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Abstract

Several multicast protocols for mobile ad hoc networks (MANETs) have been proposed that build

multicast trees using location information available from GPS or localization algorithms and use ge-

ographic forwarding to forward packets down the multicast trees. These stateless multicast protocols

carry encoded membership, location and tree information in each packet. Stateless protocols are more

efficient and robust than stateful protocols (ADMR, ODMRP) as they avoid the difficulty of maintaining

distributed states in the presence of frequent topology changes in MANETs. However, stateless location-

based multicast protocols are not scalable to large groups because they encode group membership in the

header of each data packet, i.e. they incur a per-packet encoding overhead. Additionally, such protocols

involve centralized group membership and location management, either at the tree root or the traffic

source.

In this work, we present the Hierarchical Rendezvous Point Multicast (HRPM) protocol which sig-

nificantly improves the scalability of stateless location-based multicast with respect to the group size.

HRPM incorporates two key design ideas: (1) hierarchical decomposition of multicast groups, and (2)

use of distributed geographic hashing to construct and maintain such a hierarchy efficiently. HRPM

organizes a large group into a hierarchy of recursively organized manageable-sized subgroups in an

effort to reduce per-packet encoding overhead. More importantly, HRPM constructs and maintains this

hierarchy at virtually no cost using distributed hashing; distributed hashing is recursively applied at

each subgroup for group management and avoids the potentially high cost associated with maintaining

distributed state at mobile nodes. The hierarchical organization and the distributed hashing property

also allows HRPM to scale to large networks and large numbers of groups.

Performance results obtained via detailed simulations demonstrate that HRPM achieves enhanced

scalability and performance. Coupled with its leverage of stateless geographic forwarding, HRPM

scales well in terms of the group size, the number of groups, the number of sources, as well as the size

of the network. In particular, HRPM maintains close to 95% multicast delivery ratio while incurring on

average 5.5% per packet tree-encoding overhead for up to 250 group members in a 500-node network.

Furthermore, it achieves a steady 95% delivery ratio while incurring nearly constant overhead as the

number of groups increases from 2 to 45, while keeping the total number of receivers constant at 180,

in a 500-node network. Lastly, it steadily achieves above 90% delivery ratio as the network scales up

to 1000 nodes with up to 30% group members. As a reference, we also compared HRPM to ODMRP,

a state-of-the-art topology-based multicast protocol that is scalable to large groups. HRPM performs

comparably to ODMRP across a wide range of group sizes. More over, HRPM outperforms ODMRP

when the network size, the number of groups, or the number of sources increases.
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1 Introduction

A mobile ad hoc network (MANET) consists of a collection of wireless mobile nodes dynamically

forming a temporary network without the use of any existing network infrastructure or centralized ad-

ministration. In such a network, since nodes are often not within the radio transmission range of each

other, each node operates not only as a host, but also as a router, forwarding packets for other mobile

nodes.

Multicast is a fundamental service for supporting collaborative applications among a group of mobile

users [10]. Different from in the wired Internet, multicast in MANETs is faced with a more challenging

environment. In particular, multicast in MANETs needs to deal with node mobility and thus frequent

topology changes, variable quality wireless channel, constrained bandwidth, and low memory and stor-

age capabilities of nodes. On the other hand, unlike in the Internet, nodes in a MANET can be modified

at the network layer to provide group communication support. This reduces the need for overlay-based

group communication that has been popular in the Internet.

Numerous multicast protocols have been proposed for multicast in MANETs. These include tradi-

tional tree- or mesh-based protocols such as MAODV [37], ADMR [19], ODMRP [27], overlay-based

protocols such as AMRoute [47], PAST-DM [15], and back-bone-based protocols such as MCEDAR [38],

and more recent stateless protocols such as DDM [20], HDDM [16], and RDG [30]. These multiple

protocols either rely on underlying unicast routing schemes (e.g., [47, 20]) or expend great effort to

maintain a distributed multicast routing structure (e.g., [19, 27]). Both factors affect the scalability of

these protocols.

Recently, several location-based multicast protocols for MANETs have been proposed [2, 7, 32] which

neither assume any unicast routing scheme nor build any distributed multicast routing structure. These

protocols build multicast trees using location information available from global positioning systems such

as GPS [44] and use geographic forwarding to forward packets down the multicast trees. Sharing the

stateless nature of geographic forwarding, these protocols are stateless, as they carry encoded member-

ship and location as well as tree information in each packet, so that the multicast membership and rout-

ing state do not have to be distributed as in traditional multicast protocols such as ADMR or ODMRP.

Stateless protocols are more efficient and robust than stateful protocols as they avoid the difficulty of

maintaining distributed states in the presence of frequent topology changes in MANETs.

However, because of their stateless nature, previous location-based multicast protocols suffer from

limited scalability in terms of the group size. Conceptually, stateless location-based multicast protocols

are not scalable to large groups because they encode group membership in the header of each data packet.
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In fact, previous location-based protocols are explicitly proposed for small groups.

In this paper, we study the scalability aspect of location-based multicast, in particular, the group

(membership and location) management in location-based multicast protocols. A well-known general

approach to reducing the load of managing a large multicast group is to partition the large group into hier-

archically organized subgroups of manageable sizes. The immediate consequence of distributing mem-

bership management is that the protocol becomes stateful. The key question here is therefore whether

there is a way to leverage the concept of hierarchical membership management without incurring the

high cost associated with maintaining distributed state at mobile nodes?

We present the Hierarchical Rendezvous Point Multicast (HRPM) protocol which meets the above

criterion and significantly improves the scalability in the group size of previous location-based multicast

protocols. HRPM leverages two key techniques: distributed mobile geographic hashing and hierarchical

decomposition of multicast groups. Given a data item and a location, mobile geographic hashing maps

(routes) the data item to the node whose geographic location is currently closest to the location. Thus

mobile geographic hashing allows multicast group members to agree upon a fixed rendezvous point (RP)

(and the current node associated with it) as the group manager (root) without incurring any overhead,

for example in keeping track of an otherwise mobile group root. This in turn allows the multicast

protocol to maximally leverage stateless geographic forwarding for efficient group membership and

location management. More importantly, a rendezvous point group management enabled by mobile

geographic hashing can be recursively applied to enable a hierarchically organized set of manageable

sized RP-based subgroups such that multicast inside each subgroup satisfies a per packet tree-encoding

overhead constraint. Group management under such a hierarchy is extremely lightweight as the RP

subgroup roots are effectively “stationary”. Thus although conceptually the membership state in HRPM

is distributed among the subgroup roots, but since they are virtually stationary, HRPM effectively avoids

the high cost associated with maintaining distributed state at mobile nodes.

We first study the performance of HRPM as compared to previously proposed location-based multicast

protocols. The results demonstrate that for large groups (up to 250 members experimented with), HRPM

significantly improves the scalability of previous location-based multicast protocols.

We then compare HRPM to ODMRP, a topology-based multicast protocol that is scalable to large

groups. In this comparison, we find that HRPM is comparable to ODMRP in performance as the group

size increases. However, HRPM significantly outperforms ODMRP as the network size is increased

(up to 1000 mobile nodes experimented with). In addition, HRPM outperforms ODMRP when a large

number of groups (up to 45 experimented with) or a large number of sources per group exist.

