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ABSTRACT 

Classification of remotely sensed multispectral images involves assigning a class 
to each pixel which has similar characteristics with known land cover. This is the 
important step in remote sensing to extract information about the Earth's surface. 
Statistical methods and computational intelligence algorithms such as neural networks 
are commonly used for classification. However, no single classifier can be good for all 
kinds of multispectral images. To obtain consistent and improved results, consensual and 
hierarchical approaches are applied. The proposed method consists of nonlinear image 
filtering, different multiple classifiers which use statistical methods or hierarchical neural 
networks with rejection schemes, and a combining scheme for integrating the results of 
multiple classifiers by consensus rule. Nonlinear image filtering is used to reduce 
variance of homogeneous region and improve spectral separability.  

Most errors in classification occur with the data which are close to boundaries 
between classes. To handle these data more effectively, hierarchical structure is applied 
in classification using neural networks. By successive classifiers which are tuned to 
reduce remaining error, classification performance increases. This structure includes 
detection schemes to decide whether successive classifiers are utilized for each input. 
Rules are developed to determine automatically how many successive classifiers are 
needed. To obtain more reliable classification result for a given input pattern, multiple 
classification results for the same input pattern are combined by a consensus rule. 
Optimal weights for combining multiple classification results are computed in the sense 
of least squares based on the trained results of single classifiers to be combined. These 
are used to derive a consensus of multiple classification results.  

If the classifier is based on neural networks, a classifier with a single algorithm 
can generate multiple different results by preprocessing input data and varying learning 
parameters. Since the same learning algorithm can be trained in different ways by 
preprocessing of the input pattern and varying learning parameters, generated 
classification results are different from each other with diverse errors as in classification 
with multiple different types of classifiers. By combining these classification results, 
classification performance increases. Experimental results with the proposed methods are 
discussed. 
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1. INTRODUCTION 

                                
Remote sensing is the technology of acquiring information about the Earth's surface 
without actually being in contact with it [1]. This includes sensing and recording of 
reflected or emitted energy and processing and analyzing that information. Electro-
magnetic radiation which is reflected or emitted from an object is often the source of 
remote sensing data. Remote sensors such as cameras or multispectral scanners are used 
to detect this electro-magnetic radiation. Since each object has unique characteristics of 
reflection or emission, the characteristics of an object can be determined using reflected 
or emitted electro-magnetic radiation from the object. Remote sensing is a process to 
identify the object through the uniqueness of the reflection or emission. Sensors measure 
the objects with a limited number of wavelength bands with or channels. Advances in 
sensor systems make it possible to improve multispectral remote sensing systems [2]. 
More accurate discriminations are possible by increased dimensionality. Each object has 
its own characteristics of reflection or emission. Using these characteristics, remote 
sensing data are analyzed and understood automatically with the computer. The results 
are used in agriculture, land use, forestry, geology, environment etc.  

Image-based systems are often used in remote sensing. If remote sensing is done 
at a very high spatial resolution so that users could see details of interest to them in the 
scene, identifying objects on the Earth’s surface could be immediately performed. 
However, spatial resolution is a very expensive parameter in space data collection 
process. Higher spatial resolution leads not only to larger quantities of data for a given 
area as resolution is increased, but to larger sensor systems, and increased precision 
requirements on remote sensing sensors. To identify a vegetation species as corn, for 
example, one would require a spatial resolution in the centimeters range so that the shape 
of a corn leaf could be identified. In addition, higher resolution does not automatically 
increase the classification accuracy of multispectral images. This is what led to the 
concept of using spectral measurements of a pixel to identify the ground cover which the 
pixel represents.  
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Spectrally based method would function best for the same problem with spatial 
resolutions of order of a few tens of meters. So, it saves cost for data collection and also 
reduces the volume of data per unit area [17]. A major motivation for using spectral 
variations as the primary source to derive information is to avoid the need for very high 
spatial resolution. 

Multispectral images are composite images which are taken at different 
wavelengths and combined together as a set of images of the same scene at different 
wavelengths. Each pixel of  the multispectral image is a vector with N elements if the 
image consists of N bands. Figure 1.1 (a) represents the spectral response of a specific 
land covers sampled at 220 wavelengths. They consist of stone, corn, and oats. For any 
land cover, its spectral response is a complex mixture of finer constituents that reflect 
electromagnetic energy in different ways. The details of that mixture are its unique 
characteristic of the land cover. Thus, a way to characterize such mixture spectral 
responses as fully as possible is needed.  

The spectral response of any land cover tends to vary in a characteristic way due 
to the relationships between the size and mixture of leaves, and so on. This variation is 
not easily discernable from the graph of reflectance, which is spectral response vs. 
wavelength for the class as seen in Figure 1.1 (a). The feature space solves this problem.  
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Figure 1.1 Data in spectral space and feature space. 
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In Figure 1.1 (a), spectral responses are sampled at two wavelengths, λ1 and λ2. 

Figure 1.1 (b) shows the two dimensional space representing these spectral responses 
sampled at two wavelengths.  In Figure 1.1 (b), if only the measurement at λ2 is 
available, stone and corn can not be distinguished since their spectral responses at λ2 are 
the same. However, their spectral responses at λ1 are different. Thus, corn and stone can 
be distinguished if the measurements at these wavelengths exist. If more dimensional 
spaces are used, more information presented in the spectral space can be used and the 
performance of pattern classification can be improved. 

The remotely sensed data including multispectral images and other geographical 
information represent various features or land cover classes of interest identifying objects 
on the surface of the Earth. Classification is the process of categorizing similar objects 
and labeling their data with a single value. Then, one class represents a unique set of 
similar objects on the Earth’s surface. There are many classification methods of remote 
sensing data [41], [42], [44], [68], [80]. Statistical methods and computational 
intelligence algorithms such as neural networks are commonly applied for classification. 
Benediktsson and Ersoy experimentally compared the two approaches, neural networks 
and statistical methods, in classification [6]. To improve classification performance, 
several image data from several different sources can also be used [43] [67].  

However, no single method can be good for all kinds of multispectral images. To 
obtain consistent and improved results, consensual and hierarchical classification is used 
in this thesis. Consensus classification involves combining the results of several 
classifiers to obtain a better result than that of any single classifier. Compared with a 
single classifier, combined multiple classifiers have shown to perform better in 
classification performance since different classifiers could potentially offer 
complementary information in classification even when the result of each single classifier 
is not good [25], [37], [70], [71]. Various combining rules have been proposed in the 
literature [72], [73], [74], [75]. Consensus theory involves procedures for combining 
single probability distributions to summarize estimates from multiple data sources with 
the assumption that the experts make decisions based on Bayesian decision theory [3]. 
Consensus theory is based on the hypothesis that a group decision with multiple data 
sources is better in terms of mean square error than a decision from a single data source. 
Final classification result is decided by a consensus rule, such as combining each data 
source in a weighted sum with weights which are based on the individual performance of 
each classifier.  
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Another approach for obtaining higher classification accuracy is adopting 
hierarchical structure in neural networks. In many pattern recognition applications, 
classification accuracy is often lowered due to patterns that are likely to be wrongly 
classified. Data which are close to boundaries between classes usually cause errors in 
classification. To classify theses data more effectively, hierarchical structure is applied in 
classification using neural networks. The hierarchical approach means classification is 
done sequentially by multistage neural networks. When the input vectors which are 
difficult to classify are detected, their classification is done in the succeeding stage neural 
networks. In the current stage, input vectors having higher class separability are 
classified. This is effective to reduce misclassification and improve classification 
performance since successive classifiers are tuned to reduce remaining errors.  

The thesis is organized into seven chapters. In Chapters 2, statistical methods for 
classification are discussed. In Chapter 3, neural networks and their hierarchical structure 
for classification are explained. In Chapter 4, nonlinear image filtering applied to input 
multispectral image is reviewed. In Chapter 5, combining multiple classification results 
generated by different types of classifiers and how to generate multiple different 
classification results with a single classifier by preprocessing of input vectors are 
discussed. Experimental results with remotely sensed multispectral images are given in 
Chapter 6.  Conclusions and future work are discussed in Chapter 7. 
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2. STATISTICAL METHODS FOR CLASSIFICATION 

                                
Classification is a major subject in pattern recognition and involves classifying input data 
into a number of categories [51]. For N channel multispectral images, patterns are the 
pixel vectors that contain the sets of intensity values for the channels. A pixel vector can 
be arranged in column form as x = [x1 x2 … xN]T, where x1 to xN are the intensities in 
channel 1 to N, respectively. 

Classification of multispectral images involves labeling the pixel vectors as 
belonging to particular classes using the spectral data available. Broadly, there are two 
kinds of classification procedure. One is unsupervised classification and the other one is 
supervised classification.  

Unsupervised classification is assigning classes to pixels in an image without 
priori knowledge of the existence or names of those classes. Usually, this is performed by 
a clustering method which estimate the numbers and locations of the spectral classes. 
Unsupervised classification is useful for determining the spectral class composition of the 
data prior to detailed analysis by the methods of supervised classification.  

Supervised classification is the most often used procedure for analysis of remotely 
sensed multispectral images. It assigns labels to the pixels representing particular ground 
cover types, or classes in an image set. A number of algorithms are available for this. The 
essential steps of supervised classification are as follows. First, representative pixels from 
each of the classes are chosen. These pixels are referred as training data. Training sets for 
each class can be selected using ground reference data. Usually the pixels in the training 
field for a given class are in a common region enclosed by a border. Secondly, 
parameters which will be used for the particular classification algorithms are estimated 
using training data. With this procedure, the classifier is constructed and generalization is 
performed. Finally, the images which are to be classified are inputted to the trained 
classifier, and final classification results are generated.  

The objective of this thesis is classification of multispectral images by supervised 
classification. Some unsupervised classification techniques are included in supervised 
classification using neural networks in Chapter 3.  
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2.1 Maximum Likelihood Classification  
 

Maximum likelihood classification is a popular method for supervised 
classification with remote sensing data. In this method, the mean, the variance and 
covariance of the class spectral response patterns are utilized when classifying an 
unknown pixel [1]. To do this, it is assumed that the distribution of the pixels forming the 
category of training data is Gaussian. Under this assumption, the distribution of a 
category response pattern can be completely described by the mean vector and the 
covariance matrix. Given these parameters, the statistical probability of a given pixel 
value being a member of a particular land cover class can be computed. 

Let the spectral classes for an image be represented by ωi, i = 1, …,C, where C is 
the number of classes. To determine the class to which a pixel vector x belongs, the 
conditional probabilities p(ωi|x), i = 1,…,C, is estimated. The probability p(ωi|x) gives 
the likelihood that the correct class is ωi for a pixel at position x. Classification rule is as 
follows: 

 
         ijωpωpω jii ≠>∈ allfor )|()|(fi xxx               (2.1) 

 
The pixel at x belongs to class ωi if p(ωi|x) is the largest. If sufficient training data is 
available for each ground cover type, it is possible to estimate a probability distribution 
for a cover type that describes the chance of finding a pixel from class ωi at the position x 
[22]. A set of probabilities, which are p(x|ωi), can be computed that give the relative 
likelihoods that the pixel belongs to each available class for a pixel with x in 
multispectral space. The desired p(ωi|x) in (2.1) and the p(x|ωi), which are estimated from 
training data, are related by Bayes’ theorem [12]: 
 

      
)(

)()(
)|(

x
|x

x
p

ωpωp
ωp ii

i =                        (2.2) 

 
where p(ωi) is the probability that class ωi occurs in the image. If, for example, 10% of 
the pixels of an image happen to belong to spectral class ωi  then  p(ωi) = 0.10. p(ωi|x) 
are posterior probabilities. p(x) in (2.2) is the probability of finding a pixel from any class 
at location x and can be obtained if p(ωi) and p(x|ωi) are known as follows: 
 



 

 

7 

               )()|()(
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= xx                             (2.3) 

 
By (2.2) the classification rule of (2.1) can be written as:  
 
         ijωpωpωpωpω jjiii ≠>∈ allfor )()()()|(fi |xxx           (2.4) 

 
where p(x) has been removed as a common factor. The rule of (2.4) is more acceptable 
than that of (2.l) since p(x|ωi) and p(ωi) can be estimated from training data. For 
mathematical convenience, logarithm can be applied to (2.4), and the discriminant 
function is defined as follows:  
           gi(x) = ln{ p(x| ωi)p(ωi)} =  ln p(x| ωi) + ln p(ωi)              (2.5) 
 
where ln is the natural logarithm. Then, (2.4) is restated as  
 
               ijggω jii ≠>∈ allfor )()(fi xxx                   (2.6)  

 
(2.6) is the decision rule used in maximum likelihood classification. gi(x) are referred to 
as discriminant functions. The class conditional probabilities p(x|ωi) in remote sensing 
are frequently assumed to belong to a normal probability distribution. In the case of a one 
dimensional spectral space, this is described by 
 

      
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −
−= −−

2

2
12/1

2
)(

exp)2()(
i

ii
mx

xp
σ

σπω i|                (2.7) 

 
where x is the single spectral variable, mi is the mean value of x, σi is its standard 
deviation, and σi

2 is the variance of the distribution.  
Usually, the spectral signatures of each class type are modeled to have 

multivariate normal distribution, and the parameters of such spectral signatures are 
estimated from training samples. Based on the spectral signatures, the spectral vector of a 
pixel is used to classify the pixel by using a classifier [13].  Assumption that the 
probability distributions for the classes are of the form of multivariate normal models 
leads to mathematical simplifications as follows. (2.7) can be extended for the 
multivariate distribution by some modification. Vector form x is used instead of x and the 
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univariate mean mi of the data in class ωi is replaced by its multivariate mi. The variance 
σi

2 is modified to take account of multidimensionality and the effect of correlation 
between spectral bands is included. For this, covariance matrix is defined as  
 
                   Σi = E{(x - mi)(x - mi)t}                             (2.8) 
 
The covariance matrix is inverted and inserted into the numerator of the exponent. The 
complete form of the multivariate normal distribution for N spectral dimensions is 
defined as  
 

⎭
⎬
⎫

⎩
⎨
⎧ −Σ−−Σ= −−− )()(

2
1exp||)2()( 12/12/N

ii mxmx|x i
t

ii πωp        (2.9) 

 
From (2.9) gi(x) in(2.5) can be calculated. The resulting term -N/2 ln(2π) is common to 
all gi(x) and does not aid discrimination. Consequently it is ignored and the final form of 
the discriminant function for maximum likelihood classification, based upon the 
assumption of normal statistics, is given by  
 

       )()(
2
1||ln

2
1)(ln)( 1

ii mxmxx −Σ−−Σ−= −
i

t
iii pg ω           (2.10) 

 
If equal prior probabilities is assumed, ln p(ωi) can be removed from (2.10) since it is 
then the same for all i.  If 1/2 common factor is removed, the discriminant function is as 
follows:  
 

           )()(||ln)( 1t
ii mxmxx −Σ−−Σ−= −

iiig                   (2.11) 

 
This is the decision rule for maximum likelihood classification. 

