Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1981

The Flat File Database Generator Ffg

Douglas E. Comer
Purdue University, comer@cs.purdue.edu

Report Number:
81-379

Comer, Douglas E., "The Flat File Database Generator Ffg" (1981). Department of Computer Science
Technical Reports. Paper 306.
https://docs.lib.purdue.edu/cstech/306

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

The Flat File Database Generator Fig

Douglas Comer

Computer Science Department
Purdue University
West Lafayetie, IN 47907

Seplember 1981

ABSTRACT

A flat flle is the simplest possible database. It consists of a
single, unformatted text file in which each line corresponds to a
record. k-1 occurrences of a separator character divide edch
record into k variable length fields; the separator character does
not otherwise appear in the file. Unlike most database systems,
the flat file system is not a single, large program. Instead, it con-
sists of a set of small, independent programs, called primitives,
that each perfoerm one basic operation. The user composes a sub-
set of the primitives by directing the cutput of one to the input of
the next in order te perform complex retrieval or update opera-
tions. Because they arc independent, primitives are easily
medified or replaced, and one can add programs to the set of prim-
itives. Both the selection of primitives as well as their implementa-
tion are discussed.

CSD-TR-379

" 1. Introduction

A fiat flle is the simplest possible database. It consista of a single text file,
F, contalning zero or more lines, where each line is thought of as =& reco;:i.
Records are further divided into k flelds, f,. [, .nfy Y k-1 occurrences of a dis-
tinguished separator character, S. Although k is fixed over all records, the
length of individual fields is not. The flat file generator, fIg, is a database system

that provides facilities Lo create, query, and modify a flat file database.

Unlike most commercial database systems that consist of one or two large
programs to process queries and modify the stored data (see DATE?5. ULLM8O0),
fig consists of many small programs, called primitives, that each perform one
basic operation. A user composes a subset of the primitives by directing the
output of one to the input of the next in order to perform a complex task.
Because the primitives each perform one basie operation, selecting an appropfi—
ate combination is stralghtforward and natural. Because primitives are
independent programs. they can be modifled or replaced, and one can add pr-o-
grams to the set. The ease of extension and modification is important in achiev-

ing flexibility because it allows one to tailor fig for each application.

Constructing systems as a set of primitives is not new. Kernighan and
Plauger [KEPL76] describe primitives for program and text manipulation; Han-
son [HANS79] extends them. Borden et. al {BOGS79] describe an electronic

mail preparation and reading system implemented in primitives.

Interestingly enough, most of the experiments with primitives have their
roots in the UNIX operating system [RITH78 KEMA79]. Unlike most systems
which encourage one to build large integrated programs, UNIX encourages one
to build independent programs and connect them together, It provides a simple

and efficient mechanism for passing data between running programs. 1t

includes a convenient and simple notation for describing a composition. 1t

-3-

treats 170 to flles, devices (like terminals), and other programs unifermly, so
bne does not need to know how a program will be used when writing it. UNIX
contains sets of primitives for text processing and language development.

The next section of this paper deseribes pertinent parts of the UNIX
environment in more detail, and gives the reader some appreciation of how UNIX
influenced the fiat file design. The following secticns describe the flat file primi-
tives, give an example of using flat files, and discuss their impl_ementation_ The
paper concludes by discussing the merits of systems constructed from primi-

tives.

2. The UNIX Environment

UNIX contains a large set of independent primitives, called comnmands, and

a.mechanism for composing them, called a shell. The UNIX shell [BOURT8] is &

simple programming language that can be used interactively (as a commeand
interpreter would be}, or invoked to read input from a file (as a programming
language interpreter would be). Shell programs are called shell scripis, or just
seripts. 1f one tries to execute a file that contains a shell seript, the system
automatically invokes the shell to interpret it. Thus, a shell script functions just
lixe a compiled program. In {act, some of the system commands are imple-

mented as shell scripts,

The shell has facilities to invoke commands, direct the output of one com-
mand to the input of the next, or direct the input (output) of a command to a
ﬁie or 1/0 device. Control statements (e.g., while, for, if, ete.) provide indefinite
iteration, conditional execution, and definite iteration much like conventional
programming languages. Unlike conventional languages, the shell only supports
one data type — that of character string. It relies on commands te evaluate
numeric expressions, test file status and accessibility, and handle complex corm-
putations.1 One learns quickly that the art of constructihg shell programs lies in

101 her shells, like the C-shell writlen at U.C. Berkeley, evaluate expressions directly.