In summary, leveraging stateless geographic forwarding for data delivery and distributed hashing for

group and location management allows HRPM to scale well in terms of the group size, the number of
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groups, the number of sources, as well as the size of the network.

The rest of the paper is organized as follows. Section 2 formulates the location-based multicast prob-

lem. Section 3 presents the detailed design of HRPM. An analysis of key design parameters of HRPM

is presented in Section 4. Section 5 presents the simulation studies. Section 6 summarizes related work

and finally, Section 7 concludes the paper.

2 Preliminaries

The multicast problem deals with transmission of information from a node to all members of a group.

If we denote G = (V, E) as the un-directed graph of the topology of a MANET where V is the set

of mobile nodes and E is the set of wireless links, the multicast problem is to deliver a message to a

subset VG ⊂ V while optimizing certain application specific metric such as bandwidth cost or delay.

In a MANET with positioning systems such as GPS [44], each node can determine its own geographic

location. Such location information has been previously leveraged to improve the scalability of unicast

routing [21] via stateless geographic forwarding. Stateless protocols are more efficient and robust than

stateful ones as they avoid the difficulty of maintaining distributed states in the presence of frequent

topology changes. Similar to unicast, location information can be exploited to provide location-based

multicast. To maintain the stateless nature, these protocols encode the membership as well as tree infor-

mation in each packet so that membership/forwarding state are not distributed as in multicast protocols

such as ADMR or ODMRP. In the following, we discuss the three components of a location-based

multicast protocol.

Group Membership and Location Management An efficient scheme for the management of group

membership and locations is critical to the efficiency and scalability of location-based multicast, since

nodes are continuously moving in a MANET. To manage the group membership, group members can

multicast their membership/locations to all other group members [7], or send their updates to an agreed-

upon root so that the group members can then contact the root to obtain updated information. Moreover,

either the location of the group members [7] or of all the nodes in the network [2] are required depending

on the nature of the multicast tree used.

Multicast Tree Construction Once the group membership and location information are obtained, the

source of the multicast can construct a multicast tree, using either an overlay tree [7] consisting of

only group member nodes or a physical tree [2] consisting of group member nodes and other nodes

en-route between the member nodes. Many graph algorithms exist for the construction of such multicast

trees. These tree construction algorithms exploit the correlation between geometric distance and network
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distance (number of routing hops) that longer geometric distance implies more network hops [7], and

use geographic distances between nodes as edge weights.

Data Delivery The data delivery mechanism depends on the nature of the tree and the location/member

management scheme used. A physical tree can be efficiently encoded in the header of a data packet. Such

data packets can be delivered via source routing [2] as the tree contains all the intermediate nodes. In

case of an overlay multicast tree, based on the group/location management scheme, there can be two

approaches to data delivery: (1) If the locations of the group members are known only to the source of

the multicast tree, the destinations and the locations of the group members need to be encoded in the

packet header at the source. (2) If every group member knows every other group member’s location,

only the destinations are encoded in the packet header (since each intermediate overlay node can fill in

the locations and decide how to forward the packet). This reduces the per packet encoding overhead.

However, this requires intermediate overlay nodes in the tree to acquire such location information via

other means, for example, updates from the destination nodes directly. Moreover, in case of an overlay

multicast tree, as the tree members may not be within direct reach of each other, geographic forwarding

is needed to deliver data packets along the overlay links.

In this paper, we use a greedy geographic forwarding algorithm as the routing protocol. Each node

periodically announces its IP address and location to its one-hop (within the radio transmission range)

neighbors by broadcasting BEACON packets. Each node maintains the IP and location information of

its neighbors. Each packet being routed contains the destination address in the IP header and the desti-

nation’s location (x- and y-coordinates) in an IP option header. To forward a packet, a node consults its

neighbor table and forwards the packet to its neighbor closest in geographic distance to the destination’s

location. Note that the above greedy geographic forwarding can lead to a packet reaching a node that

does not know any other node closer to the destination than itself. This indicates a hole in the geograph-

ical distribution of nodes. Recovering from holes can be achieved using face-routing (first proposed

in [4] and extended in GPSR [21] and GOAFR+ [24]).

3 Hierarchical Rendezvous Point Multicast

In this section, we describe the design of HRPM. HRPM incorporates two key design concepts: (1)

Use of hierarchical decomposition of multicast groups, and (2) Leveraging geographic hashing to con-

struct and maintain such a hierarchy efficiently.

Hierarchal routing [22] is a well known approach to reducing the protocol states in a large scale net-

work. The per-packet encoding overhead of a stateless location-based multicast protocol grows with

the group size as O(G), where G is the multicast group size. So, an increase in G severely limits the
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usability of such protocols. The main design goal of HRPM is to limit the per-packet overhead to an

application-specified constant (ω), irrespective of the increase in G. The value of ω is a parameter of

HRPM and can be adjusted based on the amount of overhead that can be tolerated by an application. To

achieve this, HRPM recursively partitions a large multicast group into manageable sized subgroups in

which the tree-encoding overhead satisfies the ω constraint. This partitioning is achieved by geograph-

ically dividing the MANET region into smaller and smaller cells. Such cells form a hierarchy with the

root representing the entire region. Every cell in the hierarchy has an AP (Access Point), and the entire

region has an RP (Rendezvous Point). All members in a leaf cell of the hierarchy form a subgroup and

are managed by that cell’s AP. Groups of APs are managed recursively, i.e., by the APs of their parent

cells. ω is an application parameter and we discuss how HRPM adjusts the hierarchy to meet this ω

constraint in Section 4.

Central to the design of HRPM is the fact that both RPs and APs are logical entities. If such a logical

entity is associated with a specific node (IP address), keeping track of the RP/AP would require an

external location service or some flooding-based mechanism due to mobility in MANETs. This can

potentially incur high overhead. To avoid such overhead, HRPM disassociates the RP/AP from any

specific node by adopting the concept of geographic hashing previously proposed for data storage in

static sensor networks [36]. Given a data item and a location, geographic hashing maps (routes) the

data item to the node whose geographic location is closest to the location. Since in MANETs different

mobile nodes can become the closest to a fixed location over time, mobile geographic hashing in HRPM

extends geographic hashing via a continuous handoff process which ensures the data item is always

stored on the node currently closest to the location. Thus if the members of a group/subgroup use an

agreed-upon hashing function to hash the multicast group identifier and obtain the RP/AP location for the

group/subgroup, all group management messages can be routed to the RP/AP by leveraging geographic

forwarding.

In the following, we describe the details of HRPM group management, tree construction, and data

delivery.

3.1 Group Management

We first introduce the concept of rendezvous point group management (RPGM) assuming a flat geo-

graphic domain. We then introduce hierarchical domain decomposition of a multicast group and describe

how to apply RPGM recursively in a hierarchy of subdomains.
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Figure 1: Group management, tree construction, and data delivery in HRPM.

3.1.1 Rendezvous Point Group Management

Rendezvous point group management allows multicast group members to leverage geographic hashing

for efficient group management. Figure 1(a) shows RPGM in a flat geographic domain. Any node that

wants to join a multicast group first hashes the group identifier to obtain the RP’s location in the physical

domain of the network using a hash function:

H(GID) = {x, y} where x, y ∈ MANETregion

This hashing function takes as input the group identifier (GID) and outputs a location (x- and y-coordinates)

contained in the region. Note that we assume that this is a well known hash function that is known by

nodes that enter the network through external means or using some resource discovery process.

