that predicts idleness and controls a devipeiser state.

2. A function that accepts a trace of device accesses, detsrihe actions the control function would take, and
returns the energy consumption and access delay from tloms.ct

2.1 Policy Set

Each device has a set of policies that are capable of manégingdevice. A policy is said to beigible to manage

a device if it is in the device’s policy set. A policy becomdigible when it is loaded into the OS and is no longer
eligible when it is removed from the OS. The policy is consédiactiveif it is selected to manage the power states of a
specific device by HAPPI. Each device is assigned only oneegoolicy at any time. However, a policy may be active
on multiple devices at the same time. When a policy is actiateobtains exclusive control of the device’s power
state. The policy is responsible for determining when theogeshould be shut down and requesting state changes.
An active policy may update its predictions and requestaesiate changes on each device access or a periodic timer
interrupt. The set always includes a “null policy” that kedpe device in the highest power state.



2.2 Measurements

We refer to the data required by policies to make decisionsxsurements. HAPPI always provides traces of
recent accesses for each device controlled by the policy.nélee the device is accessed, HAPPI captures the size
and time of the access. These accesses are used by HAPP&tmidet how well each policy controls the device.
Measurements may also be very complex. For example, sornwesalequire more complex measurements, such as
probability matrices for access rates [5].

HAPPI also provides software energy and delay models thgt beaused to monitor the energy consumption
and performance of the computer. Energy is accumulated edich access and after every ten seconds of idleness.
We use simple state-based models to measure energy. Thigsssient with other OS-based power management
schemes [12]. We define delay as the amount of time that eredoibcks waiting for a device to awaken. We only
accumulate delay for the device’s first access while slgepirawakening because Linux prefetches adjacent blocks
on each access.

2.3 Policy Selection

Policy selection is performed by tleealuator. When the evaluator is triggered, it asks all eligible pelicio provide

an estimate of potential behavior for the current measunésnénestimate consists of energy consumption and total
delay for the measurement data and provides a quantitagserigtion of a policy’s ability to manage the device. To
accomplish this, each policy must provide a function, chla estimator, that uses HAPPI's measurement data to
analyze what decisions the policy would have made if it wetevya when the measurements were taken. The energy
and delay for these decisions are computed by the estimadoresurned to the evaluator. An active policy for each
device is selected by the evaluator after it receives egtisrfeom all policies. The evaluator selects each activieyol

by choosing the best estimate for an optimization metrichsas total energy consumption or energy-delay product.
If another policy’s estimate is better than the currentlivacpolicy, the inferior policy is deactivated and retudrte

the set of eligible policies. The superior policy is actagtind assumes control of the device’s energy management.
Otherwise, the current policy remains active. If the nuliggoproduces the best estimate, none of the eligible power
management policies can save power for the current workloader this condition, power management is disabled
until the evaluator is triggered again.

3 Implementation

This section focuses on HAPPI's implementation. We impletntiee architecture in the Linux 2.6.17 kernel to demon-
strate HAPPI's ability to select policies at run-time andypde a reference for future OSPM. HAPPI's implementation
is split into two halves: statically compiled code and Idald&kernel modules. The statically compiled code includes
the recording of device accesses, wrapper functions fte stansitions, and glue logic to maintain lists of policies
and devices. Policies, evaluators, and most measuremenithjglemented as loadable kernel modules that may be
inserted and removed at run-time. These modules are deddrilSection 3.3, Section 3.6, and Section 3.7, respec-
tively. The only measurement that is statically compiletd ithe kernel is a device’s access history. This measurement
will be discussed in Section 3.5.

3.1 Environment Setup

The Linux kernel is optimized for performance and exploitkddleness to perform maintenance operations such as
dirty page writeback and swapping. To facilitate power ngemaent, we use the 2.6 kerndl'apt op_node option,
which delays dirty page writeback until the disk serviceemednd access or the number of dirty pages becomes too
large. Withoutl apt op_node, the disk is accessed at least once every five seconds andeisidie long enough

to save energy. We must also adjust the commit interval ahjling file systems, such &t 3 andRei ser FS,
becausé apt op_node does not delay commits. Increasing the commit intervaldases the amount of data loss
during power failure, similar to usingapt op_nmode. For our experiments, we use a five minute commit interval.
Usingl apt op_node and longer commit intervals pose an increased risk of dawilothe event of a system crash
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Figure 1: Timeline for policy insertion. Arrows indicaterfction calls and returns. Dotted lines indicate synchraniz
tion points. Notifications include accesses, state trimmsit and file operations.

or power outage. However, we note that this risk of data Isssfundamental property of dirty page writeback and
unavoidable even if we disableapt op_node. The aforementioned environment setup merely increagesitidow
of vulnerability.

3.2 Configuring Hardware Specific Parameters

The Advanced Configuration and Power Interface (ACPI) sppation [1] describes hardware power parameters that
modern hardware should provide to ensure power manageomgmad. Although processors are widely supported, I/O
devices and peripherals often lack ACPI support. HenceQtBeannot automatically obtain the power consumption
of these devices. HAPPI provides hardware parameters itigmthrough two methods: a statically compiled header
file and run-time modification. HAPPI includes a header file¢l ude/ | i nux/ happi . h) that contains locations

to specify each device’s power consumption. HAPPI alsoidess/an interface through ther oc virtual file system
where power parameters may be changed at run-time to serdifegrent hardware.