-4 -

composing and invoking commands, not in using the shell exactly as one would
use Algol 60 or Pascal.

UNIX includes a mechanism for composing primitives called a pipe. Pipes,
denoted by "}" in shell scripts, connect the outpul from cne program to the

input of another. One writes
alb

to invoke programs a and b with the output from o connected to the input of b.

The line
margl | b arg2 arg3 | c

gpecifies a pipeline connecting the output of program a to the input of program
b and connecting the output of program & to the input of program c. Program a
has one argument (argl), program b has two (arg2 and arg3), while program ¢

has none. a, b, and ¢, could be the names of shell scripts or compiled programs.

UNIX contributed to the construction of fig in several other ways:

1. All system services are available at the command level. One can create
files, change protectlon modes, trap exceptions, and perform other tasks
directly from the shell in UNIX. On many systems such tasks requife
special programs, often in assembler language.

2. UNIX provides a rich set of text manipulation pfimitives that ffg uses
extensively.

3. UNIX is a late binding system. There is little distinction between data

and program; one can write a file and invoke the shell to run it as a
o8]
seript.

The UNIX environment is not perfect, but it contributed nicely to the exper-

imenkt.

3 Evolution of Flat File Primitives

Recall that a flat file consists of a single, unformatted text file where each
line corresponds to a record, and that each record is divided into variable length
flelds by occurrences of a separator character. The operations that one typi-

cally performs on a flat file include:

add new records to the file,
select record(s) from the file having certain characteristics,
delete record(s) from the file having certain characteristics,

change field(s) on specified record(s),
format the file for human consumption,
sort the records according to the contents of some field(s)

Our local version of UNIX contains many flat flles. One of the more wel
known, /efc/passwd contains a record for each user; it associates a symbolic
name, encrypted password, and other information with the user's login id.

Another flat file contains inventory information for computer terminals.

The terminal inventory database is significant for two reasons. First, it pro-

vided the early motivation and testbed for the flat flle experiment; it will be used -

" here to illustrate the process of choosing primitives. Second, it demonstrates
how the flat file system can be extended to each application. In particular, the
historical narrative that follows shows how the flat flle primitives evolved, and

how they have been extended for the terminal inventery applicatlon.

The first terminal inventory database consisted of two flat flles -- one for
"terminals” and the other for “ports”. Both were maintained by hand, using a
text editor. The former contained a record for each computer terminal, giving
" its type, serlal number, physical location, and connecticn to the machine. The

latter contained a record for each machine connection (port), giving, among

Y |

-6-

other things, the terminal that was connected to it. When the number of ports
and terminels grew to more than a handful, keeping the informatien in the Ltwo
files accurate and consistent became difficult. It was decided that a program

could be written to help with the maintenance. Unfortunately, thinking of the

data as two separate flles with many cross references made a program to mani-

pulate it both highly specialized and cumbersome.

The first step toward a flat flle database system occurred when the two data
files were combined into one, called ferminfo. Records in the terminfo file
corresponded either to a port or to a terminal: those with a null "terminal” fleld

corresponded te I/0 ports on the machine that were not connected to a termi-

nal, those with a null "port” field corresponded to terminals that were not con-

nected to the machine, and those with data for both "port” and "terminal” fields
corresponded te a connection. The point here is that the basic operations
worked on connections (terminal,port) rather then on terminals or ports; the

process of identifying those primitive operations brought this out.

Terminfo became the source of all information about terminals and ports
throughout the system. Al system flles are generated from il automatically,
eliminating the need to change them by hand every time a terminal is moved,
For example, the system expects the fle setc/flys to contain a line for each
port on the system, with a code indicating whether that port is connected to a
terminal or not (i.e. allows user login). A utility program was built to scan ter-
minfo and extract the information for seic tlys. Other utility programs were
built to extract information for other flles. Whenever terminfo changes, the util-
ity programs are run to correct other files throughout the system.

