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Abstroct. Public-Key signature systems can be vulnerable to attack if the
protoeols for signing messages allow a cryptanalyst to obtain signatures on
arbilrery messages of the eryptanalysl’s choice. This vulnerability is shown to
arize from the lhomomorphic slructure of public-key syslems. A signature
protocol thal foils the altack is described.
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1. Iniroduction

George Davida [1] has recently uncovered a potentially serious weakness in
Lhe basic prolocol for signing messages using the RSA public-key'cryptosysLem
[10]. Assuming that a cryplanalyst can gel a user Lo sign arbilrary messages
Lthat may be meaningless, the cryptanalyst can decrypt ciphertext encrypted
under Lhe victirn's public key or [orge the viclun's signalure con a meaningful
message. This is done by getting Lhe victim to sigh new messages derived [rom
Lie inlercepled cipheriexl or chosen message. Although Davida refers to the
allack as a "chosen signature" allack, it is actually a "chosen message” atlack
since Lhe cryplanalyst chooses messages Lo be signed rather Lhan signatures Lo

be validaled. The attack also works with other publie-key systems.

The atlack dees not break the RSA system in the traditicnal sense whereby
a cryplanalyst can obtain sceret keys. Indeed, Lhe attack is carried out without
knowledge of Lhe viclim's private key. In this scnse, the attack is much weaker
lthan a "chosen plaintext” attack on a conventional cryptosyslem, which, if
suecesslul, brealks Lhe system.

We believe that a signalure prolocol [or public-key syslems developed by
Davies and Price [ 2] feils the attack for any public-ley system. We shall first
deseribe Lhe weakness in the basic RSA protocol, and then show how it
seneralizes te other public-key systems. We shall then describe the protocol by

Davies and Price.

2. The Basic 1¢SA Prolocel

[.el n be the modulus {or Lhe vielim's RSA cryptosyslem, where n = pg [or
large sceret primes p oand g; and lel e and € be the public and privale
exponenls respeclively, where e and ¢ arce mulliplicative inverses mod

() = {(p-1)(3—1). The public exponent e is used lo cncipher and validate
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signalures; the private exponent d to decipher and sigh messages. To send the
user a sccret raessage M, the sender enciphers # by computing € = M® mod n;
the user deciphers the ciphertext € by compuling ¢ modn = #. Similarly.
Lhe user signs a messagé M by computing S = H% mod n; Lhe receiver validates
the signature & by compuling S€ modn = M. The security of the system rests
on Lhe assumplion thal a eryptanalyst cannol determine the factors p and g of

n. (See [5] for a tutorial on the number theory behind the RSA system.)

3. The Petential Weakness

Suppose thal a eryptanalyst has intercepled ciphertext ¢ sent to the
viclim, where € = #°® mod n. Davida [1] has shown how the cryplanalyst may be
able to delermine M wilhout knowing the deciphering exponent €. His method

worlks as follows:



Apgorithm 1. Davida's method for obtaining C% mod n = M.
1. Factor C inle f = 2 components, oblaining € = €,Cp - ¢; (the components
C. need not be prime or prime powers — any decomposition of C will do).

This implies that M also lactors into ¢ corresponding components

¢ = 0102"'01 = (M}_Mz"'ﬁf[)e medn = (J’Jl)c(.r‘-dz)a"'(frf;)u mod 7z ,

and M; = C¥modn (i =1,....t).

2 Get the vwvictim to sign a message X and messages
XCimodn,...,XC;, modn. X can be a new message or a message previ-
ously signed by Lhe victim. The messages XC), . . ., X(; might be lines in
some (ile Lhe eryplanalysl requesls Lhe vielim to sign line by line lo ack-
nowledge i‘eceipt. The signatures obtained are thus:

S =X modn
S =(XG)Y¥ modn (i=1,...,t).

3. Compute the multiplicative inverse $7' mod » of the signature S, getting

Sl A% mod n .
4,  Multiply this by each of the S; Lo obtain the Af;:
SIS modr = X HAGY modn = (fmodn = M.

5. Compute the product MMy M modn = i,

The alluck can also be made using X = 1. Then Lhe eryptanalyst needs only the
¢t signalures 5; = (*mod n = M;. This attack, however, may be casier Lo detecl
since Lhe [aclors of & and M arc cxposed.

