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ABSTRACT

Rearrangeable multistage interconnection networks such as the Benes network
redize any permutation, yet their routing dgorithms are not cost-effective. On the
other hand, non-rearrangeable networks can have inexpensive routing agorithms, but
no smple technique exists to characterize all the permutations redized on these net-
works. This paper introduces the concept of frame and shows how it can be used to
characterize al the permutations realized on various multistage interconnection net-
works. They include any subnetwork of the Benes network, the class d networks that
are topologicdly equivdent to the basdine network, and cascaded basdine and
shuffle-exchange networks. The question of how the addition of astage to any of these
networks affects the type of permutations redized by the network is precisdy
answered. Also, of interest from a theoretical standpoint, a newv smple proof is pro-
vided for the rearrangeability of the Benes network.

Index Terms— Multistage interconnection network, permutations, rearrangeabil -
ity, topologica equivaence, bdanced matrices, frames.

This research Was supported in pat by the Office of Naval Research unde contract No. 00014-
90-J-1483 and in part by the Innovative Si ence and Technology Office of the Strategic Defense
Initiative Organization and was administered through the Office of Naval Research under contract
No. 00014-88-k-0723.




ligd of Smbd s
IN: interconnection nefwork.
IP: interconnection pattem,
IP,,: interconnection pattern formed by input |i nks.
IP,,: interconnection pattern formed by output links.
SB: switching box; switch.
BE: baseline network; see Definition|1.3.
RB: reverse baseline network; see Definition|1.3.
SE: shuffle-exchange network; see Definition IL3.
SE': inverse shuffie-exchange network; See Definition I3,
BS:. Benes network; see Definition I1.3.
CS Clos nerwork; see Definition113
N: number d inputs/outputs of anetwork.
n. log,N.
T thestandard a-type frame with k columns; e Definition 1112
F{,: anatype frame with A columns; see DefinitionII1.3.
F1.,: the universal frame with k columns; see Definition IIL6.
I: the identity permutation matrix; see Definition 111
R: the reverse permutation matrix; see Definition I 1.
r. the reverse permutation represented by R.
Ap.g: matrix A with N rows and A columns.
Ana(i): the ith row of matrix A.
v, a permutation on thesat {0,1,...,N-1); see Definition1112
B: a mapping of the set {1,2, ... ,k) into {1,2,...,n)}; see Definition I11.2.
P. awple of partitions; see DefinitionII1.2.




L INTRODUCTION

| nterconnection networks are utilized to provide communication among process
ing elements and/or memory modules. Network performance sgnificantly affects the
overall cost and performance of a computationa system because processors may soend
a considerable amount of time in processor-processor and/or Processor-memory com-
munication. Therefore, it isimportant to know exactly the interconnection patterns thet
can be implemented by a network. In particular, it is desirable to know what permuta-
tions can be redized because pardld dgorithms often require permutation-typedata
transfers. This paper presents a Smple and easily understandable characterization of
the permutations redlized by any network with N=2" inputs that is topologicaly
equivaent to one o the following networks: first k stages, 1 <k <n, of the reverse
baseline network, the last n+k—1 stages of Benes network [7], or acascade of basdine
[11] and k-gage shuffle-exchange [1,5] networks. The proposed characterizations are
based on the notion of “‘frame’’ (introduced in this paper), baanced matrices [2] ad
graph theory [3,4].

The effectiveness of any interconnection network depends on factors such as the
efficdency of the routing algorithm, the number and type of permutations it redlizes,
and the actua hardware implementation of the network. On one hand, rearrangegble
multistage interconnection networks such as Benes and QQ™! (the QQ™! is acascade
of omega and inverse omega [1]) can redize any permutation. However, there are no
known efficient routing agorithms to alow dynamic configuration in an environment
where the switching permutations change rapidly. On the other hand, some networks
such as basdine and omega have efficient routing agorithms and small propagation
delays, but cannot redlize many permutations. In these cases, it is important to know
which permutations are redlizable and thisis possble by using the resultsaf this paper.

Different gpproaches have been proposed in the literature to circumvent
inefficient routing adgorithms. One gpproach is to determine certain types of permuta-
tions that occur more frequently than othersin a pardle processng environment. Such
permutations have been classified by Lenfant [23] into five families. In order toimple-
ment these permutationson the Benes network with asmall propagation &lay, Lenfant
proposed a specidized routing dgorithm for each family. A permutation thet fails to
be in one of these families till is routed usng an inefficient routing agorithm. To
increase the number of thefamiliesof permutations that can be realized by a network,
Yousef and Arden [22] introduced an 0(log2N) routing agorithm. which sets the
(rxr) crossbar switches of the first stage of 3-stage Benes networks with N=r? inputs
to a fixed configuration and acts exactly like a sdf-routing dgorithm in setting the
remaining switches. Another gpproachis to provide salf-routing algorithms for rediz-
ing some classes of permutations in various multistage interconnection networks such
as 'Benes, 2n-gage shuffleexchange. Nassmi and Sahni [24] presented Smple self-
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routing agorithms to redize some important permutations in Bcnes networks.
Raghavendra and Boppana[25] proposed sef-routing algorithmsto realize the class of
linear permutations on Benes and 2n-stage shuffle-exchange networks.

Although a large number of multistage interconnection networks are extensively
studied, thereisardatively smdl number of basic designsfor their underlying topolo-
gies, Especidly, Benes networks and six topologicaly equivaent networks, namely,
omega, flip, indirect binary cube, modified data manipulator, baseline and reverse
basdine have been investigated in depth and are frequently used in research sudies
and red systems. Characterizationsdf the topologies of these networks are given in
{9,26,27]. However, to our knowledge, the characterization of the permutations per-
formed by these and other networksisdonefor thefirst timein this pgper. One excep-
tion is the work of Lee [10] which characterizes the permutations realized by the
inverse omega network in termsof resdue classes.

The rest of the paper isorganized asfollows. Basic definitionsand notations used
throughout the paper are presented in Section II. Also included in this section is a
motivationa example for the concept of frame. In Section 111, this concept, illustra:
tions of many different frames, notation and terminology ar e introduced. Permutations
realized by the k-agereverse-basdine, 1 < k < n, and the networks which are topolog-
ically equivaent to it are characterizedin Section IV. In Section V, the permutations
realized by a cascadeof reverse basdine and the k-gage shuffle-exchange networks are
identified. These cases show how frames can be used to characterizethe permutations
o some relatively complex networks with more than n stages. Section VI provides
new proofsfor the rearrangeability of the three-stage Clos and Benes networks. Permu-
tations realized by the last n+k-1 stages of Benes network are identified in Section
V1. Thischaracterization illustrates how frames can be used to understand why a net-
work isrearrangesble. Section VII concludes the paper. The Appendix (Section IX)
containsthe proofsof mog of theoremsand lemmata in the paper.

1. BASIC DEFINITIONSAND A MOTIVATIONAL EXAMPLE

Throughout this paper, matrices ae denoted by single capita letters and columns
o a matrix are represented by the lower case of the capita |etter denoting that metrix.
Mairix A having N rows and k columnsis denoted by Ay.. Given amatrix, e.g. Ay,
the jth column is denoted by a;, 1< j <k To be able to refer to a set of specific
columns of a malrix, the notation A,., is used to denote the submatrix that contains
those columnsaof A whoseindicesarex, x+1, ... ,y, whael1<x Svy; if x hgppensto
e greater thany, then A,y refersto a nil matrix, unless stated otherwise. If x=y, then
A;, referstoasinglecolumna,.  Unless specifically stated, the number of the rowsof
amatrix Ay, iSassumed to be equal toN. Ay, (i) refers to the ith row of the mamx
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ANxn, Where 0 < i S N-1. A column vector of N entriesof which half are 0’s and the
other hdf are 1’s is caled a column permutation. Unless otherwise stated, any column
of any matrix in this paper is a column permutation. The binary representation of a
positive integer 0<bhb<N-1 is (b1b2 - by) such that
b:=by.2" 145,27 24 - +b, 20,

A permutation on aset X isabijection of X ontoitself. A permutation f permutes
theordered list 0, 1, - .-, N-1intof (0),f (1), --.,f (N-1). A cyclic notation [20,21]
can be used to represent a permutation as the product of cycles, where a cycle
(coci1c2 ey cr) means f(co)=c1, flc1)=cz, -+ f(ck-1)=cr, and
f (¢y)=cp. The compostion of severa permutationsf.f; - - - fi is evauated from
lefttoright, i.e., it mapsi into fi(. .« (F2(f1(i))) - . -).

Definition II.1. (Permutation matrix, identity permutation matrix, reverse
permutation matrix): A permutation h can be represented by a Nxn binary matrix
called permutation matrix, H, such that itsith row, Hy,, (i), is the binary representation
of the integer h(i). The identity permutation matrix denoted by Iy., is the matrix
whose ith row is the binary representation of i (thisis caled ‘‘standard matrix'* in
[12]). The reversepermutation matrix, denoted Ry.,, is the mairix whose jth column
isthe (n+1-j)th column of Iy.u.

For instance, theidentity permutation matrix 7 g,3, the reverse pennutation matrix
Rs.a and a permutation metrix Eg,s are shown beow:

000 000 111
001 100 100
010 010 0?8
011 110 0
Isa=1100| Res=|001| Ess=|110]|"

101 101 001
110 011 101
111 111 011

Clearly, there is a one-to-one correspondence between permutationsand permuta:
tion matrices. For instance, R g,3 representsthe permutation r:

,=101234567
104261537

Using the cyclic notation, r isrepresented by r = (0)(1 4)(2)(3 6)(5)(7).




.1, Networks

In the terminology usad in this paper, a k-gage interconnection network (IN) con-
sists of k columns of switching boxes (SBs), each followed and preceded by links
which form interconnection patterns(IPs) as shownin Figure1l1 The IPs formed by
the input and output links are denoted by 1P, and IP ,,,, respectively. Thus, an IN con-
tains (k*!) interconnection patterns labded Pin, IPy, IP,,... IPr-1, IPou. A
column of IN containsN /2 (2x2) SBs, each of which can be set elther straight or cross.
FiguresIl.2, I1.3, I1.4, IL.5, and I11.6 show severd networks considered in this paper for
N=16, namdy, reverse basdine, basdine, Benes, the 4-stage shuffle-exchange (SE),
and.the 4-gege inverse SE. If some networks are placed in parald to form anew IN,
then the IN is said to be a **pile of networks™. Unless otherwise stated, ay IN is
assumed to have N inputs/outputs and its Sages are labded from |eft to right starting
with 1. Network stagesare defined bdow and illustrated in thefigures.

Definition .2 (Stages of reverse basdline, basdine, Benes, SE, and inverse
SE networks): With one exception, a Sage in the reverse basdine and SE networks
consists of aconnection pattern and the following column of SBs. The exception isthe
rightmost stage (i.e., the output stage) which conssts o the last column of SBs ad
both the preceding and succeeding connection patterns. Stagesar e labeled from left to
right in ascending order sarting with 1. In the basdine network the ith Stage
correspondsto the (n—k +1)th Sage df the reverse basdine network. (Notice that both
the reverse basdline and the basdline can have & mog n stages, by definition). In the
inverse SE network with m stages, its kth stage corresponds to the (m--k+1)th stage of
the m-stage SE network. In this paper, Benes network is considered as bang com-
posed of the first n—1 sages of the n-stage basdine followed by the n-stage reverse
basdine. (It could dso be consdered as being compaosed of the n-stage basdine fol-
loured by the last n-1 stages of the n-stage reverse basdine). Therefore, the Stages of
Benes network are labded according to the labeling rules of the basdine and the
reverse basdine.




= m vt s R o S

N o [ e I I Y o

v 4] FOH HETH OES ¢

Tl . . * T

S ® ° ° ° S
N {7 C NI
Column 1 2 k
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An IN having N inputs/outputs and k stagesis &noted by both INy,& and INy.,
where k 2 1. The subnetwork that consistsdf the stagesx throughy of IN 1.4 isdenoted
by INy.y, Where 1 < x<y s k. If x>y, then INy., refers toa nil network, unless specified
otherwise. IN,, 1< j <Kk, refers to the jth stage of IN . The notation used for net-
works is different from that used for matrices because matrices are dways &noted by
sngleletters.