The set of utility programs te manipulate terminfo grew quickly, but there

was little or no attempt to maintain uniformity or to make them work well

together. There was a program called lookup to retrieve the recerd for a termi-

-7

nal with a given serial number, and one called format to write the database in a
neatly formatted fashion. The move toward a consistent, uniform set of primi-
tives began when lookup and format were modifled to work in conjunction with

each other. Using the modifled versions, a user could type
lookup -terminal 53 | format -

to obtain a neatly formatted listing (including headings) of the data for terminal
53. The change to the format primitive was simple: given a minus sign ("-") as an
argument, it formatted its input; otherwise, it formatted the entire terminfo file.
" Although a general purpose format primitive was a good idea, forcing the user to

distingulsh when it was used in a pipeline was not. Often, one forgot the argu-

ment as in:

lookup -terminal 53 | format

and received a listing of the entire file.

In spite of the problems with the utilities, others began to copy and modify
the set of ﬁrograms to create their own detabases. After some experience with
terminfo and related databases, the set of primitives were redesigned com-
pletely to achieve several goals:

1. The primitives should supply the ability to retrieve, sort, format, delete,

replace, and edit any database stored as a flat file.

2 All fields in the file should be named; one should not have to specify a

field by its relative position as in the early version and in seme of the
UNIX commands.

3. The database system should work from a single descriptor file that

described the fields, their names, and their format.

-8~

4. All programs should work together in a simple, uniform, and automatic

way, For example, it should be possible to retrieve a subset of the

records, sort them, and format them. One should not have to iype spe-

cial names or arguments to use the programs in a pipeline.

5. The system should protect against loss of information.

6. The system should be implemented as a set of primitives.

The redesign resulted in a flat file generator called fig. The next section

describes the fig primitives in detail and shows how they work together.

4. Primitives in Fig

The set of fig primitives includes the following (see Appendix A for a detailed

description of the parameters for each primitive).

delete

edit

enter
flelded
format

lookup

retrieve

showflelds

sortby

Omit specified records, write out the others.

Allow the u?;er to invoke a text editor on the database directly.
Edit makes a backup of the database for the undo ﬁrimit‘we.
Interactively enter records one at a time.

Change the contents of specified flelds on specifled records.
Formal the data for human consumption,

Retrieve records satisfying given criteria. Lookup is shorthand
for simple retrieval requests.

Retrieve records satisfying given criteria,

Display the fields description flle (usually as an aid for users who
forget field names).

Sort the input according to one or more fields.

o

-g-

undo Restore the entire database to its previous value.
update Replace the database by the file given as input.

verify Verify the internal consisiency of the data.

Fig achieves moét of the design goals listed above. The above primitives all
expeét their_ arguments to contain symbolic fleld names as specified in a fields
description file thatl thé user supplies when creating the database. They work
tc;gether. and automatically detect whether their input is connected to the out-
put of another program, reading from the database if it is not. The system is
implerﬁented as a set of primitives, and the system does have a limited form of
protection. The fellowing discussions show, in more detail, how the flat file prim-
itives achieve these goals.

The {Tg primitives depend on a fields description (FD) file to relate symbolic
field nammes to relative positions. The FD file contains k lines, one line Eo.r each of
the k fields in the ﬂat file. Each field is described by giving its relative position,
its name, its sort type {e.g.. numeric, to be placed in descending order), its
length on a formatted listing, and two lines of heading information to be printed

‘on formatted listings. The six items for each fteld are terminated by colons. For

example, the FD file:

1:1ast::20: Last Name:

2:first::20: First name:

describes the three flelds for records in a phone book. The first. field, named
"ast", holds a last name, the second field, named "first" helds a ﬂrst name, and
the third field, named "phone"”, holds a phone number. For purposes of sorting,
the third fleld is considered numeric; the first two are sorted in dictionary

order. When a fiat file is formatted using this description file, it will look like:

Sy AU Py SUSEA LTS,

=10 -

Last Name First Name Phone Num.

11111 falatal PPPPPP

where the actual data for last names, first names and phone. numbers appears
in place of 111, I, and pppppp. Flelds longer than the number of columns
allocated in the listing are truncated, and flelds shorter than the number of
columns allocated are padded with blanks; the user can specify whether the

padding is to the right or left,

The retrieve primitive is especially interesting because it illustrates the
- power of the flat file system. Retrieve takes as an argument a Boolean expres-
sion, B, and retrieves all records that satisfy B. The expression can contain
comparative operators less than, (<), greater than, (>), equal to (==), not equal
to (I=), ete., logical operators and (&&), or (||), and not (!), arithmetic operators
(+, - * /. ete.), and pattern matching operators maiches (expr~/pattern/), and
does not match (u*a-x]_:n'!"v.o’patter:'n/).2 One can ask questions like "find all records

where the last name starts with the letter € and contains the lefter
retrieve 'last~/~C.*r.*/'

or "find all records where the tax field is greater than 50 and the department

field is equal to cs or where the manager is smith and the department is not cs”
retrieve '(tax>50&é&dept=="cs"}) || (manager=="smith"&&dept!="es")’

It Is important to note that one can only ask for intra-record comparisons, not
for iﬁter-record ones. Thus, one cannot ask for records with salary field greater
than the previous one, nor can one ask for all records where the salary fleld {s
greater than the salary field of the 2nd record.

