
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1981

The Flat File Database Generator Ffg The Flat File Database Generator Ffg

Douglas E. Comer
Purdue University, comer@cs.purdue.edu

Report Number:
81-379

Comer, Douglas E., "The Flat File Database Generator Ffg" (1981). Department of Computer Science
Technical Reports. Paper 306.
https://docs.lib.purdue.edu/cstech/306

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

The Flat File Database Generator Ffg

Douglas Gomer

Computer Science Department
Purdue University

West Lafayette, IN 47907

September 1981

ABSTRACT

A fiat file is the simplest possible database. It consists of a
single. unformatted text file in which each line corresponds to a
record. k-l occurrences of a separator character divide each
record into k variable length fields; the separator character does
not otherwise appear in the file. Unlike most database systems,
the fiat file system is not a single. large program. Instead, it con­
sists of a set of small, independent programs. called primitives.
that each perform one basic operation. The user composes a sub­
set of the primitives by directing the output of one to the input of
the next in order to perform complex retrieval or update opera­
tions. Because they arc independent, primitives are easily
modified or replaced, and one can add programs to the set of prim­
itives. Both the selection of primltives as well as their implementa­
tion are discussed.

CSD-TR-379

-2-

1. Introduction

A fiat flle is the simplest possible database. It consists of a single text file.

F. containing zero or more lines, where each line is thought of as a record.

Records are further divided into k fields, f l , f 2, "',(k by k·l occurrences of a dis­

tinguished separator character. S. Although k is fixed over all records, the

length of indlvtdual fields is not. The fiat file generator, fig, is a database system

that provides facilities to create, query. and modify a flat file database.

Unlike most commercial database systems that consist of one or two large

programs to process queries and modify the stored data (see DATE75. ULLMBO),

ffg consists of many small programs, called primitives, that each perform one

basic operation. A user composes a subset of the primitives by directing the

output of one to the input of the next in order to perform a complex task.

Because the primitives each perform one basic operation, selecting an appropri­

ate combination is straightforward and natural. Because primltives are

independent programs. they can be modified or replaced. and one can add pro­

grams to the set. The ease of extension and modification is important in achiev­

ing fiexibility because it allows one to tailor fig for each application.

Constructing systems as a set of primitives is not new. Kernighan and

Plauger [KEPL76] describe primitives for program and text manipulation; Han­

son [HANS79] extends them. Borden et. al. [BOGS79] describe an electronic

mail preparation and reading system implemented in primitives.

lnterestingly enough, most of the experiments with primitives have their

roots in the UNIX operating system [RITH7B,KEMA79]. Unlike most systems

which encourage one to build large integrated programs, UNIX encourages ona

to build independent programs and connect them together. It pro~ides fl simple

and efficient mechanism for passing data between running programs. It

includes a convenient and simple notation for describing a composition. It

- 3-

treats 110 to files, devices (like terminals), and other programs uniformly, so

bne does not need to know how a program will be used when writing it. UNIX

contains sets of primitives for text processing and language development.

The next section or this paper describes pertinent parts of the UNIX

environment in more detail, and gives the reader some appreciation of haw UNIX

influenced the fiat file design. The following sections describe the fiat file primi­

tives, give an example of using fiat files, and discuss their implementation. The

paper concludes by discussing the merits of systems constructed from primi­

tives.

2. The UNIX Environment

UNIX contains a large set of independent primitives, called commands, and

a- mechanism for composing them. called a shell. The UNIX shell [BOUR78] is a

simpie programming language that can be used interactively (as a command

interpreter would be). or invoked to read input from a file (as a programming

language interpreter would be). Shell programs are called shell scripts. or just

scripts. If one tries to execute a file that contains a shell script. ,the system

automatically invokes th~ shell to interpret it. Thus, a shell script functions just

like a compiled program. In tact, some of the system commands are implew

mented as shell scripts.

The shell has facilities to invoke commands, direct the output of one com­

mand to the input of the next, or direct the input (output) of a command to a

file or I/O device. Control statements (e.g .. while, JOT, iJ, etc.) prOVide indefinite

iteration, conditional execution, and definite iteration much like conventional

programming languages. Unlike conventional languages, the shell only supports

one data type - that of character string. It relies on commands to evaluate

numeric expressions. test file status and accessibll1ty. and handle complex com­

pulations. 1 One learns qUickly that the art of constructing shell programs lies in

IOther shells, like the C-9hell written at U,C. Berkeley, evaluate expressioIUI directly.

r····

- 4-

composing and invoking commands, not in using the shell exactly as one would

use Algol 60 or PascaL.