In the unlikely evenl Lhal S is not telatively prime te n, S does not have a
unique inverse mod n». [3ul in Lthis case, Lhe cryplanalyst can [aclor m becausc

S will be a multiple of @ or g, whence ged(S, n) =p org.
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Judy Moore has uncovered an even simpler attack that requires only one
signalure:
Algorilhm 2. Moore's method for obtaining €® mod n = .
1. Pick an arbitrary S and compute X = §? mod »; this implies
S=X*modn .
2.  Gel the vietim to sign the message XC mod n», ebtaining the signature
S, =(XC) modn .
3, Compute 7! modz = X% mod n.

4. Mulliply $7!' by &, to obtain #:

S!S modn = X *XC¥ modn =C®modn = H .

Under the assumption that the RSA syslem is eryptographically strong
(compulationally infeasible to break), Moore's melhed is optimal in Lhe sense of
recuiring the minimal nurnber of signatlures from the victim. If it were not, then
we could deerypt cipherlext without any cooperation from the victim, thereby
broshing INSA,

Because bolh algorithms compute % mod n, they may also be used to

[erge Lhe victim's sigznature on a message C chosen by the cryptanalyst.

1. Generalizing the Resulls te Other Public-Key Systems
Consuwder an arbitrary public-key cryplosyslem with private deciphering
(signalure} lransiormatlion £ and public enciphering (ransformation £ = P71,
We inilially assume Lhe public-key system can be uscd for bolh message
cneryplion  (Le., 2(E(X))=X can ke computed) aud signatures (i.e.,
E{(XN)) = X can be compuled); signalurc-only systems are considered later.
Moore’s melhed exlends Lo Lhe sysiem il the message‘space furms a group

wilh binary operater = and identity element 1; the signaturc space forms a group
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wilh a binary operalor, also denoted by s, and identity 1; and the deciphering

translormalion [ is a homomorphism from Che message group te the signalure

group, Lhal is, Lhe [ollowing properiies hold [or all messages X, Y, and Z:

1. X=(¥eZ)=(XwY)=Z (Associalivity - for Step 4)

o

Xeli=laX=X (Identity - for Steps 3 and 4)
3. XeX1=Xlex=1 {Inverses - for Step 3)

4. D(X=Y)=D(X)«D(Y) (Homomorphism - for Step 4)

Alporithm 3 compules 2(C) to decrypl € or [orge the vietim's signature on C:

Algorillimn 3. Generalizalion of Moore's method to obtain D(C).

1.

2,

Pick 5 and compute X = £(S): this irnplies § = D(X).

Get the victim to sign !.he message X 2 C. The signalure is 5, = D(X = C).
Compute &L

Compule

S57lag

ST1apD(XeC) = S (D(X) = D(C))
ST (SaD(C)) = (S '=5)s D(C)
1=D(C)y=D(C).

i

i

The RSA system (ils this general pattern, where both the message and

signalure groups are defined by the integers relatively prime to n together with

multiplication. The deciphering Lransformation is a homomorphism because

(XY)¢ modn = [(X% mod »)(¥* modn)] mod n .

1L 1s not. surprising Lhal a eryplosystem [or which the deciphering

transfermation is a hoemomorphism is vulnerable to certain Lypes of attack,

Rivesl, Adleman, and Derlouzos [9] showed thal such cryplosytems can have

inherenl weaknesses.
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¥e now consider the case where Lhe public-key system is a signature-only
syrtem. 'thus, Lhe cryptanalyst is interesled only in [orging a signature on a
message C. To see how Moore's methed can be applicd in this case, we consider
lhe individual steps in Algorithm 3. Step 1 cannot be performmed because
messages cannol be enciphered in a signature-only syslem. DBul since the
objeclive is Lo oblain X and 8 such that § = D(X), Lhis slep can be replaced by
one thal oblains lhe viclim’s signalure on a message X picked by the
eryptanalysl. Sleps 2 and 3 can be performed without modification. Step 4 can
be perfurmed as long as 2 is a homomorphism. Il D is not a homomorphism but
fis, lhen a slightly different approach can be taken in Step 4 since the
objeclive is simply Lo find a signature thal passes the validation test. Algorithm

4, whiclh generalizes a method by DeMillo and Merritt [4], uses this approach:

Algorilthm 4. Forge a Signature on €.