%See Appendix B for details of expression syntax.

-11-

The flat flle primitives work well together, and automatically read from the
database when their input is not connected to another program. For example,

once the fleld description flle and database are in place, one merely types:

format

to obtain a formatted listing of the data with headings. Typing
sortby phone | format

instead, causes format to read and format the output of the sortby primitive. In

this example, the listing will be sorted by phone number. Similarly, typing:
retrieve last=="comer" | sortby phone | format

causes the retrieve primitive to select all records with last name equal to the
string "comer", pass the results to the sortby primitive which will order them by
phone number before passing them to formal where they will be for'n:m.tt.ed.:3

One need not specify the origin of the data as a parameter,

Fig helps prevent the loss of information through the update primitive. To
make a permanent change to the data, one must create the new file and pipe it

into update. Thus, to sort the example database according to last name, cne

types:

sortby last | update

‘Update saves a copy of the old file before replacing it, so one can recover the

previous state of the database by typing:

undo

3}1&.33&11&]1 syntax actually requires that the quotes be escaped by typing & backslash in front

L

-12-

Update is more sophisticated than one might expect. It actually unlocks, writes,
and then relocks the database so that under usual circumstances even the
owner cannot write directly to the file. Keeping the data file unwritable is espe-
cially important in UNIX where it is easy to direct the output of a program to a
file, or Lo accidently pass a file name as an argument to a command. Update
also maintains a mutual exclusion among processes that wish to update the
database. The most common way to enter records interactively is by invoking

the primitive enter which prompts for each field:

enter | update

One of the chief advantages of the primitives-based approach is that it
allows users to intermix their own primitives with those that are supplied. For
example, our fig version of the terminfo database has a command to‘ Mmove a t;er—
minal from one port to another because terminals are moved frequently. --In
another application, a primitive called "gather” has been added to gather statis-
ties on program use and write them into a flat file. The fig system itself does not
need to know aboul moving £erminals. gathering statistics, or any of the other
special commands that users invent. Yet having the primitives from fIg do most

of the work made both applications significantly easier to implernent.

The evolution of the flat flle primitives took about 3 months - much longer
than expected. Most of the time went inte testing. Several users built flat file
databases, but measurements showed that they spent most of their time doing
simple retrieval and formatting. Gradually, they added their own primitives, and
began exploring new ways to connect old ones. Of course, others suggested
changes that were tried in later versions.

From the experience, two observations can be maﬁe about the choice of

primitives:

(]

-13-

1. Ad hoc extensions to a unified set of primitives almost always result in

disaster. For éxample. at one point we added a "delete” primitive that

-actually modified the database by retrieving records that were not to be

deleted and passing them to update {(unlike other primitives that had to-

be composed with update explicitly). One had to remember that delete
worked differently than other commands, and that it could not be com-
posed with them. Worst of all, composing delete with update created iwo
processes that tried to modify the database, so one of them gave the

cryptic report: “database is locked while another process updates it".
2. The greatest asset in the design of a clean, uniform set of primitives is a
single person who has ultimate responsibility. This is akin to the chiel

programmer concept [BAKE72].

3. Designs by a single individual are prone to gross emissions in functional-

ity. This should not come as a surprise, but it did.

5. The Implementation of Ffg Using UNIX Programs

If the primitives-based approach to computing works so well, why not use it
to build the primitives themselves? This section answers that question by
explaining how the fig system, including the primitives, are built from existing
UNIX programs. It discusses the UNIX programs upon which the flat file genera-

tor are built, the generation of a database. and binding of names.

The UNIX command awk [AHKW79], forms the backbone of the fig retrieve
and format primitives. Awkl invokes an interpreter for a simple, but powerful
string processing language. The interpreter reads an awk program, soxﬁetimes
cailed an owk scripf, and then reads and processes, a texl file line-by-line
according to the program. Awk divides each line of the input flle into fields

based on cccurrences of a separaltor character, and permits one to examine or

————— .