Without loss of generdlity, it is assumed that routing of a permutation through a
network is done as described in this paragraph. Assuming that the stages o the net-
work are labeled from left to right starting with 1, if the routing tag is d1d; . " " d,
then d; isexamined to set the B at dagei asfollows. if d; equalszero then the output
IS sent to the upper output of the SB; otherwisg, it is sent to the lower output. Theith
entries of the routing tags of the two inputs entering a B are a o alled the control
bits of that SB. S0, to set aSB properly to either straight or cross (or equivadently not
to have any conflict in a SB), the contral bits of a B mug condtitute: the set {0,1). In
some networks, the routing tag of an input equasits destination address, but thisis not
adwaysthe case,

In this paper the following convention is adopted to &note an IN: if the name of
an IN has more than one word, then it is denoted by the upper case form o the first
letters Of those words; otherwisg, it is denoted by the upper case form of itsfirst ad
last letters. Also, if XX denotesan IN, then theinverse XX network may be denoted by
XX, The following definition applies this convention to the basdline, reverse base-
line, shuffle-exchange, inverse shuffle-exchange, Benes and three-stage Clos networks
of interest in this paper.

Dfirition | L3. (BE, RB, SE, SE™1, BS CS composite IN: The symbols BE,
RB, SE, SE™!,BSand CS in this paper refer to the networks basdline, reverse basdline,
shuffle-exchange, inverse shuffle-exchange, Benes and three-stage Clos network
v(2,2,N/2) [7,13], respectively. (If the number of inputs/outputs Of three-stage Clos
network v(2,2,N /2) isequa to N, then each o the outsde stages of' three-stlage Clos
network in this paper contains N/2 (2x2) SBs and the middle stage consistsof 2 boxes
with N /2 inputs/outputs each). If an IN isacascaded different INs, then it iscdled a
composite IN and is &noted by the concatenation of symbols thet represent the INs in
tht order they are cascaded.

As an examplefor acompodte network, the notation RB.,SE {.,,, M 2 1, denotes
the network consisting of RB 1., followed by SE ;..

Linid and Tard [2] introduced the concept of balanced matrices to establish a
relation between SE networks and ther redizable permutations. The following
definition isequivalent to the one givenin [2].




Definition IL4. (Balanced matrix): Let N=2" and cal a 0-1 matrix Ay, ba-
anced if either one of the following conditionsis satisfied:

1 For k s, it condgstsof any k columns of the binary representation of a permu-
tation on the st {0, 1,...,N-1).

2 For k>n, every a consecutive columnsform the binary representation of a per-
mutation on the =t {0,1,...,N-1}.

As an example, two baanced matrices E and F are shown below. But notice that
the matrix [E F] is not balanced.

E=[eyeze3]=

F=[f1fa=

O=O=OO =
—OOR—,OO—
—t ek e OO O

QO ki s OO

! OO b i ik !

Definition ILS. (Pass, realize): A baanced matrix Ay, (respectively, an IN) is
sad to passa k-dage IN (respectively, a matrix Ay.) if no conflict occurs in the SBs
of the IN when Ay, (V) is used as the routing tag for the itk input of the IN. A network
IN realizesa permutation represented by By, if thereis a network switch setting such
thet input iissent to output B() fordl i=0,1,...,N-1.

According to the last definition, in this paper, the phrases "'an I N passes a bd-
anced matrix"* and "*a baanced matrix passesan IN"" are used dternatively. Itisaso
assumed that only "one pass' is dlowed through a network to redize a permutation.
Therefore, the phrase "one pass'’ isomitted in the sequel. Toemphasiu: the digtinction
between the meaning of the terms "'pass’* and *'rediz€” as usad in this paper, it is
important to notice that matrix Ay, in Definition IL5 does not necessarily correspond
to the permutation redized by the network IN. Indeed, the ith row of Ay, is the rout-
ing tag for input i and it isonly when it equas the destination of input i that Ay is the
permutation redized by IN; the cases in which this occurs will become clear in the
remainder of the paper.

I1,2. A Mativational Example

Congder permutations ®; = (0 6)(1 2)(3 54)(7), ®, =(0 2)(1437)(5 6), and the
reverse basdine net wor k with 8 inputs/outputs, & noted by RB g,3 and shown in Figure
IL.7a. A frame isillustrated in Figure IL7b. The binary representationsof these per-
mutationsare given below:
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FigureIl.7. (@ Therever se baseline network with 8 inputs/outputs.
() A frame.

When theith row,0 <i <7, o both ty and &ty is usad as therouting tag for theith
input of RBg.3, No conflict occurs in the switches and connections are established
between the input i and the outputs IT, (i) and IT (i), respectively. Therefore, RBg,3
realizes m; and my. Now, let us place the ith row of &t; and my into the ith row of the
framein Figure IL.7b with 8 rows as shown in Figure I1.8a and Figure I1.8b, respec-
tively.
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1 2 3 1 2 3
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110 11 {0 111]10]0
210 (0|1 2100 |0
3l1 (0|1 3(1 )1 |1
4/0 |1 11 4]0 |1 |1
51 (0]0 511 [1]0
60 (0]0 6(1 |01
7 111 7 011

(@ ®)
Figure I1.8. @ Framewiththe binary representationof t he permutations; .

(o) Frame withthe binary representation of t he permutation =,

Thesfirst k columns, 1 5k <3, of any of these two frames consistsof 2*7* rectanglesof
size 2¥xk. Note that the matrix enclosed by any rectangle o the framesis balanced (in
fact.,it representsa permutation on {0, 1, . .. ,251. Itisshownin Section TV that, when
the rows of any permutation redized by the reverse basdine network are placed into
thistype of frame, the matrix enclosed by each rectangleis balanced, and vice versa
Different frames are introduced in this paper and it is shown how they are useful to
identify the permutations redlized by some frequently used networks.

IOL FRAMESAND FUNDAMENTAL CONCEPTS

This section introduces the concept of frames to characterize the permutations
realized by anetwork. Different frames are derived from this concept and their graphi-
cd representationsare presented. In addition, some related fundamental concepts used
in the proofs of this paper are introduced. Mr e extended discussion of these concepts
appears in [28].

In order to facilitate the understanding of the concept o frame, the following
definition is first introduced (a k-tuple V with the dements v,,v,, . . ., v, denoted by
V = <vy,v2,..., >, refersto an ordered collection of k dements).

Definition I.1. (Partition.P, block, standard partition Py, P). Let
X=(0,1,...,N-1),N=2" adi=1,2,...,n. A partition P; of X isatupleof 2"~ dis-
joint ordered subsetsof X, caled blocks, each of which is a tuple with 2° distinct ele-
ments The patition P{=< <h, h+l,...,h+2"~1> such tha hmod 2’=0 ad
h=0,1,...,N=1> is astandard partition of X. The n—tuple <P;, i=1,2,...,n> is
denoted by P".

ExampleL1. Let N=8. Thefollowing are the sandard partitions:
Pi=< <0,1>, <2,3>, <4,5>, <6,7> >,  P3=<<0,1,2,3>, <4,5.6,7>> ad
P3=<0,1,2,3,4,5,6,7>. Al0, P*=<P], P3, P3>.
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The notion d frameis defined next and an example (ExampleIlL.2) is given after
tht: definition. Note that theframe of Figures|l.7 and 11.8 is characterized by the labd-
ing of its columns, the labeling of its rows and how each column is partitioned. There-
fore, the definitionof frame is done in terms of two magppings (the column and row
labeling) and a tuple of partitions (one for each column). The column labels determine
the number and size of the blocksin each partition and the row labding determines the
eementsin each block and their order. As precisdly dated in the definition, column
with label B(i) corresponds to a partition with 2P blocks with 2B¢) dements esch
and the mth dement within the jth block corresponds to the labd y(r) o row
r= 220G -1ym-1) After Example II.2, a convenient graphical nzpresentation for
framesisintroduced and its useisillustrated in Examplelll.3 for the frames described
in Examplelll.2.

Definition OL2. (Frame): Let1<sk5nand 15i 5k. A frame Fyu, 15k 5n,
isa 3-tuple<f,y,P >, where

— PBis amapping of the set 1,2, ...,k) into {1,2,...,n),
— ¥is a permutation on the set (0,1, ... ,N-1} ad
— P isatuple of patitions <Pg),Pp@), .- .,Ppuky> determined by B
and yasfollows:
Ppiy = <Ppiy1,PpGiy,2s - - + , Py, 220> where
PB(,')_]' = <_u1__,-,u2,,-, - ,uzw)‘j> such that.
ti; = Y2PO(~1)tm—1) for 1 < j $2° PO and 1 <y < 2800,

Definition IIL3. (a-frame, dandard a-frame): Condder the 3-tuple CB,y,P>
that defines aframe Fy. If B is the identity permutation, then Fy. is an a—frame
denoted by Ff. If P and vy are the identity permutations (which impIiesP=P'), then
Fyy isthestandard a-frame denoted by Fxju.

By definition of standard a-type frame, column fi%, 1<i < n, has 2"~ blocks,
each having 2 rows. Unless otherwise stated, the number of therows o Fi%, k 2 1,is
assumed to be N. Similar to the notation of matrices, to be able to refer to specific
columns of a frame, the notation Fy.y is used to denote the subframe that contains
those columns of F whose indices are X, x+1,...,y. Unless secificaly Sated, the
number of rows of F,., isassumedto beN.

Example IL2, Thefollowingare examplesdf frames for N=8 and k=3.
@) Fga=<p,v,P> whee B=(12)(3), y is the identity permutation and
P=<P,,P{,P3> suchtha P=P}, P,=P3 axd P3=P3.
(b) F§a=<B,v,P> where P=identity permutation, y=(0)(1 2)B)A)SEX6)(T),
P=<P,P,,P3>, P;=<<0,2> <1,3>, <4,5>, <6,7>>, P,=<<0,2,1,3>,
<4,5,6,7> > and P1=<0,2,1,3,4,5,6,7>.
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(c) Ffa3=<B,y,P> whae PB=identity permutation, y=(0)1 36 4)25)7),
P=<P, P,,P3>, P;=<<0,3> <56>, <1,2>, <4,7>> P,=<<0,3,5,6>,
<1,2,4,7> > and P3=<0,3,5,6, 1,2,4,(7>.

(d) Fg3=<B,y,P> where f= |} \I, Y is the identity permutation,
J
P=<P,,P3,P3>, P,=P; and P3=P3.

Definition T4, (Graphical representation of a frame, rectangleof a frame):
The graphical representationd a frame Fyg=<p,y,P> consstsof k columnslabeled
fi,i=1,...,Kk from left toright and N rows labded ¥;), j=0,1,...,N-1 sarting a
thetan The column f; corresponds to the partition P, that is, f; consistsof 2P
blocks of 2P@ entries each. In the graphical representation of a frame, any polygon
with four sdesand four right anglesisarectangled the frame.

Example III.3. Figures Ill.1a, IM.1b, II.1c and 1IL1d show the grephicd
representation of the frames described in the part (a), (b), (c) and (d) of Examplelll.2,
respectively. Figure III.1e shows the graphical representation of the standard a-frame
F§3. Thelabels of the partitions bdow each column are implicit by the sizes of the
rectangles in the column and can be omitted

f1f2f3 AARA AAA fifaf3 AmRs

0 0 0 0
1 2 3 1 1
| 1J s | 2 2 |
3 6 3 3
1 4
2 sl
N a‘ 4 | 6
7 7
P,P P, P,P,P, P\P,P; P,P,P; P P3P,
(a) (b) () d ©

Figure I11.1. (@), (b), (c) and (d) are the graphical representations of the frames destribed in the
pat (a), (b),(c)and (d)of Example I11.2, reectively. (e) Graphical represntation
of thedandardaframeFg,.