1. Plck- X and get the viclim te return a signature 5 = D(X); this implies
X = FE(S).

Get Lhe victim to return the signature S, = D(X » C).

o

3. Courupute 37L
4. Compute Lhe sighature Sz = S™'e §,, S, is a valid signature of  because
f‘:(b‘g) = 1’:(3_&1 - 6'1) = E(S -l) - l‘.'(b' l)

= B(&) 'eE(S)) (because £ is a homomorphism)
=X 1e(XaC)=C.

Shamir’s signature-only knapsack scheme [11] (see also [5]) fits this
paticrn. Here, lhe signalure validalion LUransformalicn £ is given by
F(S) = SAmod %, where » is a k-bit prime, 4 and S arc inleger veclors of

an

lenglh 2%, and SA denoles the scalar producl. where X is g integer modn. The

mesgage group is defined by the integers mod 7 with addition and identity 0;
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the signature group by integer vectors ol length 2k with vector addition and
idenlily 0. Although 2 is not a homomorphism, £ is a homomorphism from the

signature greup Lo Lhe message group, since for all signalures .5, and Sa:
(S, + Sp)A modn = (S;A modn + SzA modn)mod n .

For Shamir's system, Algorithm 4 becoimes the melhod in DeMillo and-Merritt

f2l:

Algorithm 5. DeMillo’s and Merrilt's Methed for Forging a Signature .S on € with

Shamir's Signature System.

1. Tiek X and get the vietim te return the signaiure S such that
SAmodn =X,

€. Get the victim to return a signature &, on X + C such that
S A medn = X+C. -

3. Conppule $7' = -9,

4, Compulz Lhe signature Sp = =8 + 5. S i5 a valid signature of ¢ because

LI(SQ) = .!';I(_S + Sl) = (_bl 1- Sl)A mod n
=(-SAmodn + SiAmodn)modn = [-X + (X + C)]modn = C.

DeMille and Merritt also consider similar attacks on variants of the RSA
system. These systems all have a underlying homomorphic structure (though
nol cxplicitly identified as such in lheir paper)., which explains their

vulnerubiliLy to this general method of atlack,

L. Ar lmproved Prolocol

'or Lhe alloacks Lo succeed, the eryptanalyst must be able to get the vielim
Lo sipn essenlially arbitrary messages Lthal are supplied by the cryplanalyst and
are nol likely Lo be meaningful. To protect against such attacks, users can sign

only meaninglful messages cof their choice. Messages received from other users



can bu modified belore signing.
We now describe a prolocol that protects against the attacks by
Lranslorming messages with a one-way public [unction h before signing. A

messnge M is thus signed by computing
S = DM(M)).

The funclion & should salisly [our properlies:

1. A should destrey all homomorphic structure in the underlying public-key
cryptosystem; Lhal is, A(X=¥) # A(X)«h(Y) must hold. Moreover, for
aimost all. X and Y, D(h(X = ¥)) # D(A{X))= D(h(Y)) should hold. Then the
cryptanalyst cannot factor oul the X or Y in a signature D(h (X = ¥)).

%. h should be computed over entire messages (rather than on a block by

block basis). This will make it difficult for a cryplanalyst to obtain

signatures by inserling blocks intoe a file that otherwise looks legitimate.

3. h should be one-way so that the cryptanalyst cannot obtain a signature on a
message X by requesling a signature for A~71(X).

4./« should have Lhe properly that [or any given message X and value h(X), it
is compulalionally infeasible Lo find anolher message ¥ such that A(Y) =
1 (X). This is needed to prevent [orgeries since 2(X) can be computed [rom

a signature & = 2(h(X)) by applying the public [unclion Lo S.

Applyime the bhosdormalion A Lo a niessnge before  sipning has an
addilivnal benefit.  Beeause lhe transformations #()) and 2(n()) are not
inverses, a cryplanalysl cannot hepe to deerypl an intercepled cipherlext
message C by getting a signalure on C.