UNIX includes a mechanism for composing primitives called a pipe. Pipes,

denoted by "I" in shell scripts. connect the output from one program to the

input of another. One writes

alb

to invoke programs a. and b with the output from a. connected to the input of b.

The line

a argl Ib arg2 arg31 c

specifies a pipeline connecting the output of program a to the input of program

b and connecting the output of program b to the input of program c. Program a

has one argument (argl), program b has two (arg2 and arg3). while program c

has none. fl., b. and c, could be the names of shell scripts or compiled programs.

UNIX contributed to the construction of fig in several other ways:

1. All system services are avallable at the command level. One cnn create

illes, change protectlon modes, trap exceptions. and perform other tasks

directly from the shell in UNIX. On many systems such tasks require

special programs, often in assembler language.

2. UNIX provides a rich set of text manipulation primitives that fig uses

extensively.

3. UNIX is a late binding system. There is little distinction between data

and program; one can write a file and invoke the shell to run it as a

script.

The UNIX environment is not perfect, but it contrLbuted nicely to the exper­

iment.

OJ

j

-5-

3. Evolution of Flat me- Primitives

Recall that. a fiat file consists of a single. unformatted text tlle where each

Une corresponds to a record. and that each record is divided into variable length

fields by occurrences of a separator character.. The operations that one typi­

cally perro~ms on a fiat file include:

add

select

delete

change

format

sort

new records to the file.

record(s) from the file having certain characteristics,

record(s) from the file having certain characteristics,

field(s) on specified record(s),

the file for human consumption,

the records according to the contents of some field(s)

Our local version of UNIX contains many fiat files. One of the more well

lmown, /etc /passwd contains a record for each user; it assocIates a symbolic

name, encrypted password, and other information with the user's login id.

Another flat file contains inventory 'information for computer terminals.

The- terminal inventory database is significant for two reasons. First, it pro­

vided the early motivation and testbed for the fiat file experiment; it will be used

here to illustrate the process or choosing primitives. Second, it demonstrates

how the flat file system can be extended to each application. In particular, the

historlcal narrative that tollows shows how the flat file primitives evolved, and

how they have been extended for the terminal inventory application.

The first terminal inventory database consisted of two fiat files -- one for

"termlnals" and the" other for "ports", Both were maintained by hand, using a

text editor. The former contained a record for each computer terminal. giving

its type. seriai nwnber, physical location, and connection to the machine. The

latter contained a record for each machine connection (port). giving, among .~

- 6-

other things, the terminal that was connected to it. When the number of ports

and terminals grew to more than a handful. keeping the information in the two

files accurate and consistent became difficult. It was decided that a program

could be written to help with the maintenance. Unfortunately, thinking of the

data as two separate files with many cross references made a program to mani-

pulate it both highly specialized and cumbersome.

The first step toward a fiat file database system occurred when the two data

files were combined into one, called termin/a. Records in the termin.i'o file

corresponded either to a port or to a terminal: those with a null "terminal" field

corresponded to 110 ports on the machine that were not connected to a term!-

nal, those with a null "port" field corresponded to terminals that were not con-

nected to the machine, and those with data for both "port" and "terminal" fields

corresponded to a connection. The point here is that the basic operations

worked on connections (terminal,port) rather then on terminals or ports; the

process of identifying those primitive operations brought this out.

Terminfo became the source of all information about terminals and ports

throughout the system. All system files are generated from it automatically,

eliminating the need to change them by hand every time a terminal is moved.

For example, the system expects the llle /etc/ttys to contain a Hne for each

port on the system, with a code indicating whether that port is connected to a

terminal or not (Le. allows user login). A utility program was built to scan ter-

minfo and extract the information for /etc/ttys. Other utility programs were

built to extract information for other files. Whenever terminfo changes, the util-

ity programs are run to correct other files throughout the system.

The set of utility programs to manipulate terminfo grew quickly, but there

was little or no attempt to maintain unlformity or to make them work well

together. There was a program called lookup to retrieve the record for a termi-

-7-

nal with a given serial number, and one called format to write the database in a

n~atly formatted fashion. The move toward a consistent, uniform set of pri.ml-

lives began when lookup and format were modified to work in conjunction with

each other. Using the modified versions, a user could type

lookup -terminal 53 I format -

to obtain a neatly formatted listing (including headings) of the data for terminal

53. The change to the format primitive was simple: given a minus sign (".11) as an

argument. it formatted its input: otherwise, it formatted the entire terminfo file .