-14 -
A}

write the contents of the (th geiq, (To reference the ith field of the current
record, one writes 8i in the awk program). Awk supports asgignment state-
ments, fairly powerful arithmetic, logical, and string operators, and even for-
matted output. In short, an awk script suffices for flat file retrieval or format-

ting provided one finds a way to translate field names into positional references.
How can an expression containing field nafnes be processed by awk which
only understands positlonal references? One might expect the implementation
of retrieve to solve the problem as follows:
1. A user invokes retrieve, passing it an expression, B, that contains fleld
names.
2. Relrieve passes the expression to a program, T, that parses the expres-
| sion, translates fleld names into positional references, merges the
modifled expression with the skeleten of an awk program, and writes the
result on file F.
3. Retrieve invokes awk giving it F as inpuf.. The program contains enly
positional references.
4. Interpreting the program on F, awk reads the database, evaluates the
expression for each record, and writes out those that satisfy it.
This design was not_ used because it meant writing a program to parse end
translate expressions; the objective was to use existing programs.
Retrieve turns the solution around, leaving the expression alone, but giving
awk enough information to evaluate it. To do so, retrieve introduces k variables
into the awk program and assigns them the contents of the k fields wii:h k

assignment statements. The essential piece of Lthe awk seript is:

D

-15-

field, =31
ﬁeld2=32

ﬂéldk=3k

if (EXPRESSION) write out the record
where field; denotes the {'P field name and EXPRESSION denotes the Boolean
expression as typed by the user. When evaluating the expression, awk binds
references to field names to the variables that have been assigned.the contents
of the field. Making the extra assignments introduced some extra overhead;
measurements are given in a later section. Similar constructions were used in

other commands.

Implementing most of the remaining primitives from UNIX commands was

not difficult, but a few problems arose. Processing minimal abbreviations for
field names presented the worst challenge because no simple corbination of
UNIX commands produced the desired result. For example, if the set of possible
fleld names are: "salary”, "dept", "division”, "dependents”, and "name", one need
only give sortby a preflx of the fleld name that uniquely identifles it (this
specification was made before the implementation was considered). It means

that "n” suflices for "name”, but nothing shorter than "depe” may be used to

designate "dependents” because it does not distinguish "dependents" from

"dept”. The shell supports pattern matching, so such abbreviations can be han-
died there. To do so, one must translate a list of field names like "salary",
“dept”, division”, "dependents”, and "name” into a list of patterns like “s*",
“dept”. "di*", "depe*”, and "n*". Flg performs these translation with an awk
seript, although it is mere or less a conventional prograrﬁ. The result is Lhat {Tg

" contains no compiled programs, but it does contain some programming,

Fig is a more than a collection of shell scripts for the primitives; it is a fat

-

- 18 -

file database generator as well. When invoked as a command, {Tg builds a flat file
database system, including a copy of the primitives, a field description file, and
an access command. The user supplies information on the separator ch;:aracter.
protection modes, felds description file, and the location of the access com-

mand; fig generates the necessary files.

Each flat file database resides in a separate directory along with copies of
the primitives and two subdirectories: "Specs” and ".system”. The subdirectlr.)ry
Specs contains specifications like the fields descriptions that a user may
change. Such changes are infrequent, however, so the information is kept out of
the main directory. Additional files, that the user should not change, are kept in

the .system subdirectory (e.g., mutual exclusion lock files).

Each flat file has an access command that one invokes to move to the data-
base environment. When invoked, an aceess command changes the user to the
database directory, records the user's presence, and invekes an interactiv.e
shell that reads and processes commands. After the user finishes work and exits
from the interactive shell, the access command returns to the environment
from which it was invoked. Normally, only one user can gain access to a flat file
at a time: the access command refuses to grant access te a dat&base that is in
use. One can obtain nonexclusive use, find the status of active users. when they
began, and their system identification. One can also ask for the creation time,
mode. and size of the database and backup files.

I"fg optimizes the primitives by performing some bindings early. For exc;.m-
ple, when fig constructs the retrieve primitive, it reads the field description flle
and binds field names into the shell script as described earlier in this seclion.
This simple optimization improves performance dramatically becausc it elim-
inates the need to open the fleld description flle, build the awk program, and

have awk read the program back in. It also means that the user must inform

AR

-17 -

the system of changes in the description flle. Whenever such a change occurs,
tHe primitive rebuild will correctly recreate the primitives (including itself; if
necessary). One would expect such changes relatively infrequently, however,

when compared to the other operations.