3.3 Inserting and Removing Policies

Figure 1 illustrates a timeline of actions for policy ingent The left column indicates actions taken by the polidye T
right column shows actions taken by HAPPI. Arrows indicatection calls and return values. A policy must register
with HAPPI before it may be selected to control devices. Btegiion begins when a policy is inserted into the kernel
usingi nsnod. A spin lock protects the policy list and must be acquiredbethe policy can begin registering with
HAPPI. We use a spin lock rather than a semaphore becausellsAaR structures may be called from both process
and interrupt context [2]. The policy calls thappi _r egi st er _pol i cy function to inform HAPPI that it is being
inserted into the kernel and indicates the types of devicegblicy can manage. HAPPI responds by returning a
uniqueHAPPI _I D to identify the policy on all future requests. The policy istgrs callback functions to begin the
policy’s control of a devicei(ni ti al i ze), stop the policy’s control of a device ¢nove), and provide an estimate
to the evaluator for a device¢t i nat e). Then, the policy initializes local data structures foctealigible device.
After initializing local data structures, the policy regte notification of specific system events by calling the
happi _r equest _event function. These events, listed in Table 1, include notifiratfter each device access,



Name Description

HAPPLNOTIFY_BLOCK Filtered block device requests
HAPPINOTIFY_BLOCK_SHORT | Unfiltered block device requests
HAPPILNOTIFY_BLOCK_STATE | Block device state change

HAPPIALL BLOCK_EVENTS All block requests and state changes
HAPPLNOTIFY_NET Filtered network device requests
HAPPINOTIFY_NET_SHORT Unfiltered network device requests
HAPPLNOTIFY_NET_STATE Network device state change
HAPPILALL _NET_EVENTS All network requests and state changes
HAPPILALL _ACCESSES Filtered requests from all device types
HAPPIALL _STATES State changes from all device types
HAPPLFILE_OPEN File opened by application
HAPPLFILE_CLOSE File closed by application
HAPPILFILE_.READ File read by application
HAPPLFILE_READ_DISK File read from disk by application
HAPPLFILE_WRITE File written by application
HAPPLFILE_.WRITE_DISK File written to disk by dirty page writeback
HAPPLFILE_OPS Any file access by application

Table 1: All notifications provided by HAPPI. Filtered blodkvice requests occur 1000 ms after the previous access.
Filtered network device requests occur 250 ms after thaque\access.

« -, fiie

Figure 2: Accesses pass through a short filter before begsepolicies. (a) Unfiltered accesses with filter shown.
(b) Filtered accesses.

state transition, and file access. However, these eventeee&ed by only the active policy to reduce the overhead
of multiple policies running simultaneously. All registekmeasurements receive all requested notifications becaus
measurements are common to all policies. After the notifinathave been created, the policy releases the spin lock
and is eligible for selection. Since policy registratiomsishei nsnod command, administrator privilege is required
to add new policies. Hence, policies do not cause any sgdgfaches.

3.4 Recording Device Accesses and State Transitions

Simunic et al. [11] observe that policies predict more dffety if a 1000 ms filter is used for disk accesses and 250

ms filter is used for network accesses. These filters allowtbuf accesses to be merged into a single access. This
process is demonstrated in Figure 2. Figure 2(a) shows @&eeguf accesses, represented by solid bars. The shaded
area represents a filter. The filter window restarts afteh @acess. Each access that occurs after the filter expires is
considered a new access. Figure 2(b) illustrates how psligew the accesses after the filter. An access is defined by
a time span of activity extending from the first access of thstto the completion of the last access of the burst. This

representation preserves the amount of idleness betweesnthof an access and the beginning of the next access.



The filtering mechanism also prevents policies’ predicifnom being skewed by rapid bursts of accesses. Without
the filtering mechanism, we observe that policies signifiganispredict the amount of idleness between accesses.

These bursts of accesses occur because an I/0 accesssofsigt parts: a top-half and a bottom-half [7]. When
the application performs a read or write operation, it ugssesn calls to the OS to generate requests. The OS passes
these requests on to the device driver on behalf of the aiic This process is called the top-half. The application
may continue executing after issuing write requests butt was for read requests to complete. The device driver
constitutes the bottom-half. The bottom-half interfaceghwhe device, returns data to the application’s memory
space, and marks the application as ready to resume execUti® mechanism allows top-half actions to perform
quickly by returning to execution as soon as possible. Bottalf tasks are deferred until a convenient time. This
mechanism allows the OS to merge adjacent blocks into aesirguest or enforce priority among accesses. Since the
bottom-half waits until a convenient time to execute, thehamism is referred to ateferred work. Since accesses
may be deferred, multiple accesses may be issued to a d@riseautively.

We insert functions to record device accesses after thesaammpletes because a significant delay may occur
between an access’s issue and completion during stateehaldg recording accesses after completion, policies may
assume that the device is in the active power state and maisates immediately, rather than wait until the device
is fully awake. We record block requests in thend_t hat _r equest fi r st function ofbl ock/ || _-rw.bl k. c.
Network requests are recorded at several places througimiernel. We record network sends after each call to the
hard_start xm t function pointer and network receives in thet i f _r x function ofnet / cor e/ dev. c.