After obtaining the hashed RP location for the group it wants to join, the node sends a JOIN message

addressed to this hashed location. This JOIN message is routed by geographic forwarding to the node that

is currently closest to the hashed location in the network. This node is the designated RP at this time.

Since there is only one such node at any given time, the JOIN messages from all the group members

converge at a single RP in a distributed fashion without global knowledge. Figure 1(a) depicts the JOIN

message from node A being routed to the RP. Similarly, LEAVE messages are also routed to the RP.

Note that computing the hashed location assumes that all nodes know the approximate geographic

boundaries of the network. Such boundary information may be pre-configured at nodes before deploy-

ment or discovered using some simple protocol. This assumption is consistent with the literature [28, 36].
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3.1.2 Virtual Hierarchical Organization

To apply rendezvous point group management described above hierarchically, HRPM partitions the

geographic domain into d2 equal-sized square sub-domains called cells, where d is the decomposition

index. The partition can be repeated recursively until each cell consists of a manageable sized subgroup

of members. For the ease of explanation, we restrict our following discussion of HRPM to two levels, as

shown in Figures 1(b) and 1(c). We defer the description of how HRPM dynamically adjusts the d value

according to the group size and why a two-level hierarchy is sufficient till Section 4.

In case of a two-level hierarchy, the members of each subgroup, i.e., in each leaf cell of the hierarchy,

choose an AP in the cell using the same geographic hashing of the group identifier except the hashed

location is scaled to be inside the cell. The APs then coordinate with the RP for the group. We extend

the hash function for locating APs as well as the RP for a particular multicast group as:

H(GID, d, myLoc) = {x, y} where x, y ∈ Cellregion

where d is the decomposition index and myLoc is the current location of the node invoking the function.

Figure 1(b) depicts the network partitioning for d = 4 in which case the region is divided into 16 cells.

Note that for the special case of d = 1 (Figure 1(a)), only one cell exists in the region and the function

outputs the hashed location of the RP.

3.1.3 Hierarchical Rendezvous Point Membership Management

To join a hierarchically decomposed multicast group, a node first generates the hashed location for the

RP and sends a JOIN message to the RP, same as in the flat domain scenario. After receiving the value

of the current decomposition index d of the hierarchy from the RP, the joining node invokes the hashing

function with d and its current location to compute the hashed location of the AP of its cell. The node

then starts periodically sending LOCATION UPDATE packets to its AP. Such location updates are soft-

state and serve as a subgroup membership update, i.e., if an AP stops receiving location update from a

member, it assumes the member has migrated to another cell.

Upon receiving (or not receiving) a location update from each member, the AP summarizes the mem-

bership inside its cell as non-empty (or empty) and further propagates to the RP whenever the member-

ship switches between empty and non-empty. The cells in which no group members exists do not have

any active APs and consequently no updates from these cells are sent to the RP, further reducing the

update congestion at the RP, as shown in Figure 1(b).

The state the RP needs to keep about the group is just a bit vector of d2 bits with each bit representing

whether a member exists in a particular cell or not. Thus the RP can easily encode a large number of

APs. For example, 256 APs from 256 cells can be encoded in 32 bytes. Thus for a large multicast group,
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a two-level HRPM reduces the state required at the RP to d2 bits while requiring the (leaf) AP in each

cell to only maintain the addresses and locations of G

d2 nodes on average where G is the original size of

the multicast group.

The frequency of location update determines the accuracy of the knowledge at the RP/APs and con-

sequently the accuracy of the multicast tree. We use threshold-based updates where each node initiates

a LOCATION UPDATE whenever it moves 100m from the location of the last update. This is similar to

the strategies used in location services for MANETs (for example, [28]).

When a node moves into a new cell, it does not immediately send an update to the new AP. Its previous

AP can continue to route data using geographic forwarding. When the node moves a certain distance

(i.e. 100m) from the location of its last update, it will send a new update to the AP in the new cell.

Note that the group management architecture of HRPM needs to also deal with the situation when

nodes of a group are close to each other, i.e. there is locality in the group membership. In such a case,

extra overhead is incurred in sending control messages to an RP that may be far away from the cluster

of group members. Fortunately, a hierarchy is useful in this scenario as well since a group with locality

will send updates primarily to a small set of APs in the clustered cells where the group members are

located. The RP is only sent one update from each AP indicating the existence of members in its cell.

Each source only needs to retrieve a bit vector from the RP once to perform data delivery which will be

done locally through the nearby APs. Thus, when group membership has geographic locality, HRPM

incurs minimal overhead in using an RP. We believe this small overhead is justified given the overall

overhead reduction made possible by using a virtual hierarchy.

3.1.4 Hierarchy Maintenance

As nodes move, the RP or an AP for a particular group may change as some other node becomes the

closest to the hashed location of the group identifier. Thus a continuous handoff protocol is required

to maintain geographic hashing. The current RP/AP on the receipt of any BEACON packet (used in

geographic forwarding) checks whether this neighbor is currently closer to the hashed location. If so,

the current RP/AP performs a handoff procedure that transfers the state of the multicast group/subgroup

to the neighbor. This neighbor now becomes the RP/AP. Note that this process is transparent to the

multicast group members.

In rare instances, messages sent to the RP/AP from different nodes may not converge at a single node.

This could be due to the loss of BEACON packets which causes inconsistencies in the view each node has

of its neighborhood. This convergence problem is solved as follows. When the first group management

message for a new group g arrives at a node A which discovers that it is the closest to the hashed location,

the node initiates a converge operation for the packet by buffering the packet and initiating an expanding
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ring broadcast search for any other node that also thinks it is the current RP/AP node for the group g.

This search is limited to two hops since any other potential RP/AP node is expected to be close by due

to the geographic hash. If another node is located that is acting as an RP/AP node for the group g,

the current node A relays the buffered packet to this RP/AP node for further processing along with its

own fresh location so that the current RP/AP node can perform handoff if appropriate to A. In this way

consistency of RP/APs are maintained on the rare occasions that convergence does not occur.

3.1.5 Adaptivity and Per-group Architecture

Another important design choice of HRPM is adaptive per-group hierarchies, i.e. each group operates

with its own virtual hierarchy based on its group size. Note that each group automatically has logically

and potentially physically separate nodes serving as RPs and APs. The per-group hierarchy architecture

is motivated by the fact that depending on the group size G there exists a tradeoff between the level

of hierarchical partitioning required and the path length traveled by the location updates. The larger

the number of levels in the hierarchy, the more detours location updates and data packets need to take

to reach the RP. For small groups, since the amount of aggregation required is low and there is no

hot spot at the RP, the hierarchy imposes overhead without adequate gain in performance. For large

groups, increasing the levels of the hierarchy results in lower congestion at the RP and reduced encoding

overhead in data packets. In summary, HRPM uses per-group hierarchy construction to allow choosing

suitable hierarchy heights for groups of different sizes.

As will be discussed in Section 4, HRPM uses the RP to coordinate the construction of dynamic per-

group hierarchies according to the changing group size. However, as will be explained in Section 4, the

hierarchy height rarely needs to be increased to beyond two levels.

