Numerical Simulation of Evaporating Two-Phase Flow in a High-Aspect-Ratio Microchannel with Bends

Z. Pan

J A. Weibel
Purdue University, jaweibel@purdue.edu

S V. Garimella
Purdue University, sureshg@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/coolingpubs

https://docs.lib.purdue.edu/coolingpubs/323

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Numerical Simulation of Evaporating Two-Phase Flow in a High-Aspect-Ratio Microchannel with Bends

Zhenhai Pan, Justin A. Weibel, and Suresh V. Garimella
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088 USA

Despite the demand for high-performance, two-phase cooling systems, high-fidelity simulations of flow boiling in complex microchannel geometries remains a challenging numerical problem. We conduct a first-principles-based simulation of an evaporating two-phase flow in a high-aspect-ratio microchannel with bends using a volume of fluid-based numerical model. For the case shown, the lower horizontal section of the microchannel has a constant flux of 20 W/cm² applied to the wetted wall area (heat flux at the base of 133 W/cm²); HFE-7100 vapor and liquid enter the channel at 2 m/s. The three-dimensional channel geometry requires a refined near-wall numerical mesh to resolve thin liquid film flow features. The recently developed saturated-interface-volume phase change model (Int J Heat Mass Trans 93:945-956, 2016) is implemented for prediction of mass and energy exchange across the liquid-vapor interface at a low computational cost (~80 hr; 6-core parallelization on Intel Xeon E3-1245V3). The model reveals transport details including the interface shape and fluid velocity and temperature fields. The interfacial temperature remains fixed at saturation with smooth velocity contours near the interface. The highest evaporation flux is located in the thin liquid film region near the heated wall.

Acknowledgement: This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) Microsystems Technology Office’s (MTO) Intrachip/Interchip Enhanced Cooling (ICECool) program under Cooperative Agreement No. HR0011-13-2-0010.