Deferred work plays an important role in managing statesitemms in Linux. When a state transition is requested,
a command is passed to a bottom-half to update the devicelsrpstate. The actual state transition may require
several seconds to complete and does not notify Linux upamptetion. The exact power state of a device during
a transition is unknown to Linux because the commands ardlédat the device driver-level. Device accesses are
managed in device drivers, as well, implying that the stafusutstanding requests are also unknown and cannot be
used to infer power states. HAPPI could obtain the exact pstege of a device by modifying the bottom-half in the
device driver. However, drivers constitute 70 percent ofixis source code [4]. Any solution that requires modifying
all device drivers is not scalable. Modifying the subset wfats for the target machine is not portable. Hence, we
estimate state transition time using ACPI information apdate the state after the time expires.

3.5 Maintaining Access History

All policies require knowledge of device accesses to ptadieness and provide estimates for policy selection. The
method for measuring device accesses directly affects HiaBHFility to select the proper policy for different work-
loads. In Section 3.4, we describe how a filter merges deferceesses into a single access. When a request passes
through the filter, HAPPI records the access in a circulafebuiVe use a circular buffer rather than a dynamically-
allocated list to reduce the time spent in memory allocatiod release and limit the amount of memory consumed
by HAPPI. After HAPPI records the access, the active polieg all measurements are notified of the event. Since
all policies require information about device accessessédtfunctions are statically compiled into the kernel. Asce
histories are the only components of HAPPI that are not [dadeemoved at run-time.

We determine the circular buffer’s length experimentaligduse the proper buffer length depends on workloads.
We choose five different workloads to induce different Ievel idleness on three different devices (a IDE disk, a
CD-ROM, and a PCI network card). These workloads are destiiielow:

Workload 1: Web browsing + buffered media playback from CD-ROM.
Workload 2: Download video and buffered media playback from disk.
Workload 3: CVS checkout from remote repository.

Workload 4: E-mail synchronization + sequential access from CD-ROM.
Workload 5: Kernel compile.

Figure 3(a) illustrates an access trace consisting of fitguenworkloads for the IDE disk. Each workload is
separated by a vertical line and labeled above the figureur&ig(b) illustrates the amount of history (in seconds)
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Figure 3: Accesses, history buffer length, and overlap betwworkload histories for different window sizes for
desktop workloads.

retained by HAPPI for circular buffer sizes of 4, 8, 16, andeB®ries. When no accesses occur, the history length
increases linearly. If a new access overwrites anothesadndhe circular buffer, the history length decreasesshar

An ideal history provides full knowledge of the current wiodd and zero knowledge of previous workloads. The
ideal history would appear as a linear slope beginning at fereach workload. A circular buffer naturally discards
history as new accesses occur. Figure 3(c) shows how mutdrnhizverlaps with previous workloads. This plot
appears as a staircase function because history is discardiiscrete quantities as accesses are overwritten in the
circular buffer.

Our implementation targets interactive workloads, comnmwodesktop environments. We use an 8-entry buffer
because this buffer quickly discards history when work#oelsange but maintains sufficient history to select policies
accurately. We observe from Figure 3(c) that the 8-entrfebuéquires 107 seconds to discard Workload 2 (indicated
at point A) and 380 seconds to discard Workload 3 (point Brdntrast, the 16-entry buffer requires 760 seconds to
discard Workload 3 (point C) and cannot completely discamtkidad 2 before Workload 3 completes. The 4-entry
buffer discards history more quickly than the 8-entry bulfet does not exhibit a sufficiently long history to estimate
policies’ energy consumption accurately. Systems with V@siant workloads, such as servers, may use a larger buffer
such as a 32-entry buffer. A larger buffer requires longetissard past workloads but allows for a better prediction
of the current workload in steady-state operation. Thedoléngth is set by the administrator.

Figure 4 depicts the second disk of a server containing ttlisdes running the SPECWeb99 benchmark with 20—
460 simultaneous connections, increasing in incremend®ofThis figure illustrates 32, 64, and 128-entry buffers.
We notice in Figure 4(a) that accesses begin at 60 connsctid@crease at 260 connections, and increase at 340
connections. This effect occurs because each of the theks @ the system contain different data sets. At 20
connections, all accesses are serviced from the first disR66 connections, most of the files on the disk are cached
in memory. At 340 connections, the working set exceeds the gi physical memory, so the disk becomes active
again. The best opportunities to save energy occur betwg@mi2d 340 connections. We observe at points A and
B that only the 32-entry buffer discards the previous histeefore the workload changes. The 32-entry buffer also
maintains a linear increase in history length in Figure 4dgnce, we choose a 32-entry buffer for server workloads.
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3.6 Advanced Measurements

HAPPI always provides an access history for each devicectlitéde policy selection. However, some policies require
more complex data than access history, such as probab#itsicas for access rates [5]. Advanced measurements can
be directly computed from the history of recent accesseseIiuch information is not required by all policies, HAPPI
does not provide the information directly. HAPPI providae minimum common requirements for policies. This
design is based upon the end-to-end argument of systermdé&sigoy providing the minimum common requirements

to avoid unnecessary overhead. Although it does not direectvide these complex measurements, HAPPI provides
an interface for measurements to be added as loadable kaotklles. A new measurement registers a callback
function pointer with HAPPI that returns the measuremedtraquests events similar to the other policies. If a policy
requires additional measurements, the policy callhdnepi _r equest _measur enent function with an identifier

for the measurement. HAPPI returns a function pointer tgtiey for retrieving the measurement data.