. Although a general purpose format primitive was a good idea, forcing the user to

distinguish when it was used in a pipeline was not. Often, one forgot the argu-

rnent as in:

lookup -terminal 53 Iformat

and received a listing of the entire file.

In spite of the problems with the utilities, others began to copy and modify

the set of programs to create their own databases. Mter some experience with

termlnfo and related databases, the set of primitives were redesigned com-

pletely to achieve several goals:

1. The primitives should supply the ability to retrieve, sort, format, delete.

replace. and edit any database stored as a fiat file.

2. All fields in the flle should be named; one should not have to specify a

field by its relative position as in the early version and in some of the

UNIX commands.

3. The database system should work from a single descriptor file that

described the fieids. their names. and their format.

~,

... j

- B -

4. All programs should work together in a simple, uniform. and automatic

way. For example, it should be possible to retrieve a subset of the

records, sort them, and format them. One should not have to type spe-

cial names or arguments to use the programs in a pipeline.

5. The system should protect against loss of information.

6. The system should be implemented as a set of primitives.

The redesign resulted in a flat me generator called fig. The next section

describes the fig primitives in detail and shows how they work together.

4. Primitives in Ffg

The set of fig primitives includes the following (see Appendix A for a detailed

description of the parameters for each primitive).

delete

edit

enter

fielded

format

lookup

Omit specified records, write out the others.

Allow the user to invoke a text editor on the database directly.

Edit makes a backup of the database for the undo primitive.

Interactively enter records one at a time.

Change the contents of specified fields on specified records.

Format the data for human consumption.

Retrieve records satisfying given criteria. Lookup is shorthand

for simple retrieval requests.

retrieve Retrieve records satisfying given criteria.

showtlelds Display the fields description file (usually as an aid for users who

forget field names).

sortby Sort the input according to one or more fields. C'J
. ,

undo

update

verify

- 9 -

Restore the entire database to its previous value.

Replace the database by the file given as input.

Verify the internal consistency of the data.

I
.~

1

Ffg achieves most of the design goals listed above. The above primitives all

expect their arguments to contain symbolic field names as specified in a fields

desGription file that the user supplies when creating the database. They work

together. and automatically detect whether their input is connected to the out-

put of another program. reading from the database if it is not. The system is

implemented as a set of primitives, and the system does have a limited form of

protection. The follOWing dlscussions show, in more detail. how the flat file prim-

itives achieve these goals.

The fig primitives depend on a :fields description (FD) file to relate symbolic

field names to relative positions. The FD :file contains k lines, one line for each of

the k fields in the flat file. Each field is described by giving its relative position,

its name. its sort type (e.g .. numeric. to be placed in descending order), its

length on a formatted listing. and two lines of heading information to be printed

'on formatted listings. The six items for each field are terminated by colons. For

example. the FD :file:

1:1ast::20: Last Naroe:-------------:

2:flrst::20: First name:--------------·---;

3:phone:n: 13:Phone Number:----------:

describes the three :fields for records in a phone book. The first. field, named

"last", holds a last name, the seconq field, named "first" holds a first name, and

the third field, named "phone", holds a phone number. For purposes of sorting,

the third field is considered numeric: the first two are sorted in dictionary

order. When a fiat file is formatted using this description file, it will look like:

(\' J _\

Last Name

- 10 -

First Name Phone Num.

lIUIl flfltl pppppp

where the actual data for last names, first names and phone. numbers appears

in place of nUll, tIfIff, and pppppp. Fields longer than the number of columns

allocaled in the listlng are truncated, and fields shorter than the number of

columns allocated are padded with blanks; the user can specify whether the

padding is to the right or left.