Definition LS. (Fit): Letk21,0si sN-1and 1< j sk Consderabaanced
matrix Ay, and aframe Fy. Themamx A fiss Fy, if and only if, after placinga;; in
the ith row and jth column of Fy., every rectangle of Fy,, contains a baanced
matrix.
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ExampleIIL4. The matrix E, shown just after Definition |1.4 fits dl the frames
shown in Figures .1 except F§; shown in Figure IL.1e because, for example, the
submatrix in the top leftmost rectangle (the 2-tuple Py, 1) is not balanced.

Note that the valued kin Definition H1.5 does nat have to equa n. It will become
clear that frames of any number of columns can be used to characterize permutations
(which are represented by baanced matricesof » columns).

In addition to a-frames, other two types o frames are df usein this pgper. Oneis
caled universa frame and, as suggested by its name, any bdanced matrix fitsit. The
other typeof frameisa concatenation of framesand is ussful in characterizing the per-
mutationsrealized by, for example, composite networks.

Definition 1116 (Universal frame Fi.): The universa frame Fiy, k 21, is
such that, for i=1,2,...,k, B@)=n, v is the identity permutation and P; =P,. The
universal frame F, isillustrated in FigurelIl.2.

fi fa fe

-0

Fix = ¢ c e
.
-1

N

Figure I11.2. The universal franeFy,.

Definition TIL7. (F§%F1.m): The notation F$2,F 1., m 2 1, represents the frame
obtained by concatenating F{%, and F1.,, as shownin Figure1113
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iwia fa' fm

W=

F$.Fim =: HHE oee seoe

N4 | |
N-3
N-2 ||
N-1

Figwell.3.  The frame F{%F1., Which iscbtained by concat enating F4% and Fi.m-

The following definition states precisely what means to establish a correspon-
dence between aframe and a network.

Definition L8, (Correspondence between frames and networks): A frame
(respectively, an IN) is said to correspond to an IN (respectively, a frame) if a bal-
avod matrix fits the frame if and only if it passes the network.

When a kame corresponds to a network it suffices to check if a, matrix fits the
frame in order to determine whether the network passes the matrix. This does not mean
that., when the matrix represents a permutation, the network realizes the permutation.
Instead, it means that, when the rows of the matrix are used as routing tags, no
conflicts occur in the network.

The complexity of checking that a matrix fits aframe is discussedl next. First, the
complexity of testing if arectangle contains a permutation matrix isconsidered. Next,
the complexity of checking all rectangles of the same sizeis discussed and, finally, the
complexity of checking all rectangles (i.e., the entire frame) is derived. Note that it
suffices to consider only those rectangles whose number of columns equals the loga-
rithm of the number of rows.' To check whether a given rectangle with x rows and
logx columns contains a balanced matrix, it suffices to verify that the rows of the
matrix are distinct. Thiscan bedone by building a binary search tree starting with the
root which corresponds to the first row of the matrix; each row is then added as a leaf
to the tree as long as it is distinct from all previously inserted rows and so that it
satisfies the binary-search-tree property [29]. According to this property, if v(p) isthe
value of the row that correspondsto nodep, then v(y)<v (p) for any node y in the left

Tau logarithms are in base2 unlessstated otherwise.
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subtree of p and v(z)>v (p) for aty node:z in the right subtree of p. In the word case,
this procedure takes O (x2) steps and has average complexity of O (xlogx) [29]. If
several rectangles of the samessize exist in aframe, then the totd nuniber of rows con-
tained in al the rectangles with the same columns is N. The same procedure can be
used for each rectangle and the totd worst case and average complexities will be
0 (N?) and O (NlogN), respectively. Because thereare a most k different typesof rec-
tangles in a frame with k columns, the total worg case and average complexities are
0 (kN?) and O (kNlogN), respectively. These bounds apply to any frame, but it is pos:
gble to do better with particular frames. For example, for a-frames the worst-case
complexity becomes O (V242N 12)%+ - - . KN 12)22) = 0 (N?).

IV. BASELINE-TYPE NETWORKS

Equivadence rlations among INs have bean extensvely studied in the literature
using different tools such as grgph theory, group theory, and Boolean agebra
[6,11,27,26]). Networks can be modeled by directed graphs where vertices and edges
represent Svitches and links, respectively. Two INs are functionally equivalent if they
realize the same st of permutations while two INs are topologicaly equivalent if their
topologies (i.e., directed grgphs) are isomorphic. WU and Feng [11] have shown the
topological equivaence of a class of MINs, which include data cnanipulaor [14],
oniega[1], flip[15], SW-banyan (s=f=2) [16], and indirect binary n-cube[17], basdine
and reverse basdine [11]. From [18], "the notion of functiona equivaence is more
practical then that of topologica equivaence becauseit provides an equivalence bagis
among networks a their inputs, and thus it does not call for any modification in ther
internal switching structure”. Given anetwork in aclassdf isomorphic INs, it IS possi-
ble to rename its inputs and/or outputs so thet this network can directly smulate any
network in the class[11]. In this section, dl the matrices that pass those networks that
are topologicaly equivalent to the k-stage basdine, 1<k <n, are identified by a
frames that may differ only in how their rowsare labeed. First, the permutationsred-
ized by the k-gtage reverse basdine are identified. Then, this result is extended to the
other networks. These results dso show how the addition of a stage to the right of
these networks changes the type of their redizable permutations. An dgorithmis pro-
vided to find whether a network is topologicaly equivalent to the reverse basdine net-
work, its corresponding frame and how to relabel inputs and outputs to achieve func-
tiona equivalence. Omitted proofsare providedin the Appendix.
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IV.1. Correspondence between Fifx and RBy.x

Because RB ., is functionally and topologically equivalent to BE., [11], any
permutation that is realized by RB ., is dsorealized by BE;.,, and vice versa. How-
ever, this is not true for RB.; and BE 4, | <k <n-1, because they are not function-
ally equivalent (they are only topologically equivalent). But, the set of balanced
matrices that pass RB . isthe same as the set of balanced matrices that passBE 1. as
explained next. The network RB ., can be obtained by repositioning the SBs of the
second stage through the last stage of BE.; and reordering its outputs. It follows that
any pair of routing tags that enter a SB at the kth stage of BE ., also enter a SB at the
kth stage of RB 1., and vice versa. So, if the routing tags used in BE ., do not create
any conflict, then they also do not have any conflict in the SBs of RB,, and vice
versa. Therefore, a balanced matrix D 1. passesRB y. if and only if D y.; passesBE ..

The following theorem shows that there exists a very close relation between
RB 1.k and Fi%, 1 <k < n, so that the matrices that pass the network can be identified
by Fi%. It shows that the ith input of RB,; is sent without conflicts to the output

whose value equals ( li j2k J x2k) plus the value of D y.x(i) when the ith row of a matrix
D 1. that fits F{% is used as therouting tag for theith input of RB ...

Theorem IV.1. A matrix Dyx=1[dy dy --. di] fits F{% if and only if Dy,
passesRB 1., 1 Sk s n. Moreover, RB.; sendsitsith input toits jth output, where jis

equal to the sum of ( [i /2"Jx2") and the value of D y.(i).

Basicidead proof (complete proof appearsin Appendix):

(+) Dy fitsFi% — D 14 passesRB 1.
Induction on k is used. For k=1, each rectangle of Fi{% has a 0 and a 1. These
correspond to the control bits of a switch in RB ., and, thus, no conflict occurs. For
k>1, assuming the theorem holds for k-1, it is also shown that each switch in the kth
stage ""has'" control bits 0 and 1 and, therefore, no conflicts occur. These control bits
must appear as the kth bits at theend of identical (k—1)-bit rows of subframes Fo#-1,¢_1
and. Fo#14_, of F{% 0 that D, fits F{%. Each subframe corresponds to a subnet-
work of RB ., which isalso areverse baseline network RB g2-1,4_1.

C t D1k passesRB 1k — Dy fits F{%.
Induction on k is used. For k=1, if d; passesRB, then each rectangle of Fi% contains
a0andalandd, fits fi?. For k>1, assuming the theorem holds for k-1, it is shown
that for the outputs of two subnetworks RB3#1,4_; and RB3%1,4_; to cause no conflict
in any switch of the kth stage it must be the case that a0 and a 1 are added to the k-1
entries of identical rows of the frames that correspond to the two subnetworks. This
implies that D 1. fits Fi%. The value of j follows from the topology of RB.x and how
switches are set by control bits. [
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Cordlary IV.l. A network with k stages and N inputs/outputs is topologicaly
equivalent to the k-stage reverse basdine, RB 1., if and only if it corresponds to an &
typeframe F{,;, whare 1<k <n.

IV.2. Permutations Realized by Baseline-Type Networks

In this section, a-type frames arc used to characterize dl the permutations red-
ized by any network that is topologicdly equivaent to the basdine network. An ago-
rithm, called FRAME_IN, isintroduced to determine the a-type frame that corresponds
to a given network. It is aso shown how to congtruct a network to redize dl the per-
mutations thet fit an a-typeframe.

Let F{i(a™) &note a particular atype frame where =1, i.e., whose row
labdls form the vector o1, Let IT & note anetwork with k stages which is the same as
RB ., except that the labd of its ith input equas the ith entry of ™. By Corollary
IV.1, a baanced matrix D 1. fits F4.x(a!) if and only if Dy, passes(l. If k=n, any of
these balanced matrices represents a permutation, o thet I is a network that redizes
all the permutations characterized by Fé..(a™!). If k<n, then the rdation between a
D14 thet fitsF§..(o™!) and a permutation thet passes I1 is first determined. By apply-
ing this relation to every balanced matrix thet fits F4..(a™1), dl the permutations red-
ized by IT are determined. Theorem [V.3 determines the relation between a baanced
mamx that fitsF{% and the permutation redized by RB 1., when this baanced matrix
passes the network. Corollary 1V.3 generdizesthis result to the class of basdine-type
networks.

Theorem IV.3. A matrix D4, 1 <k < n, fits F{% if and only if RB . redizes
the permutation represented by (7 1:n—k D 1.4].

Proof. (=) Let Dy fit Fi%. It is shown that RB . redizes the permutation
represented by [J 1.5 D 14].

Theorem IV.1 dates that RB 1., sendsitsith input, 0 i SN -1, toitsjth output,
where j is equal to the sum of ( [uzk sz") and the value of D,(). Due to the fact
that [( li /2"Jx2")+D1:k(i)] equals the ith row of [f1.n— D141, RB 1 redlizesthe per-
mutation represented by [ 1.0k D 1.4]-

(«) Assume that RB 1. realizes the permutation represented by [11:n—k D 141 It
isshown that D 1. fitsF{%.

Because RB 1.x redlizes the permutation represented by [ 1.5 2 1:¢]> it SENAS itS
ith input to the output whaose value equals the um of ( \_i/z" x2¥y and the value of
D 1.4(i), D 1.4 passesRB . It followsfrom Theorem IVl that Dy fitsFi%. O
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Corollary IV3 Consder ak-gage, 1 < k < n, network IT which is topologicaly
equivalent to RB 1. The network IT is functionaly and topologicaly equivdent to a
network IP,RB 1.4IP .y, Where IP;, and IP ,,, are interconnection patterns that redize
permutations o, and o, respectively. Also, let F4.(a;}) denotean atype k-column
frame whose ith row labd equas a3} (i) for i=0,1,...,N-L A matrix D, fits
F{.4(az) if and only if IT realizes the permutation o4, 1.0y, Where i is the permutar
tion represented by the balanced métrix [/ y:n— D1..] and D3.4() = D 1(05) (0)).

Corollary V.3 implies that the network IP;,RB 1, corresponds to the frame
Fi.(oz!), where IP;, realizes the permutation oy,. Hence, for a given Ffy, a
corresponding network can be congtructed easily. The following example shows the
construction of a network that redlizesa st of permutationswhich includes two given
permutations.

