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ABSTRACT

Dinh, Vu Cao Duy Thien Ph.D., Purdue University, December 2014. Probabilistic
Uncertainty Quantification and Experiment design for nonlinear models: applications
in systems biology. Major Professors: Gregery T. Buzzard.

Despite the ever-increasing interest in understanding biology at the system level,

there are several factors that hinder studies and analyses of biological systems. First,

unlike systems from other applied fields whose parameters can be effectively iden-

tified, biological systems are usually unidentifiable, even in the ideal case when all

possible system outputs are known with high accuracy. Second, the presence of mul-

tivariate bifurcations often leads the system to behaviors that are completely different

in nature. In such cases, system outputs (as function of parameters/inputs) are usu-

ally discontinuous or have sharp transitions across domains with different behaviors.

Finally, models from systems biology are usually strongly nonlinear with large num-

bers of parameters and complex interactions. This results in high computational

costs of model simulations that are required to study the systems, an issue that be-

comes more and more problematic when the dimensionality of the system increases.

Similarly, wet-lab experiments to gather information about the biological model of

interest are usually strictly constrained by research budget and experimental settings.

The choice of experiments/simulations for inference, therefore, needs to be carefully

addressed.

The work presented in this dissertation develops strategies to address theoretical

and practical limitations in uncertainty quantification and experimental design of

non-linear mathematical models, applied in the context of systems biology. This

work resolves those issues by focusing on three separate but related approaches:

(i) the use of probabilistic frameworks for uncertainty quantification in the face of

unidentifiability



xi

(ii) the use of behavior discrimination algorithms to study systems with discontin-

uous model responses

and

(iii) the use of effective sampling schemes and optimal experimental design to reduce

the computational/experimental costs.

This cumulative work also places strong emphasis on providing theoretical founda-

tions for the use of the proposed framework: theoretical properties of algorithms

at each step in the process are investigated carefully to give more insights about

how the algorithms perform, and in many cases, to provide feedback to improve the

performance of existing approaches. Through the newly developed procedures, we

successfully created a general probabilistic framework for uncertainty quantification

and experiment design for non-linear models in the face of unidentifiability, sharp

model responses with limited number of model simulations, constraints on experi-

mental setting, and even in the absence of data. The proposed methods have strong

theoretical foundations and have also proven to be effective in studies of expensive

high-dimensional biological systems in various contexts.
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CHAPTER 1. INTRODUCTION

1.1 Objectives

This dissertation addresses theoretical and practical limitations in uncertainty

quantification and experimental design of non-linear systems that are prevalent in bi-

ological studies. The work herein places emphasis on applications in systems biology,

most prominently intracellular signaling networks. However, it is an objective of this

work to create theoretical frameworks to address those limitations in a general math-

ematical setting. For that reason, the strategies developed herein are not limited by

either the type of model or application contexts and are applicable beyond the scope

of biological studies to improve the efficiency in analyzing mathematical models in

other fields of predictive science.

From a computational viewpoint, the focus of this work is to tackle several primary

technical hurdles to analyses of biological systems. These include: unidentifiability

of parameters, discontinuity/sharp model responses, high-dimensionality, strong non-

linearity and high experimental/computational expense. While covering a wide range

of topics, this work focuses on three separate but related approaches to resolve these

issues, namely,

(i) the use of probabilistic frameworks for uncertainty quantification in the face of

unidentifiability

(ii) the use of behavior discrimination algorithms to study systems with discontin-

uous model responses

and

(iii) the use of effective sampling schemes and optimal experimental design to reduce

the computational/experimental costs.
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This cumulative work also places strong emphasis on providing theoretical foun-

dations for the use of the proposed framework: theoretical properties of algorithms

employed at each step in the process are investigated carefully to give more insights

about how the algorithms would perform, and in many cases, to provide feedback to

improve the performance of existing approaches.

The remainder of this introduction provides background material to inform the

motivation for the work. Section 1.2 explains the primary issues in studying bio-

logical systems, while Sections 1.3 provides summaries of several approaches that are

described in detail in later chapters and gives a general picture about the organization

of the dissertation. This introduction also concludes with a few remarks for further

reading.

1.2 Background

Despite the ever-increasing interest in understanding biology at the system level,

there are several factors that hinder studies and analyses of biological systems [1].