The retrieve primitive is especially interesting because it illustrates the

power of the flat file system. Retrieve takes as an argument a Boolean expres~

sion, B, and retrieves all records that satisfy B. The expression can contain

comparative operators less than. «), greater than. (»; equal to (==). not equal

to (!=), etc.. logical operators and (&&). DT (11), and not (!), arithmetic operators

(+. -.•, I, etc.). and pattern matching operators matches (expr...... /pattern/), and

does not match (expr! /paltern/).2 One can ask questions like "find all records

where the last name starts with the letter C and contains the letter r"

retrieve ·last...... /C,·r.·I'

Dr "find all records where the tax field is greater than 50 and the department

field is equal to cs or where the manager is smith and the department is not cs"

retrieve '(tax>50&&dept=="cs") II (manager=="smith"&&dept!="cs")'

It Is lmportant to note that one can only ask for intra-record comparisons, not

fDr inter-record ones. Thus, one cannot ask for records with salary field greater

than the previDus one. nor can one ask for all records where the salary field is

greater than the salary field Df the 2nd record.

2See Appendix 8 for details o! expression synlW[.

- 11 -

The flat file primitives work well together, and automatically read from the

database when their input is not. connected to another program. For example,

l;>nce the field description tlle and database are in place, one merely types:

format.

~o obtain a formatted listing of the data with headings. Typing

sortby phone Iformat

instead. causes format to read and format the output of ,the sortby primitive.]n

this example, the list.ing will be sorted by phone number. Similarly, typing:

retrieve last=="comer" I sortby phone I format

causes the retrieve primitive to select. all records with last name equal to the

string "comer" ,. pass the results to the sortby primitive which will order them by

phone number before passing them to format. where they will be formatted.
3

One need not specify the origin of the data as a parameter.

Ffg helps prevent the loss of information through the update primitive. To

make a permanent change to the data, one must create the new file and pipe it

into update. Thus, to sort the example database according to last name, one

types:

sortby last Iupdate

.Update saves a copy of the old file before replacing it. so one can recover the

previous state of the database by typing:

undo

3The shell syntax a.ctually requires that the quotes be escaped by typing a be.cblash in front
of them.

L()

- 12 -

Update 1s more sophisticated than one might expect. It actually unlocks, writes,

and then relocks the database so that under usual circumstances even the

owner cannot write directly to the file. Keeping the data flle unwritable is espe­

cially important in UNIX where it is easy to direct the output of a program to· a

file, or to accidently pass a file name as an argument to a command. Update

also maintains a mutual exclusion among processes that wish to update the

database. The most common way to enter records interactively is by invoking

the primitive enter which prompts for each field:

enter Iupdate

Due of the chief advantages of the primitives-based approach is that it

allows users to intermix their own primitives with those that are supplied. For

example, our fig version of the terminfo database has a command to move a ter­

minal from one port to another because terminals are moved frequently. In

another application. a primiUve called "gather" has been added to gather statis­

tlcs on program use and write them into a flat file. The fig system itself does not

need to know about moving terminals. gathering statistics, or any of the other

special commands that users invent. Yet having the primitives from ffg do most

of the work made both applications significantly easier to implement.

The evolution of the fiat tile primitives took about 3 months -- much longer

than expected. Most of the time went into testing. Several users built fiat file

databases, but measurements showed that they spent most of their time doing

simple retrieval and formatting. Gradually, they added thelr own primitives, and

began exploring new ways to connect old ones. Of course, others suggested

changes that were tried in later versions.

From the experience. two observations can be made about the choice of

primitives:

(0

- 13 -

1. Ad hac extensions to a untlled set of primitives almost always result in

disaster. For example, at one point we added a "delete" primitive that

actually modified the database by retrleving records lJ;l.at were not to be

deleted and passing them to update (unlike other primitives that had to

be composed with update explicitly). One had to remember that delete

worked differently than other commands, and that it could not be corn·

posed with them. Worst of all, composlng delete with update created two

processes that tried to modify the database. so one of them gave the

cryptic report: "database is locked while another process updates it".

2. The greatest asset in the design of a clean, uniform set of primitives is a

single person who has ultimate responsibility. This is akin to the chief

programmer concept [BAKE72).

3. Designs by a single individual are prone to gross omissions in functional-

ity. This should not come as a surprise, but it did.

5. The Implementation of Ffg Using UNIX Progro.ms

If the primitives-based approach to computing works so welL why not use it

to build the primitives themselves? This section answers that question by

explaining how the fig system, includLng the primitives, are built from existing

UNIX programs. It discusses the UNIX programs upon which the fiat file genera·

tor are built, the generation of a database. and binding of names.