Example IV.1. Let N=16, k=2, 0<i SN-1. Asume tha o, and o, &NOtE
the permutations redlized by the interconnection petterns IP;,, and IP,,,. Given two
permutations a=(098512121014637 11 13)(4)(15) ad
b= (0 7)(1)(2391311845)(6 12)(10 15 14), it is shown how to construct a network
IP;»RB 1P, that redizesa set of permutationsincludingaand b. Let A and B refer
to the binary representationsof a and b, respectively. By Theorem 1.3, any permuta
tion that passes RB 1.2 must be represented by a balanced matrix whose firgt (leftmost)
two columns form | 1., (recal that k=2 and n=4 in thisexample). If there was only one
given permutation, then the baanced matrix representing the permutation could be
converted by IP;, to a balanced matrix whosefirst two columnsform /4., becauseIP;,
can be chosen so as to permute the rowsin any given way. However, if more than one
permutation are given, and thefirst two columnsof ther binary representations do not
form the same matrix, then IP,,, is needed to convert the binary representations of
these permutations into baanced matrices whose first two columns form the same
matrix. So, the matrices A and B are firs converted by IP,,; to A and B such that
A',zzéu Specificaly, Gty convensA ad B to A and B, respectively such that
A () = azk(A (i) and B(i) = a;X(B(i)). Then, A and B are converted by a;, to A and
B, respectively such that the first two columns of eech of these matrices form /..
Specifically, A@)=Aa () ad B@)=B(az (). For indance
Qo =013 12)(15724)(3869 14)(101511) converts a ad b to

d==(061481715 1093542131211) and
) =(057128214113613159057), respectively. Similarly,
@,=0541715936131211)2148)(10) ocovets 6 ad b  into
a == (0)(1 2)(3U4)(5 6)XTX(8)(9 10)(11)(12)(13 14)(15) ad

b = (0 3)(1)(2)(4 7H(SX6)® 11)(9)(10)(12 15)(13)(14), respectively. The binay
representations of a, a, g, b, b and bar e shown bdow. The network that realizes the




pennutationsa and bis shown in Figure IV. 1.

0 |1001 0 |0111 0 {0110 0 (0101 0 (0000 0 (0011
1 {0010 1 10001 1 {0111 1 {0100 1 {0010 1 10001
2 |1100 2 |0011 2 |1101 2 (1110 2 (0001 2 10010
3 (0111 3 11001 3 10101 3 |0110 3 |0011 3 10000
4 10100 4 10101 4 10010 4 10001 4 (0100 4 (0111
5 [0001 5 |0010 5 10100 5 [0111 5 |0110 5 |0101
6 (0011 6 |1100 6 (1110 6 |1101 6 10101 6 10110
4. 1 ]1011 . 710000 ¢, 7 |1111| 5z, 7 [1100| 4. 7 (O111] 5. 7 |0100
© 810101 * 8 (0100 - 8 (0001} T~ 8 |0010} ©* 8 [1000| T 8 [1011
9 (1000 9 1101 9 (0011 9 10000 9 (1010 9 11001
101110 101111 101001 101010 10 | 11001 10]1010
11 (1101 1111000 1110000 110011 11 11011 111000
12 {1010 1210110 1211011 12 (1000 12 11100 121111
13 |0000 1311011 1311100 131111 13 (1110 1311101
14 {0110 14 (1010 14 {1000 14 11011 141101 14]1110
151111 151110 1511010 1511001 15 [1111 151100

cause a 2x2 switch has two possible settings (cross and straight), the number of bd-
anced matrices that pass a k-sage basdine-type network with & inputs equals oz,
By Coradllary 1V.1, for any given k-column a-type frame, there exists a corresponding
basdine-type network. Therefore, exactly 2%/2 baanced matrices fit any F4.,. For
k=2, 2V baanced matrices pass a basdine-type network. Let D5, 151 <2V, &note
one of the 2V balanced matrices that fit F4.5(a3!). Also, assume that D32 is obtained
from DY such that D135 (i) = D% (051 (1)). Let 1, denote the permutation represented
by [[1:2 D151 So, the network shown in Figure IV.] redlizes ay of those permuta-
tions thet result from @y 4, .0t The ith row of D1 is used as the routing tag for the
ith input of RB.2 IN IP;,RB 121P 4. As an example, let r=1 and consider the bd-
anced matrix D}.;, shown in Figure IV.2a, that fits F§., (a5}). The matrix Dy:J that is
obtained from D1.,, and the matrix [/, DT:4 1 are also shown in Figure IV.2. When
the ith mw of D137 is used asthe muting tag for the ith input of RB 1.5, RB ., redizes
the permutation p; = (0)(1 32)(4 5 6)(7)(8 10 11)(9)(12 15 14 13) which isrepresented
by [11:2 D17 1. On the other hand, the network IP;,RB 1IP . realizes the permuta:
tion (094857 312126)(10)(11 13)(14 15) which results from o, Jy.0sye. ENd of
example.
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Figurel V. 1. Thenetwork IP;,RB y 5IP,,, of ExamplelV.1.
Diy T2 (0% Dy} (12 D131
0[ 107 11" 0 Jo o[ 007 0[ 0000 7]
1] 11 4 1 J1 1] 11 1] 0011
2| 01 80 11 2| 01 2| 0001
3| 00 9 1 |0 31 10 3| 0010
4] 11 5 0 |1 4] 01 4] 0101
5| 01 0 1 |0 5! 10 5 0110
6| 00 3 0 |o 6| 00 6| 0100
7| 10 1l 1 4 71 11 7] 0111
8| 01 14 1 |0 8 10 8| 1010
9] 10 15 1 9] 01 9| 1001
101 11 10 1 |1 10] 11 10 1011
11} 00 12 0 |0 11} 00 11| 1000
12| 00 13 1 |1 12] 11 12] 1111
13 11 6 0 |0 13] 00 13| 1100
14| 10 20 11 14| o1 14| 1101
1501 _ 71 10 15_10_| 1s[_1110 _|
@ (®) © ()

Figure IV.2.  (a) A balanced retrix D} which fits F$2(0). (0) Fi2(ai) with Di2.
(c) D whose ith rovequals D (o ). (d) 42 D13 |,

In the reg of this section, some prdiminary results used in the Algarithm
FRAME_IN arefirs presnted, then the dgorithm is introduced.
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Lemma IV.1. Let r denote the reverse permutation mpresented by the reverse
permutation matrix Ry, described in Definition 111 The reverse basdine network
RB ., realizes r when all the switches are set straight.

Proof. The permutation realized by RB ., when all the switches are set straight
is determined by the interconnection paiterns IP;,,IP,, ... ,IP,_;,IP,,. Because
IPiy = IP, = identity pattern, the permutation is given by oy.0 . . . 0,—1 Where a;; is
the permutation redized by IP;. Permutation ay; is such that a;(x) rotates |eft the right-
most i+1 bitsof x by one position becauseIP; isapiled 2*~*-1 shuffle-exchange pat-
terns each with 2°*! links. Applying this operation for dl i starting with the initia
matrix Iy,, Yiddsthe reverse permutation matriX Ry, = lin ip—1 - - - 11]. O

Because the reverse basdine network can be converted to the baseline network by
repositioning the switches of the middle stagesonly, Lemma IV.1 isaso vdid for the
basdine network. If there exists a unique path between any input and any output of a
network, then the network satisfies the Banyan property [6,26]. Bermond et. a [26]
present a set of properties to determine whether a network is topologically equivalent
to basdline network. Their main result isformally restated below.

TheoremIV(2 [26] Let G be a directed graph representing a4 network with n
stages and N inputs/outputs which satisfies the Banyan property. This network is topo-
logicaly equivalent to the basdline network if and only if both the first j Stages and the
last j Stagesof G contain 2'-J connected componentsfor eech j, 1< j < n.

Thisresult is used next as the basis for Algorithm FRAME_IN, The description
of theagorithmisfollowed by aproof of itscorrectnessand andysisadf its complexity.

Algorithm FRAMEIN
Input: A network GN with 2x2 switches, n dtages and 2°
inputs/outputs.

Output:  An atypeframethat corresponds to GN if GN is topologically
equivaent to the basdine network, the permutations o, and
o, redized by the interconnection patterns IP;, and IP,,,
respectively, such that the network IP,,GN .,IP,,, isfunction-
dly equivaent toRByy,.

Stepl. Let G denote a grgph with n ""stages™ thet is obtained by
representing the switches and links of the given network by
vertices and edges that are directed from left to right, respec-
tively.

Step2  Usng a breadth-first search agorithm check whether there
exists a unique path between any input vertex and any output
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vertex of G. If so, goto next dep. If not, goto Step 9,

Step 3 Let jandp beinteger variddlesinitialized to 0.

Step4.  Increment j by 1. If j>n, then go to next step; otherwise, using
adepth-search dgorithm, check whether the last j stages of' the
G contain 2'-J connected components. If S0, go to Step 4. |f
not, go to Step 9.

Step5.  Incrementp by 1. If p>n, then go to Step 7; otherwise, using a
depth-search agorithm, check whether the first p stages of G
contains 2" connected components. If so, go to next sep. If
not, go to Step 9.

Step 6. If p=1, let V! denote a vector of the input labels of adistinct
connected component (a2x2 switch) for each r, (1s r £2*71),
and then go to Step 5, otherwise, do: let VB, 1sr<2"7?,
denote a vector that is formed by merging two vectors V2!
and V27! for 1Ss, t €2 P+ and s such tha the st of
entries of V2 egudls the set o input labels of a distinct con-
nected component determined in Step 5. Goto Step 5.

Step7. Letyi)=V7(i¥ori=1,2,..,N-1 (note tha V{ isobtained in
Step 6). Write "The atype frame F${., whose ith row label
equas (i) correspondsto the GN".

Step 8 Let ¢ denote the permutation realized by the given network
GN 1., when dl the switches are set straight. The permutation
redized by IP;, isoy, ="', Thepermutation redized by IP
is ay=0lazl.r, where r is the reverse permutation
represented by the reverse permutation matrix Ry.. (See
Definition II.1). Stop.

Step 9. Write "The given network is not topologicaly equivdent to
baseline network and no corresponding a-type frame exisis'.
Stop.

In Steps 2 through 6, Algorithm FRAME-IN checks whether the given network
sidies the set of properties described in Theorem 1V.2. Specifically, Step 2 checks
the Banyan property, while Steps 3 through 6 check whether both the first j stages ad
the last j stages of the network grgph contain 2'-J connected components, for each j.
So,if Algorithm FRAME_IN failsin any of these steps, then it follows from Theorem
IV.2 that the given network is not topologicaly equivaent to basdine network and, by
Corallary I'V.1, has no corresponding atypeframe.

It is now shown that the given network corresponds to the a-type frame deter-
mined in Step 7, that is, any baanced matrix that fits the a-type frame determined in
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Step 7 passes the given nework, and vice varsa Theorem IV.1 proves that, for
11;k £n, theframe F{% corresponds to RB 1., thet is, a balanced matrix Dy fits F{%
if andonly if Dy passesRBy4. Notethat RBy;j isapiled 2n-J RB2iyjs. Recdl that
the only difference between the sandard a-frame Fi% and an a-type frame F{,; is the
order of their row labds. Because Step 7 assigns (i) to the ith row labd of F{.,, this
frame correspondsto the given network. Step 8 first assumesthat the permutation real-
ized by the given network equas ¢ when all the switches are set straight. Then, Step 8
states that the interconnection pattern IP;, realizes the permutation o, =Y. Relabel-
ing the ith input of the given network by (/) is equivaent to adding the interconnec-
tion pattern IP;, to the left of the given network. Thus, any balanced matrix thet fits the
a-type frame obtained in Step 7 passes the network IP,,GN,.,, and vice versa. Algo-
rithm FRAME_IN also adds an interconnection pettern IP,,, that realizes a permuta:
tion called a,,,, to theright of the given network such that the network IP;,GN 1.,IP oy
redizes the permutation » when al the switches are set straight. By LLemma IV.1, the
reverse basdine (basdine) redizes the permutation » when al the switches are st
straight. Therefore, the network IPy,,GN 1.,IP,, is functionadly and topologicaly
equivalent to the reverse basdine and basdine networks. This completes the proof of
correctness oOf the agorithm.