The major drawback of maximum likelihood classification is the large number of 
computations required to classify each pixel. This is particularly true when either a large 
number of spectral channels are involved or a large number of spectral classes must be 
differentiated. In such cases, the maximum likelihood classifier will be slower 
computationally. 
 
2.2 Minimum Distance Classification  
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The performance of maximum likelihood classification depends on how well the 

estimation of the mean vector m and the covariance matrix Σ for each spectral class is 
done. Accurate estimation is possible when there are a lot of training pixels for each class. 
If there are insufficient training data, estimates of the elements of Σ are inaccurate and 
this leads to poor classification. When the number of training samples per class is limited, 
it can be more effective to resort to a classifier that depends only on the mean positions 
of the spectral classes rather than using covariance information. This is the minimum 
distance classifier. This classifies the data depending on the distance with each class 
mean. With this classifier, training data are used only to determine class means. The 
discriminant function for the minimum distance classifier is developed as follows. 
Suppose mi, i = 1,..., C are the means of the C classes determined from training data, and 
x is the position of the pixel to be classified. Distance between the mean of each class and 
input vectors are calculated as follows:  
  
                 ii mxmx −=),(d     i = 1, ... , C                   (2.12) 

 
Euclidean distance is commonly used for distance measure. When the distances between 
x and all mi are computed, classification is performed on the basis of 
 
                 ijω jii ≠>∈ allfor ),(d),(dfi m  xm xx            (2.13) 

 
Input vector x is classified to the class which has the minimum distance to the mean of 
the class. 
 
2.3 Spatial-Spectral Classification 

 
Remotely sensed multispectral images provide information based on the spectral, 

spatial, and temporal variations of the electromagnetic fields emanating from the scene. 
However, conventional statistical pixel-based classification techniques such as maximum 
likelihood classification perform class assignments based only on the spectral signatures 
of the pixel. Hence, the spatial information, which is potentially useful, is not taken into 
for classification. This leads to ignoring useful contextual information in neighboring 
pixels. While traditional per-pixel classifiers ignore this, spatial-spectral classifiers 
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specifically try to incorporate this additional information into the classification algorithm. 
All per-pixel classifiers try to assign every pixel to its spectrally closest class. However, 
spatial-spectral classifiers assign a whole set of pixels to its spectrally closest class. The 
higher the degree of spatial autocorrelation is, the better the results of spatial-spectral 
classifiers.  

To use spatial information as well as spectral information, spatial-spectral 
classifications are used. These methods make use of the spatial context of a pixel in its 
classification. These methods are based on the assumption that the response and class of 
two spatially neighboring pixels are highly related. For example, if x(i,j) and x(i+1, j) are 
two neighboring pixels and if x(i,j) belongs to class ω1, then there is a higher probability 
that x(i+1,j) belongs to the same class. Thus, the decision for a pixel x(i,j) is to be taken 
based not only on x(i,j) but also on all pixels which are neighbor of x(i,j). Use of spatial 
information usually results in a reduction of misclassification. Several classification 
methods which exploit both the spatial information and the spectral information were 
developed [15], [23], [24], [49] [60]. Spatial image filtering and segmentation are 
common strategies for using spatial information [85], [86]. 

One type of spatial information in a remotely sensed image useful for 
classification is the information on homogeneous regions. Region based classification 
uses homogenous regions of images in the classification process. This kind of 
classification consists of comparing the distribution of sample, which is an object’s pixels, 
to the training class distributions instead of comparing just a single pixel vector to the 
training class distributions. Basically, region based classification involves two parts, 
scene segmentation into objects and sample classification algorithm in which each object 
would be classified based on the statistical properties of each object’s pixels. Here the 
pixels in homogeneous regions are assumed to belong to a common class.  

Homogeneous regions are found by image segmentation techniques. Image 
segmentation refers to the decomposition of a scene into non-overlapping and meaningful 
components according to the characteristics such as texture [18]. A criterion in this 
process is that the union of adjacent regions is not homogeneous. By segmentation, an 
image is partitioned into disjoined regions corresponding to objects. This enables further 
classification to be performed based on the information provided by objects rather than 
individual pixels.  

There are many image segmentation techniques such as edge-based methods, 
region growing, thresholding histogram, and split and merge schemes [26], [48], [61], 
[81], [82], [83]. Various segmentation methods for remote sensing images have been 
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proposed in the literature [62], [63], [64], [65], [66] [84]. Edge based segmentation is 
based on detection of edges. This method has drawback that closed boundaries are not 
guaranteed. To form closed boundaries, additional image processing algorithms are 
needed. Instead of edge based segmentation, region based segmentation exploits the 
internal homogeneity of the objects. These methods always make closed boundaries. 
There are conjunctive and disjunctive approaches in this method. Conjunctive algorithms 
cluster pixels starting with seed points which grow into regions until a certain threshold 
is reached. A region grows until no more pixels can be attributed to any of the segments,  
new seeds are placed and the process is repeated. This continues until the whole image is 
segmented. A disjunctive approach begins with a simple partition and subdivides it until 
each element satisfies a criterion of homogeneity. 

The method of extraction and classification of homogeneous objects (ECHO) is a 
region based classification method which uses both spectral and spatial information [14], 
[50]. It uses the dependence between adjacent pixels. All pixels of a segment or region 
are assumed to belong to the same class. ECHO is used as one of the classifiers for 
consensus between multiple classifiers in this thesis. First, the image is segmented by 
conjunctive method, which begins with very fine partition and merges adjacent segments 
together to form homogeneous regions. For the scene segmentation, cells which have n×n 
pixels are defined. Then the homogeneity of the cells is tested by the following equations 
[17]: 
    

             
meansample

variancesample
 >  threshold      Reject           (2.14) 

           Otherwise                         Accept  
 
In this way, homogeneities of all cells in an image are tested. In the second stage, 
statistically similar homogeneous cells that are adjacent are merged together. In this way, 
a region, referred to as an object, having common statistical characteristics continues to 
grow across and down until the merged region meets the heterogeneous cell with the 
different statistics, indicating a boundary in the scene.  

The cell that fails the initial homogeneity test would be called singular and would 
be dealt with on pixel basis. When the scene segmentation is done, each segmented 
region is classified by maximum likelihood classifier, and pixels in the singular cells are 
classified on a pixel basis. Whereas the pixel is classified in per pixel basis depending on 
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its likelihood, the sample, which is the collection of pixels with similar characteristics, is 
classified by the maximum likelihood method in sample classification. By integration of 
spatial and spectral information, classification accuracy can be improved.  

                                
2.4 Class Separability  
 

The ideal goal of classification is to assign correct labels to the input data. 
Classification performance depends on the class separability of input data as well as how 
classification system is designed well. Class separability implies the ease with which 
patterns can be correctly associated with their classes using statistical pattern 
classification. If the separability is higher, the classification becomes easier and more 
correct. In this thesis, nonlinear filtering and hierarchical approach are used. How these 
methods improve classification performance is investigated in terms of classification 
separability later. 

Separability is usually used for feature selection. Since classification cost 
increases with the number of spectral bands associated with a pixel, if the image has a 
number of channels such as in hyperspectral images, removal of least effective features is 
needed to reduce the cost of classification. Features which are not helpful for 
discrimination, by contributing little to the separability of spectral classes, are to be 
discarded for saving processing time and cost. This is referred to as feature selection. By 
feature selection, the dimensionality of a data set is reduced. If the separability is not 
lowered even though some features are excluded, then the set of excluded features is 
considered not to contribute to discrimination in classification. 

A two dimensional multispectral space with two spectral classes ω1 and ω2 is 
shown in Figure 2.1. Suppose that it is not known which feature offers the best prospects 
a priori, and we want to see whether the classes could be separated using only one feature, 
either x1 or x2. This is determined by a measure of separability. Consider the case that 
only x1 subspace is used for classification. The spectral classes in the x1 subspace are 
shown in Figure 2.1. There is an overlapped region between two classes as shown in this 
figure. If the distributions are well separated in the x1 dimension, then the overlapped 
region will be small and it would be unlikely that a classifier would make little error in 
discriminating between two classes on the basis of that feature alone. On the other hand, 
for a large degree of overlapped region, substantial classification error would be expected.  
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Therefore, the usefulness of the x1 feature subset can be measured in terms of the overlap 
of the distributions in that domain. 
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Figure 2.1 Two dimensional multispectral space showing the degree of separation 

    possible in a single dimensional subspace. 
 

Class separability is used for quantification of the separation between a pair of 
probability distributions as an indication of the degree of overlap. As shown in Figure 2.2, 
if  the degree of separation is directly related to the distances between means, and 
inversely to the standard deviations of the distributions, a simple measure of separability 
can be written as             
 



 

 

14 

            
21

21

σσ
μμ

+

−
=normd                            (2.15) 

 
However, if the means of two classes are equal even when the variances are not equal, 
degree of separation is zero. So this measure is not enough as a separability measure. 
Instead, several other measures are available to measure class separability more 
accyrately.  
 
2.4.1 Divergence  
 
Class separability depends on the concept of a measure of statistical distance between the 
probability densities characterizing the pattern classes [45]. Divergence is a measure of 
the separability of a pair of probability distributions that has its basis in their degree of 
overlap [22], [46]. In Figure 2.3, A is defined as p(x0|ωi) - p(x0|ωj). The larger the interval 
A is, the more likely it is that the classifier will classify x0 to the class ωi. The size of a for 
any point in x is characterized by the value of the likelihood ratio at that point as in (2.16). 
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Figure 2.2 Separability showing dependency on means and variances. 
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Figure 2.3 Definition of the likelihood ratio at a point. 
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where p(x|ωi) and p(x|ωj) are the values of the ith and jth spectral class probability 
distributions at the position x. The larger A is, the larger the value of the likelihood ratio. 
These are shown in an overlap region in Figure 2.3. Lij(x) is a measure of instantaneous 
overlap. If two classes are very separable, then spectral classes Lij(x) = 0 or ∞ for all x. 
The logarithm of the likelihood ratio is mathematically more convenient:  
 
                )|(ln)|(ln)(ln)( jiijij ωpωpLL' xxxx −==             (2.17) 

 
The divergence Dij, of classes i and j is defined in terms of this logarithm of the 
likelihood ratio as:                            
                                       

     ]|)([]|)([ jjiiijij ωL'ΕωL'ΕD xx +=                  (2.18) 

 
where E[] denotes the expectation as follows: 
 
                 ∫=

x

xxxx d)|()(]|)([ iijiij ωpL'ωL'Ε                  (2.19) 

This is the average or expected value of the likelihood ratio with respect to all patterns in 
the ith spectral class. From (2.18) it can be seen that  
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from which a number of properties of divergence can be established. For example, it is  
always positive and also Dij = Dji, i.e., it is symmetric. Moreover, if  p(x | ωi) = p(x | ωj) 
for all x, then Dij = Dji = 0. For statistically independent features (i.e., spectral 
components) x1, x2,  … , xN, then  

                    )|()|(
1 i

N

ni ωxpωp nx
=
Π=                          (2.21) 

 
which leads to 
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=
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n
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1
)()( nx                           (2.22) 

 
Since divergence is never negative it follows that  
 

             ),...,(),,...,( n11nn1 xxDxxxD ijij >+                 (2.23) 

 
In other words, divergence never decreases as the number of features is increased. Since 
spectral classes in remote sensing image data are often modeled by multidimensional 
normal distributions, (2.18) is represented as in (2.24) when p(x|ωi) and p(x|ωj) are 
normal distributions with means and covariances of mi, Σi and mj, Σj respectively: 
 

 }]][][{[tr
2
1]}][{[tr

2
1 1111 T

jijijiijjiij ΣΣΣΣΣD mmmm −−++Σ−−= −−−−  

       =A+B                                                     (2.24) 
 
where tr{} is the trace of the subject matrix. Note that A involves only covariances 
whereas B is the square of a normalized distance between the means of the distributions. 
Although divergence only provides a measure of the distance between two class densities, 
its use is extended to the multiclass case by taking the average over all class pairs. If 
there are more than two spectral classes, all pairwise divergences need to be checked to 
compute average divergence. Average divergence in case of multiclass problem is 
defined as in (2.25): 
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where M is the number of spectral classes. 
 