We implement measurements as separate kernel modulesbhessueral policies may require the same measure-
ment. By separating the measurement from the policies, #esarement is computed once for all the policies in
the system. Since measurements are always needed, thexeralteequested events, whereas inactive policies do
not respond to events. If policies were individually resgible for generating measurements, their measurements
would only consider the time when the policy has been acfiVais, policies would consider different time spans in
their estimator functions. Implementing measurement pars¢e modules also allows measurements to be improved
independently of policies.

3.7 Evaluating and Changing Policies

HAPPI automatically chooses the best policy for each defacehe current workload and allows power policies to
change at run-time, whereas existing power managemeneimgsitations require a system reboot. HAPPI's eval-
uator is responsible for selecting the active policy. Thal#stor is a loadable kernel module, allowing the system
administrator to select an evaluator that optimizes focsjpepower management goals, for example, to minimize
energy consumption under performance constraints. Shrecevaluator is a loadable module, the administrator may
change evaluators without rebooting if power managemealsgihange. The administrator inserts the module using
thei nsnod command. From this point onward, the evaluator selects ppalcies automatically. When a policy

is inserted into the kernel usirignsnod, the evaluator is notified that a new policy is present andvaduates all
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policies. After the best policy is selected for each deuice policy controls the device until the next evaluation.

If the evaluator changes the active policy, the old policystmelinquish control of the device’s power states and
the new policy must acquire control. Figure 5 illustrates/tdAPPI changes policies at run-time without rebooting.
The left column indicates actions taken by the old policye Thiddle column describes HAPPI's actions. The right
column indicates the new policy’s actions. When notified lgydtaaluator to change the active policy, HAPPI disables
interrupts and acquires a spin lock protecting the devidggaliding interrupts prevents any of the old policy’s perdin
timers from expiring and blocks accesses from being issugéazived from the device. Acquiring the spin lock
prevents HAPPI from interrupting the old policy if it is cently issuing a command to the device. Once the spin
lock is acquired, we are guaranteed that the old policy iscoatently controlling the device. HAPPI deactivates all
notifications for the old policy and calls the old policy'snove function to delete any pending timers and force
the policy to stop controlling the device. After the old pglihas successfully stopped controlling the device, HAPPI
enables the notifications for the new policy and calls the pelicy’si ni ti al i ze function. The new policy uses
this function to update any stale data structures and a&etitatimers. At this point, HAPPI enables interrupts and
releases the device’s spin lock, allowing the new policygtodme active. The performance loss for disabling intesrupt
and acquiring locks is negligible.

Replaced policies may elect to save or discard their cupesdictions. If history is saved, the information may
be used when selected in the future. In our policies, we #betiscard all previous history when a policy is replaced
in favor of a different policy. A policy is replaced becauteastimate indicates that it is incapable of saving as much
energy as another eligible policy for the current worklo&kplacement implies that a policy’s idleness prediction
is poor. Hence, discarding previous history resets theegslpredictions to an initial value when providing another
estimate and often allows the policy to revise its predictituch more quickly than by saving history.

Changing policies indicates that (a) the old policy is mésjicting or (b) the new policy can exploit additional
idleness. HAPPI must evaluate policies frequently enoogtetect these conditions. Figure 6 illustrates two work-
loads where these conditions occur. Vertical bars indidatéce accesses. Figure 6(a) depicts a workload changing
from long to short idleness. This transition is likely to e mispredictions because policies over-predict the amou
of idleness. Policies quickly correct their predictionsatmid frequent shutdowns. When the previous workload is
discarded from HAPPI's access trace, a new policy is selettigt predicts idleness more effectively and consumes
less energy for the new workload. Figure 6(b) depicts a veadtichanging from short to long idleness. Policies that
make decisions on each access cannot recognize and explgipkriods of idleness because no accesses occur to
update the policies’ predictions.

To reduce missed opportunities to save energy, we evalotitegs frequently. HAPPI evaluates all policies once
every 20 seconds to determine if a better policy is eligib®ag the available policies. We select this interval beeaus
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Figure 6: Vertical bars indicate device accesses. (a) Warkchanging from long to short idleness. (b) Workload
changing from short to long idleness.

it exhibits quick response to workload changes withoutshirag between policies. Here, thrashing means changing
policies too often, in particular, changing policies evénge policies are evaluated. Policy thrashing is a problem
because deselected policies discard their previous pi@tic Hence, a momentarily deselected policy may require
several minutes to refine its prediction, reducing oppdétiesto save energy. Shorter intervals detect changes in
workload more quickly, but policies thrash when changingklaads, whereas a longer interval reduces thrashing at
the cost of slower response to workload changes. We obdeava 20 second period evaluates quickly but does not
frequently cause thrashing. To further reduce the lik@dhof thrashing, we assign a small bonus to the currently
selected policy. The bonus reduces the current policy’sggrestimate by 5%. Our experiments demonstrate that this
bonus significantly reduces thrashing and improves overadtgy savings.

4 Installation and Configuration

HAPPI does not automatically detect system hardware. Heaoree manual steps must be performed to make HAPPI
work with new hardware. These instructions assume a badieratanding of C and the tools necessary to compile the
Linux 2.6 kernel.

4.1 Configuring IDE Devices

The power parameters for IDE devices are described in tefimsses and master-slave configuration. The configura-
tion of a system’s devices may be determined from the /sysyfitem as shown below. Usibgsh syntax, the “#”
symbol represents comments and “$” represents commands.