Unlike most primitives which must be rebuilt manually, the format primi-
tive is capable of detecting new formats automatically. The user views format as
a late binding command, one that searches a special directory for a named for-
mat description flle every time one invokes it. Actually, the names and format
‘specifications are bound into the shell script to speed execution. The command
searches for new formats only if the named file has not been beound previously.
When it detects that a new flle exists but has not been bound, format moves
if.self out of the way, uses rebuild to create a new version of itself, and then
replaces the running version with the new one (i.e., performs a UNIX exec). Sub-

sequent uses of the new format run at high speed.

8. Execution speed

The obvious advantage of early binding is execution speed; the obvious
disadvantage is user impact. As on most timesharing systems, performance is
best measured by response time. Users gladly tolerate a response delay of a few
seconds for retrieval from a 200-line database, but they will not weit 30 seconds
for the sarme information. Without early binding, response' times for a pipeline of
five primitives approached 30 seconds on our meoderately loaded system. On the
other hand, the optimized versions of the primitives were able te handle much
larger files. Table 1 shows response times for a database of 1900 records. In the
table, the command "cat" is a UNIX program that copies a flle to its outpul
unchanged; one expects cat to run at the maximum possible speed. Another
UNIX command, "grep", seans a file and prints those lines that match a pattern.

Finaily. the UNIX command "we" counts the lines, words, and characters in a file.

_— T e e g o

WM T e el b eta

command
primitive

grep
we
retrieve

awk (retrieve program
called directly)

awk (retrieve program
positional references)

format
format (output discarded)
cat

cat (output discarded)

_18—

Table 1.

response time
in seconds

4(2.2 cpu)
4(1.9 cpu)
22(18.1 cpu)

21(17.7 cpu)

17(10.9 cpu)

2:84(40.4 cpu}
46(20.8 cpu)
1:48(5.6 cpw)

6(3.2 cpu)

Times for various flat file primitives and UNIX commands
on a file of 1923 lines, 101204 characters. Timings
reported here are the mean from several runs. Alarge
variation in real time occurred with system load.

Unfortunately. all times, especially the real time, varied under systern load.

Still, several observations can be made. First, the highly optimized "cat" com-
mand copies a file to the user's terminal at roughly 937 characters/second (real !
time), while the flat flle primitive "format" displays a formatted version of the
same file at 900 characters/second. In both cases, the ‘system 1/0 speed, not
the process speed limited the display speed (the terminal used for testing ran at
9600 baud). Second, the introduclion of variables and assignments in the awk QN |
program during retrieval produced a measurable delay in processing. The aver- |

age real time required to process a 1900 line file increased from 17 to 22

-19-

seconds (29%), but very few users notice any difference. Third, the time
required for the shell to parse the seript, redirect the input and output, and
start execution remained very small. We conclude that rewriting the primitives

in a lower level language would produce little or no benefit te the user.

| ?. Fajlures of Fig

So far, the primitives-based implementation of fig has been described in
glowing terms. But the primitives approach has its limitations as well. Prob-
lems can be separated into three main categories: error detection problems,
optimization problems, and error propagation problems.

Some of the error detection problems in fig are inherent in the approach,
others arlse from the implementation. Because a primitive cannot know what
other primitives precede it or succeed it in a pipeline, detection of some errors

is impossible. For example, typing:
format | update

will replace the entire database with a formatted version because update cannot
validate its input. Of course, it could detect badly misformed files like those
without separator characters, but it cannot know what the user had in mind. On
the other hand, syntactic errors in expressions given as an argument to the
retrieve primitive go undetected until ewk scans it. These errors could be

detected earlier (and with better diagnostics) by a better implementation.