3.2 Tree Construction and Data Delivery

HRPM provides a framework for scalable group management in location-based multicast in which

any tree construction algorithm of choice can be utilized based on the application metrics. For the per-

formance study in this paper, we assume the use of a specific overlay tree construction algorithm that

minimizes the bandwidth cost. The source of the multicast uses geographic distances between the mul-

ticast group members as edge weights to build an overlay graph, and then a minimum spanning tree of

the overlay graph (i.e. an overlay tree) is built, using MST algorithms (e.g. Prim’s [8] or Kruskal’s [8]).

In Section 4.3, we evaluate different tree construction algorithms and show that such an overlay MST

makes the best tradeoff between bandwidth efficiency, computational cost, and location management

overhead.

To send a data packet, the source sends an OPEN SESSION message to the RP and receives the mem-
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bership group vector from the RP. The membership vector is of size d2 bits, with a bit ’1’ for each cell

that contains any group members. This vector is cached by the source. The RP differentially updates

(sending only the changes) the source whenever the RP receives a change in membership notification

from an AP. Once the group vector is received, the source can build a virtual overlay tree (the Src → AP

tree) by assuming each active AP as a vertex in a topology graph. The tree is virtual since the source

does not need to know the actual AP node in each cell; it just needs to hash the GID in the AP’s cell to

put in a virtual vertex in the topology graph.

Multicast data packets are delivered down the Src → AP tree. The per-packet encoding overhead is

limited to a constant of d2 bits. Once a data packet reaches an AP, the AP constructs an AP → Member

overlay tree this time using member node identifiers and their actual locations. The AP then encodes

the list of destinations and their locations under each branch of the overlay tree in each data packet

sent along that branch. On average, the number of group members in a cell is G

d2 where G is the group

size. The packet then is delivered to the nodes down the tree, with each node recomputing a tree of the

remaining destinations in the list. Note that the size of this multicast header reduces as the packets travel

down the tree and the height of the remaining multicast tree reduces.

Figure 1(c) shows an example of data delivery in HRPM for a multicast group which only has group

members in cells 1, 4, 6, 11 and 12. A multicast source receives a group vector with bits 1, 4, 6, 11 and

12 set from the RP since only those cells contain group members and consequently active APs. It then

constructs a virtual topology graph containing all the active APs, and builds a Src → AP multicast tree

containing the active APs. Multicast data packets are first transmitted down the Src → AP tree to reach

the active APs, and then further down each individual AP → Member tree constructed by each active

AP.

Since the primary focus of this paper is on multicast routing and group management we do not address

reliability and security issues in this paper due to lack of space. As with all multicast protocols, malicious

operation of nodes or failure of nodes can cause service disruptions. Mechanisms to deal with these

problems are part of our future work.

3.3 Dealing with sparse topology

A fundamental problem that has been researched with regard to geographic forwarding is the occur-

rence of local maxima while greedily forwarding packets. In such a situation, a packet is received by a

node whose transmission range does not cover the destination location yet does not know of any other

neighbor closer to the destination location than itself. Local maxima is more likely to occur in sparse

network deployments. Even when the overall deployment is not sparse, certain regions of the network

may be sparse due to non-uniform node distribution. Local maxima is also referred to as a hole in the

literature.
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To enable geographic routing when local maxima occurs, face-routing was proposed (first in [4] and

extended in [21], [24]) to route along the face of a planarized topology surrounding the hole graph until

greedy forwarding can be invoked again or the destination is reached. Recent work [34] has extended

the algorithms for face routing to take into account realistic radio transmission characteristics such as

asymmetric links and non-ideal ranges. Such schemes can also be easily incorporated into the geographic

forwarding component of HRPM.

Similar to previous geographic unicast routing protocols, HRPM also needs to deal with holes in

the network topology. Our implementation of HRPM uses GPSR [21] as the underlying geographic

forwarding protocol to recover from holes. Holes can occur in the following two cases during the

operation of HRPM.

1. Routing to a node This scenario occurs when the AP → Member overlay tree is being traversed

for data delivery to the individual group members. In this case, the problem is similar to that faced by

unicast geographic routing protocols and thus the normal protocol operations of GPSR (i.e. distributed

planarization followed by face traversal) are used to route the packet to the destination node thereby

avoiding the hole. This is expected to work unless the network is partitioned.

2. Routing to a hashed location Routing to a hashed location in HRPM occurs during the routing

of JOIN, LEAVE and LOCATION UPDATE messages to the RP/AP and during data delivery to the APs

using the Src → AP tree. Holes that occur whenever a message is routed to a hashed location have to

be dealt with differently from when a message is being routed to a specific node. In the latter case, face

routing is triggered whenever a node does not have the destination node in its table and does not know a

neighbor closer to the destination node. On the other hand, dealing with a hole while routing to a hashed

location is more complicated, since when a node encounters a hole, it needs to distinguish whether the

hole is en route from the sender to the hashed location, or the hashed location is inside the hole.

We modify HRPM to deal with local maxima when routing to a hashed location as follows. A node X

that detects a local maxima stores the sequence number of the packet and starts face routing (perimeter

forwarding mode in GPSR). During perimeter forwarding, the packet may be switched back to greedy

mode (if a node discovers itself to be closer to the hashed location than the point of entry into the current

face). If this happens, the packet will continue to be routed normally. If the packet traverses around the

face and comes back to X , then X becomes the rendezvous point. All subsequent packets are routed in

this manner and are expected to reach the current rendezvous point despite sparse topology.

3.4 Other communication primitives

In this paper, we focus on a design of HRPM for enabling multicast operation. Apart from multicast,

anycast and manycast [6] are also useful communication primitives for mobile ad hoc networks. The

group and location management architecture of HRPM can be easily leveraged for manycast and anycast
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services. For example, HRPM can be extended to provide manycast service which delivers data to any k

of G group members by constructing a tree consisting of k group members at the source of the manycast.

In the non-hierarchical case, this k-member tree can be trivially constructed. In the hierarchical case, k

APs (with group members) are selected to forward the message to. These selected APs then deliver the

message to at most 1 group member in each of their cells.

HRPM can also be easily extended to provide anycast service. In this case, each node needs to contact

its AP in the lowest level of the hierarchy for that group. The AP checks if it can locate a group member

in its cell. If one exists, it is notified, otherwise the anycast request is forwarded up the hierarchy to a

higher level AP. This is done recursively till an anycast recipient is found. Note that this architecture

allows for the anycast request to travel to a nearby anycast group member and exhibits good locality

properties.

4 Analysis

In this section, we analyze the depth of the HRPM hierarchy and the choice of the decomposition

index d.

4.1 Choice of d and Hierarchy Depth

We first show how HRPM chooses the decomposition index d that satisfies certain per-packet encoding

overhead constraint. We then show that a two-level HRPM hierarchy is sufficient to support a very large

multicast group. To simplify the analysis, we assume a random uniform distribution of N nodes in the

geographic domain, the existence of G group members, and that the cells have about the same number

of group members. For simplicity, we assume the MANET region to be a square of side length l, and

each cell to be a square of side length k.

In a two-level HRPM hierarchy, the Src → AP tree rooted at the source has maximally d2 members

(due to d2 cells) and the per-packet encoding overhead is d2/8/f bytes where f is the average fan-out

of the overlay tree at the root. Each AP → Member tree has on average G

d2 members and thus the

per-packet encoding overhead is at most C · G

d2 /f bytes, assuming that the cost of encoding the node

identifier and locations is C. Note that as the data packet descends either type of overlay trees, the tree-

encoding overhead decreases as the remaining subtree becomes smaller and smaller. Since the nodes

within each cell are assumed to be uniformly distributed, i.e., similar to the APs, the overhead in the two

kind of trees are expected to decrease in a similar fashion, and thus we can focus on comparing the very

first packet(s) departing the tree roots.