 2.4.2 Jeffries-Matusita distance 
 

Even for the two class case, the relationship between divergence and 
classification accuracy is highly nonlinear. Divergence increases without bound as class 
separability increases, whereas probability of correct classification must saturate at 1 as 
shown Figure 2. 4. This behavior is quite misleading if divergence is to be used as an 
indication of how successfully patterns in the corresponding spectral classes could be 
mutually discriminated or classified. The Jefries-Matusita distance (J-M distance) does 
not suffer from this drawback. J-M distance provides a much more reliable criterion, 
presumably because as a function of class separability it behaves much more like 
probability of correct classification. 

The J-M distance between a pair of probability distributions (spectral classes) is 
defined as  
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Figure 2.4 Problem of divergence. 
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which is seen to be a measure of the average distance between the two class density 
functions. For normally distributed classes this becomes  
                                                            
                          )1(2 B

ij eJ −−=                            (2.27) 

 
where       
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which is referred to as the Bhattacharyya distance [47]. In (2.28), since 0< e-B<1,  Jij 
ranges from 0 to 2. J-M distance of 2.0 between spectral classes would imply 
classification with 100% accuracy. The presence of the exponential factor in (2.27) gives 
an exponentially decreasing weight to increasing separations between spectral classes. If 
the J-M distance is plotted as a function of separability between classes, it shows a 
saturating behavior unlike the divergence. Owing to this saturating behavior, J-M 
distance does not suffer from the difficulty experienced with divergence. If Jij is the J-M 
distance between classes i and j, then the average J-M distance is defined as: 
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where M is the number of spectral classes.  

Transformed divergence was proposed as in (2.30) to make divergence as 
effective as J-M distance and computationally effective and to compensate the problem 
as shown in Figure 2.4 [46].  

 
                         )e1(2000 8/ijDT

ijD −−=                        (2.30)  

 
Transformed divergence has a saturating behavior with increasing class separation, as in 
J-M distance because of its exponential character. 



 

 

19 

 

 

 

3. NEURAL NETWORKS FOR CLASSIFICATION 

                                
3.1 Neural Networks 

 
Neural network is a mathematical or computational model for information 

processing. This is inspired by biological nervous systems, especially the human brain. It 
is composed of a lot of interconnected processing elements (neurons) which work to 
solve specific problems. Learning occurs in the neural networks by adjustment of the 
synaptic connections that exist between the neurons. Learning enables a neural network 
to know how to do tasks based on the given data for training. Most neural networks have 
some training rule whereby the weights of connections are adjusted on the basis of data. 
In other words, neural networks learn from examples and exhibit some capability for 
generalization beyond the training data. The objective of training may be to extract 
relevant information from the database in order to classify future input patterns [34]. A 
neural network is a massively parallel distributed processor that has a natural propensity 
for storing experimental knowledge and making it available for use [5].   

A neural network acquires knowledge through a learning process. This knowledge 
is stored in the synaptic weights which are the interneuron connection strengths. Neural 
networks are usually computational nonlinear algorithms for numerical data processing. 
Neural networks are especially useful for classification and function mapping problems 
which are tolerant of some imprecision, and which have lots of training data available. 
Almost any mapping between vector spaces can be approximated to arbitrary precision 
by feedforward neural networks if there are enough data and enough computing resources. 
Figure 3.1 visualizes the training process in a neural network. The network function is 
determined largely by the connections between elements. Neural network can be trained 
to perform a particular function, which leads to a specific target output, by adjusting the 
values of the weights between the neurons. In Figure 3.1, the network is adjusted, based 
on a comparison of the output of the neural network and the target output, until the 
network output matches the target. This is supervised learning. A supervised learning 
scheme is implemented using a database which consists of samples from the set of  
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Figure 3.1 Training process in the neural network. 

 
possible inputs together with the corresponding targets (classes), which are labeled 
samples. That is, neural networks learn by external teacher such that each output unit is 
told what its desired response to input signals ought to be.  

Neural networks are used in various fields of applications including pattern 
recognition, identification, classification, and control systems. In this thesis, neural 
networks are used for classification of remote sensing data. This involves labeling the 
remote sensing data to the class with similar characteristics. Neural networks have an 
advantage over the statistical methods since they are distribution-free and no prior 
knowledge is needed about the statistical distributions of the classes in the data sources in 
order to apply these methods for classification [6]. 
 
3.2 Competitive Learning 
 

Competitive learning is an unsupervised learning method. As the name implies, 
the neurons are in competition for input patterns [5]. During training, the neuron that 
provides the highest activation to a given input pattern is declared the winner and the 
winner moves closer to the input pattern, whereas other neurons are left unchanged. To 
find the winning neuron, the Euclidean distance between the input vectors and the weight 
vectors are usually used as activation function. The neuron c whose weight vector is the 
closest to x is declared the winning neuron. This is the best matching unit (BMU) of x. 
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Moving of the winning neuron towards the input patterns is achieved by updating of the 
winning neuron by (3.2). After updating, the winning neuron becomes a little more like 
the current input vector. It is this feature that makes competitive learning highly suited to 
discover statistically salient features that may be used to classify a set of input patterns. 
The equations for competitive learning are as follows: 
 
                wi(k + 1) = wi(k) +C(k) [x – wi(k)]   if i wins            (3.2) 
                wi(k + 1) = wi(k)                 otherwise 
 
where wi(k), which is the ith weight vector, becomes wi(k+1) by learning at the kth 
iteration. x is the training vector during the iteration. The mechanism of competitive 
learning is an iterative process. The weight vector of active neuron is adjusted slightly 
following each pattern presentation, so that the set of weight vectors adapts slowly to 
match the characteristics in the distribution of input vectors [7]. The procedure of 
updating the winning neuron is visualized in Figure 3.2. By updating, the winning neuron 
becomes closer to the training vector x. Geometric interpretation of competitive learning 
is shown in Figure 3.3. There are three patterns with shapes of circle, diamond, and 
triangle. The initial three neurons shown with shape of asterisk and randomly distributed 
are far from each pattern in the initial state. Weight vectors are adjusted to resemble the 
input patterns during iterations of competitive learning. Weight vectors represent the 
input patterns in the final state after the iterations of competitive learning. 
 

 
 

Figure 3.2 Procedure of updating the winning neuron. 

x 

wi(k + 1)

wi(k) 

C(k) [x – wi(k)]    



 

 

22 

x
1

x 2

x
1

x 2

 
   (a) Initial state                   (b) Final state 

Figure 3.3 Geometric interpretation of competitive learning. 
 
3.3 Self-Organizing Maps  
 

Self-organizing map (SOM) is an unsupervised learning algorithm similar to 
competitive learning. SOM produces a mapping from a multidimensional input space 
onto a one or two dimensional topology-preserving map of neurons. Hence, the 
underlying structure of the input space is kept while the dimensionality of the space is 
reduced. This is often used for visualizing and interpreting large high-dimensional data 
sets by mapping them to low dimensional space based on a competitive learning scheme 
[10]. SOM arranges feature vectors according to their internal similarity, creating a 
continuous topological representation of the input space. In a topological map, the 
vectors that are similar in space are grouped together, or clustered, while those vectors 
that are different are kept far apart. Due to its clustering property, SOM have been, for 
example,  applied in image segmentation [87], [88], [89]. [90]. 

The main feature of SOM is to preserve a topological order in the map so that 
neighboring neurons respond to similar input patterns. Figure 3.4 shows one dimensional 
SOM structure. SOM is essentially a two layer neural network with full connections as 
shown in Fig 3.4. Output layer in Figure 3.4 consists of linearly arranged nodes fully 
connected to each input node with some weights. The biological basis of SOM is that 
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sensory inputs, such as visual and auditory inputs are mapped onto corresponding areas 
of  

 
        

Figure 3.4 One dimensional self-organizing map. 
                                
the cerebral cortex in an orderly fashion. Learning in SOM is performed by a 
combination of three processes, which are competition, cooperation, and adaptation. Each 
neuron in a SOM is assigned a weight vector with the same dimensionality as the input 
data. For a given input pattern, the neurons in the network compete to see which one is 
closest to the input.   

Suppose the weight vector of each neuron is represented as  wi=[wi1…wid]T, 
where d is the dimension of input vector. For each training step, distances between input 
vector x and all weight vectors are computed, and the winning neuron is found similarly 
as in competitive learning using (3.1). The winning neuron determines a neighborhood to 
spread the activation of the winning neuron over a neighborhood so that topologically 
close neurons will become sensitive to similar patterns. This is cooperation. During 
learning, the winning neuron and its topological neighbors are adapted to make their 
weight vectors more similar to the input pattern that caused the activation. Neurons that 
are closer to the winner will adapt more heavily than neurons that are further away. 
Through adaptation, neurons move closer to the input pattern. The magnitude of the 
adaptation is controlled with a learning rate, which decreases over time to ensure 
convergence of the SOM. The learning rule of SOM is as follows: 
 
             wi(k+1) =  wi(k)+α(k)[x – wi(k)]  if i = c or i∈Nc            (3.3) 
             wi(k+1) =  wi(k)              otherwise 

●
●
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wi(k), which is the ith weight vector, becomes wi(k+1) by learning at the kth iteration. c is 
the winning neuron and Nc is the neighborhood of c. x is the input training vector and 
α(k) is the learning rate. α(k) decreases linearly or exponentially with iterations. The 
neighborhoods of the winning neurons also shrink as the iteration number increases. In 
this thesis, the weight vectors are updated separately for each class by SOM as follows: 
 
            wi

j(k+1) = wi
j(k)+α(k)[x j – wi

j(k)]    if i = c or i∈Nc           (3.4) 
            wi

j(k+1) =  wi
j(k)                otherwise 

 
where wi

j(k), which is the ith weight vector of class j, becomes wi
j(k+1) by learning. x j is 

the input vector of class j.  
The basic SOM algorithm is unsupervised, and it basically describes the degree of 

clustering of the input data. It projects input space on prototypes of a low-dimensional 
regular grid that can be effectively utilized to visualize and explore properties of the data 
[69]. However, when the SOM was originally suggested for classification tasks, it turned 
out that the class-separation of weight vectors, and thus also the classification could be 
improved by a significant amount if information about the class identity was taken into 
account during learning [10]. By this idea, SOM can be used for supervised learning. In 
order to make SOM supervised, the final weight vectors are labeled with class identity. 
This can be obtained by selection of training vectors belonging to each class. After 
updating of weight vectors, which is done separately for each class, by SOM learning 
rule, we can classify the input vectors based on the distance with labeled weight vectors. 
The unsupervised SOM constructs a topology-preserving representation of the statistical 
distribution of all input data. The supervised SOM tunes this representation to 
discriminate between classes. The weight vectors differently labeled define decision 
borders between classes [10]. This supervised SOM with rejection schemes are used for 
classification in this research. 

 
3.4 Self-Organizing Global Ranking Algorithm  

 
Recently, the self-organizing global ranking algorithm (SOGR) was proposed for 

the purposes of simplification of neighborhood concepts and reduction of computational 
load of self organizing maps [11]. SOGR is a simple iterative algorithm like competitive 
learning and SOM. However, it uses a different neighborhood concept from SOM. In 
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SOGR, neighbor neurons are chosen globally based on similarity ranking, and hence they 
can be chosen to be any neuron depending on similarity with the winning neuron 
regardless of topological neighborhood. This results in simple and faster computation. 
Initial weight vectors are randomly chosen from input training vectors with a predefined 
size. During training, an input vector is randomly chosen and the distance with the weight 
vectors are calculated. Euclidean distance can be used for distance measure.  The closest 
neuron c is the winning neuron and the next closest rank-ordered neurons constitute the 
neighborhood of the winning neuron. Learning rule of SOGR is as follows: 
 
              wi(k+1) =  wi(k)+ βi(k)[x – wi(k)] if  i = c or if i ∈  Nc       (3.5) 

           wi(k+1) =  wi(k)                 otherwise                     
 
where βi is the learning rate and Nc is the neighborhood of the winning neuron c. βi(k) is 
the learning rate. As the number of iterations increases, Nc and βi(k) decrease. This helps  
reach to the global minimum or a very deep minimum.  

In order to use the SOGR in supervised learning, it is necessary to label the 
weight vectors with appropriate classes. After updating of the weight vectors is finished, 
the distance between each training vector and all weight vectors are calculated. Then, the 
nearest weight vector is the winner, and a counter for the corresponding class is increased 
by one. This process is repeated for all the training data. After this process, the label of 
the counter which is the maximum for a weight vector is chosen as the label of the weight 
vector.  