One of the most obnoxious errors that goes totally undetected oceurs in:
retrieve name="Comer"

which retrieves no records from the file because the shell strips off the quote
marks and awk assumes Comer is an uninitialized variable equal to the null

string. One must escape quotes:

-20-
retrieve name==\"Comer\"

or put the entire expression in single quotes. The syntax is awkward at best; it is
an example of the sort of handicap inherent in a system based on primitives,
Error recovery is difficult in any system; a pipeline only makes the problem

harder. Consider the pipeline:
sortby error | retrieve expression [update

where the argument to sortby contains an error. What should sortby do? If it
complains about the error and gives up, retrleve, the next program in the pipe,
will receive an empty input file, as will update. Thus, a simple error in the argu-
ment resuits in an empty database. If, on the other hand, sortby complains
about the error and proceeds to copy the entire database to its output, the
information may be preserved, but left in an unexpected state. Clearly, a

mechanism to inform pipe participants of error conditions is needed.

Computations expressed as a composition of primitives cannot always be

optimized. Consider the simple example:
sortby name | retrieve salary==20000 | format

which sorts the entire database by name and then retrieves those records with
salary equal to 20000. If the database is large compered to the number of

records with salary equal to 20000, rearranging the pipe into:
retrieve salary==20000 | sortby name | format

might drastically reduce processing requirements, but there is no way to make
such an optimization il the system handling the composition does not know

about the retrieve and sortby primitives.

-21 -

Finally, constructing programs out of existing parts may severely limit what
ene can express easily. Initially, plans called for a second type of database sys-
tem, one that allowed records to span multiple lines. It turned out to be fairly
difficult because awk could not recognize such a format. If awk had supported
the notion of a "record separator” as it did the notion of "field separator”, the

task would have been trivial.

8. Conclusions

The flat flle experiment proved successful in three ways. It provided con-
crete experience in the design of a set of primitives, it provided experience
using UNIX primitives for a moderately sophisticated system, and it produced
useful software along the way.

Imptementing the fg primitives out of existing UNIX programs dramatically
inereased progrémmer productivity. Because the system consisted of small
programs, a given primitive could be changed without affecting the others, And
because primitives were constructed from existing programs, they were easier
to change. Experimentation became feasible. New proposals were actually
implemented, tested, and revised. Asa result of more time for design and test-
ing, the system turned out to please more users.

We conclude that creating programming as a set of independent primitives
is a viable alternative to the current style of creating large programs from
seratch, It increases programmer productivity by raising the level of the
language in which one composes programs. To succeed, such an appreach
requires: a library of correct, reliable programs, an efficient mechanism Lo
interconnect them, and expt_arimental validation that a set of primitives is com-
plete, uniform, consistent, and easy to use.

More research is needed to develop an adequate model and implementation

-92 -

of error detection and recovery for programs connected in a pipeline.

(i

[AHKW79]

[BAKE?2]

[BOGS79] -

[BOUR?8]

[DATE75]

[HANS78]
[KEMA72]
[KBPL76]

[RITH78]

[ULLMBO]

-9
References

A. Aho, B. Kernighan, and J. Weinberger, "Awk -- A Pattern Scanning
and Processing Language,” Softwore FProctice and Fzparience, B4
(April 1979), R67-279. : '

F. Baker, "Chief Programmer Team Management of Production Pro-
gramming,” IBM Systems Journal 11:1 (1972}, 56-73.

B. Borden, R. S. Gains, and N. Shapiro, "The MH Message Handling
System: User’s Manual," Technical Report R-2367-AF, Rand Corpora-
tion, November, 1979.

S. Bourne, “"The UNIX Shell,” Bell System Technical Journal 57:8 Parl
2 (July-August 1978}, 1871-1990, .

C. Date, 4n fntroduction to Dotabase Systems, Addison Wesley, 1975.

D. Hanson, "Software Tools Programmier’s Manual," Technical Report
TR78-15, University of Arizona, 1979,

B. Kernighan and J. Mashey, "The UNIX Programming Environment,"
Software Practice and Ezperience, 9:1 (January 1979), i-15,

B. Kernighan and P. Plauger, Software Tools, Addison Wesley. 1978,

D. Ritchie and K. Thompson, "The UNIX Time Sharing System,” The
Bell System Technical Journal 57:6 Part 2 (July-August) 1978, 1905-
1930,

J. Ullman, Principles of Database Systerns, Computer Science Press,
1980.

-24 -
Appendix A: A Summary of FFG Commands

delete Booleanezpression

Delete writes out all records which do not satisfy the given Hooleenerpres-
sion (i.e., it deletes those records that do satisfy the Foalean-ezpression).

edit [—e editor]
Edit invokes the user's default editor (edifor if —e is specified) on the data-
base. Only update and edit change the data.