The idea of lransforming messages belore signing is due to Davies and Price
[R]. who designud a protocol [or sighing secret messages using a one-way public

hashing Tunclion A Lhal conceals messages and prevents forgerics. Their




- 10 -

function A blocks a message M into 56-bit blecks M, .. ., M, and computces a
digesl
M=h(MJ)=Eyo-- oliy ofy o--- oEyll),

where Fy, 18 Lhe DES enciphering algerilhm keyned Lo block M, 7 is a random G4-
bil inilializalion sced [lor Lhe DES, and “o" dcnoles functien cemposilion.
Because: Lhe [unclion i cuan be computed both [oerwards and backwards (by using
the deciphering transformations D”t) for an arbitrary message &, the message
musl be repealed in Lthe keys Lo prevent a "mect in the middle" forgery
(compule forwards [rom / using 23 varialions of Lhe firsL hall of the desired
message and backwards from M using 2% varialions of the second half of the
message; sorl the resulls to find a match, which is likely to occur [or "birthday
problera” reasons),

Wolfgang Bitzor has suggested an improved hashing function that foils the
meel in the middle attack with a single pass over the message. His hashing
funclion is given by

M=h(M )= Z.,,.

where

Ziv1 = Ezan(Z) (1=sisT)
Zl =17,
Z;' consists of 56 bits selected (rom Z;, and ® denotes exclusive or. The meet in

Lhe middle allack is prevented because it is not possible to compute baclowards
through Lhe lunclien (i.e.. compule Z; froin Z; ).

Balty  Dis-based  hashing  funelions would  deslrey Lhe mulliplicative
sbructuie of Lhe REA syslem and Lhe addilive struclure of knapsack syslems.
They  almost covbamly would  deslroy the homuomoeplne sbruelore of any
underlying eryplosystent,

Using the hashing function, the message # is sighed as S = D([ﬁ?. .
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where the 123-bit block [E. [] is replicated as many times as necessary to fill

the input block [or the signature transformation 2.

A signalure ¥ on an alleged message # is validated by first computing
E(8)=DY(S) = [M, 1], next computing 2(#,/) using the public function £ and
the alleged message M; and finally comparing h(#./) wilh #. We conjacture,
bul have nol been able Lo prove, lhal a constant seed Jy could be used For all
messag-us wilhoul compromising sceurily (in Lhe same way Lhal a constant sced
s used for onc-way cncryption of passwords). Then the signalure would be
simply § = D(h(M)) as sungesled earlier.

the message M can be Llransmitted cither as cleartext (if secrecy is not
nceded), as ciphertext encrypted using lhe rcceiver's public key, or as
cipherlext encrypted using a secret key shared by the sender and receiver (if a
conventional cryptosystem is used for message secrecy, with the public-key

system reserved for signatures and key exchange).

The hashing funclion has two important advantages besides protecting
againsl signalure altacks

1. Il separates the signature Llransformalion {rom the secrecy

Lransformalion, allowing secrecy to implemented wilh a cne-key

system or Lo be skipped [2]. Yel the separation is achieved without

much message cxpansion, since each signature is a single block.

2. It conceals messages so thal signalures can be publicly disclosed
withoul revealing their corresponding messages. This is important for
recovering [roin compromises or direct disclosure of private keys. Let
Dy be Llhe sighalure key of user 4. In order that a signalure § of 4 can
reawain valid aller £, is compremised or deliberately disclosed, S must
be bound Lo A's currenl public cey &, Limeslamped, and signed by the

public key server {nolary public) |8], giving a “signaturc cerlificate”
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[8] G = Dp(T, A, B4, S), where Dp is the signature key of the public
key server, and T' is the limeslamp. And in order that S can reniain
valid even if Pp is compromised, & musl be kept in a public log. lor
this reason, il is important that S cenceal the message signed and
have minimal storage requirements, This is achieved with the hashed

signalure method. (For [urther discussion of this, see [6].)

6. Conclusions

Davida's discovery demonstrates the fundamental importance of encryplion
protocols. Il is not cnough to have an encryption algorilhm that is
compulationally hard to break; the protocols [or using the algorithm must also
wilhstand allack. We have identified several properties that should be satisfied
by any signalure prolocol: in particular, it should destroy any hemomorphic
struclure in Lhe underlying public-key algorithm. 'The signalure prolocol
deseribed here appears to salisfy these properties. Furlher research along Lhe
lines initialed by Dolev and Yao [7] and DeMillo, Lynchh. and Merrill [3] is needed

for proving the security of protocols,
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