First, unlike system from other applied fields whose parameters can be effectively

constrained by data, biological systems are usually unidentifiable, even in the ideal

case when all possible system outputs are known with high accuracy [2,3]. This comes

from the fact that in order to attain system robustness, which is crucial for survival,

living cells usually maintain various forms of system control, such as negative-feedback

and feed-forward control, and system redundancy, whereby multiple components with

equivalent functions are introduced for backup. The direct consequence is that for a

given cell state, the system are insensitive to perturbation on many parameters that

are required for an adequate description of the system [1]. On the other hand, due to

technical limitations and experimental constraints, data collected to study biological

systems are often sparse and noisy: the number of data points we can collect may

even be smaller than the number of model parameters and the collected data may

be severely contaminated by various types of noise [4]. These two different types of
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parameter unidentifiability (namely, structural unidentifiability and practical uniden-

tifiability), along with the strong nonlinearity of the model [5] and the non-normality

of the noise distribution [6], render traditional methods of parameter estimation and

experimental design via optimization implausible.

Second, as a common problem with high-dimensional and complex dynamical sys-

tems, the presence of multivariate bifurcations often leads the system to behaviors

that are completely different in nature [7, 8]. In such cases, system outputs (as func-

tion of parameters/inputs) are usually discontinuous or have sharp transitions across

domains with different behaviors. This property makes the problem of uncertainty

quantification computationally intractable: polynomial-based techniques require in-

herent regularities of the approximated functions while multi-element methods are

too expensive [9]. As a result, analyses of high-dimensional biological systems, such

as sensitivity analysis, identifiability analysis or model order reduction, are usually

performed locally in a neighborhood of a nominal parameter where the system out-

puts can be assumed to possess certain regularity [10–12]. To make a global approach

to such analyses possible, regions of the parameter/input space with different qual-

itative behaviors need to be treated differently and should be identified before the

analyses are performed. While there are a variety of methods to address this problem

for linear systems, few successful techniques have been developed for nonlinear mod-

els. Existing methods often rely on numerical simulations without rigorous bounds

on the numerical errors and usually require a large number of model evaluations,

rendering those methods impractical for studies of high-dimensional and expensive

systems [13,14].

Finally, models from systems biology are usually strongly nonlinear with large

numbers of parameters and complex interactions. This results in high computational

costs for the model simulations required to study the systems, an issue that becomes

more and more problematic when the dimensionality of the system increases. Simi-

larly, wet-lab experiments to gather information about the biological model of interest

are usually strictly constrained by research budget and experimental settings. The
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choice of experiments/simulations for inference, therefore, needs to be carefully ad-

dressed [15]. This leads us to the problem of experimental design/ effective sampling

schemes to study high-dimensional and computationally expensive models. Such sam-

pling schemes/designs have been widely used in the uncertainty quantification [16],

experimental design [17] and machine learning [18] literatures independently. How-

ever, at least in some contexts, algorithms of this type lack theoretical support and in

some cases may lead to misleading and incorrect answers due to sampling bias [18].

One goal of this dissertation is to provide a common framework with strong theoret-

ical foundations for the problems of experimental design and the concept of effective

sampling schemes to study high-dimensional and computational expensive models.

1.3 Organization

1.3.1 A probabilistic framework for uncertainty quantification and ex-

perimental design in the face of unidentifiability

To some extent, this dissertation is centered around the problem of probabilistic

uncertainty quantification and experimental design for dynamics identification of bi-

ological systems. This problem is analyzed in detail in Chapter 2 and was published

in the journal Bulletin of Mathematical Biology [19].

In this work, to resolve the problem of unidentifiability, we take a different ap-

proach toward the problem of system identification. In contrast to the tradition of

using optimization techniques to achieve a ”best” estimate of parameter value for

inferences about the system, we focus directly on the estimation and uncertainty

quantification of the system dynamics of interest. This is done within a probabilistic

framework with the use of statistical inference. Specifically, available data are used to

induce a probability distribution on the parameter space. The expected value and the

variance in prediction with respect to this distribution then act as an estimate of the

quantity of interest and a representation of uncertainty in predicting it, respectively.



5

Within this framework, we avoid the task of parameter fitting and enable system

analysis, design and control even in the case of system unidentifiability.