The UNIX «;:ommand awk [AHKW79], forms the backbone of the fig retrieve

and format primitives. Awk invokes an interpreter for a simple, but powerful

string processing language. The interpreter reads an awk program, sometimes

called an u'wk script, and then reads and processes. a texl file linc-by-line

according to the program. Awk divides each line of the input file into fields

based on occurrences of a separator character, and permits one to examine or
j

I,,
,

- 14-
,

'Write the contents of the Ith field. (To reference the Ith field of the current

record, one writes $1 in the awk program). Awk supports assignment state-

menU;:, fairly powerful arithmetic, logical, and string operators. and even for-

matted output. In short, an awk script suffices for fiat file retrieval or format-

ling provided Doe finds a way to translate field names inlo positional references.

How can an expression containing field names be processed by awk which

only understands positional references? One might expect the implementation

of retrieve to solve the problem as follows:

1. A user invokes retrieve, passing it an expression, B. that contains field

names.

2. Retrieve passes the expression to a program, T. that parses the exprcs-

sion, translates field names into positional references, merges the

modified expression with the skeleton of an awk program, and writes the

result on file F.

3. Retrieve invokes awk giving it F as input. The program contains only

positional references.

4. Interpreting the program on F. awk reads the database. evaluates the

expression for each record, and writes out those that satisfy it.

This design was not used because it meant writing a program to parse and

translate expressions; the objective was to use existing programs.

Retrieve turns the solution around, leaving the expression alone. but giving

a.wk enough informati0Il: to evaluate it. To do so, retrieve introduces k variables

into the awk program and assigns them the contents of the k fields with k

aSSignment statements. The essential piece of the awk script is: co

- 15-

field! =$1
field2=S2

tleldk=Sk

if (EXPRESSION) write out the record

where field
i

denotes the Ith field name and EXPRESSION denotes the Boolean

expression as typed by the user. When evaluating the expression, awk binds

references to field names to the variables that have been assigned. the contents

of the field. Making the extra assignments introduced some extra overhead;

measurements are given in a later. section. Similar constructions were used in

other commands.

Implementing most of the remaining primitives from UNIX commands was

not difficult, but a few problems arose. Processing minimal abbreviations for

field names presented the worst challenge because no simple combination of

UNIX commands produced the desired result. For example. if the set of possible

field names are: "salary", "dept", "division", "dependents", and "name", one need

only give sortby a pretlx of the field name that uniquely identifies it (this

specification was made before the implementation was considered). It means

that "0." suffices for "name", but nothing shorter than "depe" may be used to

designate "dependents" because it does not distinguish "dependents" from

·'dept". The shell supports pattern matching, so such abbreviations can be han-

dled there. To do so, one must translate a list of field names like "salary",

"dept", division", "dependents", and "name" into a list of patterns like "s·",

"dept", "di.", "depe·", and "0..". Ffg performs these translation with an awk

script, although it is more or less a conventional program. The result is Lhat CTg

contains no compiled programs, but it does contain some programming.

Fig is a more than a collection of shell scripts for the primitives; it is a fiat

c

• 16 -

file database generator as well. When lnvoked as a command, trg builds a Oat file

database system. including a copy of the primitives. a field description file, and

an access command. The user supplies information on the separator character,

protection modes, fields description file, and the location of the access com,.

mand: trg generates the necessary files.

Each fiat file dalabase resides in a separate directory along with copies of

the primitives and two subdirectories: "Specs" and ",system". The subdirectory

Specs contains specifications like the fields descriptions that a user may

change. Such changes are infrequent, however, so the information is kept out of

the main directory. Additional files. that the user should not change, are kept in

the .system subdirectory (e.g., mutual exclusion lock files).

Each fiat file has an access command that one invokes to move to the data-

base environment. When invoked, an access command changes the user to the

database directory, records the user's presence, and invokes an interactiv:e

shell that reads and processes commands. After the user finishes work and exits

from the interactive shell, the access command returns to the environment

from which it was invoked. Normally, only one user can gain access to a flat file

at a time; the access command refuses to grant access to a database that is in

use. One can obtain nonexclusive use, find the status of active users. when they

began, and their system identification. One can also ask for the creation time,

mode. and size of the database and backup files.

li'fg oplimizes Lhe primitives by performing some bindings early. For cxo.m~

ple, when trg constructs the retrieve primitive, it reads the field description tlle

and binds field names into the shell script as described earlier in this secLion.