Equation (3.6) is an example of counter for labeling. The matrix to the right of 
weight matrix w is the counter. Each column of the counter corresponds to a class. 
Training data has 5 classes and the number of training data is 40, which is the sum of the 
elements of the counter. For all training data, we find the closest weight vector and add 1 
to the column of the corresponding class at the corresponding row of the winning weight 
vector. For example, if the closest weight vector of x is w1, and x belongs to class 3, we 
add 1 to the position of the first row and the third column of the counter. After the 
counting procedure for all training data is finished, the column with the maximum 
number of the counter at each row corresponding to the closest weight vector is labeled 
with the class of the training vector.  
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According to (3.6), the class labels of the weight vectors are 1, 5, 2 and 4, respectively. In 
this particular example, class 3 is neglected. The testing process is simpler than the 
training process. For each test input vector, the closest weight vectors are found. Then, 
each test vector is labeled with the label of the winning weight vector.  

 
3.5 Hierarchical Classifier with Rejection Schemes 

Most errors in classification occur with the data which are close to boundaries 
between classes [8]. So if the hard vectors, which are difficult to classify, are detected 
before classification, the misclassification rate can be reduced by proper processing with 
the detected hard vectors. To improve classification reliability, identifying the input 
patterns which cause unreliable classifications is needed, and for this, rejection schemes 
have been applied [76], [77], [78], [79]. Rejection schemes aim at rejecting the possible 
input patterns which would otherwise be misclassified and make them processed in the 
next stages using newly constructed neural networks using rejected input patterns. 

A hierarchical classifier consists of several stage neural networks (SNN). For 
each SNN, rejection schemes are constructed to detect whether the input data are hard to 
classify or not. Rejection schemes are constructed using training vectors and trained 
weight vector. Training vectors inside rejection boundaries are classified in each SNN, 
and the rejected training vectors are fed into the next SNN and can be processed with the 
same procedure as done in the previous SNN. Once the rejection schemes are constructed 
during training, testing is performed similar to training, using the constructed rejection 
schemes. By adopting rejection schemes, misclassification due to hard vectors is reduced. 
Rejection schemes make it possible to find the hard vectors before classification. 
Whereas the input vectors inside or on the rejection boundaries are classified in the 
current SNN, the input vectors outside rejection boundaries, which are rejected from the 
current SNN, are fed into the next SNN. In the next SNN, new weight vectors are 
selected from the rejected input training vectors from the previous SNN, and competitive 
learning is performed to update the weight vectors. Then, another rejection scheme is 
constructed as in the previous SNN.  In this way, the rejection scheme is executed for 
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each SNN until there is no rejected input vector or the determined maximum number of 
SNNs, which is determined during training based on training accuracy, is exceeded. 
Figure 3.5 represents the block diagram of the training procedure with rejection schemes 
when the number of SNNs is 3. Since the input vectors classified in the current SNN are 
determined by rejection boundaries, how well the rejection boundaries are constructed is  

 

 
Figure 3.5 Block diagram of the training procedure of hierarchical classifier 

with rejection schemes. 
 

important, and affects the classification performance. This is because the decision surface 
of classification is to a large degree determined by the rejection boundaries [9]. Rejection 
schemes are constructed depending on the training data and trained weight vectors.  

In competitive learning with rejection schemes, learning of weight vectors is done 
for each class separately. Equation for learning in (3.2) is modified for this as follows: 
 
                wi

j(k+1) = wi
j(k)+C(k)[ x j – wi

j(k)]  if i wins             (3.7) 
                wi

j(k+1) =  wi
j(k)                otherwise 

 
where wi

j(k), which is the ith weight vector of class j, becomes wi
j(k+1) by learning. x j is 

the training input vector of class j. Since competitive learning is performed for each class 
separately, rejection schemes are constructed separately for the training vectors in each 
class. Suppose we have input training data x, which consists of C classes. x is D- 
dimensional data. Weight vectors for each class, wj, where j=1,2,…,C, are chosen from xj 
belonging to the jth class. If the number of weight vectors per class is defined to be P, the 
total number of weight vectors will be P×C. Weight vector for each class j is represented 
as in (3.8) and the total weight vector is represented as in (3.9): 
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data 

Output 

 SNN 2  SNN 3  SNN 1 
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For a training vector xa
j, which is the ath training vector belonging to the j-th class, 

where a=1,2,…, number of vectors in xj, and j=1,2,…,C, we find the winning weight 
vector wi

j, which has the minimum distance with xa
j. For all training vectors in each class, 

finding the winning neuron is thus performed. Then, the training vectors belonging to the 
jth class are separated into groups decided by the winning weight vectors. For example, a 
group of training vectors which belong to the jth class and their winning weight vector 
are wi

j can be represented as in (3.10): 
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where xj

mn is an element of Xj where m = 1,2,…,L, n =  1,2,…,D, i=1,2,…,P, and  
j=1,2,…C, L is the number of training vectors belonging to the group Xj. Rejection 
boundaries are constructed for each column of Xj defined as  follows: 
 
                       }{max j

mnm

j
in xRADP =                          (3.11) 

                       }{min j
mnm

j
in xRADN =                          (3.12) 

 
RADPj

in  and RADNj
in are the outer and inner rejection boundaries, respectively. The 

size of RADP and RADN is the same as that of weight vector w. RADPj for the training 
vectors belonging to the jth class and total RADP are shown in Eqs. (3.13) and (3.14). 
RADN has the same dimension as that of RADP, and can be expressed similarly to Eqs. 
(3.13) and (3.14). 
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For RADPj and RADNj, a training vector xj

a, which is the ath training vector in the jth 
class, is determined to be inside or on the rejection boundary if it satisfies the following 
condition for every n =  1,2,…,D: 
 
                       RADNj

mn ≤ xj
an ≤ RADPj

mn                     (3.15)      
 
RADPj

mn  and RADNj
mn represent the elements located at the mth row and the nth 

column of RADNj and RADPj which are the rejection boundaries of the jth class training 
vectors. xj

an is the nth element of xj
a. If at least one elements of xa

j does not satisfy (3.15), 
xj

a is outside the rejection boundary and is rejected from the current SNN.  
 Another rejection boundaries based on the distance between a training vector and 
weight vectors can be constructed [9]. With a group of training vectors which belong to 
the jth class and their winning weight vector being wi

j, obtained from (3.10), other 
rejection boundary can be constructed by 
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i
j

mm

j
iRAD wx −= max                       (3.16) 

  
This is the maximum distance from the training vectors in the group Xj to its winning 
vector wi

j. If the training vector xj
a satisfies the following equation, it is inside or on the 

rejection boundary: 
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j
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where a= 1,2,…,number of the training vectors belonging to the jth class.  

Rejection boundary RAD can be used in place of RADPN (RADP and RADN). 
However, in the experiments, the result with RAD were less accurate than the results with 
RADPN. Using RAD also takes more time since it needs to calculate distances between 
all training vectors belong to the jth class and their winning vector to decide RAD. 

Once learned weight vectors are obtained, rejection schemes are constructed as 
explained above. For the training vectors in current SNN, we determine which training 
vectors are rejected using the rejection scheme RADPN. The training vectors rejected by 
RADPN, which are outside the rejection boundaries, are fed into the next SNN and the 
training vectors inside or on the rejection boundaries are classified. If a training vector is 
inside any rejection scheme, it is classified in the current SNN. If there is no rejected 
training vector or the training accuracy of whole network reaches 100 %, or the training 
accuracy of the whole network including the new SNN is less than that of the previous 
whole network without the new SNN, the training procedures is stopped. This is the 
stopping criterion to determine the number of SNNs.  

Each weight vector represents how the input nodes are interconnected with a 
particular output node identified with the weight vector. The output of an output node is 
set to 1 when a training vector is inside or on its rejection boundary and 0 when a training 
vector is outside its rejection boundary. If one or more weight vectors belonging to the 
same class have output 1, the class output becomes 1. If no weight vector belonging to a 
class has output 1, the class output becomes 0. If more than one class has output 1, the 
training vector is rejected. This means that more than one class is assigned to a training 
vector, and hence it is difficult to classify this training vector. These training vectors are 
also determined to be rejected and are fed into the next SNN. If the training vector is 
accepted by the two rejection schemes, but is classified to different classes, it is thus 
rejected from the current SNN.  

An example of how rejection schemes are used is shown in (3.18). Suppose we 
have training vectors with three classes. The number of weight vectors per class is 
assumed to be two. The total weight matrix w can be represented as the matrix in (3.18). 
The three column vectors in (3.18) are the example of output of each node in w in terms 
of rejection boundaries. These are the trained result with three different training vectors 
x1, x2, and x3, respectively. Here a node is represented by a row vector of w. The first 
column is the node output for a x1. This column vector has output 1 only in w1, which is 
the first two rows in weight matrix w. So, x1 is classified to class 1. The second column is 
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the node output for a x2. This column vector has output 1 only in w2, which is the fourth 
row in weight matrix w.. So, x2 is classified to class 2. The third column is the node 
output for a x3. Class output of w1, w2, and w3 are all 1 since one or more weight vectors 
belonging to 
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each class have output 1. This means that the training vector can be classified to any class 
since it is on the boundary of class. This is a hard vector. It is rejected and fed into the 
next SNN.  

When training is stopped by stopping criterion, if there are still rejected training 
vectors, these remaining training vectors are classified to the class of the closest weight 
vector. Once training is stopped by stopping criterion, no more SNNs are generated. This 
is because additional SNN may lower training accuracy of the whole network. This may 
occur, for example, when there are imbalanced data, that is, at least one of the classes 
constitutes only a very small minority of the data. In this case, SNN aims to minimize the 
overall error rate, rather than taking special attention to a class with few data. If there are 
few data points, left from a number of classes, generating a complex SNN with many 
parameters does not make sense since the parameters can not be accurately estimated. 
Thus, rather than generating more SNNs, the remaining training vectors are classified in 
the nearest sense. 

Test is performed using the classifier constructed by training. Testing procedure is 
similar to the training procedure. By rejection boundaries constructed with the training 
vectors, all test vectors are tested for acceptance or rejection. Test vectors inside or on the 
rejection boundaries are classified in the current SNN, and the test vectors outside 
rejection boundaries are rejected and fed into the next SNN. Testing is continued until 
there is no test vector or the determined number of SNNs, which is determined during 
training, is exceeded. If there are some test vectors when the determined number of SNNs 
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is exceeded, those test vectors are classified to the class of the closest weight vector as in 
training. 

Hierarchical classifier can be constructed using SOM or SOGR. The structure of 
SOM with rejection schemes is the same as competitive learning with rejection schemes 
except for the learning method. They consist of a number of SNNs. Each SNN uses SOM 
as the learning method and rejection scheme is constructed for each SNN. Rejection 
schemes are constructed with the same method as competitive learning with rejection 
schemes. Initially, weight vectors are selected from the training vectors. Random 
initialization is commonly used in SOM since the randomly chosen unordered weight 
vectors will become ordered by a number of iterations of learning, eventually. When the 
computation of weight vectors is finished by SOM, rejection boundaries are constructed 
to reduce the number of misclassified training vectors. Since the learning method of 
SOM and SOGR is the same as that of competitive learning except the concept of 
neighborhood, rejection schemes can be constructed in the same way as in competitive 
learning.                              

To show how the hierarchical classifier with rejection schemes is working, 
classification of randomly generated two channel data with two classes is performed. If 
the number of channel is over than 3, it can not be visualized. Since multispectral images 
have several decades of channels, it is impossible to visualize all channels. To make it 
simple and show it graphically, two channel data with two classes are used. Fig 3.6 
shows randomly generated two class data. 460 data are generated and 60 data are taken as 
training data and the remaining 400 data are taken as test data. For each class, there exist 
30 training data and 200 test data are used. Each data point in the Figure 3.6 has the form 
of x=[x1 x2]T. This is the two channel data. Mean of class 1 data is [20 20]T  and mean of 
class 2 is [22 20]T. Competitive learning with 30 iterations is used as learning method in 
this example.  

To construct rejection boundaries, learning is performed using training data. 
Initial weight vector is chosen randomly before learning is performed. In this example, 
the number of weight vector for each class is set to one. So, there will be only one cluster 
for each class. Learning is performed for the training data of each class separately. 
Clustered result by competitive learning is shown in Figure 3.7. Initially randomly 
chosen weight vector is updated by iterations of competitive learning. After learning, the 
weight vector becomes the center of cluster. Asterisks in the Fig 3.7 represent the center 
of each cluster. Since one weight vector is used for each class in this example, one cluster 
is generated for each class.  
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Figure 3.6 Training and test data with two classes. 
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Figure 3.7 Clustered results and constructed rejection boundaries in the SNN 1. 

 
Using the clustered results, rejection boundaries are constructed. The maximum 

and minimum values for x1 and x2  can be recognized in the clustered results. Maximum 
values for each channel are x1max and x2max. Minimum values for each channel are x1min 
and x2min. Then, intersection point of two lines x1 = x1max  and x2 = x2max will be RADP, 
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which is the outer rejection boundary. Intersection point of two lines x1 = x1min  and x2 = 
x2min will be RADN, which is the inner rejection boundary. Rejection boundaries are 
constructed with RADP and RADN.  These are in the shape of rectangle as shown in 
Figure 3.7. These rectangular shaped rejection boundary is constructed for each class and 
for each cluster. If the number of cluster for each class is set to two, two rejection 
rectangles will be constructed for each class, and totally four rejection rectangles are 
constructed since there are two classes in this example.   