The graph of Algorithm FRAME_IN can have a mog O (NlogN) vertices
cause esch vertex represents a switch.  Algorithm FRAME-IN uses a breedth-first
search to check whether the given network holds the Banyan property. A depth-first
search isused to identify the connected componentsaf G, and that the depth-first forest
contains as many treesas G has connected components[29]. If V and E are the setsof
vertices and edges, respectively, the running time of both a breadth-first search and a
depth-first search is &(V+E). This implies that, for each vaue of j, Algorithm
FRAME_IN takes ©O(NlogN) time. Because there are 2logN iterations, the running
time of Algorithm FRAME_IN is &(N log2N).

Algorithm FRAME-IN yields a frame that corresponds to the given network.
This means that any matrix tha fitsthe frame also passes the network and vice versa
However, this does not necessarily meen that the permutation represented by the
matrix is redized by the network. When a bdanced matrix Dy,, fits an aframe
corresponding to a basdine-type network, the network redlizes the permutation
d.a,y, Whered is the permutation represented by Dy, and o, iS the permutation
realized by IP,, determined in Step 8 of Algorithm FRAME-IN. In other words,
given a network that is topologicaly equivaent to the reverse basdine, relabelingits
inputs and outputs by o} and o, respectively, resultsin anew network that isfunc-
tionally equivalent to the reverse basdine.

As an example, for N=16, Algorithm FRAME-IN can be usad to characterizethe
permutations of the following basdinetype networks generalized cube, omega,
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indirect binary n-cube, banyan (S=F=2), inverse omega, modified data manipulator,
flip. The topologica equivdence among these networks and basdine and reverse
baseline networksis wel known and previoudy sudied in [6,11,18,26]. From Corol-
lary TV.1, each of these networks corresponds to an aframe. Algorithm FRAME_IN
yields the row labeling ¥ and ay,,, for each of these networks and frames as follows
Y = Oloye = identity permutation for the reverse basdine and basdine networks, Y= the
reverse permutation = (0)(1 8)(2 4)(3 12)(5 10)(6)(7 14)(9)(11 13)(15) and o, = iden-
tity permutation for the omega and generdized cube, ¥ = identity permutation and
Oy = (0)(1)(2 8)(3 9)(4)(5)(6 12)(7 13)(10)(11)(14)(15) for the indirect binary cube,
banyan, inverse omega, ad flip networks,
v = (0)(1)(2 8)(3 9)(4)(5)(6 12)(7 13)(10)(11)(14)(15) and o, = identity permutation
for the modified data manipulator network.

V. NETWORKSRB;.,SE.m AND SE71.RB;.p

This section illustrates how frames can be used to characterize permutations per-
formed by relatively complex networkswith more than n dages. It isfirst shown that
the balanced matrices that pass the network RB 1.,SE 1., M 2 0, are identified by the
frame F{%,F1., (Theorem V.1), then it is shown that RB 1.,,SE 1., is functionally and
topologically equivaent to SET3,RB 1., (Theorem V.2). Hence, any baanced matrix
passing RB 1.,SE 1.,, a0 passes SET2,RB 1., ad vice versa. Theorem V.| aso shows
how the addition of a SE stage to theright of RB 1.,SE .., affects the type of permuta-
tions redized by the network. Theorem V.2 proves that the addition of a SE stage to
the right of RB1..SE 1., iSequivaent to the addition of an inverse SE stage to the left
of SET3,RB1.,. All theproofs are providedin the Appendix.

V.1. Balanced Matricesand Shuffle-ExchangeNetworks

Linial and Tardg [2] have shown how baanced matrices can be used to determine
the number of SE stages (or the number of passes through a single SE stage) necessary
to realize a given permutation. Lemma V.1 bdow restates thair result using the nota-
tion and assumptionsof this peper.

Lemma V.1. [2] L& My, ad Cpyu be bdanced matrices such tha

Mpem = [INxn Cnxi)s K21 and n+k=m. The network SEy, redizes the permutation
reprresented by M (m+1-n)m-

To illustrate Lemma V.|, condder the identity permutation matrix
Igs =[i1i2i3] ad the balanced matrices Mgy =[I3.3 11], Ms.s = [I3.a i1 i2] ad
Mg =133 I33]. Becaue Mg4, Mg,s and Mg, are badanced, the permutations




-26-

represented in binary by [i2i3 1], [i3iyiz] and [iy i; i3] aerealized by the single-
stage SE, 2-stage SE and 3-stage SE with N=8 inputs/outputs, respectively.

V.2 PermutationsRealized by RBy.,5SE1:;

The following theorem shows how the concatenated frame F$%,F 3., can be used
to characterizethe permutationsrealized by RB 1., SE y.m.

Theorem V.1. A balanced matrix D y;(n+m)» M 2 0, fits theframe F§%,F}.,, if and
only if D 1:(n+m) passes the network RBy;4SE y.,,. Moreover, RB1.,SE 1., redizesthe
permutation represented by D (s +1):(n+m)-

V.3. PermutationsRealized by SE72,RB;.,

It is shown that the network SE7.,RB 1., congtructed by appending the network
SE1L, to the left of RB)., is functionally and topologicaly equivalent to the network
RE.4SE . congtructed by gppending SE1.» network to the right o RBy.,. AlsD,
because RB;., is functiondly and topologicdly equivdent to BE,.,, Theorem V.2
remains vaid when RB ., isreplaced by BE,.,.

Theorem V2 The network RB 1:2SE 1.m, M 2 1, is topologically and functionally
equivalent to the nework SET3.RB 1.

VI. NEW PROOFSFOR REARRANGEABILITY OF BENESAND
THREE-STAGE CLOSNETWORKS

Rearrangesbility o Benesand three-stage Clos networksis proven in [7,13] usng
the Slepian-Duguid theorem which gpplies only to symmetric networks. In this section,
new simpler proofsare provided for rearrangeability of these networks using balanced
matrices and the propertiesaf graph theory. These proofsdirectly lead to routing algo-
rithms [19] and providean insght into the proofs of Section VI that identify the per-
mutations redlized by subnetworks of the Benes network. In wha follows, some
known results from [2] and definitionsusad in the proofs are presented first. Lemma
V1.1from [2] is sdf-explanatory.

Lemma VL1, [2] Forn22, let A and B be two Nx(n—1) balanced matrices.
Then there exists a column vector x such that both [A x] and [x B] are baanced
matrices.

Note that, when the order of columnsin a balanced matrix with at most » columns
Is changed, the matrix remains baanced. Therefore, the postion of x in the matricesA
and B in LemmaVI.l isimmaterid. Because the possble choices of vector x increase
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as the number of columnsof A or B isreduced, LemmaVI.1 remainsvalid when A and
B havelessthan n—1 columns.

Some properties of balanced matricescan be captured by graphs. Therefore, some
basic definitions of graph theory are given below. A graph G=(V,E) consists of a set
of vertices V and a set of edges E, each of whichis apair of vertices. The union d
two graphs Gi1=(V,E1) and G,=(V,E3) is the graph G=G LG 2=(V,EVE,). In
other words, an edgeis present in G=G {\ UG, if and only if itis presentin either G,
or G,. A subset M of edgesinagraph Giscalled independent or amatching if no two
edges of M have a vertex in common. A matching M is said to be aperfect matching if
it covers all vertices of G. More extended discussion of these basic: concepts can be
foundin [3,4].

Definition VI.1. (Perfect matching graph of a matrix): Let A be an Nxk
(1sk £n-1, n22) balanced matrix. A perfect matchinggraph d A, denoted by PGy,
is a graph whose vertices are in one-to-one correspondence with the rows of A, have
degree one and verticesv; and v; are joined by an edge only if theith row and jth row
of Aare identical.

If the number of columns in a balanced matrix Ay, is less than n—1 (ie., if
k<n-1), then its perfect matching graph is not unique because each distinct row in A
appears 2" % times. If k=n-1, then PG, is unique because each distinct row in A
appears twice. As an example, consider the balanced matrix Fg,, presented just after
Definition 114. Its perfect matching graph is unique and shown in Figure VI.1a.

Definition VL 2. (Labeling): 2—labeling or 2—coloring of a graph is the assign-
ment of integers 0 and 1 toits verticessuch that the labelsof the verticesincident with
an edgear e different.

Fact VI.l. [2]. The union of two perfect matching graphs with the same set of
vertices iSaunion of digoint even cycles and, therefore, it can be 2-labeled.

Definition VL 3. (Perfect matching graph of aframe column): Letf, &note
acolumn of aframe Fy.. A perfect matchinggraph df,  &noted by PGy , is agraph
whose vertices are in one-to-one correspondence with the row labels of Fy,, have
degree one and vertices v; and v; are joined by an edge only if i and j belong to the
same block off,.

Example VL1. One possible perfect matching graph for frame column /3 in Fig-
ure IIL.1b is shown in Figure VI.1a. The graph in Figure VI.1b is the unique perfect
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matching graph of frame column f§ in Figure I 1b.

0 V) 4 Ve Vo ¢! Va V¢

Vi V3 @ Vs vy 12} 3 ® VS V7

Figure VL1. () The perfect matching graph o Fg.; it isalso one possible perfect matching graph
for f3 shown in Figure II1.1b.
(b) The uniqueperfect matching graph far ff shown in Figure Il 1b.

From Definition VL3 and Example VL1, it is clear that the perfect matching
graph of the frame column that consists of only the blocks of size twois uniqueand is
alsoa perfect matching graph for all the other columnsin the same frame.

Let the black box, called P(N!) and shown in Figure V1.2, &note a rearrange-
able (permutation) network on N elements, i.e., it realizes all N! distinct permutations
in a single pass.

0— — 0
1— — 1
2 — — 2

® ®
. P(NY) .
® ®
N-1 N-1

FigureV12. A black box A NT) whi chred i zes all N! permutations

This black box P(N!) can be expanded recursively using Algorithm CONSBENES
presented below until all of its black boxes are identical to (2x2) switching boxes
(SBs), each of which can be set both straight and cross. This expansion resultsin the
Benes network. Algorithm CONSBENES substitutes the three-stage Clos network
with R inputs/outputs, & noted by CSz.s and shown in Figure V1.3, for the black box
P(RY).
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Algorithm CONS-BENES
Input: A black box called P(N1),

Output:  Benes Network

Step 1 Let R be an integer variable and be initialized to N. Relabel
the black box P(N!) by P(R!) and let BS denote a network
consistingof P(R1).

Step2 Replace each and every black box called PR!) of BS by
CSg,a shownin Figure V1.3,

Step 3. If al the SBs of BS are (2x2), then call BS Benes network and
stop; otherwisefirst relabel each of its non-(2x2) SBs by PR )
and have the valueof R, then go to Step 2.

Using the notionsof balanced matricesand frames, it isfirst shown in the follow-
ing theorem that CSg,s is functiondly equivaent to PR ). Then, it follows that the
Benes network constructed by Algorithm CONS-BENES is rearrangeable because,
due to the recursive structure of the algorithm, only the correctness of Step 2 needs to
be: proven.

[l =4

Pu(2r—l !)

W

PI(2r-l!)

020
LR

Figure V1.3, Three-stage Clos network with R inputs/outputs which is denoted by CSg.s, where
R=2".

Theorem V1.1, Three-stage Clos network with R inputs isrearrangeable.