This simple optimization improves performance dramatically because it elim-

inates the need to open the field description file, build the awk program. and

have awk read the program back in. It also means that the user must inform

,.,

- 17-

the system of changes in the description file. Whenever such a change occurs,

U1e primitive rebuild will correctly recreate the primitives (including itself. if

necessary). One would expect such changes relatively infrequently, however,

when compared to the other operations.

UnUke most primitives which must be rebuilt manually, the format primi~

live is capable of detecting new formats automatically. The user views format as

a late binding command. one that searches a special directory for a named for-

mat description file every time one invokes it. Actually, the names and format

specifications. are botuld into the shell script to speed execution. The command

searches for new formats only if the named file has not been bound previously.

When it detects that a new file exists but has not been bound, format moves

itself out of the way, uses rebuild to create a new version of itself, and then

replaces the running version with the new one (i.e .. performs a UNIX exec). Sub-

sequent uses of the new format run at high speed.

6. Execution speed

The obvious advantage of early binding is execution speed: the obVious

disadvantage is user impact. As on most timesharing systems, performance is

best measured by response time. Users gladly tolerate a response delay of a few

seconds for retrieval from a ZOO-line database, but they will not wait 30 seconds

for the same information. Without early binding. response times for a pipeline of

five primitives approached 30 seconds on our moderately loaded system. On the

other hand. the optimized versions of the primitives were able to handle much

larger fUes. Table 1 shows response times for a database of 1900 records. In the

table. lhe command "cat" is a UNIX program that copies a file to its output

unchanged; one expects cat to run at the maximum possible speed. Another

UNIX command. "grep", scans a file and prints those lines that match a pattern.

Finally. the UNIX command "we" counts the lines, words, and characters in a file.

command
primitive

grep

wc

retrieve

awk (retrieve program
called directly)

awk (retrieve program
positional references)

format

format (output discarded)

cat

cat (output discarded)

- 18-

Table 1.

response time
in seconds

4(2.2 cpu)

4(1.9 cpu)

22(18.1 cpu)

21(17.7 cpu)

17(10.9 cpu)

2:34(40.4 cpu)

46(20.8 cpu)

1:48(5.6 cpu)

6(3.2 cpu)

Times for various fiat me primitives and UNIX commands
on a file of 1923 lines, 101204 characters. Timings

reported here are the mean from several funs. A large
variation in. real time occurred with system load.

Unfortunately. all times, especially the real time, varied under system load.

Sl1ll, several observations can be made. First, the highly optimized "cat" com-

mand copies a file to the user's terminal at roughly 937 characters/second (real

time), while the fiat file primitive "format" displays a formatted version of the

same file at 900 characters/second. In both cases, the system I/O speed, not

the process speed limited the display speed (the terminal used for testing ran at

9600 baud). Second. the Lntroduclion of variables and assignments in thc awk

program during retrieval produced a measurable delay in processing. The aver-

age real time required to process a 1900 line file increased from 17 to 22

<'J

- 19-

seconds (29%), but very few users notice any difference. Third, the time

teqUired for the shell to parse the script, redirect the input and output. and

start execution remained very small. We conclude that rewriting the primitives

in a lower level language would produce little or no benefit to the user.

7. Failures of Fig

So far, the primitives-based implementation of fig has been described in

glowing terms. But the primitives approach has its limitations as well. Prob­

lems can be separated into three main categories: error detection problems,

optimization problems. and error propagation problems.

Some of the error detection problems in fig are inherent in the approach,

others arise from the implementation. Because a primltive cannot know what

other primitives precede it or succeed it in a pipeline, detection of some errors

is impossible. For example, typing:

format I update

will replace the entire database with a formatted version because update cannot

validate its input. Of course, it could detect badly misformed files lil~e those

witho'ut separator characters, but it cannot know what the user had in mind. On

the other hand, syntactic errors in expressions given as an argument to the

retrieve primitive go undetected until awk scans it. These errors could be

detected earlier (and with better diagnostics) by a better implementation.

One of the most obnoxious errors that goes totally undetected occurs in:

retrieve name="Comer"

which retrieves no records from the file because the shell strips orr the quote

marks and awk assumes Comer is an uninitiaLized variable equal to the null

string. One must escape quotes:

- 20-

retrieve name==\"Comer\"

or put the entire expression in single quotes. The syntax is awkward at best; it is

an example of the sort of handicap inherent in a system based on primitives.