Building upon this approach, we introduce the Expected Dynamics Estimator

(EDE) and address the problem of using nonlinear models to design experiments to

characterize the dynamics of cellular processes by using the approach of the Maximally

Informative Next Experiment (MINE, which was proposed in [17] and subsequently

in [4, 5]). We then prove the consistency of this estimator (uniform convergence to

true dynamics) even when the chosen experiments cluster in a finite set of points. We

extend this proof of consistency to various practical assumptions on noisy data and

moderate levels of model mismatch. Through the derivation and proof, we develop

a relaxed version of MINE that is more computationally tractable and robust than

the original formulation. The results are illustrated with numerical examples on two

nonlinear ordinary differential equation models of biomolecular and cellular processes.

1.3.2 Effective sampling schemes for behavior discrimination

To address the issue of uncertainty quantification/system analysis in the presence

of bifurcation and discontinuous responses, we propose the construction of a map of

the parameter space by different qualitative behaviors. That is, instead of performing

local analysis/approximation around a nominal value, we partition the parameter

space into regions of parameter values with similar qualitative behaviors (for example,

regions with transient dynamics and regions with oscillatory dynamics). Within each

region, the dynamics will possess certain regularity, so that smooth approximations

or polynomial-based uncertainty quantification can be performed with high accuracy.

The regions of the parameter/input space with different qualitative behaviors need

to be treated differently and should be identified before the analyses are performed.

This idea is formalized in Chapter 3, in which the concept of behavior discrimina-

tion is defined as the problem of identifying sets of parameters for which the system
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does (or does not) reach a given set of states. This chapter was published in the

journal International Journal of Uncertainty Quantification [20].

In this work, we further developed the framework proposed in Chapter 2 to address

the problem of behavior discrimination. In our approach, we directly parameterize

the, yet unknown, boundary by the zero level-set of a polynomial function, then use

statistical inference on available data to identify the coefficients of the polynomial.

Building upon this framework, we consider the problem of choosing effective data

sampling schemes for behavior discrimination of nonlinear systems in two different

settings: the low-discrepancy sampling scheme, and the uncertainty-based sequential

sampling scheme. In both cases, we successfully derive theoretical results about the

convergence of the expected boundary to the true boundary of interest. Both methods

have also proven to be effective in studies of expensive high-dimensional biological

systems in various contexts.

1.3.3 Data-free identifiability analysis and data-free uncertainty quantifi-

cation

Established as an extension of the probabilistic uncertainty quantification frame-

work proposed in Chapter 2, Chapter 4 addresses the problem of quantifying the

uncertainty in prediction of a quantity of interest before actual experimental observa-

tions are made. Within this new framework, we can explore the concept of data-free

identifiability, which concerns the question of unique system identification under a

given experimental setting, without actual experimental observations. As a data-

independent property, data-free identifiability can be considered as a generalization

of structural identifiability while at the same time addressing identifiability in the

face of experimental constraints and noises.

With this novel concept, we propose a Bayesian approach to address system iden-

tifiability when data are not yet available. As we illustrate later, our approach is

global, strongly theoretically supported, amenable to high-dimensional cases, can be
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used to study various types of identifiability and is compatible with a large class

of experimental settings. The framework is also built not only to assess parameter

identifiability but also to quantify the uncertainty in prediction of any quantity of in-

terest, and hence, can be used to address dynamics identifiability, a concept that has

become of growing interest in the recent years. This also draws a direct connection

between studies of identifiability and the concept of uncertainty quantification in pre-

dictive sciences. With this method, we also attempt to lay a unifying framework for

the problems of structural/practical identifiability analysis, dynamics identifiability

analysis and data-free uncertainty quantification.

1.3.4 Convergence of perturbed Monte Carlo Markov Chains

The probabilistic framework for identifiability analysis, uncertainty quantification

and experimental design of non-linear models proposed in this dissertation is made

possible by the employment of Monte Carlo Markov Chain methods to sample from

a likelihood function on some high-dimensional parameter spaces. Since direct com-

putation of the likelihood function is costly, in practice, approximation methods are

usually employed to reduce some of the computational burden.