$ cd /sys/bus/idel/devices

# List the different |IDE buses on the system This machi ne has two buses.
# The .0 indicates that device is master. (.1 indicates slave)

$1s

0.0 1.0

$1s 0.0
bl ock: hda # Device hda lies on bus | DEO as nmaster

$1s 1.0
bl ock: hdc # Device hdc lies on bus | DE1 as nmmster

This information indicates that the machine has two busB&0 andl DE1. The diskhda is the master device
on| DEO. The CD-ROMhdc is the master device dnDE1. If the disk and CD-ROM are located on the same bus as
master and slave, the information will appear similar toftilwing:
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# List the different | DE buses on the system This machi ne has one bus
# with two devices. 0.0 is IDEO master. 0.1 is |IDEO slave.

$1s

0.0 0.1

$1s 0.0
bl ock: hda # Device hda lies on bus |IDEO as nmster

$1s 0.1
bl ock: hdb # Device hdb lies on bus | DEO as sl ave

After determining the master-slave configurations for €laeh, the devices may be configured. The header file
i ncl ude/ | i nux/ happi . h provides macros that describe each device's power paresnéte described in Sec-
tion 3.2, this information is defined in the ACPI device sfieation but often unavailable for I/O devices. A subset
of these macros are shown below. The IDE macros use the fingbewuto indicate the bus number and the second
number to indicate master (0) or slave (1). The power parmséiclude active power (D0), standby power (D1),
transition time, and transition energy. Here, we use C comiisyntax (/**/).

[+ See include/linux/happi.h -- ide0 master =*/

#def i ne | DEOO_POWNER_DO 850 [+ active power (MmN =/

#def i ne | DEOO_POWER D1 250 [+ standby power (mW =/
#define | DEOO_TI ME_D1_DO M5_TO JI FFI ES(4500) /* transition time (jiffies) =/
#def i ne | DEOO_ENERGY D1 DO 17100000 [+ transition energy (ulJ) =/

[+ ide0 slave x/

#defi ne | DEO1_POWNER_DO -1 [+ -1 indicates no device */
#defi ne | DEO1_POWER D1 -1 /+ -1 indicates no device */
#define IDEO1_TI ME_D1 DO -1 [+ -1 indicates no device */
#define | DEO1 ENERGY D1 DO -1 [+ -1 indicates no device */

4.2 Configuring PCI Devices

HAPPI supports fine-grained power management of PCI dev&tesh as network cards. To enable network power
management, HAPPI needs to know the vendor and device ndortibe device. To obtain this information, perform
the following steps.

# Sone out put not shown for brevity.

$ | spci

02:00.0 Ethernet controller: Broadcom Corporation NetXtrene BCV6705M G gabi t
Et hernet (rev 01)

Locate the PCI address of the device in the outputsgici . This number is in the first column of information.
In this example, the network card is located at PCl addre€¥)02 We can use this information to locate the vendor
and device number from the /sys filesystem.

$ cd /sys/bus/pci/devices

# Al PCl devices are |located under this directory, listed by PCl address
$1s

0000: 02: 00.0

# Choose the PCl device
$ cd 0000\:02\:00.0
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# Display the vendor and devi ce nunbers
$ cat vendor

0x14e4

$ cat device

0x165d

These numbers must be provided to HAPPI imcl ude/ | i nux/ happi . h to allow power management. In
this file, change the macros fBCl 0_VENDOR andPCl 0_DEVI CE to the numbers determined previously.

[+ In include/linux/happi.h */
#def i ne PCl 0_VENDOR 0x14e4
#defi ne PClI 0_DEVI CE 0x165d

The PCI device number has no significance in these macros.ndimbers exist to allow many PCI devices to
be managed by HAPPI. Note that the PCI device driver mustatipower management for HAPPI to successfully
control its power states.

4.3 Configuring SCSI Devices

The procedure for configuring SCSI devices is identical td dR@ices, except that the vendor and device number are
written to theSCSI 0_DEVI CE andSCSI 0_VENDCR macros.

4.4 Compiling HAPPI

The compilation process for HAPPI is the same as for any Likernel, except that th€ONFI GHAPPI and
CONFI G.HAPPI _ACPI configuration options must be set. These options may be seiatigin the. conf i g file or
through therenuconf i g option. The configuration options for HAPPI may be found urttle Power Management
options. To compile the kernel in three commands:

$ make nenuconfig

$ make all

$ sudo nmake modul es_install install && reboot
4.5 Loading Evaluators

The evaluator is responsible for selecting the best poticgéch device in the system. Evaluators are implemented as
loadable kernel modules. To compile an evaluator, typedahewing command, wherelAPPI _SRCis the location of
the HAPPI kernel code, or use the supplied Makefile:

$ make - C ${HAPPI _SRC} SUBDI RS=${PWD} nodul es

After compiling the evaluator, insert the evaluator into IPIA usingi nsnod eval uat or . ko. An evaluator
must be loaded before any policy may become active.