Another rejection boundary can be constructed using the clusterd result. This is 
circular shaped. The radius of this circular rejection boundary  is the maximum diatance 
between the cluster center and each element in that cluster as in (3.16). Figure 3.8 shows 
both RADPN and RAD on training data constructed in SNN 1. However, the intersection 
area of  two circles, which is circular rejection boundary for each class, is bigger than 
that of RADPN. In addition, calculation of distances between cluster and the all elements 
of cluster to find the maximum distance, it takes long time. Actually, RAD is not good as 
RADPN in classification of multispectral images. Thus, only RADPN is used for 
rejection scheme both in this example and in the experiments on multispectral images of 
this thesis. 

Once the rejection boundaries are constructed, training data are to be decided 
whether they are accepted or rejected. From the constructed rejection boundaries, we can  
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Figure3.8 RADPN and RAD constructed on training data in SNN 1. 
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recognize the intersection area of two rectangles. If the training data are inside the 
intersection area of two rectangles, it is difficult to classify since they are located on near 
the boundary of two classes. These are hard vectors. The classification of these data is 
not performed in the current SNN since these data can be misclassified if there are 
classified in the current SNN. These data are rejected by current SNN and fed into the 
next SNN. In the next SNN, new rejection boundaries are constructed by competitive 
learning using the rejected data, and the classification which will be done in the next 
SNN is more reliable. If the training data are inside the rejection rectangle for each class 
but outside or on the intersection boundary of two rectangles, they are accepted and 
classified in the current SNN. It is easy to classify these data, since they are far away 
from the class boundary.  

Similarly, the same procedure done in training data is applied for the test data. For 
the given test data for current SNN, whether accepted or rejected is decided based on 
rejection rectangles which are constructed using training data. Test data which are inside 
of rejection rectangle but outside of the intersection area of two rejection rectangles are 
accepted and classified. The test data which are outside the rejection rectangles and 
inside the intersection of two rejection rectangles are rejected from current SNN and their 
processing is postponed in the next SNN. Figure 3.9 represents the training and test data 
which are accepted and classified in the SNN 1. Figure 3.10 represents the training and 
testing data which are rejected by SNN 1. These data are to be fed into the next the SNN. 
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Figure 3.9 Accepted training and test data in the SNN 1. 
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Figure 3.10 Rejected training and test data in the SNN 1. 
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Figure 3.11 Clustered results and constructed rejection boundaries in the SNN 2. 

 
In SNN 2, the same procedure done in the SNN 1 is performed. Competitive learning is 
performed using the training data of SNN 2 which are rejected in the SNN 1 and cluster 
center is decided. Figure 3.11 represents the clustered result and constructed rejection  
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boundaries in the SNN 2. Only the training data which are rejected in the SNN 1 are used 
for clustering.  Figure 3.12 represents the accepted and classified training and test data 
up to SNN 2. The data which are outside the intersection area of two rejection rectangles 
are training and test data which are classified up to in the SNN 2. The data inside the two 
rectangles but outside the intersection of two rectangles are classified data in the SNN 2. 
Figure 3.13 represents the training and test data which are rejected in the SNN2. In this 
example, the number of the SNN is set to two and the rejected data in the SNN are 
classified to the class of the nearest cluster center. Figure 3.14 represents rejection 
boundaries and classified data which are performed up to SNN 2. Rectangles with solid 
line are constructed in the SNN 1 and rectangles with dashed line are constructed in the 
SNN 2. The data in the intersection area of two rectangles with dashed line are rejected in 
SNN 2, which are  shown in Figure 3.15, and will classified to class of the nearest 
cluster center.  
 Class separability of each SNN is calculated. Transformed divergence and J-M 
distance of training and test data for each stage are given in Table 3.1 and Table 3.2, 
respectively. Since the easy data which are inside the rejection boundary constructed in 
SNN 1 have higher separability, both transformed divergence and J-M distance for the 
data classified in SNN1 are greater than those of input to SNN1. Transformed divergence  
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Figure 3.12 Classified training and test data up to SNN 2. 
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Figure 3.13 Rejected training and test data from the SNN 2. 
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Figure 3.14 Rejection boundaries and classified training and test data up to SNN2. 

 
and J-M distance for the rejected data by SNN 1 are much lower than those of input to 
SNN 1. This means that the rejected data by SNN 1 are very difficult to classify. This is 
the reason why the transformed divergence and J-M distance classified up to SNN 2 are 
lower than those of the data classified in SNN 1. 
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Figure 3.15 Rejected training and test data in the SNN 2. 

 
Table 3.1 Transformed divergence of input data for each stage 

 
Data type Training data Test data 

Input to SNN1     1106.08     1000.85 
Classified in SNN1     1981.58         1755.79 
Rejected by SNN1     171.05           396.62 

 
Table 3.2 J-M distance of input data for each stage 

 
Data type Training data Test data 

Input to SNN1 1.052 0.950 
Classified in SNN1 1.970 1.678 
Rejected by SNN1 0.168 0.434 

 
Hierarchical classification improves classification performance by detecting the hard 
input data and classifying easy data first and hard data later rather than classifying at the 
same time. 
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4. NONLINEAR IMAGE FILTERING 

                                
Classification performance depends on several factors such as class separability, 

training sample size, dimensionality, classification algorithm, and so on. Image filtering 
can be used as a means for increasing class separability. Image filtering typically refers to 
the process of noise reduction and smoothing in the image by neighborhood operations 
that calculate a new value for the center pixel based on the values of its neighbors within 
a window. For preserving image details such as edges, nonlinear filtering is appropriate. 
Nonlinear filtering makes it possible to reduce noise but preserves edges without blurring. 
By nonlinear filtering, the variances of pixels within each class are reduced. Therefore, 
the gap between classes in the feature space is widened and class separability is improved. 
This results in higher classification accuracy. This also improves visual interpretation. In 
practical, image filtering have been applied in remote sensing for the improvement of 
classification performance [16], [52], [53]. 
 
4.1   Median Filter 
 

Median filter is a simple and effective noise removal filter. Filtered pixel is 
determined by taking the median of the pixels contained in a window around the pixels 
[18]. Median filtering requires arranging the pixel values in the window in increasing or 
decreasing order and picking the middle value. This smoothes the image while preserving 
the small and sharp details.  Median filter is good for removing pepper and salt noise, 
which has isolated pixel value from its neighborhood. 
 
4.2   Morphological Filter 
 

Mathematical morphology or simply morphology is a theory for analysis of 
spatial structures and aims at analyzing the shape and form of objects [19], [54]. 
Morphological filter is a nonlinear signal transformation that locally modifies geometric 
features of signals [55]. Morphological filters are suited to suppression or extraction of 
image objects or structures. Noise reduction and edge detection in image analysis are two 
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possible applications for them. Using mathematical morphology, various morphological 
filters can be constructed [56], [57], [58], and also applied to remote sensing image 
analysis [59]. 

Morphological operators are used for extracting relevant structures of the image. 
This is achieved by using a structuring element. The structuring element is to 
mathematical morphology what the convolution kernel is to linear filter theory. The 
structuring element can be chosen as a 3×3 window and has its origin at the center pixel. 
Some examples are shown in Figure 4.1. The blanks in the structuring elements are zeros. 
The structuring element moves over the image and its elements are compared with the set 
of the underlying pixels at each pixel of the image. Structuring elements consist of a 
pattern specified at the coordinates of a number of discrete points relative to some origin. 
Morphological operators take two input data. One is the input image, which may be 
either binary or grayscale. The other one is the structuring element. The shape of the 
structuring element is usually chosen according to some a priori knowledge about 
geometry of the relevant and irrelevant image structures. Irrelevant structures mean noise 
or other objects to be suppressed. 

 
 
 
 
 

     Figure 4.1 Examples of structuring elements. 
 
4.2.1 Morphological operators 

 
The two most basic operations in mathematical morphology are erosion and 

dilation. Morphological operators take an image to be processed and a structuring 
element as input data. The two pieces of input data are treated as representing sets of 
coordinates in a way that is slightly different for binary and grayscale images. For a 
binary image, white pixels are normally taken to represent foreground regions, while 
black pixels denote background. Then, the set of coordinates corresponding to that image 
is simply the set of two dimensional Euclidean coordinates of all the foreground pixels in 
the image, with an origin normally taken in one of the corners so that all coordinates have 
positive elements. For a grayscale image, the intensity value represents height above a 
base plane, so that the grayscale image represents a surface in the three-dimensional 
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Euclidean space. Then, the set of coordinates associated with this image surface is simply 
the set of three-dimensional Euclidean coordinates of all the points within this surface 
and also all points below the surface, down to the base plane. Note that even when we are 
only considering points with integer coordinates, this is a lot of points, so usually 
algorithms are employed that do not need to consider all the points.  

Let f and h be two discrete-valued functions defined on a two dimensional 
discrete space. f is the input image and h is a structuring element. Four basic 
morphological operators are defined as follows: 
 
Erosion : The effect of the erosion operator on an image is to erode away the boundaries 
of regions of foreground pixels (i.e. white pixels, typically). Thus areas of foreground 
pixels shrink in size, and holes within those areas become larger. This operation shrinks 
image regions. This means that the output image tends to be darker than the input image. 
The image f is eroded by 
 
              (f θ h)(x, y)= min{f(x+ i, y+ j) ; (i, j) ∈  Dh }              (4.1) 
 
where h is a structuring element. h is a two dimensional grayscale image with a finite 
domain (Dh), similar to a filter. Erosion of an image is defined as the minimum of the 
pixels of a local region of an image decided by a grayscale structuring element. 
Grayscale erosion is used to smooth small light regions. Light elements within the image 
are reduced or eliminated, depending on how their shapes are related to the used 
structuring element. The shape of the input structuring element is generally chosen to 
emphasize or de-emphasize elements in the image.  The degree of these effects depends 
greatly on the shape and values within the structuring element and by the details within 
the image itself. 
 
Dilation: The effect of the dilation operator on an image is to gradually enlarge the 
boundaries of regions of foreground pixels. Thus, areas of foreground pixels grow in size 
while holes within those regions become smaller. This operation grows image regions. 
This means that the output image tends to be brighter than the input image. This 
operation is the dual operation of erosion, and is defined by  
 

   (f⊕h)(x, y)= max{f(x+ i, y+ j)  ; (i, j) ∈ Dh }           (4.2) 
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Dilation of an image is defined as the maximum of the pixels of a local region of an 
image decided by a grayscale structuring element. Grayscale dilation is used to smooth 
small dark regions.  Dark elements within the image are reduced or eliminated, 
depending on how their shapes relate to the structuring element used.  
 
Opening: Opening of an image is an erosion followed by a dilation. The result is the 
reduction of small positive regions within the image. Equation for opening is defined by  
 
                       (f ○h) = (f θ  h) ⊕ h                          (4.3) 

 
The basic effect of an opening is somewhat like erosion in that it tends to remove some of 
the bright pixels from the edges of regions of foreground pixels. However, it is less 
destructive than erosion, in general.  Opening is used to remove small objects from an 
image while preserving the shape and size of larger objects in the image. The result is the 
reduction of small brighter regions within the image.  
 
Closing: Closing is the reverse of opening. This is a dilation followed by an erosion. The 
effect of the operator is to preserve darker regions that have a similar shape to the 
structuring element.  Equation for closing is defined by  
 
                         (f ● h ) = (f ⊕ h) θ  h                      (4.4) 
 
Four morphological operations are illustrated in Figure 4.2 
 

 
 (a) Erosion         (b) Dilation         (c) Opening        (d) Closing 

Figure 4.2 Morphological operations. 
 
4.2.2 Generalized morphological filter 
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Generalized morphological filter (GMF) uses multiple structuring elements and combines 
linear and morphological operations [20]. The GMF suppresses various types of noise, 
but preserves geometrical structure in an image. The block diagram of GMF is shown in 
Figure 4.3. GMF consists of a cascade of two stages of morphological operations. The 
input image is closed and opened independently, then fed into opening and closing. Then 
the outputs are summed with equal weight of 0.5. All operations in the filter are with 
structuring elements shown in Figure 4.1. Those structuring elements define four 
directions of images. In each stage, image is processed with 4 structuring elements 
separately and the mean of the results with 4 structuring elements becomes the output of 
each stage. The GMF reduces noise while preserving geometrical structure. 

 

 
 

Figure 4.3 Block diagram of generalized morphological filter. 
 
4.3 Spatial Filter 
 
The spatial filter is a simple mean filter, which uses variance as a homogeneity criterion 
[16]. First, a 5×5 window is used to determine homogeneity. If the variance of the pixels 
in this window is less than a chosen threshold, the mean value of the pixels in the 
window is assigned to the center pixel. If not, the window size is reduced to 3×3, and the 
variance of the pixels in the window is examined. If the variance is less than a chosen 
threshold, the mean value of the pixels in the window is assigned to the centered pixel. If 
not, 3 minimum and 3 maximum values are excluded from the window and the mean 
value of the remaining pixels is assigned to the center pixel. For each channel image, this 
filter is applied to reduce noise. Spatial filtering results in more homogeneous regions. 
The variance in homogeneous regions is reduced since the pixel values in a homogeneous 
region approach the mean value of the region. This also results in improved spectral  
separability.