Throughout this work, we use Griddy Gibbs sampling as an effective way to sample

from the likelihood functions of interest. The Griddy Gibbs sampling was proposed

by Ritter and Tanner [21] as a computationally efficient approximation of the well-

known Gibbs sampling method. The algorithm is simple and effective and has been

used successfully to address problems in various fields of applied science. However,

the approximate nature of the algorithm has prevented it from being widely used: the

Markov chains generated by the Griddy Gibbs sampling method are not reversible in

general, so the existence and uniqueness of its invariant measure was not guaranteed.

Even when such an invariant measure uniquely exists, there was no estimate of the

distance between it and the probability distribution of interest, hence no means to

ensure the validity of the algorithm as a means to sample from the true distribution.
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In Chapter 5, we show, subject to some fairly natural conditions, that the

Griddy Gibbs method has a unique, invariant measure. Moreover, we provide Lp

estimates on the distance between this invariant measure and the corresponding mea-

sure obtained from Gibbs sampling. These results provide a theoretical foundation

for the use of the Griddy Gibbs sampling method. We also address a more general

result about the sensitivity of invariant measures under small perturbations on the

transition probability. That is, if we replace the transition probability P of any Monte

Carlo Markov Chain by another transition probability Q where Q is close to P , we

can still estimate the distance between the two invariant measures. The distinguish-

ing feature between our approach and previous work on convergence of perturbed

Markov Chain is that by considering the invariant measures as fixed points of linear

operators on function spaces, we don’t need to impose any further conditions on the

rate of convergence of the Markov Chain. For example, the results we derived in this

paper can address the case when the considered Monte Carlo Markov Chains are not

uniformly ergodic.

1.4 Concluding remarks

This dissertation develops new procedures to address challenges in studying bi-

ological systems via probabilistic frameworks for uncertainty quantification and ex-

perimental design in the face of unidentifiability, sharp model responses with limited

number of model simulations, constraints on experimental setting, and even in the

absence of data. Theoretical foundations and the effectiveness of the proposed meth-

ods in studies of expensive high-dimensional biological systems will be investigated

in detail in various contexts in the subsequent chapters.
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CHAPTER 2. EXPERIMENTAL DESIGN FOR DYNAMICS IDENTIFICATION

OF CELLULAR PROCESSES

2.1 Preface

The material presented in this chapter was originally published in the Bulletin of

Mathmatical Biology:

Vu Dinh, Ann E. Rundell and Gregery T. Buzzard. Experimental Design for

Dynamics Identification of Cellular Processes. Bulletin of Mathmatical Biology, 76.3

(2014): 597-626.

This article has been reproduced with material omitted or summarized to befit

the focus of this dissertation. It has been modified to conform to the format required.

2.2 Abstract

We address the problem of using nonlinear models to design experiments to char-

acterize the dynamics of cellular processes by using the approach of the Maximally

Informative Next Experiment (MINE), which was introduced in [W. Dong, et al.

Systems biology of the clock in neurospora crassa. PLoS ONE, page e3105, 2008]

and independently in [M. M. Donahue, et al. Experiment design through dynami-

cal characterization of non-linear systems biology models utilising sparse grids. IET

System Biology, 4:249–262, 2010]. In this approach, existing data is used to define

a probability distribution on the parameters; the next measurement point is the one

that yields the largest model output variance with this distribution. Building upon

this approach, we introduce the Expected Dynamics Estimator (EDE), which is the

expected value using this distribution of the output as a function of time. We prove

the consistency of this estimator (uniform convergence to true dynamics) even when
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the chosen experiments cluster in a finite set of points. We extend this proof of con-

sistency to various practical assumptions on noisy data and moderate levels of model

mismatch. Through the derivation and proof, we develop a relaxed version of MINE

that is more computationally tractable and robust than the original formulation. The

results are illustrated with numerical examples on two nonlinear ordinary differential

equation models of biomolecular and cellular processes.

2.3 Introduction

The development and simulation of mathematical models of cellular processes

can enhance our understanding of the underlying biological mechanisms ( [1]). Two

important components of model development are the collection of data and the tuning

of parameters for a given model structure to approximate the data. In many settings,

the collection of data is difficult and/or expensive, while tuning model parameters

to data often involves a difficult nonlinear optimization, with potentially many local

optima. Moreover, the choice of data may make this tuning more or less difficult;

thus we aim to design experiments to collect the most informative data for a given

model structure.