4.6 Loading Policies

Policies are implemented as loadable kernel modules. Toiterpolicies, type the following command, where
HAPPI _SRCis the location of the HAPPI kernel code, or use the suppliedéfile:

$ make - C ${HAPPI SRC} SUBDI RS=${PWD} nodul es

After compiling the policy, insert the policy into HAPPI ugji nsnmod pol i cy. ko. An evaluator must be
loaded before the policy may become active.
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static int __init exp_average_init(void)
{
unsi gned | ong fl ags;
spi n_l ock_irqgsave(&appi _nutex, flags);

/+ Policy may control block and network devices */
HAPPI _I D = happi _regi ster_pol i cy( HAPPI _BLOCK_POLI CY |
HAPPI _NETWORK _POLI CY) ;

1

2

3

4

5

7

8

9

10

11

12 /+ Register all required functions =*/

13 happi _register_init(HAPPI ID, & nitialize variables);
14 happi _regi ster_eval (HAPPI _|I D, &eval uate);

15 happi _regi ster_exit(HAPPI _I D, & estore_core_structures);
16

17

18

19

20

[+ Initialize all local data structures =*/
initialize_all_pdevice();

!~ Request bl ock and network device accesses */
21 happi _request _devi ce_event (HAPPI _I D, HAPPI _NOTI FY_BLOCK,

22 &handl e_devi ce_access);

23 happi _request _devi ce_event (HAPPI I D, HAPPI _NOTI FY_NETWORK,
24 &handl e_devi ce_access);

25

26 spi n_unl ock_irqgrestore(&happi _nmutex, flags);

27 return O; /* success */

28 }

29 nodul e_init(exp_average init);
Figure 7: Initialization code for EXP. Called when a polisyifiserted into the kernel.

5 Sample Policy

This section provides a full sample policy with descriptiohits various parts. The policy described here is the
exponential average policy [6]. For brevity, we will abhiege the exponential average policy as EXP. This policy
uses exponential averages to predict the length of the dkextaéss interval based upon previous intervals. The length
of the next idleness interval is computed by the equaltjkr- 1] = aik+ (1 — a)l K], wherei is the actual length of
the last idle intervall [K] is the previous idleness prediction, amds a weight factor in the rang@®, 1). If I[k+1] is
longer than the breakeven time of the device, EXP shuts doevdévice. The breakeven time is defined as the amount
of time that the device must remain asleep to save enerdyk 4 1] is shorter than the breakeven time, the device
remains in the active state until the next access occurs.

5.1 Inserting and Removing Policies

Figure 7 contains the initialization code for HAPPI. Theibadructure described in Section 3.3 is evident. Line 5
acquires the spin lock. Lines 8-10 register the policy withRPl and indicate that the policy can control both block
and network devices. Lines 12-15 provide HAPPI with theqydi callback functions. Lines 17—18 initialize local
data structures. Lines 20—24 request notification of deatmesses on block and network devices. Line 26 releases
the spin lock, allowing the kernel to resume execution. [28ds a macro provided by Linux to indicate the function
that should be called annsnod.

Figure 8 contains the code required to remove the policy filvenkernel. Line 5 acquires the spin lock. Line 6
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tatic void __exit exp_average_exit(void)

unsi gned | ong fl ags;

del ete_all _pdevice();

happi _unregi ster_policy(HAPPI _I D);

spi n_unl ock_irqgrestore(&happi _nmutex, flags);
}

1
2
3
4
5 spi n_l ock_irqgsave(&appi _nutex, flags);
6
7
8
9
0 modul e_exit (exp_average_exit);

1
Figure 8: Removal code for EXP. Called when a policy is renddvem the kernel.

frees all the local data structures that have been creat@thduitialization. Line 7 removes the policy from HAPPI.
Line 8 releases the spin lock. Line 10 is a macro provided Ioyix ito indicate the function that should be called on
r mod.

5.2 Predicting Idleness and Changing Power States

Figure 9 provides the code for idleness prediction and sliection. This function is called after every unfiltered
access, as described in Section 3.4. Line 8 locates the diatalstructure associated with the device. This data
structure contains the device’s idleness prediction{pdedict), breakeven time (pdtbe), and prediction history
(pd—old_predict). Line 9 locates the device’s circular buffer of @ses. Lines 11-15 compute the idleness between
the current and the previous access. Line 14 determineftkeetween the first access of each burst. Line 15 sub-
tracts the duration of the first burst. Recall that Figurdustlates how an access is interpreted by policies in HAPPI.
Lines 17-18 save the previous prediction. This is used byettaduator in Section 5.3 to improve the estimator’s
accuracy. Lines 20-21 compute the predicted idleness &onéxt period. The code for this function is shown on
Lines 32—-40.

At this point, pd—predict contains the prediction for the next idle period. [Gme 24, the policy checks if the
idleness exceeds the device’s breakeven time. If the idieiseshorter than the breakeven time, the device should
not be shutdown. In this case, shown on Line 25, the poliayrnstto HAPPI. If the predicted idleness exceeds the
breakeven time, the policy sets a timer to shutdown the detihis is shown on Lines 27-28. We use a timer to delay
the shutdown because the filter has not yet expired. By vggitintil the filter expires, we reduce the likelihood that
another access will immediately awaken the device. ThigWehis described previously in Section 3.4.

5.3 Evaluation

Figure 10 provides the code for EXP’s evaluation functiomisTunction is called by the evaluator periodically to
determine EXP’s ability to control the device’s power ssateines 5-9 locate the data structures for the device and
initialize the estimate’s energy and delay to zero. LineslBlcompute the initial idleness prediction. If the polisy i
not currently active for the device, the initial predictisrequal to the breakeven time (pdbe). However, if the policy
is currently active, the policy must determine its actualdiction for the access. Recall that this value is recoraed o
Line 21 in Figure 9. Neglecting this initial value causesrgésestimate error.

