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ABSTRACT

An optimal message routing algorithm for thc cube-connected
cycles processor interconnection network is described, and the
average:- message path length is derived assuming a uniform
message routing distribution. The optimal algorithm is comparetl
to one preViously proposed and is shown to have significanlly
shorter average path length.
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Introduction

Several researr.hers have recently proposed large networks of computa­

tion nodes whose communicaLion paradigm is message passing [1, 3, 11. I!:ach

network node, implemented as one or two VLSI chips. would contain a process­

ing clement wlLh some local memory, a communication p['ocessor capable of

routing messages without delaying Lhe processing element, and a few connec­

tions to other network nodes.

Selecting an appropl"iate interconnection network is a particularly per­

plexing design problem. Among Lhe proposed interconnections, the binary rnul­

tidimcnslonal cube has been shown Lo cfficienLly support Lhe communication

patterns of several important algorithms. Unfortunately, each of the 2D nodes

in such a cube must be connected to D other nodes. As 1J increases lhis

violates the fanout limitations imposed by the VLSI implr~menlation of the

nodes.

However, Preparata and Vuillemin [2] have suggested a varialion of the

cube, called the cube-connecled cycles, thaL eliminates the fanoul problem. As

the name SlLgg~Sts, each node at a verLex of a D-dimension;ll cube is replaced

with a ring of D nodes, numbered from 0 through D-·l. Node addresses then

take the form (i ,j) where 0 ~ i < D and 0:.5 j < 2D . Each node is connected to

the Lwo neighboring ring nodes at ils verlex and the node with the same ring

number i and. vertex number given by tOggli!lg Lhe i-th bit of the current ver­

lex number j. (See F'igure 1.) Consequently, each node has Lhree neighbors

regardless or the cube dimension.

Allhough lhis approach solves the fanout pl'ublem, it complicales the a.lgo­

rithrn for routing messages from source to destination nodes. In this paper, we
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analyze a simple routing algorithm proposed by Wittie (4), outline all optimal

routing algorithm [or the cube-connecLed cycles interconnection. and discuss

the relative messagt~ intensities on the communication link.s of 1:.he ordinary

cube and the cube-COlmected cycles.

Definilious and Assumptions

We define a cube link as a linle connecting two nodes with dlHerenl verlex

addresses and a. ring link as one connecting LVro nodes with diffe~'ent ring

addresses. Eecause traversing a cube link moves a message to another node

with the same ring address at another vertex, findlng a sharlusl paLrl from a

source uode to a destination node can be reduced to the followIng optimization

problem.

(1) Consider a ring of D nodes.

(2) Distinguish a .:::ource node (s), a destination node (d), and k inter­

mediate nodes (0 ~ k < D-l).

(3) Find a shortesl path from the source node to the deslinallOn node

that passes through all inlermediale nodes.

When analyzing routing algorithms [or solving this problem, we shall

assume a uniform message routing dislribution. That is. all source arLd desti­

nation addresses are presumed to be equally likely. Under thh: assumption.

each ring node will be a distinguished node with probabiHly 0.5 since each bit

or the source and destination vertex addresses differ with this probabiliLy.
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Simple Routing Algorithm

The routing algorithm proposed by Willie [4] begins at the source node and

involves two steps:

(A) Cross ring links in the clockwise direction until all dislmguisbed

inlel"mediale nodes have been visited.

(1:1) Find the shorlest path, clQckwi~e 01' countercllJckwise, !i-om the

current position to the final destination node.

For step A, a message traverses i. ring links if and only if the node l links

away from the source were distinguished and the last D -l - 1 nodes were not

distinguished. Under the uniform routing distribution, the [Jfobubility of

·f

·.,

traversing l ring links is just a geometric random variate with value

Thlis, the average number of ring links traversed in performing slep A is

D.:;l l
L: 2D-'
,~

D + - 2.