The review [8] provides a broad overview of model-based experimental design

methodologies for systems biology, including methods for various optimality condi-

tions governing unique, structural and practical parameter identification. Of course,

many books and articles have been written about experimental design, both from the

frequentist and the Bayesian points of view. We make no attempt to review them

all here; a classic mathematical reference is [15]. Many methods for experimental

design focus on identifying the parameters – designing experiments to minimize some

measure of uncertainty in the parameter values given a model structure.

In contrast, we are more concerned with developing a method to explore and

elucidate the observable response (which we refer to as the output dynamics) of

a cellular process rather than identifying the model parameters themselves. One
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motivation for this is that for a systems biology model with N parameters, the set of

possible output dynamics is often contained in a space of lower dimension l� N (or

perhaps in a small neighbourhood of such a space). This feature, which is an obstacle

for the problem of unique parameter identification, is an advantage for designing

experiments to identify dynamics: that is, we can choose a good design with very few

experiments (approximately O(l)), but still obtain enough information to identify the

dynamics.

Methods related to approximating the observable response as a function of in-

dependent input variables fall under the broad heading of regression or response

surface methodology. Once again there are many books and articles on the topic of

experiment design for fitting response surfaces, and there are many approaches for

representing a response surface. Most such approaches (e.g., Kriging and generalized

polynomial chaos) seek to approximate the response surface with a linear combina-

tion of a fixed set of basis functions, such as polynomials or trigonometric functions.

See [11] for an overview.

In this paper we focus on experiment design for accurate approximation of the

response surface using a given biologically-based model. However, beyond this, as

explained in [5], the method we apply acts as a kind of imaging method for under-

standing the behavior of a cell. Based on an initial understanding of cell behavior

(which is likened to an image from a microscope), we choose the next experiment to

provide as much resolving power as possible in our next measurement (which is likened

to focusing the microscope to enhance a particular feature). Instead of a linear com-

bination of basis functions, as is often assumed in the experiment design literature,

we assume the model structure encodes the dominant interactions and mechanisms

using a nonlinear system of differential equations. To fix ideas, suppose our model

output has the form y = f(ω, t), where ω ∈ Ω ⊂ IRN is a fixed vector of unknown

parameters, and where our quantity of interest is the dynamics output, which is a

function of time, t ∈ [0, T ] (more generally t could be a vector of inputs to represent

any independent variables such as time, voltage, etc.). Measurements of y at a given
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time t can be modeled as a random variable. An estimate of ω based on these ran-

dom variables is also a random variable. This estimate can be used to estimate the

output y(t) for any t, again giving a random variable. Classical experiment design

typically seeks to minimize the variance in the estimate of ω or y. One approach to

designing experiments for accurate response surface modeling is to use the condition

of G-optimality. Roughly, this condition chooses an experiment design to minimize

the variance in the output. In the case of a model that is linear in parameters, the

Kiefer-Wolfowitz Equivalence Theorem states that this is equivalent to D-optimality,

in which the design is chosen to minimize the determinant of the covariance matrix

for the estimate of ω (the inverse of the Fisher Information Matrix) [15, Chapter

9]. There is an extension of this result to nonlinear models [18]; however, this result

depends upon knowing the true parameters in the model, which are not known in

general. In [6, Section 5.6], this problem is addressed by either (i) using a minimax

approach, in which the design is chosen to minimize over experiment designs the max-

imum over parameter space of the determinant; or (ii) using a Bayesian approach, in

which an optimality criterion for a design (such as the determinant of the dispersion

matrix or the maximum output variance) is averaged using a prior distribution on

parameter space, and then the design is chosen to maximize this expected criterion.

A computational difficulty with both of these approaches is the need to evaluate a

complex optimality criterion at many points in parameter space for each candidate

design.

Alternatively, the Maximally Informative Next Experiment (MINE) algorithm

proposed in [5] and later [4] uses a sequential approach to experiment design in which

existing data is used to construct a probability distribution on the parameter space;

this distribution is then used to calculate the variance in the output as a function

of time (perhaps normalized by expected experimental variance). Based on this cal-

culation, the next measurement will be taken at the time point with highest current

(normalized) variance. That is, the next sampled time point will be chosen at the

time point that has highest current uncertainty in the output. This method of design
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is modified to produce a parallel (nonsequential) design in [2]. Intuitively, each new

point in such a design should provide the maximum possible information about the

dynamics of the system and hence lead to convergence to the true system dynamics.