Since the design goal of HRPM is to limit the per-packet encoding overhead, for example, to be less

than ω bytes (or a fixed percentage of the payload), the partitioning of the network region into cells is
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governed by two constraints. The first constraint requires that the worst case encoding overhead in the

AP → Member tree, C · G

d2 /f , be less than ω bytes. Assuming a worse case fan-out from the tree root

of 1, the constraint becomes

C ·
G

d2
≤ ω (1)

The second constraint dictates that the worst case encoding overhead in the Src → AP tree, d2

8
/f , is

also less than ω bytes. Thus the constraint becomes

d2

8
≤ ω (2)

In HRPM, the RP selects a particular decomposition index d based on the group size G and the

MANET region side length l subject to the above constraints. Since all group JOIN and LEAVE messages

reach the RP, it knows the group size G. The RP evaluates equation (1) to choose a d value that is just

large enough to satisfy the constraint. It then checks if this value of d satisfies equation (2). In this case,

HRPM forms a two-level hierarchy with decomposition index d. As an example, consider a multicast

group of size 125. Using equation (1) and ω = 96 bytes (20% of 512 bytes), we have d = 3.95 ≈ 4. As

this value of d satisfies equation (2), HRPM will divide the network into 16 grids, with the RP having a

constant encoding overhead of 2 bytes.

When the multicast group grows to be large enough that no choice of d can satisfy both equations

(1) and (2) for a particular ω, HRPM increases the level of the hierarchy to 3 or higher. Effectively, the

depth of the hierarchy should be the smallest h that satisfies equation (2) and

C ·
G

d2(h−1)
≤ ω (3)

In a depth h hierarchy, the top level remains a Src → AP tree, followed by (h− 2) levels of AP → AP

trees, and the bottom level consists of AP → Member trees.

Based on the above analysis, for a reasonably small ω, a two-level hierarchy can support multicast

groups that are larger than any deployable MANETs today. For example, assume the per packet overhead

is restricted to be below 20% of the payload size of 512 bytes, i.e., around 100 bytes. Since 12 bytes

are needed to encode a node identifier and its x- and y-coordinates, C = 12. Using equation (2), the

maximum d that can be supported by the RP is 27 for ω = 96. Substituting this value of d in equation

(1) results in G ≈ 5800, i.e., a two-level HRPM hierarchy can support up to 5800 group members while

limiting the per-packet encoding overhead to be under 20%. Note due to the fan-out at the tree roots and

the shrinking tree size during tree descent, the average per-data packet overhead is expected to be much

lower than ω.

When the RP decides to adjust d due to changes of the group size, it multicasts a NOTIFY message

containing the new d value to all member nodes, i.e., via the current hierarchy. Upon receiving such a
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message, each member node generates the hashed location for its new AP and starts sending updates to

that AP. The new APs then send the aggregated membership to the RP.

4.2 Tradeoff between Encoding Overhead and Delay

There exists a tradeoff between the number of partitioned cells and the detours in the tree and conse-

quently the delay in data delivery. In general, the more partitions, i.e., the larger the d, the longer the

average detours data packets will take before reaching group members. HRPM chooses the minimum d

that satisfies both equations (1) and (2) to improve the forwarding cost and delay while satisfying the ω

constraint. We experimentally evaluate this tradeoff in the next section.

4.3 Choice of Tree Construction Technique

HRPM multicast involves the construction of a tree rooted at the source and containing at least all the

multicast group members. A first-cut approach is that the tree be constructed using global knowledge of

the locations of all nodes V in a MANET (both group members and non-members), i.e. the well known

Steiner tree problem in graphs. The Steiner problem has been shown to be NP-Complete, and many

heuristics have been proposed that provide an approximate solution in polynomial time. For example,

the TM heuristic [42] provides an approximation in O(N 2) time. The work in [2] (DSM) proposes such

an approach in which given global knowledge of locations and group membership, a source can construct

an approximate Steiner tree using heuristics to perform multicast. However such an approach requires

the flooding of location and group membership information of each node to all nodes in the network in

order to allow the construction of the Steiner tree at any source. Thus, this approach potentially limits

the scalability of multicast.

A second approach is to construct an overlay minimum spanning tree (i.e. a tree that spans the group

members without involving intermediate nodes)1. This approach is advantageous because: (1) it reduces

the group management overhead by managing the membership and location of only the G group mem-

bers, and (2) the overlay tree can be built using computationally simpler algorithm such as Prim’s or

Kruskal’s MST algorithms. However, the overlay tree potentially can be less bandwidth-efficient than a

Steiner tree constructed using both group member and non-member nodes.

To evaluate which tree construction algorithm provides the best tradeoff between bandwidth effi-

ciency, delay and computational complexity, we performed simulation experiments comparing the per-

formance of three tree construction algorithms: (1) An overlay minimum spanning multicast tree built

using a MST algorithm, (2) A Steiner tree built using the TM heuristic, and (3) A low-delay multicast

tree in which shortest paths (with lowest accumulated weight edges) are used to deliver data to each

1An overlay tree is in fact a heuristic for the Steiner tree problem [12]
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Figure 2: Bandwidth consumption and delay of various tree building algorithms. Multicast group size

for each network size is 10% of the network size.

group member built using Dijkstra’s single-source shortest path algorithm. Each tree construction algo-

rithm was evaluated over many randomly generated sample network topologies of different sizes. The

edge weights between a pair of nodes were set to the geographic distance between the pair of nodes.

Figure 2 depicts the average bandwidth consumed (measured in number of physical links on which a

transmission is required) as well as the average and maximum distance to any node in the multicast tree

(measured in number of hops). The results show that as the network size is increased, the bandwidth

efficiency of the overlay and Steiner trees are very close and both are much better than the shortest path

tree. We also found that for a given network size, as the group size increases, there is a slight gain in

the Steiner tree since there are more opportunities to use non-group members to improve the bandwidth

efficiency. However, the gains observed are not significant enough to warrant the requirement that every

node knows every other node’s location since this incurs high continuous overhead. Since Steiner tree

construction using the TM heuristic is also more computationally expensive as the network size and the

group size increases, the delays associated with the computations were also not acceptable.

In summary, due to the reduced location management overhead and acceptable bandwidth efficiency

observed, HRPM uses an overlay MST to construct both the Src → AP tree and each of the AP →

Member trees. The Src/AP constructs a graph with edge weights being the geographic distances be-

tween group members. It then constructs an overlay MST using Prim’s algorithm which has a complexity

of O(g2), where g is the group members in the tree, and is bounded by max(d2, G

d2 ). The tree is encoded

in each data packet originated at the tree root (the Src or an AP ). As the data packet traverses down the

tree, only the remaining subtree needs to be encoded in the data packet. The AP → Member tree built

at each active AP has on average G

d2 overlay edges. The Src → AP tree has in the worst case d2 overlay

edges which happens when every cell has active group members.
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5 Performance Study

In this section, we first describe the methodology of our study. We then present the performance

results.