 Closing 

 Opening  Closing 
0.5 

input output Σ

 Opening
0.5 
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5. CONSENSUS CLASSIFIER 

                     
In supervised classification of remotely sensed images, there are a number of 

classification algorithms available including statistical and neural networks. Usually, for 
a specific problem, each of these classifiers could attain a different degree of success, but 
maybe none of them is totally perfect [27]. Experiments reported by the authors and other 
researchers in the literature have shown that the superiority of one algorithm over another 
cannot be claimed for remote sensing image classification [36]. Even though an 
algorithm performs well on a certain image, it may yields poor performance on other 
images. There is no classification algorithm which shows the best performance in all 
images and all situations. This is the main reason why the methodology of integrating the 
results of a number of different classification algorithms so that a better result could be 
obtained is needed.   

Consensual classification is one of the strategies to improve classification 
performance and obtain more reliable and accurate result. This is combining the results of 
several different classifiers to obtain the improved classification results for the given 
patterns. The results of multiple classifiers would be the basis for choosing one of the 
classifiers as a final decision to the classification problem. The main idea of consensual 
classification is that group decision by combining individual opinions to derive a 
consensus is better than a single decision. This suggests that a different classifier could 
potentially offer complementary information in classification even when the result of 
classification by it self is not good.  

In the field of pattern recognition, there have been many methods using multiple 
classifiers to combine outputs of different single classifiers to develop high performance 
classification systems [27], [28]. Typically, the classifier outputs are combined by 
majority voting rules, statistical techniques, and other combining methods [27]. For a 
given input pattern, each single classifier performs classification and then the different 
results generated by single classifiers are combined using a consensus scheme to decide 
the collective classification. To obtain improved performance by consensual 
classification, the classification errors generated by single classifiers should be different 
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from each other. For example, when neural networks are used for classification, if the 
different neural networks generalize in the same way, there is no advantage to combining 
a set of neural networks [30]. Even marginal classifiers can contribute to improve 
classification performance if they are combined with other classification results which 
have independent classification errors from each other. Since the classification 
performance by combining multiple classification results is improved only if the 
classifiers used for combining make independent errors, the design of error-independent 
classifiers is important as well as how to combine multiple classification results [29]. 
Most combination methods described in the literature assume that multiple classifier 
systems to obtain combined result are made up of classifiers making independent 
classification errors. 
 
5.1 Neural Network Ensembles 

 
When combining multiple classifiers, if each single classifier is composed of 

neural networks, each of which is a general function approximator, the set of neural 
networks is sometimes called neural network ensembles [34]. The members of ensemble 
are combined in order to obtain better generalization performance than that of any other 
single neural network. The basic idea underlying neural network ensembles is to find 
ways of exploiting the information of ensemble members. In a neural network ensemble, 
there are two main issues. One is how to make or select candidate ensemble members to 
be combined in an ensemble and the other one is how to combine the outputs of the 
ensemble members [30]. 

 
5.1.1 Methods for generating ensemble members 

 
To generate members of a neural network ensemble, one important consideration 

is the extent by which the neural networks forming the ensembles show error diversity in 
the sense that they make different errors. When errors generated by ensemble members 
are different, the improvement of classification is possible by combining their outputs. 
Therefore, the design of neural network ensembles involve creating a set of networks 
which show the highest possible degree of error diversity [35].  

Several methods which create members of neural network ensemble making 
different errors have been developed. Such methods basically involve varying the 
parameters related to the design and training of neural networks. These methods include 
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varying the initial random weights, varying the network architecture, varying the network 
type, and varying the training data [30]. By selecting initial weight vectors randomly, 
neural networks can be trained differently and thereby reach different local minima. 
Varying the training data which is most frequently used for creation of ensemble member 
include sampling training data, disjoint training data, and preprocessing. Sampling data is 
a common method to the creation of ensemble members. This makes the network trained 
on a different subsample of the training data. Disjoint training sample is a similar method 
to the sampling data. This is the use of mutually exclusive training set. There is no 
overlap between data used to train different neural networks. Preprocessing is altering 
input data to extract different features from the input data. Nonlinear transformation is 
one possible method for this purpose. 

Partridge experimentally compared the capabilities of the above methods to make 
error independent networks and concluded that varying the network type and the training 
data are the two best ways for creating ensembles of networks making different errors 
[31]. To make ensemble members, two basic strategies are possible. One is aimed at 
generating an ensemble of error independent networks directly [32]. The other one is to 
overproduce and to choose a method based on the creation of an initial large set of 
networks and the subsequent choice of the subset of the most error independent networks. 
For the second method, some error diversity measures which can be used to choose a 
subset of independent classifiers are used [33]. One simple method to overproduce and to 
choose a method is to investigate all possible combinations of results of classifiers to be 
combined. If one combination yields the best training accuracy by some combining rule, 
then members of this combination is also used in testing. However this exhaustive search 
to find the best combination takes long time. 

When a single training algorithm is used, it is possible to create members of an 
ensemble by multiplying input pattern by a random matrix or varying initial weight 
vectors randomly. Neural network ensembles are desirable due to the basic fact that 
selection of the weight vectors w is an optimization problem with many local minima. All 
global optimization methods in the face of many local minima yield optimal parameters 
(w) which differ greatly from one run of the algorithm to the next, i.e., which show a 
great deal of randomness stemming from different initial weight vector and sequencing of 
the training examples. This randomness tends to differentiate the errors of the networks, 
so that the networks will be making errors on different subsets of the input space [34], 
[93]. 
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The networks will differ in the values of the weight vectors w. These different 
weight vectors correspond to different ways of forming generalizations about the patterns 
inherent in the training set. As each network makes generalization errors on different 
subsets of the input space, the collective decision produced by the ensemble is less likely 
to be in error than the decision made by any of the individual networks.  

 
5.1.2 Problems of combining multiple classifiers 

 
There are three categories in the problem of combining the results of multiple 

classifiers according to the levels of information produced by various classifiers. Suppose 
that we have pattern P with M classes (ω1,ω2,…,ωM) and K different classifiers clk, 
k=1,2,…,K, which can be used for combining results of multiple classification of pattern 
P. The job of classifier cl is to assign a sample x from pattern P one index j, j=1,2,…,M 
as a label to represent that x is regarded as being from class ωj. Regardless what internal 
structure a classifier has, we may simply regard a classifier as a function that receives an 
input sample x and output a label j like cl(x)=j.  

Although j is the only output information needed at the final stage of 
classification, practically many of the existing classification algorithms usually provide 
or are able to provide some other related information. For example, a Bayes classifier 
may also provide M values of post probabilities P (ωi| x),  i=1,2,…,M for each possible 
label. In fact, the final label j is the result of maximum selection from the M values, and 
this selection certainly discards some information that is considered useless for the final 
output when there is only a single classifier. However such discarded information may be 
useful for combination of multiple classifiers. Depending on whether some output 
information other than one label j is used and the other kind of information is used, there 
are different types of combining multiple classifiers [27].  

In general, the output information from various classification algorithms can be 
categorized into three levels: the abstract, the rank, and the measurement levels [27], [38]. 
In the abstract level, a classifier only outputs a unique label. For the rank level, a 
classifier ranks all labels or a subset of the labels in a queue with the label at the top 
being the first choice. For the measurement level, a classifier attributes to each class a 
measurement value that reflects the degree of confidence that a specific input belongs to 
a given class. Among the three levels, the measurement level contains the highest amount 
of information while the abstract level contains the lowest. The methods of combining 
multiple classifiers are varied based on which output information levels are used. When 
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combining is based on the abstract level, the individual classifier could be very different 
from each other in their theories or methodologies. In fact, any kind of classifiers will at 
least supply the output information at the abstract level, so the combining multiple 
classifiers based on the information of the abstract level covers all kinds of pattern 
recognition areas. For this reason, the abstract level is used for combining multiple 
classifiers in this thesis. In contrast, if the measurement level is used for combining, this 
requires that all the individual classifiers should be able to supply the output information 
at the measurement level. Furthermore, if there are any measurement vectors of different 
kinds, the measurements should be able to be transformed into the same kind of 
measurement, since a reasonable combination operation on these measurements could be 
made only when they have the same measurement scale. 
 
5.1.3 Combination by majority rule 

 
When only the abstract level is available, which is the most general, majority rule 

or voting rule can be used. We have K different classifiers. Each classifier provides the 
results in terms of the class labels assigned to the patterns such as clk(x)=j, k=1,2,…,K. A 
given input pattern receives K classification labels from the multiple classifiers, each 
label corresponding to one of the M data classes. Equation (5.1) does not usually hold: 
  
                     cl1(x) = cl2 (x) =… = clK(x)                       (5.1) 

 
Each single classifier may make different decision. A common rule to combine the 
results of the K classifiers is majority rule by voting [39], [40]. This is that the data class 
that receives a larger number of votes is assumed to be the class of the input pattern.  

To combine the multiple classification results, counter is needed. Ctraining and Ctest  

are counter for training and test results.  
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In the counter for trained result Ctraining, the number of rows is the number of training 
vectors and the number of columns is the number of classes of input image. We have 
multiple classification results and corresponding weights λi. Weights λi for the output of 
jth classifier can be calculated by least squares based on the goodness of classification 
results. To make it simple, weights for all single classification results can be 1 regardless 
of the goodness of each classification result. For each training vector, the column 
corresponding to the trained result of each single classifier is increased by corresponding 
weights λi. When counting process for all training vectors is finished, the column number 
with maximum becomes the class of the training vector. Similarly, Ctest is obtained and 
final consensual test result is obtained. 
 
5.1.4 Combination by Bayesian average 

 
Bayesian average is used when the measurement level is available as output 

information of classifiers. In some classification algorithms such as the K-nearest 
neighbor (KNN), it is possible to calculate the estimates of the posterior probabilities that 
an input pattern x comes from the class ωi. When K classifiers are available, each 
classifier can provide the following estimate: 

 
                    pk(ωi|x),     i = 1,…,M, k = 1,…, K                (5.2) 
         
For each single classifier clk, a decision is made as  
 
                    clk(x) = j   with )(max)( xx |ωp|ωp ikijk =         (5.3) 

 
If each single classifier can provide the estimate as in (5.3), the average value of theses 
estimates can be calculated as follows: 
 

                    )|(1)|(
1
∑
=

=
K

k
ikiavg ωp

K
ωp xx   i = 1,…,C          (5.4) 

 
Then, the final collective decision is made as follows: 
 
                 CL (x) = j with )(max)( xx |ωp|ωp iavgijavg =          (5.5) 
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where CL is the classifier which combines multiple classifiers. CL classifies input pattern 
based on the Bayesian criterion,  
 
5.2 Two Types of Generating and Combining Multiple Classifiers 
 

In this thesis, two types of combining multiple classifiers are experimented. One 
is combining multiple classifiers which use different classification algorithms from each 
other, and the other one is combining multiple classifiers which use the same 
classification algorithm. The output of a combined classifier for some input is usually 
defined as the linear combination of outputs of multiple classifiers to be combined [4].  

The overall block diagram of generating and combining procedure when each 
single classifier uses a different classification algorithm is shown in Figure 5.1. First, a 
nonlinear filter is applied to the input image to reduce noise and to have more 
homogeneous regions. From the filtered image, training and testing samples are selected 
referring to the ground reference data. Ground data is more professionally generated by 
ground observation in order to properly interpret remotely sensed images. Using ground 
reference data, we can know the classes of a limited number of pixels of the remotely 
sensed image. Since the target data is already known, optimal weights can be calculated 
using least squares estimation during training. Each classifier in Fig 5.1 uses a different 
algorithm for classification. Statistical methods and neural network approaches explained 
 

 
 

Figure 5.1 Block diagram of combining multiple different classifiers. 
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in Chapters 2 and 3 are used for classification. The classification results of the classifiers 
are combined with the weight vector λ=[λ1 λ2….λK ]T to produce the consensual results. 
To combine the results of the multiple classifiers, weight selection is needed. Weight 
reflects the goodness of each single classification result [3]. For example, a classification 
result with higher accuracy, can be given relatively higher weight. There are two methods 
for weight selection. One is giving equal weights for all single classification results, and 
the other method is giving optimal weights depending on the reliability of each single 
classification result.  

Obtaining the optimal weight can be done by the delta rule based on least squares. 
From the results of multiple classifiers, we know the training and testing outputs. We also 
have target outputs which are the classes labeled to the training data. Suppose the trained 
results of single classifiers are represented as X=[X1 X2… XK] and the desired output is D. 
Xi is column vector containing the output of a single classifier. X is l×K matrix, where l is 
the number of training vectors and K is the number of single classifiers to be combined. 
Then, we can find the optimal weight by solving the following equation. 
 
                             Xλ=D                              (5.6) 
  
Optimal weights λ=[ λ1 λ2 … λK]T are obtained when the square error is minimized as 
follows:  
 
                        2

opt min DXλλ
λ

−=                          (5.7) 

 
Using pseudo inverse of X, λopt  is calculated by 
 
                         λopt=(XTX)-1XT D                         (5.8) 
 
where XT is the transpose of X and (XTX)-1XT is the pseudo inverse of X. λopt is the 
optimal weight vector. Once the optimal weighs are obtained, consensual classification 
results can be obtained by applying a maximum rule. For example, majority rule can be 
used for final classification.  
 Multiple classifiers which use the same classification algorithm can be designed. 
By varying training data or other parameters used in training, multiple classification 
results can be produced using single classification algorithms. For example, hierarchical 
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competitive learning, hierarchical SOM, and, hierarchical SOGR which can be used in 
classification generate various classification results by varying tuning parameters.   