This approach is theoretically appealing in that it doesn’t depend on an estimate of

the true parameter values, and it is computationally appealing in that it requires a

relatively simple sampling over the parameter space according to a specified distribu-

tion; this may be achieved reasonably efficiently with Monte Carlo methods.

However, little is known about the convergence properties of this method: Is this

method sufficient to characterize the response surface (in the limit as the number of

experimental points tends to ∞)? In fact, in general, this scheme will not sample

densely over the interval [0, T ], so it is not at all clear that it is sufficient to completely

characterize the dynamics over this interval. Moreover, it’s not entirely clear how to

use these nondense samples to estimate the dynamics.

Motivated by the MINE algorithm, we address the following two problems for the

identification of systems dynamics:

(A) Specify the Dynamics Estimator: Given a set of data (t1, d1), (t2, d2), ...,

(tm, dm) and a model y = f(ω, t), how should we estimate the system dynamics?

(B) Prove convergence of Dynamics Estimator: For a given sequential approach to

choosing measurement points tj and given the dynamics estimator in (A), do

the estimated dynamics converge to the true dynamics?

In the derivation of the solutions to these problems, we developed variations of the

MINE algorithm that are more computationally efficient than the original. We de-

scribe these variations and solutions to Problems (A) and (B) with various assump-

tions in the body of the paper.

Most approaches to problem (A) use the data to estimate parameter values and

then use these parameters to obtain the corresponding dynamics. For a complex, non-

linear model this is a difficult optimization problem with possibly many local optima

and perhaps even multiple global optima. In place of using an estimated vector of



16

parameters to estimate the dynamics, we propose what we call the expected dynamics

estimator (EDE). This uses the available data to induce a probability distribution on

parameter space and then averages the dynamic output using this distribution. There

are a number of advantages of this method of dynamics identification over parameter

identification. First, since the dynamics for a deterministic system are unique, we

don’t need to worry about multiple global solutions. Second, by using the EDE, we

look for the average behaviour of the system (with respect to a carefully constructed

probability distribution). This task is typically much simpler than solving a nonlinear

optimization problem. Furthermore, the Markov Chain Monte Carlo method can be

employed to reconstruct the system’s true dynamics.

Another important advantage of the probabilistic framework over parameter esti-

mation (via optimization) is that it is a feasible approach in cases of unidentifiability.

A crucial problem in parameter estimation is the calculation of confidence intervals

for the estimated parameters. In the simplest scenario when the number of data

points is smaller than the number of parameters, any parameter estimation (via op-

timization) method will fail to provide a reliable estimate of the confidence region.

Such methods (that return a single parameters estimate) will never be able to predict

unknown output with high confidence (or any confidence at all). In order to do so,

it needs to compute all possible parameter values that are consistent with available

data, which is very unlikely in practice. This also extends to the case when the

model’s parameters are unidentifiable, which is a common phenomenon in systems

biology. Our probabilistic framework provides a feasible way to address this issue: a

given set of measurements gives a probability distribution on parameters, which can

be used to construct confidence interval for output dynamics in addition to the EDE.

Problem (B) is a question about the consistency of the estimator (the ability

to recover the true dynamics) as a function of a particular choice of measurement

points. This question highlights the fact that the ability of the EDE to recover the

true dynamics (consistency) depends heavily on the experimental design algorithm.

We note here that although the MINE method shares some features of a Bayesian
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approach, in that a probability distribution on parameters is updated based on new

data samples, it does not fall into the class of Bayesian experimental design since the

design points are not chosen to maximize an expected utility function.