For step B, the number of links traversed is at mo:::t Ig]. On the average

~l D
2 I -

D-' ( )
,~

2 D
L: min I, D - I = D r;;ven

D 4·
,~

D

~I2 I
,~ D' - 1 Dodd
D 4D

links must be traversed. Hence, the average number of ring links traversed by

this algorithm is
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0 D even
5D 1 - 2+ -
4 2D - 1

1
D odd.

4D

( 1)

Optimal Routing Algorithm

Witlie's simple routing algorithm does not use the location of source and

destination address di1ferences to reduce the number of ring link traversals.

One would expect any algorithm employing this information to perform

significantly better. Finkel and Solomon presented an optimal routing algo-

rilbm for the lens [1], a shared bus interconnection, thaL can be applied to the

cubc-connecLcd cycles tnlerconncctioll, and it docs exhibit shorler mean path

length than the simple algorithm

Wr:. ucgin by observing that the t30urce and destination node::> dtvide the

ring into two arcs. Let A be the longer of these. and let a be its length. Let B

be a maximal contiguous sequence of non- distinguished nodes of length b - 1

in the interior of A. Finally. let C be a maximal contiguous sequence of non-

distinguished nodes of length c - 1 outside A. Figure II shows one possible

arrangement of arcs for a ring or 11 nodes with distinguished nodes indicated

by·. Note that I~1~ a :=; D, 1:=; b ~ a, and 1:=; c :=; D - a. A shortest path

from source to destination is given by the minimum of cases I and II below.

Case 1 (See Figure IIl)

Move from the source (5) to one end of B and back to the other end of B.

Finally, move to the final destination (d). Inspection shows the lenglh of this

path to be D + a - 2b.
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Crl.Jfi if (Sp.e Figura IV)

.Move from the source (5) to one end of C and back to the other end of C.

Fihally, move to Lhe final destination (d). The length of this path is

2D -a -2c:.

The optimality of this algorithm rests on the observaLion that any path

must include either the links in A or those outside A. Having inclurlad these

links, one need only Vi3it the distinguished nodes not encountered along this

path. Clearly, tlles:3 are best visited by short excursions from Lhe source or

desLino.tioll node. Thus. the minimum length ring path from source to destina-

lion is

min [D + a - 2b . 2D - a - 20 ).

Again. we would like to find the average number of ring link traversals

required to reach a destination under the uniform routing assumption. To do

this, we must tlrsl establish two apparently unrelated lemmas.

The probability of arc A having length a is P(a. ,il) where

1
D D 2aa DT =

D
P(~,D) =

2 otheT"uJise.
D
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Proof:

Since all sources and destinations are equallr likely and A is, by definition,

the longer of the two arcs between the source and destination, there are two

complementary positions on the ring. each occurring with probability ~, such

that A has length a;. The only exceptions occur if source and destination arc

coincident. 01' a is half the ring circumference. In these cases, then: is only

one possible ilrc of this length.

Lemma 2

The probability of a run of at least m successes in n trials is R(m,n)

where

R(m,n) = pm + q"r.1piR(m,n-i-l)
;=0

and

Proof:

p

q

R(m,n) o

probability of a success

pTobability of a failure

m > n.

Let peE) denote the probability of the desired run of m successes (i.e.,

peE) =R(m,n». and let peS) denote the probability of an individual success

(Le., P(S) =p). Applying the laws of conditional probability. we have
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PtE) = P(S)P(E IS) + P(.5')P(E 1.5')

= pP(E IS) + qP(E I.5').

Now P(SIS) is just R(m,n-l). Employing conditional probabilities again. we

have

P(EIS) = P(SjS)P(EIS') + P(.5'IS)P(E!.5'S)

= pP(E'IS') + qR(m,n-2)

so

P(E) = p'P(EIS') + pqR(m,n-2) + qR(m,n-l).