In this thesis, the following technique is used. First, random matrix per classifier 
with elements uniformly distributed between -1 and 1 is used to transform pixel vectors 
of input images. Then nonlinear filtering is applied to each channel of image. This 
preprocessing of input is done for each single classifier with rejection schemes.  

 To add more randomness, whenever each single classifier is trained, weight 
vectors are selected randomly out of training data. Both procedures are aimed at making 
each single classifier produce independent errors.  Even though a single classification 
algorithm is used, each single classifier makes different classification errors since its 
parameters generated by training are different due to the two procedures used. The block 
diagram for combining multiple classifiers which use the same classification algorithm is 
shown in Figure 5.2. 
 

 

 
 

(a) Structure of a single classifier to produce a member of the ensemble. 
 

 
 

(b) Preprocessing block in (a) 
 

Figure 5.2 Block diagram of combining multiple same classifiers. 
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(c) Block diagram of combining multiple same classifiers 
                

Figure 5.2 Block diagram of combining multiple same classifiers (continued). 
 
5.3 Diversity Measures in Combining Multiple Classifiers 
 

Classifiers in the ensemble should be as accurate as possible and should not make 
coincident errors to obtain improved classification result with consensual classification. 
Thus, single classifiers to be combined should make independent errors.  If a classifier 
makes errors, it can be complemented with another classifier which makes errors 
differently. Disagreement of errors is highly beneficial for improvement of performance 
in consensual classification. Diversity measures can be helpful in designing the 
individual classifiers and for combining them [37], [94]. 

Diversity measure is meaningful if it is applied to a group of classifiers. In the 
simplest case, a measure can be applied for examining diversity between two classifiers. 
Such measures are referred to as pairwise diversity measures. For more than two 
classifiers, pairwise diversity measure is typically obtained by averaging the pairwise 
diversity measures calculated for all pairs of classifiers from the considered pool of 
classifiers.  

Let  Z={z1, z2,…, zN} be a labeled data set and D={D1,  D2,…, DK} be a pool of 
classifiers. Each classifier labels every data point zj with a class label from Ω={ω1,  
ω2,…, ωM}. The output of classifier Di for all the input vectors can be represented as a 
binary vector yi=[y1,i, y2,i, …, yN,i]T such that yj,i=1 if  Di recognizes correctly zj, and 0, 
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otherwise, where i=1, …, K. Various statistics are used to asses the similarity of two 
classifier outputs. 

The Q statistics for two classifiers, Di and Dk, is  defined as 
 

                      10010011

10010011

NNNN
NNNNQ k,i +

−
=                        (5.10) 

 
where Nab is the number of elements zj of Z for which yj,i =a and  yj,k = b. These 
relationships between the two classifiers are shown in Table 5.1 
 

Table 5.1 The 2×2 table of the relationship between two classifiers. 
 Dk correct (1) Dk wrong (0) 
Di correct (1) N11 N10 
Di wrong  (0) N01 N00 

 
When the classifiers make the same correct and incorrect decisions, it can be seen that the 
value of the Q statistic becomes one. Negative values indicate classifiers that make errors 
on different inputs. Q varies between - 1 and 1. Classifiers that tend to recognize the 
same objects correctly will have positive values of Q, and those that commit errors on 
different objects will render Q negative [94]. For sets of more than two classifiers the 
mean value of the pairwise Q statistics is considered to be the Q value for that set. The 
best subset of member classifiers is thus selected by minimizing the value of the Q 
statistic. When there are more than two classifiers in a combination pool, average Q 
statistics is defined as  
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The correlation between two binary classifier outputs (correct/incorrect), yi and yj  

is defined as 
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 For any two classifiers, Q and ρ have the same sign, and it can be proved that |ρ| ≤ |Q|. 
The disagreement measure is used to characterize the diversity between a base 

classifier and a complementary classifier. It is the ratio between the number of 
observations on which one classifier is correct and the other one is incorrect to the total 
number of observations. This measure is defined as in (5.13). 
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6. EXPERIMENTAL RESULTS 

                     
Experiments were conducted with the consensual and hierarchical classification 

approaches on multispectral images. First, combining multiple classifiers which use 
different classification algorithms was investigated. Second, combining multiple 
classifiers which use the same classification algorithm was investigated. In the second 
approach, input data and learning parameters are varied by preprocessing to make 
independent errors. The results of the experiments are discussed below.  
 
6.1  Combining Multiple Different Classifiers  

Fifteen results of multiple different classifiers are used for combining. Maximum 
likelihood, ECHO, hierarchical competitive learning, hierarchical SOM, and hierarchical 
SOGR are used as single classifiers. ECHO was performed using Multispec [21]. For 
each single classifier, three input images are used. Three different input images were 
generated by filtering with median filter, generalized morpholofical filter (GMF), and 
spatial filter.  
 
6.1.1  Experiments with West Lafayette image  

This data set is a multispectral image from Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS) built by Jet Propulsion Laboratory (JPL) and flown by 
NASA/Ames on June 12, 1992 [21]. The scene is over an area 6 miles west of West 
Lafayette. The scene is a subset of a significantly larger image file. Originally, this image 
has 220 channels. Image of 9 channels, which is reconstructed by selecting 9 channels 
that represent different regions of spectrum out of 220 channels, was used in the 
experiments. This image has 17 classes (background, alfalfa, corn-notill, corn-min, corn, 
grass/ pasture, grass/trees, grass/pasture-mowed, hay-windrowed, oats, soybean-notill, 
soybean-min, soybean-cleas, wheat, woods, bldg-grass-tree-drives, stone-steel towers). It 
is a 16 bit pixel image with the size of 145×145. Each pixel in one channel represents one 
of 65536 gray levels. 3403 and 8495 pixels out of the filtered image were selected 
referring to ground reference data for training and testing fields, respectively. These 
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training and testing data were selected from pixels belonging to all classes. These are 16 
% and 40 % of the number of total pixels in the image. Selected training and testing 
fields of West Lafayette image are shown in Figure 6.1. Channel description of this 
image is given in Table 6.1. Channel 3, 4, and 5 are selected to display the input image in 
Fig 6.1.  
 For the classifiers using neural networks, which are competitive learning, SOM, 
and, SOGR, hierarchical approach with rejection scheme RADPN was used.  (6.1) is 
used for learning rate of competitive learning and SOM: 
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Table 6.1 Channel description of West Lafayette image. 

 
Channel Spectral Band (μm) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0.475-0.485  
0.554-0.564  
0.663-0.673 
0.751-0.761  
0.828-0.838  
1.050-1.060  
1.204-1.214  
1.655-1.755  
2.213-2.223  

 
 

          
 

(a) Training fields                   (b) Testing fields 
Figure 6.1 Training and testing fields in the West Lafayette image.
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In (6.1), k is the current iteration number and Ni
j is the number of training vectors 

belonging to the jth class in the ith SNN. Learning is executed for 30 iterations for all 
methods using neural network algorithms. 

One dimensional SOM is used for hierarchical SOM with rejection scheme. The 
size of neighborhood for the winning weight vector was set to 5 initially and 
neighborhood shrinks to 3 and 1 as the number of iterations increases.  

Size of neighborhoods and learning rate for SOGR are shown in Figure 6.2. Like 
SOM, neighborhood of winning vector shrinks as the number of iterations increases. 
Figure 6.2 (b) represents the learning rate for winner. Learning rate for neighborhood of 
winner decreases to 3/4, 1/2, and 1/4 of it, respectively depending on the distance with 
winner. 

When SOM is used for learning algorithm and the image filtered by GMF is 
classified, 0 training vector and 4113 test vectors were rejected from SNN 3 and 
classified to the class of the closest weight vector. Training and testing accuracy was 
100% and 77.63%, respectively.  Number of trained and tested data in each SNN is 
given in Table 6.2. 91.89 % of training data and 48.25% of testing  data were classified 
in SNN 1. As the number of SNN increases, the number of training and testing data 
decreases. To evaluate hierarchical approach applied to competitive learning, SOM, and 
SOGR, experiments were also done without hierarchical approach with generalized 
morphological filtered image. Comparison of two results with and without hierarchical 
approach using rejection schemes is given in Table 6.3. When hierarchical approach with  
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(a) Size of neighborhood           (b) Learning rate for winner 
Figure 6.2 Number of neighborhoods and learning rate for SOGR. 
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Table 6.2 Number of trained and tested data in each SNN for hierarchical SOM with 
rejection scheme applied to West Lafayette image. 

 
Stage Number of trained data Number of tested data 

SNN 1 3127 4099 
SNN 2 271 278 
SNN 3 5 5 

Rejected data 0 4113 
Total 3403 8495 

 
Table 6.3 Classification performance of hierarchical approach applied to West Lafayette 

image. 
 

Classification methods Training accuracy 
(%) 

Testing accuracy (%) 

Competitive learning 88.33 62.14 
Hierarchical competitive learning 100.00 76.99 

SOM 90.21 64.81 
Hierarchical SOM 100.00 77.63 

SOGR 81.93 60.42 
Hierarchical SOGR 100.00 80.06 

 
Table 6.4 Class separability of West Lafayette image. 

 
Transformed divergence J-M distance  

Image type Training data Testing data Training data Testing data 
Original image 1986.68 1979.02 1.963 1.924 
Median filtered 1992.66 1987.27 1.981 1.963 

GMFed 1996.58 1994.25 1.989 1.963 
Spatial filtered 1996.65 1993.83 1.988 1.960 

 
rejection schemes is used, classification accuracy is improved as shown in Table 6.3. As 
shown in Table 6.4, class separability for training and test data increases by nonlinear 
filtering.  

Since three different input images, which are filtered by median filter, GMF, and 
spatial filter, are classified using five different classification algorithms, which are 
maximum likelihood, ECHO, hierarchical competitive learning, hierarchical SOM, and 
hierarchical SOGR, there are fifteen classification results to be combined. Using delta 
rule discussed in Chapter 5, optimal weights are calculated for combination. Optimal 
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weights represent the goodness of each classification results. These are used in 
combination of test results. 

Complete experimental results are given in Table 6.5. Test accuracy of 
hierarchical SOGR with spatial filtered image is 80.67 %. This is the best accuracy 
among those of single classifiers. By combining with consensus rule, the testing accuracy 
is improved to 85.82 %. In hierarchical competitive learning, hierarchical SOM, and 
hierarchical SOGR, three SNNs are used and the first 20 training vectors belonging to 
each class are selected as weight vectors.  

The ground reference thematic map and thematic maps generated by all single 
classifiers and consensual classifiers are shown in Figure 6.3 to Fig 6.8. It is observed 
that the thematic map of consensual classification is more similar to the ground reference 
thematic map than the thematic maps obtained by any other single classifier.  
 
 

Table 6.5 Experimental results with the West Lafayette image. 
 

Classification Methods Filter Training accuracy (%) Testing accuracy (%) 
Median 90.33 72.95 
GMF 93.33 75.59 

 
Maximum likelihood 

Spatial 91.98 75.59 
Median 94.68 77.27 
GMF 96.03 79.34 

 
ECHO 

Spatial 95.39 79.21 
Median 100.00 75.15 
GMF 100.00 76.99 

Hierarchical 
Competitive learning 

Spatial 100.00 73.29 
Median 100.00 77.83 
GMF 100.00 77.63 

 
Hierarchical SOM 

Spatial 100.00 72.25 
Median 100.00 78.14 
GMF 100.00 80.06 

 
Hierarchical SOGR 

Spatial 100.00 80.67 
Combined by consensus rule 100.00 85.82 
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           (a) Ground reference        (b) Combined result 

 
 
 
 
 

Figure 6.3. Thematic maps generated by consensual classification with 
West Lafayette image. 

 

     
(a) Median filtered             (b) GMFed             (c) Spatial filtered 

Figure 6.4 Thematic maps generated by maximum likelihood classification with West 
Lafayette image. 

 

     
(a) Median filtered          (b) GMFed              (c) Spatial filtered 
Figure 6.5 Thematic maps generated by ECHO with West Lafayette image. 
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(a) Median filtered            (b) GMFed               (c) Spatial filtered 

Figure 6.6 Thematic maps generated by hierarchical competitive learning with West 
Lafayette image. 

 
 

     
(a) Median filtered            (b) GMFed             (c) Spatial filtered 

Figure 6.7 Thematic maps generated by hierarchical SOM with West Lafayette image. 
 

     
(a) Median filtered           (b) GMFed             (c) Spatial filtered 

Figure 6.8 Thematic maps generated by hierarchical SOGR with West Lafayette image. 
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6.1.2. Experiments with Tippecanoe County image  
 

This is a small segment (169×169) of a Thematic Mapper scene of Tippecanoe 
County, Indiana gathered on July 17, 1986 [21]. Each pixel in this image consists of 8 
bits per channel. There are 6 classes (background, corn, soybean, wheat, alfalfa/oats, 
pasture) in this image. There is a wrongly measured part in this image. This part is 
labeled as sensor distortion. Sensor distortion refers to a part of the image where the 
pixels do not line up correctly. The pixels were out of sync when originally recorded 
when being downloaded from the Landsat sensor because the sensor lost sync signals for 
those lines. Thus, this part is not used in generating thematic map and masked out on 
thematic map. The Tippecanoe County image is a 7 channel data and channel description 
is given in Table 6.6.  