Proof. Asitisshownin Fig. V1.4, the network CSg,s is composed of three com-
ponents, namely, a) an inverse SE stage with 2 inputs/outputs, b) a pile of two per-
mutation networksP*(2"!1) and P!(2"~11), and c) a SE stage with 2 inputs/outputs.
It isassumed in this proof that, unless otherwise stated, any balanced matrix has R=2"
rows. Recall that P(2"t) refers to a rearrangeable network on 2 elements. Because
P(2"!) passes any balanced matrix B, corresponding tO a permutation on 2 €ele-
ments, CSp.3 mMust also passB ., in order to state that CSy,s isfunctionaly equivaent
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to P(2")).

It is now shown that the inverse SE stage with 27 inputs/outputs partitions B;.,
into B4r-1,, and B4r~1,, such that the submamcesBYr-1,¢,_1y and B4r-1,(,—1y are ba-
anced, where B4r-1,,_y and B’zr—lx(,_l) are the first (r-1) columns of B4r-1,, and
Bbr-1,,, respectively. Both Bjr-1,4-1y and B’zr—l,‘(,_l) pass the permutation network
P(2""!1) becauseit realizes any permutation on 2”~! elements. Because the control
bits of each SB must congtitute the set {0,1} to avoid conflict, any vector that fits /4*
can be usad as the vector of control bits of the SBs of the inverse SE stage. Let the
perfect matching graph of f° denote a graph with R vertices such that the vertices vo;
and Vj41, 0 € j 27711, are connected by an edge, where vo; and v4j4 correspond
to the 2jth and (2j+1)th rows of fi°, respectively. Let x be a column vector obtained
by a 2-labeling of the union of the perfect matching graphsof /¢ and & 1.(,-1). By Fact
VL1, the matrix [x By.,—1y] is balanced. Thisimpliesthat x ““‘partitions’’ the balanced
matrix B 11y into two balanced submatrices B4 —1,(,_yy and Bir-1,,_1y in such a
way that row i of B 1y,—1y belongs to B4r-1,(,_y) if theith entry of x equals zero, and
belongs to Bjr-1 «(r-1) Otherwise, where 0 <i <2"-1. Without loss of generdity,
assume that the SBs of the inverse SE stage with 2 inputs/outputs are labeled in
ascending order starting with 0 and that the control bit for the ith input is the ith entry
of x. So, when the 2jth and (2j+1)th enmes of x are used as control hitsfor the jth SB
of theinverse SE stage, no conftict occurs and, hence, the matrix B 1.1y is partitioned
into BYr-1,¢,_1y and By -1,,_1y. Because bath P*(2"~'1) and P2 1) can passany
balanced matrix of order 2" !x(r—1), the mamces B4r-1,;,_1y and Bhr-1,,_1y pass
P27y and P27 1), respectively.

In order for By., to passCSg.3, CSp,s Must send itsith input to the output whose
value equalsB ., (i). Sofar, this proof showed that CSg,s sendsitsith input with the
row B1.,(i) to either the hth output of P*(2"!1) or the hth output of P!(2"711), where
h equals the value of B1.-1y(i). BecauseB ., isa baanced mamx, the last enmes of
the routing tags of the rows that ar e sent to the jth outputs of P*(2"'!) and P'(2" 1)
constitute the set {0,1}. Due to the fact that the third component of CSg.s is an SE
stage, the rows that are sent to the jth outputsof P*(2"~!1) and P'(2"11) enter the jth
SB of the SE stage. Because the connections of the SE stage implement the perfect
shuffle permutation and the |ast entries of the routing tags of the rows entering a SB
constitute the set (0,1}, no conflict occursin the SBs. It follows that CSg,3 sends its
ith input to the output whosevalueequalsB .,.(i). Therefore, the theorem holds. O

Corollary YI.1. The Benes network obtained by Algorithm CONS_BENES is
rearrangeable.

Proof. Because Steps 1 and 3 of Algorithm CONS_BENES are relabelings and
the network is constructed recursively, it suffices to show that CSg.a is functionally
equivalent to P(2"!). Because thisis proven in Theorem V1.1, the corollary holds. [
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VIL PERMUTATIONSREALIZED BY BS(gr):2a-1)

Recall that Benes network can be considered as being BEy (1) RBn:». Theorem
IV.1 identified the permutations pasing RBy,, in the sense that a baanced matrix
Dy, passes RBy,,, if and only if Dy, fits F§f.,. Likewise, the following theorem and
corollary determine the set of permutationsthet pass the network BS (s —y.(2a-1) Which
consists of the subnetwork BS,-,y(s-1y followed by RBw,,, Where 161 6n-1.
(Recal | that IN;,, denotes the stagesx throughy of an IN and that /N, refersto anil
network if x>y). The permutations that pass BS (,—,y.(22-1) &€ characterized by the
frames defined next. This characterization illustrates how frames can be used to gain
insight into why the Benes network is rearrangegble. All the proofs are provided in the
Appendix. An exampleis presented to illustrate the resultsof these proofs. For N=16,
this example clearly shows how the addition of the stage BS,-,-1 to the left of
BS (n—ry:2n-1) CONVerts the frame that corresponds t0 BS (,_,).(22-1) into a new frame
that correspondsto the resulting network.

Definition VILL. (F{%): The frame F{%, r (01,. .,k-1} ad
ke {1,2,...,n},is a frame <P,7,P> where

B(i)_ r+l1 ifl1<i<sr+1
T i ifr+l<i Sk,

Y is the identity permutation on theset (0,1, ... ,N-1) and

_JPra if1sisra
‘TP ifr+l<i<k

Note that F3%° and Fi%" ! areidentical to F$% and F1.;, respectively. Asexam-
plesof Fi%, the framesFi%%, Fi3!, F{%? and F$43 for N=16 are illustrated in Fig-
ue VILL

Theorem VIL1. Consider thefrane F{:5, 061 6n-1. Let S be apileof 271
copies of a rearrangeable network P(2"*!1). Let T be an IN that consists of the net-
work S followed by RB ,42).n. A baanced matrix Dy, fits Filg if and only if Dyya
passes T.

Corollary VIL1. A bdanced matrix Dy, fitsthe frame Fify, if and only if Dy,,
passes the network BS (n-r):(2n-1)> where0 6T <n-1.
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ExampleVILL. Let N=16 and n=4. TheframesFi%3 Fi%} Fi23 and F333 are
shown in Figure VIL1. By Theorem IV.1, dl baanced matrices that fit Fi%.s pess
RB164. If the stage BE 5 is added to the left of RBy.4, the network BS 3.2 shown in
Figure VII.2a is obtained. While RB .4 passes al baanced matrices that fit F§%3 (the
same as F.4), a bdanced matrix D 1.4 passes BS1. if and only if Dy.4 fitsFi%d. If
the stage BE, is added to the left of BS,.7, then BS,.; shown in Figure VIL2b is
obtained. A balanced matrix D .4 passesBS,.7 if and only if D .4 fits Fi23. If the
stage BE; is added to the left of BS,.7, then Benes network, BS;.7, shown in Figure
I1.4 is obtained. It isobvious that a baanced matrix D 1.4 passes BS,.; if and only if
D4 fitsFi%3 = Flea. Notice that, when the Stage BE,, 1< j <n-1, is added to the
left of BE (j.+1y.(n-1)RB 1.5, the subnetwork BE; (,_1)RB 1,(»-j+1) becomes a pileof 2/~
copies of Benes network with 2" ~/*! inputs/outputs and 2n-2j+1 stages. Because
Benes network with 2 ~*! inputs/outputs and 2n—2j+1 Stages is a rearrangeable net-
work, it corresponds to the universa frame with 2"+ rows and n—j+1 columns.
Therefore, the first n—j+1 columns of F{2%~7 isapileof 2/~ copiesof the universal
frame with 2"~/*! rows and n—j+1 columns. End of example.

a £33 ﬁa 3 a £3a 4a i 2a a 4a 3 2a .ga 4a
(I i i !
: ; : :
S| 5 5 5
g § g §
3| | 3 3 :
19 19 19 19
il i3 i3 i3
14 14 14 14
15 15 15 15
(?) (b) © )

Figure VILL.  (a) Fi23, (b) Fi%4, (c) Fi23 and () Fi23.
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Figure W .2. (a) BS3:7 (BE, followed by RB 1:4). (b) BSg:'] (BEgg followed by RB.4).

VIIL. CONCLUSIONS

In this paper, a new approach has been developed to characterize permutations
realized by some frequently used networks. The concept of frame has been introduced
and different frames have been illustrated. It issimpleto check whether a given permu-
tation is realized by a given network once the corresponding frame and the output
interconnection pattern are known.

The permutations of the following three classes of networks have been character-
ized: the class of k-stage baseline-type networks that aretopologically equivalent tothe
k-stage baseline network, the class of those networks that are constructed by appending
shuffle-exchange stages to the left or right of a baseline-type network.,and the class of
those networks that form a part of Benes network.

The proof that Benes network is rearrangeable was first presented in [7]. This
proof is based on the Slepian-Duguid theorem which applies only to symmetric net-
works. In this paper, a new simple proof has been presented for rearrangeability of
Benes and three-stage Clos networks using the notion of balanced matrices and graph
theory. The technique used in this proof can also be applied to nonsymmetric net-
works.

In practice, the results presented in this paper can be used to design networks that
realize classes of permutations that fit the same frame. In addition, engineers and/or
compilers may useframestotest if the corresponding networks realize a given permu-
tation. Debuggers and programming environment can also use frames to detect when
and why a permutation cannot be realized by the network. The definitions, theorems
and lemmata that are presented in this paper to characterize the permutations realized
in the aforementioned networks can also be used to address the issues of routing and
counting permutations. But, to limit the size of this paper, theseissues are addressed in
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[19,28].

It is clear that frames, as defined in this paper, cannot characterize the permuta-
tions of every network. Conceivably, extensions of the definitions may be possible to
characterize a larger class of networks. In particular, the concepts should be extensible
to networks not considered in this paper including those constructed with (kxk)
switchesfor k>2. Future research will address these issues.

| X APPENDI X

Proof ThearemIV.l: (+) It isshown that if D fits Fi% then D, passes
RE 1.4. Proof isby induction onk. Also, itisproven that RB ., sendsitsith input toits

Jth output, where jisequal to the sum of [[; /2"Jx2" and the value of D 1.x(i).

Basis Step: Let k=1. Label the SBs of RB, in ascending order starting with 0.
(Recdl that RB; refers to the first stage of a reverse baseline network with N
inputs/outputs). By definition, 2 contains 2*~! blocks of size 2 each. The fact that
Dy fits Fi% implies that d; fits f3°. Therefore, the 2rth and (2r+1)th entries of d,
constitute the set (0,1}, where 0 < r <2""1-1. Hence, when the 27th and (2r+1)th
entries of d; are used as the control bits to set the ~th SB of RB,, no conflict occurs

and RB sends itsith input toits jth output, where jisequal to the sum of “i/Zsz

and thevalueof theith entry of d;, where0 <i < N-1. (Recdl that, if the control bit
of the routing tag of an input equals zero, then the input is sent to tht: upper output of
the SB that it enters; otherwiseit issent to the the lower output of the SB).

Induction Step: Assume that, for 2 Sk < n, if D 1;g-1) fits Fiig.-1y, then D j.-1)
passes RB ;1) and RB .1y sends its ith input to its jth output, where j is equal to

the sum of [i 121 Jx2"'1] and the value of D y.;_1)(i). Now, show that, if D, fits

Fih, thenD 1 p RB 1 and RBy sendsitsith input toits jth output, where jis
equal to the sum of |

li/2"Jx2"] and thevalue of D 1.4(i).