Lines 15—-37 compute the energy consumption and delay fér@azaess. Lines 20-22 compute the actual idleness
(t ) between the current and the previous accesses and thestijmiead for any state change to occaw@ke_t i ne).
Recall that a short timer is used to wait until the access pires before shutting down the device. Line 25 checks
if the policy would have shut down the device before the auraecess. If not, the energy for remaining in the active
state is accumulated in Line 26, and execution jumps to tdeéthe loop. If the device would have shut down, Lines
30-34 are executed to accumulate the energy for shutting édterawake_t i me and awakening the device after
t - awake_ti ne. Line 35 saves the current prediction in case the policylecsed. Line 36 updates the predicted
idleness before the next loop iteration.
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We omit the energy computation since the final access in tfierb@This code is very similar to the loop in Lines
15-37, except for two omissions. First, the device is notkamed after being shut down because no access has
occurred. Second, the prediction is not updated. After ading the energy consumption since the final access, the
estimate is returned to the evaluator on Line 40.

6 Sample Measurement

This section provides a sample measurement with desaripfids various parts. The measurement described here is
a probability matrix for access rates [5]. This particulaasurement considers four types of accesses: an access oc-
curring after a previous access, no access after an acoceas;@ss occurring without a previous access, and no access
after no access. These probabilities are necessary tapesfochastic optimizations for power management [5].

6.1 Inserting and Removing Measurements

Figure 11 contains the initialization code for the statadition probability model measurement. The basic stredsir
similar to the description for policies in Section 3.3. Ld@cquires the spin lock. Line 10 registers the measurement
with HAPPI provides a callback function to return the measugnt to a policy. Lines 13-23 configure a periodic
timer for each device. The measurement wakes up exeAt _PERI OD and determines if an access has occurred
during the previou&€VAL_PERI OD. Since the measurement is not called on every access, treureagent does not
need to request notification of events. Line 25 releasegiindack, allowing the kernel to resume execution. Line 28
is a macro provided by Linux to indicate the function thatidddoe called on nsnod.

6.2 Updating Measurements

Figure 12 contains the code that is called eveWAL _PERI OD to compute the state probability matrix. Lines 3-4
determine the individual device being measured. Line 7 kh#can access occurred the last time the measurement
was called. Line 10 checks if an access occurred in the preYAL_PERI CD by observing the circular buffer.
Lines 12-15 subtract the oldest access from the measursrhéstory. Lines 17—22 add the current access to the
measurement’s history. Lines 24—25 records if an accessm@ttto be used the next time the measurement is called.

6.3 Providing Measurements to Policies

A measurement’s purpose is to provide information to a polifo accomplish this, the measurement provides a
callback function to HAPPI that policies may use to obtamtieasurement. Figure 13 details this process. Lines 1-5
are provided by the measurement. The function returns tresunement associated with the device as void pointer
to facilitate a generic interface with HAPPI. Recall fronnki 10 of Figure 11 that the measurement registers this
function with HAPPI. Lines 7-11 are provided by the policyiné 8 is a header file containing the description of
the measurement’s data structure. Line 9 is a function epithat stores the callback for multiple uses. Line 10
obtains the measurement callback from HAPPI usinghéyepi _r equest _measur enent function. This function
accepts a string containing the name of the measuremeneands the measurement. Line 11 demonstrates how the
measurement is called from the policy. The policy may uselia as necessary to compute idleness.

7 Running Experiments Using HAPPI

One of HAPPI's greatest advantages is the ability to perfexperiments easily on actual hardware. This section
describes how to setup common experiments using HAPPI. Valeaor must haver i nt k statements included

to print each policy’s estimate to the Linux kernel log. Tégsint statements may be extracted by shell scripts to
compute the policy’s effectiveness.
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7.1 Testing a New Policy

HAPPI includes a null policy to compute the energy consuamptif a computer system without power management.
To determine a policy’s effectiveness, it should be comgphémethe NULL policy. To insert the policies into HAPPI,
type the following commands.

$ sudo i nsnod eval uat or. ko
$ sudo insnod null. ko
$ sudo i nsmod new policy. ko

# Run experi nment
$ drmesg > kernel -1 og. t xt

Theker nel -1 og. t xt file may be parsed to determine each policy’s estimates anddfive policy. Estimates
are indicated by th&VAL keyword. Policy assignments are indicated byAlsSI GN keyword.

7.2 Comparing Policies

When comparing multiple policies, both policies should semed simultaneously. The following commands should
be executed.

sudo i nsnod eval uat or. ko
sudo i nsnmod nul | . ko

sudo i nsmod new- policy-1. ko
sudo i nsmod new- policy-2. ko

@ h B P

Run experi nent
dmesg > kernel -1 og. t xt

& H

After the experiment is completed, tker nel - | og. t xt file may be parsed to determine what workloads favor
each policy.
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static int handl e_device_access(struct happi _device =*hd)
{

struct pdevice *pd;

struct blk_q *q;

int recent, previous;

unsi gned long di ff, idleness;

pd = get_pdevi ce(hd); /* Local data structurex*/
g = hd->accesses; /+ Recent accesses for device */

1
2
3
4
5
6
7
8
9
10
11 [+ Conpute tinme since |ast access */

12 recent = ¢g->l ast;

13 previous = (recent + REQ QUEUE_SI ZE - 1) % REQ QUEUE_SI ZE
14 diff = g->jiffies[recent] - qg->jiffies[previous];

15 idleness = diff - qg->elapsed_time[previous];

16

17

18

19

20

[+ Save the previous prediction for estinmator =/
pd->ol d_predict[recent] = pd->predict;