2024 and 6346 pixels were selected for training and testing fields, respectively, by 
referring to the ground reference data. These are 7 % and 22 % of the total numbers of 
pixels in the image. Selected training and testing fields of the Tippecanoe County image  

. 

          
      (a) Training field                 (b) Testing field 

Figure 6.9 Training and testing fields in the Tippecanoe County image. 
 

Table 6.6 Channel description of Tippecanoe County image. 
 

Channel Spectral Band (μm) 
1 
2 
3 
4 
5 
6 
7 

0.45-0.52 
0.52-0.60 
0.63-0.69 
0.76-0.90 
1.55-1.75 
2.08-2.35 
10.4-12.5 
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are shown in Figure 6.9. Channels 2, 3, and 4 are selected to display the input image in 
Fig 6.9. As in the experiments with the West Lafayette image, three nonlinear filters were 
applied for all classifiers prior to classification. Improvement of class separability by 
nonlinear filtering is given in Table 6.7. 

Only one SNN is used for hierarchical competitive learning, hierarchical SOM, 
and hierarchical SOGR and all training vectors belonging to each class are used as weight 
vectors. Since few training data belonging to one class are rejected from SNN, the 
number of SNN was set to one and rejected data were classified to the class of nearest 
weight vectors. Experimental results with consensual classifiers and single classifiers are 
given in Table 6.8. The ground reference thematic map and thematic maps generated by 
all single classifiers and consensual classifiers are shown in Figure 6.10 to Figure 6.15. 
When median filtered Tippecanoe County image is classified by hierarchical SOM, 
testing accuracy was 82.73 %. This is the best result among those of single classifiers. By 
combining fifteen classification results, the testing accuracy increased to 83.00 %. This is 
higher than the result of any other single classifier.  

 
Table 6.7 Class seperability of Tippecanoe County image. 

 
Transformed divergence J-M distance  

Image type Training data Testing data Training data Testing data 
Original image 1989.68 1966.02 1.925 1.712 

Median 
filtered 

1996.48 1986.40 1.960 1.799 

GMFed 1998.22 1993.08 1.968 1.828 
Spatial filtered 1998.29 1992.98 1.964 1.826 
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Table 6.8 Experimental results with the Tippecanoe County image. 
 

Classification Methods Filter Training accuracy (%) Testing accuracy (%) 
Median 95.21 76.99 
GMF 96.99 78.24 

 
Maximum likelihood 

Spatial 95.31 77.59 
Median 97.08 78.06 
GMF 98.27 78.96 

 
ECHO 

Spatial 97.63 78.82 
Median 100.00 82.00 
GMF 100.00 81.48 

Hierarchical Competitive 
learning 

Spatial 100.00 81.15 
Median 100.00 82.73 
GMF 100.00 80.51 

 
Hierarchical SOM 

Spatial 100.00 82.70 
Median 100.00 81.97 
GMF 100.00 81.61 

 
Hierarchical SOGR 

Spatial 100.00 81.12 
Combined by consensus rule 100.00 83.00 

 
 
 
 
 

        
   (a) Ground reference            (b) Combined result 

Figure 6.10. Thematic maps generated by consensual classification with 
Tippecanoe County image. 
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(a) Median filtered           (b)  GMFed            (c) Spatial filtered 

Figure 6.11 Thematic maps generated by maximum likelihood classification with 
Tippecanoe County image. 

 

     
(a) Median filtered            (b) GMFed             (c) Spatial filtered 
Figure 6.12 Thematic maps generated by ECHO with Tippecanoe County image. 

 

     
(a) Median filtered          (b) GMFed              (c) Spatial filtered 
Figure 6.13 Thematic maps generated by hierarchical competitive learning with 

Tippecanoe County image. 
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(a) Median filtered          (b) GMFed             (c) Spatial filtered 

Figure 6.14 Thematic maps generated by hierarchical SOM with Tippecanoe County 
image. 

 

     
(a) Median filtered            (b) GMFed              (c) Spatial filtered 

Figure 6.15 Thematic maps generated by hierarchical SOGR with 
Tippecanoe County image. 

 
 

6.1.3. Experiments with Colorado data set 
 

Colorado data set is a multisource data set. It is a remote sensing data covering a 
mountainous area in Colorado [6]. The Colorado data set consists of the following four 
data sources: Landsat MSS data (4 data channels), elevation data (in 10 m contour 
intervals, 1 data channel), slope data (0-90 degrees in degree increments, 1 data channel), 
aspect data (1-180 degrees in 1 degree increments, 1 data channel). It has ten land cover 
classes (water, Colorado blue spruce, Montane/Subalpine meadow, Aspen, Ponderosa 
pine, Ponderosa pine/Douglas fir,  Engelmann Spruce, Douglas fir/White fir, Douglas 
fir/Ponderosa pine/Aspen, Douglas fir/White fir/Aspen). All classes are forest types 
except water. Since the forest classes show very similar spectral response, it is difficult to 
distinguish among the forest types using the Landsat MSS data only [95]. So other 
geographical sources such as slope and elevation data are used with the Landsat MSS 
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data. Colorado data set has seven channels totally. 1188 training samples and 831 testing 
samples were selected from the image of 135 rows and 131 columns for each channel 
referring to ground reference data. 

Classification was performed with four different methods, which are maximum 
likelikood classification, hierarchical competitive learning, hierarchical SOM, and 
hierarchical SOGR. Maximum likelikood classification was done using only 4 channel 
data, which are image data. If all multisource data are used, determinant and inverse of 
covariance matrix in (2.9) can not be computed since the covariance matrix is singular. 
The four  classification results were combined using delta rule. Experimental results 
with the Colorado data set is given in Table 6.9. 

 
Table 6.9 Experimental results with the Colorado data set 

 
Classification methods Training accuracy (%) Testing accuracy (%) 
Maximum likelihood 74.92 49.58 

Hierarchical competitive learning 98.06 58.12 
Hierarchical SOM 97.90 58.12 
Hierarchical SOGR 97.56 56.68 

Combined by consensus rule 97.90 60.41 
 

6.2 Combining Multiple Classifiers Generated with the Same Classification 
Algorithm 
 

To investigate the effectiveness of combining multiple classifiers based on a 
single classification algorithm, hierarchical competitive learning, hierarchical SOM, and 
hierarchical SOGR were used as the single classification algorithm in each experiment to 
make multiple classifiers classify West Lafayette image. To inject randomness into the 
learning algorithm, random matrix whose elements are uniformly distributed between -1 
and 1 was used to transform each pixel vector of the input image and the transformed 
image was filtered using median filter prior to classification. This preprocessed input 
image was classified by hierarchical competitive learning. This classification was 
performed 30 times. Each time, a different random matrix was used to transform the pixel 
vectors of input image. By hypothesis, this is equivalent to 30 different classifiers being 
used for consensus. 

For hierarchical SOM and hierarchical SOGR, the same approach was applied. By 
combining the classification results of individual classifiers, combined testing accuracy 
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was observed to increase as the number of classifiers to be combined increases until 
saturation occurs as in shown Figure 6.16 to Figure 6.18. Figure 6.16 shows testing 
accuracies of various classification results generated by the same classifier using 
hierarchical competitive learning which was trained in different ways and testing 
accuracies of combined results. Even poor result is helpful in increasing the testing 
accuracy of combined result since it could offer complementary information when 
multiple results are combined. Thus, the test accuracy of combined result is improved as 
shown in Figure 6.16. When hierarchical SOM and hierarchical SOGR are used for 
classification, testing accuracy is improved if the multiple classification results generated 
by preprocessing and varying learning parameters are combined as in Figure 6.17 and 
Figure 6.18. Thematic maps of combined multiple classifiers of single classification 
algorithm are shown in Figure 6.19. Even though the same classification algorithm is 
used to generate multiple classification results, thematic maps look similar with the those 
of combined multiple different classifiers. 
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Figure 6.16. Test results with hierarchical competitive learning. 
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Figure 6.17. Test results with of hierarchical SOM. 
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Figure 6.18. Test results with hierarchical SOGR. 
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(a)Hierarchical competitive     (b)Hierarchical SOM        (c)Hierarchical SOGR 

learning 
 

Figure 6.19 Thematic maps generated by combining multiple classifiers generated with 
the same classification algorithm with the West Lafayette image. 
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7. CONCLUSIONS AND FUTURE WORK                          
 
Classification performance is improved by applying hierarchical strategy in neural 
network classifiers and combining the classification results of multiple classifiers by 
consensus rule. Nonlinear filtering is applied to reduce variance of homogeneous regions 
and improves spectral separability. Median filter, generalized morphological filter, and 
spatial filter are used for this purpose. Improvement of class separability is shown by 
computing class separability measures, which are transformed divergence and J-M 
distance. Maximum likelihood, ECHO, hierarchical competitive learning, hierarchical 
SOM, and hierarchical SOGR are used for classification algorithms of single classifiers. 
By using different classifiers, classification errors caused by single classifiers are 
sufficiently independent. This allows improvement of overall classification accuracy 
when the multiple classification results are combined. Delta rule is used for combining 
the results of multiple classifiers. By delta rule, optimal weight based on the goodness of 
the result of each single classifier are generated, and the classification accuracy of the 
combined result is better than that of any other single classifier. 

Hierarchical approach using rejection schemes are applied to competitive learning, 
SOM, and SOGR. This approach improves classification performance by successive 
classifiers which are tuned to reduce remaining error. Hard vectors which are difficult to 
classify are detected before classification and processed differently from non-hard 
vectors. This results in reducing the misclassification rate. For this purpose, rejection 
schemes are constructed. The input vectors inside rejection boundary are classified in 
current SNN, and the input vectors outside rejection boundary are rejected from the 
current SNN and fed into the next SNN for further processing. Rejection boundaries 
which are constructed during training are stored to use in testing. Testing is performed 
using stored rejection boundaries. If there is no rejected training vector or the training 
accuracy of current SNN reaches 100 % or training accuracy of the network with the 
current SNN is less than that of the network without the current SNN, the training 
procedures is stopped. When training is stopped, if vectors to be classified are still 
remaining, those are classified to the class of the closest weight vector. Testing is done 
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similarly to training. Two multispectral images and one multisource remote sensing were 
used to test the proposed algorithm.  

The improvement of classification performance by consensus is achieved when 
the errors produced by multiple classifiers are different and there is little correlation 
between them.  That is, each classifier needs to make independent errors. When multiple 
classifiers using different types of classification algorithms are used to generate multiple 
classification results, the errors generated by different classifiers can be assumed to be 
sufficiently independent. 

If only one classification algorithm is used, it is possible to make independent 
errors by varying input pattern and training parameters. Since the classification is done 
with different input pattern and training parameter, the classification result is varied 
whenever classification is performed. This has the similar effect with using multiple 
different types of classifiers which use different classification algorithms. This is simple 
and has similar performance as the case with multiple different classifiers.  

 In this research, optimal weights which are calculated by the delta rule are used 
for combination of the results of single classifiers. Combination of multiple results to 
produce a consensual result is based on the minimum squared error in this case. 
Development of new consensus rules can be a topic of further research. Consensus theory 
is based on that a group decision with multiple data sources is better in terms of mean 
square error than a decision from a single data source. Since no single method can be 
good for all kinds of multispectral images, if the classification results of single classifiers 
are combined by some consensus rule, classification performance can be improved. 
Similarly, since the complexity of class boundaries is not necessarily uniform over all 
classes in a feature space, a situation may develop such that one classification method 
works best for the data belonging to one class while another classification method works 
best for the data belonging to another class. In this case, best consensual classifier, which 
works best for each class, can be found. In this approach, different classifiers are used for 
each class depending on its performance for the data belonging to a certain class. Since 
this approach has similarities to data or image fusion techniques such as wavelet and 
transform approaches, and other techniques for fusion can also be investigated for best 
performance in the future. 

There are other classification methods using other neural network algorithms such 
as support vector machines and backpropagation networks which are not covered in this 
thesis. Hierarchical approach using rejection scheme used in this thesis also can be 
applied to these classification methods for further research. 
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One major source of classification error in neural networks is the nonseparability 
of the classes. To reduce or eliminate classification errors, it is desirable to find a 
transformation which maps the input vectors into another set of vectors that can be 
classified more accurately. In this thesis multiplying with a uniformly distributed random 
matrix is used to vary the each pixel vector. Finding a more proper transformation would 
help to improve separability of classes and may result in further improvement of 
classification accuracy. 

When competitive neural networks are used for classification, classification 
accuracy relies on how correctly the reference vectors are computed. However, it is 
difficult to compute the weight vectors which produce globally minimum errors because 
weight vectors depends on initial weight vectors, learning rate, the order of training 
samples, etc. Hierarchical approach using rejection schemes improves classification 
performance since hard vectors are detected before classification and processed 
separately in the next SNN. Further refinement of the hierarchical approach is a future 
research topic. 

Using spectral variations as the primary source to derive information from the 
images is for avoiding the need for very high spatial resolution. If the high spatial 
resolution images are available, more accurate classification can be achieved. Thus image 
fusion is useful to obtain higher resolution images preserving spectral features [91] [92]. 
By injecting the high resolution of panchromatic image measured by panchromatic sensor 
into the multispectral band, multispectral image can have high resolution as the 
panchromatic image maintaining its spectral resolution. This image fusion combined with 
the approaches discussed in this thesis is another future work for improvement of 
classification performance. 
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