Error recovery is difficult in any system: a pipeline only makes the problem

harder. Consider the pipeline:

sortby error I retrieve expression Iupdate

where the argument to sortby contains an error. What should sortby do? If it

complains about the error and gives up. retrieve, the next program in the pipe.

will receive an empty input file, as will update. Thus, a simple error in the argu-

menl results in an empty database. If, on the other hand, sortby complains

about the error and proceeds to copy the entire database to its output, the

In.t'ormation may be preserved, but left in an unexpected state. Clearly, a

mechanism to inform pipe participants of error conditions is needed.

Computations expressed as a composition of primitives cannot always' be

optimized. Conslder the simple example:

sortby name I retrieve salary==20000 I format

which sorts the enUre database by name and then retrieves those records with

salary equal to 20000. If the database is large compared to the number of

records with saiary equal to 20000, rearranging the p~pe into:

retrieve salary==20000 I sortby name I format

might drastically reduce processing requirements, but there is no way to make

such an optimization if the system handling the composition does not know

about the retrleve and sortby primitives.

- 21 -

Flnally, constructing programs out of existing parts. may severely limit what

one can express easily. Initially, plans called for a second type of database sys­

tem. one that allowed records to span multiple lines. It turned out to be fairly

difficult because awk could not recognize such a format. If awk had supported

the notion of a "record separator" as it did the notion of "field separator", the

task would have been trivial.

8. Conclusions

The fiat file experiment proved successful In three ways. It provided con­

crete experience in the design of a set of prlmitives. it provided experience

using UNIX primitives for a moderately sophisticated system, and it produced

use"ful software along the way.

Implementing the fig primitives out of existing UNIX programs dramatically

increased programmer productivity. Because the system consisted of small

programs. a given primitive could be changed without affecting the others. And

because prlmitives were constructed from existing programs, they were easier

to change. Experimentation became fe·aslble. New proposals were actually

implemented. tested, and revised. As a result of more time for design and test­

ing, the system turned out to please more users.

We conclude that creating programming as a set of independent primitives

lS a viable alternative to the current style of creating large programs from

scratch. It increases programmer productivity by raising the level of the

language in which one composes programs. To succeed. such an approach

requires: a library of correct. reliable programs, an efficient mechanism to

interconnect them. and experimental validation that a set of primitives is com­

plete. uniform, consistent, and easy to use.

More research is needed to develop an adequate model and implementation

- 22-

of error detection and recovery for programs connected in a pipeline.

~ ... ;)

(0

- 23-

References

[AHltW79] A. Aha. B. Kernighan, and J. Weinberger. "Awk .- A Pattern Scanning
and Processing Language," SoftwrLre Practice and Experience, 9:4
(April 1979), 267-279.

[BAKE72] F. Baker. "Chief Programmer Team Management of Production Prow
gramming," IBM Systems Journal 11:1 (11:172), 56-73.

[BOGS79] B. Borden. R. S. Gains, and N. Shapiro, liThe MH Message Handling
System: User's Manual," Technical Report R-2367-AF. Rand Corporaw

tion. November, 1979.

[BOUR78] S. Bourne, "The UNIX SheU." Bell System Technical Journal 57:6 Part
2 (July-August 1976), 1971-1990.

[DATE75] C. Date. An Introduction to Database Systems. Addison Wesley, 1975.

[HANS79] D. HansoD, "Software Tools Programmer's Manual." Technical Report
TR79-15, University of Arizona, 1979.

[KEMA79] B. Kernighan and J. Mashey, "The UNIX Programming Environment,"
SoftwaTe Practice and ExpeTience, 9:1 (January 1979),1-15.

[KEPL76] B. Kernighan and P. Plauger, Software Tools, Addison Wesley, 1976.

[RITH78] D. Ritchie and K. Thompson, "The UNIX Time Sharing System," The
Bell System Technical Journal 57:6 Part 2 (July-August) 1976, 1905­
1930,

[ULLMBO] J. Ullman, Principles of Database Systems, Computer Science Press,
1960,

- 24-

Appendix A:. A SUmmary of FFG Commands

delete Booleanexpression
Delete writes out all records which do not satisfy the given Booleanexpres­
sian (i.e .. it deletes those records that do satisfy the Boolean-expression).

edit [-e editor]
Edit invokes the user's default editor (editoT if -c is specified) on tho data­
base. Only update and edit change the data.