[+ Predict length of next idle period */
21 pd->predi ct = conpute_prediction(pd, pd->predict, idleness);

23 [+ If idleness shorter than breakeven tine, stay awake =*/
24 if (pd->predict < pd->tbe)
25 return O;

27 [+ If longer, set shutdown tiner to expire after filter =/
28 reset _tiner(hd);

29 return O;

30 }

31

32 /[ Conputes idleness prediction */

33 static inline unsigned |ong

34 conpute_prediction(struct pdevice *pd, unsigned |ong predict,

35 unsi gned |l ong diff)

36 {

37 unsi gned | ong new = pd->al pha * (diff / 1000) +

38 (1000 - pd->al pha) * (predict / 1000);
39 return new

40 }

Figure 9: Idleness prediction and state selection coddeafter every filtered access is completed.
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1 static struct estimate reval uate(struct happi _devi ce xhd)

2 {

3 [+ Variable declarations onitted for space =/

4

5 pd = get pdevice(hd); est = &pd->est;

6 s = hd->dstates; g = hd->accesses;

7

8 [+ Initialize estimate =/

9 est->energy = 0; est->delay = 0;

10

11 [+ Compute initial prediction */

12 predict = initialize_estinmate_prediction(pd);

13 i = qg->first; pd->old_predict[i] = predict;

14

15 [+ Compute prediction, energy, and delay for each access =/

16 for (i = g->first, then = g->jiffies[qg->head];

17 (i '=g->first) || firsttine;

18 i = (i +1) %REQ QUEUE_SI ZE, then = now, firsttime = 0) {
19

20 /+ Compute time since previous access */

21 now = g->jiffies[i]; t = now - then

22 awake time = g->elapsed_tine[i] + pd->wait;

23

24 /=~ Was predicted idleness |onger than breakeven tine? =/

25 if ((predict < pd->tbe + g->elapsed_tine[i])|]|(t < awake_time)){
26 estimate for_state(est, hd, ACPI _STATE DO, t);

27 got o next;

28 }

29

30 estimate_for_state_transition(est, hd, ACPlI_STATE DO,

31 ACPI _STATE_D1, awake_tine);

32 estimate for_state transition(est, hd, ACPI _STATE D1,

33 ACPI _STATE DO, t - awake_tine);
34 next:

35 pd->ol d_predict[i] = predict; /* Prediction before access =/
36 predict = conpute_prediction(pd, predict, t); /* New predict =/
37 1}

38

39 /= Energy since final access onmitted for space */
40 return est;
41 }

Figure 10: Estimator code for EXP. Called by evaluator to pota the energy and delay for a given device.
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static int __init nodel _markov_init(void)
{

struct |ist_head *hds;

struct happi _device =*d;

struct list_head *d_scan
unsi gned | ong fl ags;

spi n_l ock_irqsave( &happi _nmutex, flags);
HAPPI | D = happi _regi ster_neasurenent (" MARKOV', &return_neasurenent);

initialize_ all_device nmarkov()

1
2
3
4
5
6
7
8
9
10
11
12
13 /=
14 * Markovian transition probability matrix is periodic, so it doesn't
15
16
17
18
19
20

* need to know about any device accesses or state transitions. It
* Wll read these |ater when it wakes up
*/
hds = get _all _happi _devices();
list_for_each(d_scan, hds) {
d = list_entry(d_scan, struct happi _device, list);
21 happi _set _ti neout (HAPPI _I D, RESTART_NOW d, EVAL_PERI 0D
22 &handl e_peri odi ¢);
23}
24
25 spi n_unl ock_irqgrestore(&appi _nmutex, flags);
26 return O; /* Loaded successfully =*/
27 }

28 nodul e_init(nmodel _markov_init);

Figure 11: Initialization code for state transition matmeasurement. Called when the measurement is inserted into
the kernel.
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static void handl e_periodi c(unsigned | ong hd_ul)
{
struct happi _device * hd
struct device_markov * d

(struct happi _device *) hd_ul;
get _devi ce_mar kov(hd);

int i;
enum sr_states cstate = d->cstate; /* Current state =*/
enum sr_states nstate, ol dstate; /* Next/old state */

nstate = did_access_occur(hd, jiffies - EVAL_PERIOD, jiffies);

[+ Subtract off the current wi ndow value fromthe transition matrix =*/
i = d->ptr[cstate];

ol dstate = d->wi ndowfcstate][i];

d->matrix[cstate][ol dstate]--;

[+ Insert the new value into the wi ndow and i ncrenment pointer x/
d->wi ndow cstate][i] = nstate;
d->ptr[cstate] = (i + 1) % W NDOW Sl ZE;

[+ Add the access to the transition matrix x/
d->matri x[ cstat e] [ nst at e] ++;

[+ Update the current state x/
d->cstate = nstate;

Figure 12: Measurement update code. Called periodicallyptiate the measurement.

[+ Cal |l back provided by the neasurenent =/
static void *return_neasurenment (struct happi_device * hd)
{

return (void *) get_devi ce_nmarkov(hd);

}

[+ Cbtaining the neasurenent for the policy */

#i ncl ude <markov. h>

static void » (xget_markov_nodel ) (struct happi _device x);

get _mar kov_nodel = happi _request _neasuremnent (" MARKOV') ;

struct device_markov *nd = (struct device_markov *) get markov_nodel (hd);

Figure 13: Measurement return code. Called by a policy taiolihe measurement’s data.
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