5.1 Simulation Methodology and Metrics

We implemented HRPM in the Glomosim [50] simulator. Glomosim has a comprehensive radio

model and has been widely used for simulation studies of MANETs. We use a IEEE 802.11 radio with

a bit rate of 2Mbps and a transmission range of 250m. The mobility scenarios were generated using

the modified random way point mobility model [49]. For all simulations, the nodes move with a speed

distributed uniformly at random between 1 and 20 m/s, and a pause time of 0 second is chosen. The

simulation duration is 500s and the node density is 20 nodes per radio range. For multicast traffic,

a source generates 512-byte packets at a constant rate of 2 packets/second. HRPM uses geographic

forwarding with a beacon period of 4 seconds. Nodes send a LOCATION UPDATE after every movement

of 100m.

Since HRPM is the first location-based multicast proposed for large groups, we compare it to ODMRP [27],

a non-location based mesh multicast protocol well suited to operate in large groups and widely used in

multicast protocol studies. We used the Glomosim implementation of ODMRP with parameters set to

the values specified by authors in [26]. We also implemented flooding-based multicast (FLOOD) [33] in

Glomosim for comparison. We also compare HRPM with a non-hierarchical version of HRPM (RPM)

as a representative of the previously proposed location-based multicast protocols that are not hierarchi-

cal. In all the sections, unless otherwise specified, HRPM adjusts the decomposition index d to the group

size based on the equations in Section 4, using ω = 20% · PacketSize.

The multicast protocols are evaluated using the following metrics:

• Multicast Delivery Ratio (MDR): Fraction of multicast data packets originated by the source that

are received by the receivers.

• Forwarding Cost (FC): Average number of data packet transmissions per delivered data packet to

a receiver.

• Control Overhead: Number of control packets transmitted by the multicast protocol.

• Normalized Encoding Overhead (NEO): Ratio of the total number of encoding bytes2 transmitted

at every hop (including in the data packets finally not received) to the total number of data bytes

received at the final destinations.
2bytes used for encoding of destinations and/or locations
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• Average Delivery Latency (Delay): Packet delivery latency averaged over all of the multicast

packets delivered to all receivers.

5.2 Impact of Decomposition Index d

In this section, we study the impact of the decomposition index d. We use a network of 500 nodes in

a terrain of 2300mx2300m with 1 multicast group and 1 source. The HRPM hierarchy has two levels as

there is no need for more levels as discussed in Section 4. To evaluate the impact of different values of d

on a given group size, HRPM’s dynamic adjustment of d is disabled. Instead, the decomposition index d

is progressively assigned values of 1, 2, 3, 4 and 5 which divide the network into 1, 4, 9, 16 and 25 cells,

respectively. We first evaluate the savings in encoding overhead for a small group (25 members) and a

large group (125 members). We then evaluate the impact of d on multicast performance with the group

size ranging from 25 to 250 members.

Figures 3(a) and 3(b) depict the CDF of encoding overhead for all data packets transmitted. HRPM

with d = 1 (no hierarchy) is equivalent to a small-group location-based multicast protocol (RPM) and

suffers the long tailed distribution of encoding overhead. Additionally, these large packets are near the

source, making the source a hot spot of congestion.

As d increases, the number of packets that have large encoding overhead decreases sharply. This

occurs due to the reduction in encoding when a hierarchy is introduced. Since the largest value of d used

is 5, the Src → AP tree has low encoding overhead, i.e., less than 4 bytes. The maximum encoding

overhead inside each AP cell is d2 times smaller than that at the RP in the non-hierarchical case. This

explains the short tailed distribution of encoding overhead for larger values of d. The significantly

reduced encoding overhead also reduces the hot spot around the source.

Figure 3(c) depicts the normalized encoding overhead (NEO) as d is increased. Note that HRPM with

d=1 (RPM) cannot support more than 125 members and hence we do not show any data points for larger

groups. This occurs because the packet size grows beyond the 802.11 MAC layer threshold in Glomosim

(2346 bytes) beyond which MAC fragmentation is required. This fragmentation feature is not supported

in Glomosim. As predicted by the analysis, for large groups, the NEO is reduced significantly as d is

increased. For a group size of 125 members, the NEO is reduced from 41% to 4% as d is varied from 1

to 5, a saving of 37%. More significantly, these savings are achieved at the cost of minimal increase in

forwarding cost (FC) (Figure 3(d)) and no reduction in MDR. The MDR is not depicted since it remains

close to 100% with varying d for all group sizes.

Figures 3(d) and 3(e) show that as d is increased, both the forwarding cost (FC) and the delay of

HRPM increase very slowly compared to the non-hierarchical version for large groups (with 125 mem-

bers or more). This is because for large groups, the detours to the APs are not as costly since a packet

needs to travel many hops within the cell to reach multiple nodes anyway. For the small group (25
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Figure 3: Impact of the decomposition index d in HRPM.

members), the increase in FC is more significant as d is increased. This is because the group members

are sparser, but HRPM always sends packets to APs first which then forward the packets to the few

group members in their corresponding cells. A similar effect is expected even in large groups when d is

increased to an extent that the group members in each cell are sparse. Thus, the choice of d trades off

NEO with FC and delay.

Figure 3(f) shows that the control overhead decreases as d is increased. This overhead is dominated by

a constant number of beacon packets required for geographic forwarding. The remaining overhead are

from HRPM’s control packets including JOIN, LOCATION UPDATE, and HANDOFF, with LOCATION

UPDATE packets dominating the others. In non-hierarchical multicast, the updates travel to the RP

whereas in a hierarchy, the more frequent member-to-AP updates travel shorter distance to the nearest

APs. Further, the aggregated updates from AP to RP which travel the longer distance are less frequent

(as discussed in Section 3.1.3). Thus, the overhead of HRPM is lower than that of RPM. Also, as d

increases, the member-to-AP updates travel shorter distances to the APs and thus the control overhead

reduces further. Although HANDOFF packets happen at all APs in a hierarchy in addition to at the single

RP, this overhead is overshadowed by update.
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5.3 Impact of Group Size

In this section, we study the impact of the group size on the protocol performance. We vary the group

size from 50 to 250 members in a 500-node network with 1 multicast group and 1 source. The source

sends data packets at 2 packets/second.

Figure 4(a) shows that the control overhead of HRPM is lower than those of ODMRP and RPM across

all group sizes with the gap widening as the group size increases. FLOOD does not have any control

overhead as the protocol directly floods the data packets. ODMRP requires the source to periodically

flood JOIN REQUEST messages. Each member node sends a JOIN TABLE packet in response to form a

forwarding group (mesh) for the delivery of data packets. Thus, as the number of group members in-

creases, the JOIN TABLES increase, thereby increasing the overhead of ODMRP. Similarly, the overhead

of HRPM increases with group members due to the increase in the updates. However, HRPM builds a

virtual hierarchy and performs group management without incurring any flooding cost due to the use of

geographic hashing and thus has a lower overhead than ODMRP. In fact, the overhead of HRPM/RPM

is dominated by beaconing required for geographic forwarding. Beaconing incurs a constant overhead

of 62,000 packets for all the group sizes depicted in the graph and the actual protocol overhead of

HRPM/RPM is a smaller fraction of the total overhead (8% at 25 nodes and 33% at 250 nodes). As ex-

plained earlier, aggregation of LOCATION UPDATE at the APs in HRPM reduces its overhead compared

to RPM.