enter
Enter is an interactive program used to create records for the database.
The most common use is enterlupdate -a; which adds the new records to the
old ones.

fielded Booleanexpressian F'ieldassignments
Fielded writes a copy of the database in which records that match the
Booleanexpression have modifications as specified in the fieldassignments.
The fieldassignments consist of one or more assignment statements
separated by semicolons. Each assignment is of the form
fi eldname ;:expression.

format [-fm!]
Without 6. parameter, format prints its input in columns; with parameter X.
format prints input according to format file SpecslX.jmt

lookup [-fieldnameprefix] pattern ...
Lookup is a shorthand for simple retrievals: it writes on its output all those
records which match the pattern. If -fieldnamsprefrx is specified before a
pattern then the pattern match will be restricted to that field. The prefix
must be unambiguous. Lookup matches each pattern against the database
in turn, so records that match more than one pattern will be written in the
output more than once.

rebuild [comml1ndname]
Rebuild will reconstruct commands after a change to the field specification
file. WIthout an argument, rebuild will reconstruct all commands.

retrieve Boolel1nexpression
Retrieve writes on its output those records for which the Booleanexpression
holds.

status [options...]
Status reports the status of the mutual exclusion lock, database and
backup files, users accessing the database, and exclusive usc lock. It can
also be used to alter the status of locks, user access, or to force a backlJp.
Under normal circumstances, the status command is not required; it is
intended to help users clean up lock files after a system crash or other
abnormal process termination. In general, lower case arguments request
status informaLion. while uppercase argumenl~ alLer Lhc status. Th.e
options include:

CJ

-b
-d
-e
-[

-s
-u
-B
-E
-Kn

-L
-M
-R
-u

- 25-

- show backup file status
- show database file status
-~ show exclusive access status
- show database lock file status
- suppress detail in output

- show status of active users

- force a Backup
- request Exclusive use access
_ Kill user with process id n (-u lists process ids)

-- Lock the database
- return to Multiuser access
- Reset (Le. -K) all user access

- Unlock the database

showfields
Showfields prints the current field description information.

sortby [-key] fieldnameprefix ...
Sortby writes a sorted version of the database using the list of
fieldnameprefixes to determine the sort(s) to be done. The first fietdname
gives the primary sort field. Optional keys may be any of the characters
bdfinr as in the UNlX sort(1) command. which will override those in the field
specifications flle.

undo
Undo will restore the data file to its previous value. Only one backup is
kept; there is no way to recover older copies.

update [-oJ
Used. at the end of a pipe. update writes its input to the database; parame~
ter -a means append. Only update and edit actually change the data.

verily (conditionname IBooleane:tpTession] ,..
Verify checks the file to make sure all records adhere to the named condi­
tion. Conditionnames are given in the verification file; unrecognized strings
are taken to be literal conditions.

- 26-

Appendix B: Boolean Expressions in flat mes

<Eoolean-exp> -) <Expression> II <Expression>
_> <Expression> && <Expression>
-> ! <Expression>
-) <Expression>

<Expression> -> <Comparison>
-> <Pattern match>

<Comparison> -> <Term> == <Term>
-) <Term>!= <Term>
-> <Term> < <Term>
-> <Term> <= <Term>
-:> <Term>:> <Term>
-> <Term> >= <Term>
-> <Term>

<Pattern match> -> <Term> / <Pattern> / (does match)

-> <Term> 1'" I <Pattern> I (does not match)

<Pattern> -> pattern (UNIX ed pattern syntax)

<Term> -> <Primary> + <Primary>
-> <Primary> - <Primary>
-> <Primary> <Primary> (concatenation)

-> <Primary>

<Primary> -> ·<Factor> • <Factor>
-> <Factor> / <Factor>
-> <Factor> % <Factor> (mod)
-> <Factor>

<Factor> -> fieldname
-> numeric value
-> "any string of characters"
-> NR
-> NF
-> length(<Term>) (length of a string)

-> substr(<Term> , start, len) (substring function)

-> loge <Term>)
-> sqrt(<Term>)
-> int(<Term>) (truncate)

Notes:
1. Concatenation is allowed between objects of any type. In particular. numeric

values may be concatenated onto strings.
2. NR is always the number of the record being examined. and NF is always the

number of fields in the record being examined.

CJ

	The Flat File Database Generator Ffg
	Report Number:
	

	tmp.1307986960.pdf.Fw83t