The frame Fi‘m, (m=k—1,k), can be considered as being composed of 2*™™
copies of F3%,,, in parallel if the row labels of the ath, 0 < & £ 2771, F2,,, consists
of the numbers (cx2™) to [(o+1)x2™-1] inclusive. Let F%~,,, denote the ath F5,.
RB ., can also be considered as being the pile of 2*™ distinct RB am.,s. Label these
RB s in ascending order starting with 0 at the top and denote the ath one by
RB%,,,. By hypothesis, D 1.y fits F{%y,. Let D%, denote the submatrix of D y., that
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fits F$=,,. Thus, the induction hypothesis dso implies that D$-1,4_, (which fits
F%-14_1) passesRB%-1,4.-y and tha RB$-1,,_; sendsits pth input to the output whose
value isequal to thevalueof D$-1,4_1 (p), where0 <p < 28711,

Let Foki,y_y and Fat1,_; &note the 21th and (21+1)th F$-14_s, respectively,
where 0515 2" *~1. Smilarly, let D$1,4_y and D31, denote the 2ith and
2I+1)th D$-14_;s Likewise, assume that RB*1,4—; and RB3#1,4_; &note the 2ith
and (2/+1)th RB$-1,4_;5s.

Because D$-1,¢.-1) is a baanced matrix of order 28~ Ix(k-1), it has 2*~1 distinct
rows. Therefore, the matrix

D2tiq-1y
Doty

H=

contains 2%~ distinct rows, each being repeated twice. Assumethat the rowsdf H are
partitioned into 2¥~! classes, each of which contains 2 identical rows, that is, eech
class contains the two copies of adistinct row of H. After adding a column permuta:
tion of length 2* to the right of #, call the resultant matrix ngx(k). Thisimplies that
the number of the entries o the rows of aclass is incremented by 1. In order for
DB, to fit F$h the keh entries of the rows of each classof H must congtitute the set
{0,1}, whichistrue because D 1. fits F{% by theinduction hypothesis.

By definition, the kth stage of reverse basdline, RBy, consists of a pile of 2*~*
copies of the SE stage with 2 inputs/outputs. Assume that the network consisting of
thepile of two networksRBoH 1,1y and RB9%1,-1y followed by the SE stage with 2
inputs/outputs is caled RBB:. Because RB$-1,4_; sendsits pth input to the output
whose vaueisequd to the vaue of D%-1,4; (p), thefirst (k—1) entries of the row that
is sent to the pth output of the network RB2H-1,_1) is the same as thefirst (k—1) entries
of the row that is sent to the pth output of the network RB9%1,¢.1y. The kth entries of
those two rows sent to the pth outputs of RB3-1,¢;. 1y and RB2#1,¢—py congtitute the set
{0,1} becauseDE&,dc fits the frame F$.4 by induction hypothesis. Because the rows
thet are sent to the pth outputs of RB%k-1,.—1y and RB221,¢y) enter the pth SB of the
SE stage following these networks such that the kth entries of these rows are the con-
trol hits for the SB, no conflict occurs in the pth SB. This amounts to stating that
RB&., sends its hth input to the output whose value is equal to the value of DBy (h),
where 0 s hs2%-1. Therefore, the balanced matrix Dy, passes RB1x ad RB 4
sends its ith input to its jth output, where 0 i SN-1 and j is equd to the sum of

“i/2"J><2"] and thevauedf D 14().

( c)tisshown tha, if D passesRB 14, then Dy fits Fi%. Proof is by induc-
tionon k.
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BasisSep: Let k=1. Thefact that d, passesRB; impliesthat no conflict occurs
in the SBs of RB; when theith enay of d, is used asthecontrol bit for the ith input of
RB, in setting itsrth SB. Because the control bits of the th SB of RB; condtitute the
set {0,1) and fit the rth block of f3%, d, fits fi°.

Induction Step:  Assume that the theorem holds for k1. It is shown that it also
holds for £, whare2< k €n.

By induction hypothesis, if D®-1,4_; passes RB$-1,4_; fits F$-1,4_,. Notice tha
the |ast stage of RBSy is the SE stage with 2* inputs/outputs. Recall that the network
congsting of the pile of two networks RBo#1,;-1y and RB2#1,¢.—1 followed by the SE
stage with 2* inputs/outputs is called RB%.. Asit is also explained above, the rows
that are sent to the pth outputs of RB#1,; 1y and RB2#1,.py enter the pth SB of the
S stage that follows these networks. 1f D%, passesRB%:., then the kth entriesof the
rows o aclassof H mug congdtitute the set {0,1} to avoid having a conflict in the pth
SB. Therefore, DB fits F& ;. It followsthat D 4 fits Fi%. O

Proof o Corollary IV.l: (=) Let & be topologicaly equivalent to RB 1.,. When
interconnection networks are modeled by directed graphs in which vertices represent
the switches and edges the links, two networks are said to be topologicaly equivaent
if the graphs representing them are isomorphic. Two graphs G and H are said to be
isomorphic if thereexist bijectionsfrom the vertices and edges of G to the verticesand
edges of H, respectively such that the relationshipdf adjacency is preserved. So, if two
networks are topologically equivaent to eech other, one dof them can be mede identica
to the other network by relabeling the inputs and/or outputs. Thisimplies that @ can be
made identical to RB 1.« by rdabeling the inputs and/or outputs of ¢, and vice versa
Because (1) F{% corresponds to RB . such that there exists a one-to-one correspon-
dence between the row labds of Fi% and RB 14 (Theorem N.1), (2) the only differ-
ence between Fi% and an atypeframe F{. is the order of their row labels, and (3) @
is topologically equivaent to RB ., thereexists an atypeframe F{., corresponding to
& such that no conflict occurs in the switches of & when the contentsdf the ith row,
0<i sSN-1,of F§, are usad as therouting tag for the ith input of .

( t )Letydenote the vector of input labelsof ¢ such that the ith enay of y equds
the ith input label of ®. Let F{.x(Y) &note the frame corresponding to ¢ such that the
ith entry of ¥y equals theith row labd of theframe. By definition of ‘‘correspondence’’
(DefinitionII.8), no conflict occurs in the switches of @ when the contents of the ith
row of F§.,(y) are used astherouting tag for theith input of ¢. Note that thereexistsa
one-to-one correspondence between the input labels of ¢ and the row labds of

1.4(. Therefare, when both theith row label of F$..(y) and the ith input labd of &
are replaced by the integer i, the resulting frame F{% and network ill reman
correspondent to each other. By Theorem N.1, F{% corresponds to RB y4. It follows
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that ® can be converted to RB . by rdabeing the input and/or output labels of ®.
Thus, @ istopologicdly equivdent toRB 1. [

Definition |X.|. (forward-routing, reverse-routing): Given an INy,, and a s&t-
ting of its SBs thet redizes h: i —h (i),forward-routing of amatrix A meansthat A (i)
issent frominput i tooutput h(i), where0 <i SN-1. Likewise, reverserouting of A
means that A (i) is sent from the output i to the input A~1(). The matrix
AT =A @), i=0,1,...,N-1, isobtained by forward-routing of A. Similarly, the
matrix AR =A (h(i)),i=0,1,...,N—-1, isobtained by reverse-routingcf A.

Proof of Corollary IV.3. Because the network IT is a k-gage basdline-type net-
work, it is topologicaly equivdent to RB1.4. This implies that RB ., can be made
identica to IT by relabeling its inputs and/or outputs. Because relabdling the inputs
(respectively, outputs) of RB . is equivdent to adding an interconnection pattern to
the |eft (respectively, right) of RB ., thereexist two interconnection patterns IP;, ad
IF,, such that ITis topologicaly and functionaly equivaent to IP;uRB 1.4 1P gy -

(=) Assume that D . fits F9..(a;}). 1t is shown that the network IT redlizes the
permutation o, .0,

Adding the interconnection pattern IP;, to the left of RB 1. is equivaent to rela-
beling the ith input of RB 1.x by ozl (i). Because the only difference between two a-
type frames with k columnsisthearder o their row labdsand IP, is just an intercon-
nection pattern, it followsfrom Theorem V.| that D ., passesIl. By Definition IX.1,
when D 1 isforward-routed through the interconnection paitern IP;,, D 1., iS mgpped
to D14 =Dx(azl (1)), i=0,1,...,N-1. By Theorem IV.3, the subnetwork RB 1. of
IT redizes the permutation . represented by 7., - D3.]. Therefore, the network IT
realizes the permutation o, 1. Oty -

( t D)Assume that the network IT redizes the permutation a, .0y 1t IS shown
that D 1 fitSFé.(az).

The fact that IT realizes the permutation o, 1.0, iMplies that the permutation i
isredized by RB ., of I1. Because  is the permutation represented by the baanced
matriX [f1.n—k D11 such that D1.x() =D j(ezl (i), it follows from Theorem V.3
that D1 passes RB 1.x. By Definition IX.1, when D ., is reverse-routed through the
interconnection pattern IP;,, D1 is mapped to D . Thus, Dy passes IP;,RB .
Note that the network IP;,RB ., isidentica to the network obtained. by reabeling the
ith input of RB . by ozl (i). In addition, because F§.x(az}) is the same as F{% except
that the ith row label of F§ (o)) equals ol (i) instead of i, Dy fitsFé(az). O
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Proof of Theorem VI: () It is shown that if Dy,pem) fits Fi%F 1., then
D 1:(n+m) PaseSRB 1:4SE 1. and the permutation represented in binary by D ¢ +1y:(s+m)
isredlized by RB 1.4SE 1.m-

Recdl that by definition, RB .,SE ., conssts of RB,., followed by SE;.,.
Because, by hypothes's, D 1:(x4m) ﬁtspl”plm, D 1:» fits F{%. RB ., maps the matrix
D 1:(n+m) into the matrix denoted byDl :(n+m) WHEN D 1;(n4m) (@), 01 SN-1,isused as
the routing tag for the ith input of RBy.,. Theorem IV.1 has shown that any baanced
matrix D i, fittingthe frame Fi%, passes the network RBy.,. S0, when D 1.,(i) is used
as the muting tag for the ith input of RBy.,, RB 1., SENds its ith input to the output
whose vaue equas D 1.,({). So, RBy., maps ay Dy, fitting the frame Fi%, to | 1.,.
This implies that, when Dl(,,m)(i) is used as the muting tag for the ith input of
RB.,SE ., the submatrix D1, of D3, «n+m) 1S the same as the ldenuty permutation
matrix 7 1.,. Therefore, Dl(,,,,,,,) isequal to the balanced matrix [/ 1in ,,+1)(,,+,,,)] By
Lemma V.|, SE,,, redizes the permutation represented by D(,,,H),(,H,,.) ad no
conflict occurs in the SBs of SE 1. WHeN Dy 41y:n+my (i )is Used as the routing tag for
the ith input of SE1.m. Therefore, D 1;(n4m) Pa5SES RB1:SE 1. NOw, it remains to
show that RB 1:sSE 1., realizesthe permutation represented by D (n+1):(n +m)-

Let the entriesof D 1.u+m)(i) be&noted in binary by (xixh -. . x4 -+ . xb,m). The
fact thet D1., Of D1.(n4m) iS identical to | 1., impliesthat RBy,, of RB 1,4SE 1., SENdS
the routing tag D 1:(a+m)(i) to the output of RB ., whose vaue equals the vaue of
(x1 rz x,,) Because the jth output of RB;., is the same as the jth input of SE .
when RBy.,8E 1., iSCOnsidered, D 1:(n+m) (@) issent to the jth input of SE 1., by RBy.,
where j equds Oocdxh - --x8). Hence, the bit xﬁ,ﬂ,, 1<sp<m, of
(ixh .- xb - xb ) is used as the control bit to set a SB a the pth stage of SE 1m
where (x'ixﬁ .. -xf,) ad (xfnﬂxf,ﬂg . -xf.+,,,) are the addresses of the input and the
destination, respectively. Due to the fact thet D 1:(n+m) PaseS RB1:aSE 1:m ad a SE
stage performs the shuffle operation followed by the exchange operation, RB 1:2SE 1,
SendsD 1:n+m) (i) to the output of RB 1,4 SE 1., whosevdueequds(xp+1xp+2 x,,+,,)
Therefore, the permutation represented by D m+1):(n+m) 1S implemented by
RB 1:aSE 1:m-

(&) It is shown that, if D 1:(n+m) pmSRBl:nSElzm: then Dl:(n-l—m) fits F'{?,,F;;m
ad RB1:4SE 1. redlizesthe permutetion represented by D (m+1):(n+m)-