Figure 4(b) shows that FLOOD achieves the highest MDR of all the protocols. HRPM, ODMRP and

RPM also achieve close to 100% MDR for all the group sizes. Note that MDR for ODMRP for small

group sizes is slightly lower due to a sparse forwarding mesh.

The encoding overhead (Figure 4(c)) of HPRM remains steady as the group size increases since it

adjusts the d value to the varying group sizes. Note that although ω (encoding overhead constraint) is

chosen to be 20% of the packet size, the average encoding overhead of HRPM is always below 7% (with

an average of 5.5%). The encoding overhead of RPM significantly increases as the group size increases.

Note that ODMRP and FLOOD do not encode destinations/locations in the data packet.

The next two performance metrics, forwarding cost (FC) (Figure 4(d)) and delay (Figure 4(e)), are

affected by the tree construction algorithm used. Since HRPM constructs bandwidth-minimizing trees,

it has the desirable property of a much lower FC than FLOOD and ODMRP for small groups, in which

a large number of non-member nodes are part of the mesh resulting in higher FC. However, as the group

size increases, more and more member nodes become part of the forwarding mesh, which lowers the FC

of FLOOD and ODMRP. Note that as the group size becomes large and group members become dense,

ODMRP achieves an FC lower than 1 due to multicast advantage. Despite using a virtual hierarchy, the

FC of HRPM is very close to that of RPM as the group size increases which shows the HRPM hierarchy
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Figure 4: Impact of the group size. RPM cannot support more than 125 group members due to its large

incurred encoding overhead.

does not cause significant detours in routing data packets.

The delay of FLOOD is the lowest as expected (shown in Figure 4(e)). Further, due to the detour in the

hierarchy approach, HRPM has a slightly higher delay than RPM. In contrast, ODMRP has a lower delay

than both RPM and HRPM for the following three reasons. First, ODMRP can deliver multiple packets

with a single transmission (wireless multicast advantage). Second, ODMRP uses unreliable broadcast

thus avoiding the cost of RTS/CTS channel access. However, this mechanism becomes increasingly

unreliable with increased network size, number of groups, number of sources, etc. RPM/HRPM use

reliable unicast delivery which incurs higher delay. Third, RPM/HRPM use bandwidth-minimizing

overlay minimum spanning trees for data delivery. However, since any tree construction algorithms can

be used under the HRPM/RPM framework without affecting overhead, delay-minimizing trees such as

LGK trees [7] could be potentially used to reduce the delay. Since FC and delay are affected by the tree

construction algorithm and other factors mentioned above, and such metrics are less meaningful when

one protocol achieves low delivery ratio, the rest of the performance comparison focuses on the control

overhead and the delivery ratio.

Multiple sources We also performed simulations increasing the number of sources in the group to 5 for

a small group (25 members) and a large group (150 members). The results are summarized in Table

I. ODMRP requires each source to refresh forwarding state in the network periodically to deal with
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Table 1: Impact of increasing the number of sources to 5.

Group Size 25 150

HRPM ODMRP HRPM ODMRP

Overhead 69,103 340,477 87,728 580,970

MDR 98.66 98.46 97.78 97.80

FC 2.47 11.7 1.45 2.7

Delay 0.07 0.02 0.09 0.03

mobility and build the data delivery mesh. Thus its overhead grows significantly with the number of

sources. HRPM allows each source to build a virtual tree with almost no extra cost – it just needs to hash

the active APs based on the group vector retrieved from the RP. Thus the overhead of HRPM grows very

slowly as the number of sources increases. Compared to Figure 4(a), the overhead of ODMRP increases

by 425% for the group of size 25 and by 392% for the group of size 150 when the number of sources

is increased from 1 to 5, while the overhead for HRPM only increased by 2.5% and 6.3%, respectively.

Note HRPM achieves significant overhead reductions while delivering comparable numbers of packets

as ODMRP for both group sizes.

In summary, HRPM scales well with the group size unlike non-hierarchical protocols (e.g. RPM)

which cannot function beyond a certain group size (e.g. 125 members). Due to adaptive hierarchy con-

struction, it maintains the encoding overhead below 7% as the group size scales. It delivers comparable

percentages of packets as ODMRP across a range of group sizes while incurring lower overhead. For

a fixed group size, as the number of sources increase, HRPM’s overhead only increases slightly while

ODMRP suffers a large increase in overhead.

5.4 Impact of Number of Groups

In this section, we study the impact of the number of groups on protocol performance. We consider

a 500-node network in an area of 2300mx2300m. As the number of groups is increased, the group size

is adjusted to keep the total number of receivers constant. We consider several scenarios varying NxG

where N is the number of groups and G is the group size. The configurations are: 2x90, 5x36, 10x18,

15x12, 20x9, 30x6, 36x5 and 45x4 with each scenario having 180 receivers, and each group having 1

source.

Figure 5(a) shows that the overhead of HRPM grows very slowly as the number of groups is increased.

This is because the update overhead of HRPM does not increase with the number of groups in the

network. In contrast, ODMRP’s overhead increases significantly as the numbers of groups increases.

Increasing the number of groups results in the sources of different groups competing to broadcast JOIN
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Figure 5: Impact of the number of groups.

REQUEST messages. This causes congestion and results in a drop in MDR to below 60% for ODMRP

(Figure 5(b)). In contrast, HRPM consistently delivers 95% or more data packets.

5.5 Impact of Network Size

In this section, we evaluate how the network size affects the multicast protocol performance. We vary

the network size from 100 to 1000 nodes while keeping the density constant at 20 nodes per radio range

as before. For each network size, we consider group sizes of 5% and 30% of nodes in the network,

respectively. To isolate the effect of the network size from the effect of multiple sources or multiple

groups, for each network size we consider only 1 group with 1 source.

Figure 6(b) shows that the MDR of ODMRP drops significantly as the network size increases for both

small and large groups. As the network size increases, the flooding-based mesh construction of ODMRP

becomes increasingly costlier and unreliable. Additionally the group members are spread further apart

leading to higher probabilities of failures. In contrast, HRPM delivers more than 95% of the packets for

the smaller groups and close to 95% of the packets for the larger groups across a wide range of network

sizes. Additionally, as shown in Figure 6(a), HRPM incurs comparable overhead as ODMRP for small

groups and lower overhead than ODMRP for large groups except for a 1000-node network. At such a

large network size, the JOIN REQUEST for ODMRP do not reach all the members, thereby reducing the

number of JOIN TABLES sent. This causes a reduction in overhead as well as MDR. In summary, HRPM

is more scalable than ODMRP for both small and large groups as the network size increases. Note that

ODMRP is expected to further degrade in comparison to HRPM if the number of sources or groups are

increased in large networks as suggested by results in the previous sections.
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Figure 6: Impact of the network size.

6 Related Work

HRPM is closely related to previous location-based multicast protocols. In addition, it is related

to stateless non-location-based multicast protocols, hierarchical non-location-based multicast protocols,

and other uses of geographic hashing.