By induction, one can show that

i-'1
P(E) = p'P(EIS') + qL.pJR(m,n-j-l).

j:fJ

Note. however, that P(E Ism) = 1. Hence,

m-'
P(E) = R(m,n) = pm + qL.pJR(m,n-j-l).

i =0
II

Finally, Q(m,n) = R{rn.n) - R(m+1.n) is the probability of a run of

exa.ctly m suceesses in 'It trials. In the context of our discussion, Q(m,n)

corresponds to the probability of i:l. contiguous group of non-distinguished ring

nodes or length m in an arc of length n. Under the uniform message routing

assumption, the probability of an individual success. p, is 0.5. We can now

state the foll;)wing theOn:lffi.
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Theorem

The average number of ring link traversals required to route a message to

its destination using the optimal rouLing algorilhm is

/)-1 a {)u (L: P(a.,f) L.;lf(ll-l,n-l) )~Q((~-I,J)-f1.-1)11Ii!-t 1J+r..

u=I¥1 b=l c=]

+P(D,D)t Q (b-l,D-l)min(2 I D - b),D),
b =1

Proof:

-'J,b, 20 -(1 -2~}

(2)

Recall that P(a.D) is the probability of arc A having length a,

Q(b-l,a-l) is the probability of a group o[ contiguous non-disLinguished

nodes of lengLh b - 1 occurring in the interior of i1, and Q(c -! ,j) -a -1) is Lhe

probability of a similar group of non~distinguishednodes occ.urring exterior La

A. Then the sum represents all posslble value:; of a, b. and c weigh led by their

probability of occurretl.ce multiplied by th(~ minimum path 18ngth fN those

values. o

Although (2) is unWieldy. is seems unlikely that a clo.3ed form solution can

be found. Fortunalely, Lwo relaLed factors make such a solution unnecessary.

Fil'sl, Lhe compuLaUoIlill complexity of (2) is only O(D3) if recurrence values

are precalculated. This c::ontrasts with the O(D2D ) operations needed to dctcr-

mine the mean number of ring link traversals by exhaustive enumeration.

Second, the number nelwork nodes rises exponentially with D. Thus, we need

only eonsidel· relatively smalt values or D Lo obtain networks with thousands of

nodes (e.g., D = 10 gives 10.240 nodes).
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Comparisons

figure V shows the average number 01 ring link traversals required for

both the simple routine algorithm and the optimal one. Over the range of D

sllown, the opLimal rouLing algorithm show~ a 20.l) percenl rcducLinn in the

mean number of ring link lraver::;als. As we shall see, only margin"l perfor­

mance improvements i"esull if a reducLion of greater than 25 per'cent is

obtained.

The expected numoer of link traversals alone fails to capture the perfor­

mance of an interconnection network. Jndeed, a single bus and a completely

connecled network have the same performance by this metric. Another.

pel'hap:'! man: Important. metric or inlcrCOlll:ccLion neLwork pedol'mdnee is the

link message inLensiLy, Lhe average number of link ll'i.\Vcr~als rcquit'cd by a

message diviUed by the number of links. l~or a network such as the cube­

connecLed cycles. there are Lwo mC3sagc inLensities. one for the ring links and

one for the cube links.

lJnder uniform routing, the average number of cube link traversals

re':luired by a message is ~ because each of the D bits of the verLex addresses

diITcr wilh probability 0.5. Since: there are D2D - 1 cube links. the message

illl81lsity for these links is 2~·

for the D2D ring links. equation (1) shows that the message intensiLy for

the simple routing algorithm is approximately 1~~5. Since Lhis is greater than

the message intensity of the cube links. the ring Hnks will be the dominant fac­

Lor in communication delays if this routing algorithm is used. Dy way of eon­

LrasL, Lhe mc:nmge inlensily for Lhe ring links using Lhe oplimal rouLinp; algo-
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This impHes that the- performance of

the cube-connecled cyc.:lcs interconnection is ncar that of an ordinary cube,

confirming Lhe cube-connecled cycles interconnection as a feasible alL8rnative

to an ol'dinary cube.

Conclusions

We have presented un optimal routing algorithm for the cube-connecLed

cycles inlerconnection and analy:lcd iLs performance. The algoriLhHl is only

slightly more complicated than the simple algorithm and significanLly reduces

the message intensity of the ring links. Because of this, the cube-connected

cycles interconnection performance should approach the performance of an

ordinary cube interconnection.
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Arc lengths for a ring of eleven nodes
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Figure III

Optimal routing algorithm. case I
Path length ;;; D + a + 2b ;:: 9
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Optimal routing algorithm. case 11
Path length :;: 2D - a - 2c = 12
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