enter
Enter is an interactive program used to create records for the database.
The most commeon use is enferjupdate -z which adds the new records to the

old ones.

ficlded Booleanezpression Fieldassignments
Fielded writes a copy of the database in which records that mateh the
Booleanerpression have modifications as specified in the fieldossignments.
The fleldassignmenis consist of one or more assignment statements
separated by semicolons. Each assignment is of the [orm
fieldnarne =ezpression. .

format [—fmt] : :
Without a parameter, format prints its input in columns; with parameter X,
format prints input according to format file Specs/X.fmt

lookup [—fieldnameprefiz] pattern ...
Lookup is a shorthand for simple retrievals: it writes on its output all those

records which match the potiern. 1f —fieldnameprefiz i3 specified before a
pattern then the pattern match will be restricted to that field. The prefix
must be unambiguous. Lookup matches each pattern against the database
in turn, so records that mateh more than one pattern will be written in the
cutput more Lhan once.

rebuild [commandname]
Rebuild will reconstruct commands after a change to the field specification
file, Without an argument, rebuild will reconstruct all commands.

retricve Booleanezpression
Retrieve writes on its output those records for which the Booleanezpression

holds.

status [options...] :

Status reperts the status of the mutual exclusion lock, database and
backup files, users accessing the database, and exclusive use lock. It can
also be used to alter the status of locks, user access, or to force a backuyp.
Under noermal circumstances, the status command is not required; it is
intended to help users clean up lock files after a system crash or other
abnormal process termination. ln general, lower case arguments requesl
status information. while uppcrcase arguments aller the slalus. The
options include:

L

-25-

—b) — show backup file status

—d -- show database file status

—e -- show exclusive access status

-1 — show databaae lock file status

-] — suppress detail in output

-1 — show status of active users

—B ~ —force a Backup

-k -- request Exclusive use access

—Kn -- Kill user with process id n (—u lists process 1ds)

-L -- Lock the database

—M — return to Multiuser access

-R — Reset (i.e. -K) all user access

-U : -- Unlock the database
showfields

Showfields prints the current field description informaticn.

sortby [—key] fieldnameprefiz ...
Sortby writes a sorted version of the database using the list of

fieldnameprefizes to determine the sort(s) to be done. The first fieldnome
gives the primary sort field. Optional keys may be any of the characters
bdfinr as in the UNIX soré(1) command, which will override these in the fleld

specifications flle.

undo :
Undo will restore the data file to its previous value. Only one backup is

kept; there is no way to recover older copies.

update [—a]
Used at the end of a pipe, update writes its input to the database; parame-
ter —e means append. Only update and edit actually change the data.

verify [conditionname | Booleanezpression] ...
Verify checks the file to make sure all records adhere to the named condi-
tion. Condifionnames are given in the verification file; unrecognized strings

are taken to be literal conditions.

A

-28-

Appendix B: Boolean Expressions in flat files

<Hoolean—exp> —>
-
->
-2

<Expression> —>
>
<Comparison> —>
—>
—->
->
-
—->
—>

<Pattern match> —>
—>

<Pattern> ->

<Term?> -2

<Primary> —>

<Factor> -

Notes:

<Expression> || <Expression>
<Expression> && <Expression>
| <Expression>

<Expression>

<Comparison>
<Pattern match>

<Term> == <Term?>
<Term> != <Term>
<Term> < <Term>
<Term>» <= <Term?>
<Term>» > <Term>
<Term>» »>= <Term>

<Term>

<Term> ~ /<Pattern>/ (does match)

<Term> I~ /<Pattern>/ - (does not match)
pattern (UNIX ed pattern syntax)

<Primary> + <Primary>

<Primary> — <Primary>

<Primary> <Primary> {concatenation)
<Prirnary>

<Factor> * <Factor>

<TFactor> / <IMactor>
<Factor> % <Factor> {mod)
<Factor>

fieldname

numeric value

"any string of characters"

NR

NF

length(<Term>) (length of a string)
substr(<Term> , start, len) (substring function)
log{ <Term>)

sqrt(<Term>)

int(<Term>) (truncate)

1. Concatenation is allowed between objects of any type. In particular, numeric
values may be concatenated onto strings.

2’ NR is always the number of the record being examined, and NF is always the
number of fields in the record being examined.

T

	The Flat File Database Generator Ffg
	Report Number:
	

	tmp.1307986960.pdf.Fw83t