Location-based Multicast Protocols Previous location-based protocols [2, 7, 32] were proposed for

small groups due to the constraint of encoding either the entire tree or the destinations in the data packet

headers. In DSM [2], each node floods its location in the network. DSM constructs a physical Steiner tree

using the TM heuristic [42] at the source, optimally encodes the physical multicast tree into each packet,

and delivers the packet using source routing. LGT [7] requires each group member to know every other

group member’s location. LGT proposes two overlay multicast trees: a bandwidth-minimizing LGS tree

and a delay-minimizing LGK tree. PBM [32] does not explicitly construct trees but rather relies on a

multicast geographic forwarding strategy similar to the hop-by-hop forwarding proposed by SGM [3]

and DDM [20].

The SPBM protocol proposed in [43] is closely related to HRPM as the two share the essence of

improving the scalability of location-based multicast using hierarchical group management. However,

HRPM is different from SPBM in several fundamental aspects: (1) SPBM uses flooding in hierarchical

group management. In contrast, HRPM uses mobile geographic hashing (convergence to the rendezvous

point) in hierarchical group management which does not incur any flooding cost. (2) SPBM defines a

static hierarchy by dividing the network into a quad-tree with a predetermined maximum aggregation

level L. In contrast, HRPM uses a per-group hierarchy that dynamically adjusts to the group mem-

bership. (3) The need to propagate the group member’s location information up the hierarchy while

exploiting the distance effect (so that flooding to remote squares in the grid is less frequent) makes

SPBM more susceptible to node mobility due to the delayed propagation of information when a node’s
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position in the hierarchy changes. For example, when a group member enters a large square that did not

previously contain a group member, it will not receive any packets until the membership in the square

has been spread to reach the source. In contrast, in HRPM, the locations of APs are “virtual”, and hence

fixed, and the low-overhead rendezvous-based group management allows an AP to update the RP as soon

as its membership changes. Within each leaf cell, the AP keeps track of each group member’s last known

location, which allows packets to be forwarded to group members despite them moving into a new cell,

since geographic forwarding is resilient to slight variations in destination locations. Experimentally,

the evaluation of SPBM [43] shows that SPBM degrades in PDR and becomes similar to ODMRP as

the maximum node speed increases to 15 m/s with pause time 10s. In contrast, all the simulations in

our study were carried out at a higher maximum node speed of 20 m/s with pause time 0s and HRPM

consistently outperforms ODMRP.

Note that our evaluation of HRPM uses a similar node density as in the SPBM evaluation [43] although

with a packet size 8 times larger and twice the traffic volume. Moreover HRPM has been evaluated by

scaling a much wider range of network parameters such as the group size, number of groups, number

of senders, and network size. The magnitude of the parameters studied are also different. While SPBM

has been shown to work well for 25 group members, HRPM has been evaluated for up to 250 group

members. Similarly, while SPBM has been evaluated for 196 nodes, HRPM has been evaluated for up

to 1000 nodes.

Stateless Multicast Protocols Stateless multicast protocols have been proposed to reduce state at for-

warding nodes by encoding multicast destinations in headers and are typically used for small groups. The

work in SGM [3] proposed this technique for the Internet. REUNITE [39] requires only branch point

routers to keep state for IP multicast. DDM [20] uses similar principles to provide stateless multicast in

MANETs.

Hierarchical Multicast Protocols Several hierarchical non-location-based protocols have been pro-

posed which can be overlay or non-overlay based. Protocols such as AMRIS [46] and PAST-DM [15]

propose an overlay-based approach in which the overlays are a form of hierarchies.

An example of a non-overlay hierarchical MANET multicast protocol is HDDM [16] which extends

DDM to include a hierarchical structure. Similar to HDDM, HRPM also leverages the well known

technique of introducing a hierarchical structure to reduce overhead. Despite this similarity, HDDM is

a topology-aware approach while HRPM is a location-aware approach. Thus, the design challenges and

issues in both protocols are very different. HRPM needs to provide location management and routes

using locations rather than topology. The focus of our paper was to improve the scalability of location

based multicast and so a comparison with HDDM is out of the scope of this work. Note that our
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evaluation of HRPM scales parameters (network size, group size, number of groups) to larger values

than previous work on scalable multicast.

The work in [31] proposed the use of cores to reduce control traffic for creating multicast delivery

structures. They propose that group members form a multicast group by sending join requests to a set

of cores. Rendezvous points are similar in concept to core nodes. However RPs/APs in HRPM can be

located without any overhead using geographic hashing and can be more resilient to mobility due to not

being tied to a particular node whose movement needs to be tracked.

Location Management for Unicast Several location management protocols have been proposed for

unicast services [23, 1, 25, 17, 41, 13, 40, 45, 28, 48, 18, 9]. However, location management for unicast

is fundamentally different from that for multicast such as in HRPM since it does not need to provide

locations of an entire group to the source node.

Other Uses of Geographic Hashing HRPM shares the concept of geographic hashing with GHT [36]

for data-centric storage systems and consistent hashing in distributed indexing such as DIM [29] and

DIFS [14] for supporting range queries in sensor networks. These protocols were proposed for use in

static sensor networks and do not have to deal with mobility. Geographic hashing has also been used

in location services (e.g., [13, 40, 45, 9]) in which each node’s identifier is hashed to a home region

consisting of one or more nodes which serve as that node’s location servers.

Geographic Routing in Wireless Networks HRPM uses geographic forwarding to forward data and

control packets. The first proposal for geographic forwarding was laid out in [11]. Subsequently de-

tailed algorithms have been designed for the application of geographic forwarding in wireless networks

([5],[21],[24]). Many optimizations and modifications have been proposed for these basic algorithms to

deal with real network topology and provide robustness. Work has also been done on real testbeds to

identify and remove pathologies that arise in geographic routing [34]. Geographic forwarding in HRPM

is not restricted to one single proposal and can potentially take advantage of new and more efficient

techniques developed for geographic routing.

Another body of work proposes to use geographic routing without actual node location informa-

tion [35], typically achieved by using localization algorithms to assign nodes virtual coordinates and

then route geographically using these virtual coordinates. Such schemes can be used in HRPM.

7 Conclusions

In this paper, we propose the Hierarchical Rendezvous Point Multicast protocol (HRPM) which lever-

ages two techniques: distributed mobile geographic hashing and hierarchical decomposition of large
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multicast groups to improve the scalability of location-based multicast. Together, the two techniques

enable lightweight hierarchical membership management which reduces per-packet encoding overhead

without incurring the high cost associated with maintaining distributed state at any particular mobile

nodes.

Our simulation results show that HRPM significantly improves the scalability of location-based mul-

ticast in terms of the group size. Coupled with its leverage of stateless geographic forwarding, HRPM

scales well in terms of the group size, the number of groups, as well as the size of the network. In partic-

ular, HRPM maintains close to 95% multicast delivery ratio while incurring on average 5.5% per packet

tree-encoding overhead for up to 250 group members in a 500-node network. Furthermore, it achieves

a steady 95% delivery ratio while incurring nearly constant overhead as the number of groups increases

from 2 to 45, while keeping the total number of receivers constant at 180, in a 500-node network. Lastly,

it steadily achieves above 90% delivery ratio as the network scales up to 1000 nodes with up to 30%

group members.

For future work, we plan to study the impact of new tree construction algorithms, the use of broadcast

which does not require RTS/CTS, and exploiting wireless multicast advantage on different data deliv-

ery performance metrics, such as delay, forwarding cost, and delivery ratio. We are also interested in

evaluating manycast and anycast services using HRPM.
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