Because, by hypothess, D 1:(n+m) P5ES RB1:aSE 1., the submeatrix Dy., of
D 1:(n+m) PSS RBys. So, by Theorem v, the submatrix Dy, fits F{is. By
definition, any column of the universd frame Fj. i isasngle block of sze N. There-
fore, any baanced matrix o order (Nxm) fits F3.,. It follows thet D (5 41y:(n+m) fits
F;:m- Hence, D 1:(n+m) fits Fi‘:znp;:m-

The first pat (+) o the proof has shown that the permutation represented by
D (m+1y:(n+m) iS implemented by RB 1.SE 1. if D 1:¢n4m) fitS Fi%F1.m. Becauseit is




shown above that D ywimy fits Fi%F1.,, RB,,SE1m redizes the permutation
corresponding 0 D (5 ;1) (n+m)- [

Proof of Theorem\/2 Proof is by induction onm

Basis Step: Let m=L1. In this step it is proven that RB;.,SE isfunctionaly and
topologically equivalent to SET'RB.,. Recall that RB ., isfunctionallly and topologi-
cally equivalent to BE,.,. Therefore, RB.,SE, is functionally and topologically
equivalent to BE.,SE . BEj., consists of 2 copies of BEgs-1,s-1y :in parallel, while
RB .(n—1 cOnsists of 2 copies of RB ps-1,(,-1) iN parallel. Because BE ga-1,,-1) is func-
tionally and topologically equivalent to RB a=-1,(s_1), BE2., is functionally and topo-
logically equivalent to RBy.s-1y. Therefore, BE;.,SE; is functionally and topologi-
cally equivalent to BE1RB .(,-1)SE . Because the last stage of RB ., isidentical to
the: SE stage, RB 1;(s-1)SE isidentical toRB.,. Therefore, BEjRB 1.,-1)SE isfunc-
tionally and topologically equivalent to BE,RB,.,. Dueto thefact that BE; isidenti-
cal. to theinverse SE stage, BERB ., is functionally and topologicallly equivalent to
SET'RB .. It follows that RB1.,SE, is functionally and topologically equivalent to
SETIRB 1:a-

Induction Step:  Assume that, for mz 2, the theorem holds for m-1, and show
that it also holdsfor m

Because RB 1., isfunctionally and topologically equivalent to BE.,, RB1.,SE 1.m
is functionally and topologically equivalent to BE1.,SE 1.m- AS it isexplained in the
Basis Step above, BE,., is functionally and topologicaly equivalent to RB 1.(,-1)-
Therefore, RB1:aSE1.m IS functionaly and topologicaly equivalent to
BE RB 1.(n-1)SE .. Because the last stage of RB., is identical to the SE stage,
BERB 1:(,,._1)SE1;,,| isidentical to BERB l:nSEl:(m—l)- By the induction hypothesis,
RB ,.,SE 1.4m-1) is functionally and topologically equivalent to SEI}(,,,_I)RBI:,,. So,
BE\RB .,SE.;n—1y is functionadly and topologically equivalent to
BE|SE{\m-1)RB1.s. Because BE; is identica to the inverse SE stage,
BE |SE7Ym-1)RB 1., isfunctionally and topologically equivalent to SETL,RB1.,. Thus,
the: theorem holds. [

Proof of Theorem VIL1: Case |: Let r=n-1. When r=n-1, T consistsof only
arearrangeable network P(2*!) and Fifs, isidentical to the universal frame Fym. By
definition, any balanced matrix of order Nxx fits F ., and P(2*!) passes any balanced
matrix of order Nxn. Therefore, a Dy, fits Fiay, if and only if Dy, passesT.

Case 2: Let r=0. When r=0, Ff{f;, and T ae identical to Fff, and RByxas
respectively. Because Theorem IV.1 shows that a Dy, fits F, if and only if Dyy,
passes RBy,,, Theorem VII.1 holdsfor this case.
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Case 3 Let1<r <n-2, Assume tha Dy,,(i), 0 <i <N-1, isused as the rout-
ing tag for theith input of T.

B Itisshowntha, if Dyu, fits Fifay, then Dy, passesT.

In what follows, it is first shown that the submeétrix D 1.¢+1) Of @ Dy PassesS
By the definition of rearrangeability, any of the 2" ! rearrangesble networks
P(2™*1) o S can pass ay baanced matrix of order 27 'x(r+1). Labd these rear-
rangeable networks in ascending order starting with 0. Let P*(2"*11) &note the ath
rearrangeable network P(2"*!1) of S whare0 s a<2" 11

Consider the universa frame Far+1,4,,1y. Any column of Far+l,.,.yy is just a
single block of length 2"+, Because acolumn of F3r+1,¢,.,1y requires acolumn vector
of length 2"*! to have only 2 zeros and 2" ones, any column o a balanced matrix of
order 2" *1x(r+1) fitsit. It follows that any baanced matrix of order 2"*!x(r +1) fits
Fyr+l,441y. Therefore, P*(27*11) corresponds to the universdl frame Far+1,4.4y).
The subframe F3%’,;, can be considered as being apileof 2% ~! Far+1,.,.1)s. Labd
these universd framesin ascending order starting with 0.

Partition the balanced submatrix D 1.-+1) Of Dy iNto 2! balanced subma-
trices of order 2"*!x(r+1) such that the set of the row indices of the ath submatrix con-
sists of the numbers (ax2”*1) to [(a+1)x2"*1-1] inclusive. Labd these submatrices of
order 2"*!x(r+1) in ascending order starting with 0. Denote the aith submatrix of
D 1.4 +1) by DY 41)-

By hypothesis, Dy, fitsFi% . Thisimplies that D 1.¢-41) fits Fi%741). Therefore,
D%+ fitsthe ath F;r+lx(,+1). Because P%(2"*!1) is a rearrangeable network, it
passes D, 41y, that is, P®(2"*!1) sendsits th input to the output whose vaue equals
D41y (K) where0 < k 627*1-1. Thisimpliesthat the ork Ssendsitsith input to

its jth output, where j equds the sum of ‘/2’*1_|x2’“ and the vdue of the left-

most (r+1) bitsof theD 1.4()). Hence D 1.¢-+1y passesS

Theorem IV.1 shows that a baanced matrix Cy., tha fits Fi%, passes RB ..

Theorem V.| aso shows that RB 1.¢,4+1) Sendsitsith input to its Ath output, where his
equal to the um of [|.i/2’“JX2’“j and thevaued Ci+1)(d). Thus, the networks

RB 1.1 and S send their ith inputs to their jth outputs, where j equals the sum o

[i/Z”'1 Jx2’” and the vdue o theith row of the matrix passing the corresponding

network thet is either RB 1,41y OF S By definition, F{fyyy., is the same as F{f+1yn.
Thisimplies thet F{f+2y., iSds0 the same as F{7.2y.5. It follows from this paragraph
that the argument given in the (=) pat of the proof of Theorem V.l gpplies to
RB (r+2):n of T ad F§i2ya. (If in Theorem IV.1 RB 1,41y and F{% 41y aereplaced by
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S and Fi%/+1), respectively, Theorem V.l becomes identical to Theorem VII.1).
Therefore, Dy, passesT.

( t dtisshown that, if Dy, passesT, then Dy fits Fifin.

First, consder the submeétrix Dy 4+1) Of Dy,s. By hypothess, Dy., passes T.
This implies that D .¢-+1) passes S because § consigsof 27™"~1 copiesdof a rearrange-
able network P(2"*!!) in parald and D%, 41y passes P%(2"*!1). Because ay bd-
anced matrix of order 2"*!x(r+1) fits a univers frame Far+1,¢,41y, DS 41y A0 fits
Fir+l,441). Recdl tha Fi%f.y can be considered as a pile of 2""~! copies of
For+1,¢1). Therefore, D 1,41y fits F{%741).

Now, it is shown by induction on B, 1< B < n—r—1, that D 1.¢+14p) fitSF{% +14p)s
assuming that Dy, passesT. (The proof presented below is andogous to part € €3
the proof of Theorem IV.1).

Basis step: Let B=1. For 051 52" 7-2-1, let D}, 41y (k) and D1% 41 (k) denote
the 21th and (21+1)th D, 41s, respectively. Similarly, let P 27*11) and P (Z'*1)
denote the 21th and (2/+1)th rearrangeable networks of S, respectively. Because the
stage RB (.42 condsts of a pile of 2"72 copies of the SE gtage with 27*2
inputs/outputs, the subnetwork that consists of the pile of P 2711y and P™ (Z*11)
is followed by the SE dage with 27*2 inputs/outputs. Because D%,y passes
P 1y, PA2"*1) sendsitskth input to its mih output, where mequals the contents
of D%41y(k). Hence, the rows that are sent to the kth outputs of P™'(2"*!1) and
P™(2"*11) enter the kth SB of the succeeding SE stage with 27+2 inputs/outputs. By
hypothesis, Dy, passes T. Thisimplies thet D .42y passes the network consisting of
S followed by the stage RB, ., without having any conflict in the SBs. Therefore, the
(r+2)th entries of the rows that are sent to the kth outputs of P*(2"*!1) and
P™2"*11) congtitute the set {0,1}. Notice that these rows have the same first k-1
entries. Therefore, the (r+2)th entriesof any twoidentica rowsof the submatrix

DY 41y
D‘llzz(ri-l)

congtitutethe set {0,1}. Therefore, by definition of fit, D 1.¢-+2) fitSFi%r42)-

Induction step:  Assume that, for 2< B < n—r—1, Dy 4p) fits Fi%ip). Then,
show that D L:(r+14B) also fits F '1?(,’+1+B).

Let 2< B < n—-r-1 By theinduction hypothesis, D y.¢+p) fits Fiir4p). Itisaso
known that Dy,, passesT. So, asD 1. +g) passes the network congsting of S followed
Q/ RB (r+2):(r+B)> D 1:(r+14p) P3ASSES the network congdi ng of § followed Q/
RB (r12)(r +14p)-




-42-

Partition the matrix D 1,¢4g) INto 2%-" submatrices D¥ra. i), 0SYS nrB
which are labeled in ascending order starting with 0. Let 0 s us 277 #1-1, y,=2u
and 1;=2u+1. The stage RB (+14p) consds of 221 copiesof the SE sage with
2"+1*8 inputsfoutputs. The rows that are sent to thesth, 0 s s 27*P—1, outputs of the
subnetworks that pass D¥r,¢,p) and DY, . enter the sth SB of the SE stage with
28 jnputs/outputs. Because no conflict occurs in the sth SB by hypothesis, the
(r+1+P)th entriesof the rowsentering thesth SB must congtitute the set {0,1). There-
fore, ky definition of fit,D 1:(r+1+B) fitSF'I?(;H.;.p). O

Proof of Corollary YII.1;: Condder the network T, tha is defined in Theorem
VI1.1, and its components S and RB (, 42y.. Recall that § consistsof 27~ copiesdf a
rearrangeable network P(27*!1) in parallel. If the Benes network BS or+1,¢p, 1) SUbSti-
tutes for each rearrangeable network P(2"+11) of S, then § consistsof 2%~ copiesdof
the rearrangeable network BSyr+1,2,41y in pardld and hence S is made identical to
the subnetwork BS(,,_,):(,H.,) of BSN,(Q_,,_I). Because BS 1:2n-1) CaN be conddered as
being composed of BEj.,-1y followed by RB;.,, BS(—r)n+r) IS the same as
BEm—ry:(n-1)RB 1:¢-+1). SO, T is functiondly equivaent to the network congsting of
BS (n=r):(n+r) followed w |:B(,-+2);,,. Because the network that consists of BS(,,_,):(,H.,)
followed by RB .2y isidentica t0 BS (5_ry.a-1y ad the fact that a balanced matrix
Dy fitsFifey if andonly if Dy, passesT (Theorem VIL1), Dy, fitsF{% if and only
if Dyn DNSBS(,,_,):Q,‘..I). Therefore, the corollary holds O
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