This paper is organized to prove and illustrate the consistency of the EDE in

various situations that progressively increase in complexity towards practical appli-

cability. In Section 2.4, we introduce the mathematical framework and the main

assumptions about the behaviour of the investigated model that we use throughout

the paper. We also define the EDE to address problem (A). Section 2.5 addresses

problem (B) for the ideal case when the investigated model is a correct model (can

reproduce the true dynamics exactly) and data are noiseless. Theorem 2.5.1 deals

with the case in which the experiments are made at random time points; this result

is provided primarily to illustrate the ideas to be used in later results but in a set-

ting that avoids some technical assumptions that are needed later. Theorem 2.5.2

and Theorem 2.5.4 provide results in the case when the experiments are designed

sequentially as in [4] and [5] in two different settings: when the parameter space is

discretized and when the set of possible measured time points and output values are

discretized. We then extend the consistency result to a larger class of designs by re-

laxing the choice of a point with maximal variance to a point with variance within a

fixed constant multiple of maximal variance (Theorem 2.5.3). Our results imply that

for these designs, we can always recover the true dynamics, even if all the measure-

ments are made in a small portion of the time interval [0, T ]. Section 2.6 extends the

result about EDE’s consistency to the case when the experimental data are subject

to random noise (Theorem 2.6.2). In this section we require that the set of possible

measurement points is finite in order to guarantee convergence even in the face of

noisy data. This assumption is reasonable for the practical implementation of any

experiment design. Section 2.7 relaxes the requirement of a correct model by allowing

for a bounded error between the true dynamics and the closest approximation of the

model (Theorem 2.7.1). From this result, we also justify the use of approximation

methods in the algorithm to design experiments. In Section 2.9, we illustrate our



18

theoretical findings and demonstrate the efficacy of our method to design sequen-

tial experiments for dynamics identification with various biological models. We also

give an example to show that the choice of a design point within a fixed constant of

maximal variance can lead to a faster rate of convergence of the EDE relative to the

original MINE algorithm. It is worth noting that although the framework we use in

this paper is sequential, one can extend the result to the parallel case following the

approach suggested in [2].

2.4 Mathematical framework

2.4.1 Model formulation

We assume a mathematical model of a cellular process in the form

ẋ = α(ω, x) (System of ODEs)

x(0) = x0(ω) (Initial conditions)

y(t) = f(ω, t) = β(ω, x(t)) (Output)

where x = (x1, x2, ..., xnx) ∈ M ⊂ IRnx is the state variable, with M a subset of

IRnx containing the initial state, and f(ω, t) ∈ IRL is the observable response (out-

put dynamics) that correspond to L different experimentally observable quantities.

Throughout this paper, for the sake of simplicity, we will assume that L = 1. How-

ever, all of the arguments can be extended to the case of multi-dimensional output

without any difficulty.

It is worth noting that the set of possible outputs is not necessarily the same as

the number of dynamic variables occurring in the system. An output could be any

kind of prediction, e.g. also a sum or ratio or even integral of dynamic variables.

However, in the case L = 1, there is only one observable output y. Identification of

y will lead to identification of all possible outputs as well as a characterizaton of the

uncertainty in unidentifiable outputs.
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The purpose of our experimental design framework is to determine as accurately as

possible the output dynamics based on measurements. This is a kind of interpolation

problem. We do not address the extrapolation problem, in which measurements of

one output are used to make inference about an unobservable quantity.

The vector of unknown parameters is denoted by ω = (ω1, ..., ωN) ∈ IRN and is

assumed to belong to a subset Ω of IRN . In most parts of the paper, the parameter

space Ω will be assumed to be an open set along with a probability measure on Ω,

or a discrete subset of IRn along with a probability measure. The components of α

and β are assumed to be C1 functions of their arguments. These functions and initial

conditions may depend on the parameter vector ω ∈ Ω.

The system will therefore be associated with the mapping F : Ω→ C1([0, T ], IR)

defined by F (ω) = f(ω, ·), where f(ω, ·) is the observable response of the system

as a function of t ∈ [0, T ] for a given ω. The image of Ω under f , Y = f(Ω, ·) ⊂

C1([0, T ], IR) will be referred to as the dynamics space in this paper.

Throughout this paper, the true dynamics and the data values at a given time,

t, will be denoted by g(t) and d(t), respectively. We assume that d(t) = g(t) + ε,

where ε is a random variable describing the noise in measurements. In Section 2.5,

we assume that ε = 0, so that the data are completely noise-free. In later sections

we address the case of noisy data. In Sections 2.5 and 2.6 we assume that the model

is correct; that is, there is some ω0 ∈ Ω so that f(ω0, t) = g(t) for all t ∈ [0, T ]. We

relax this assumption in Section 2.7.

2.4.2 Expected Dynamics Estimator (EDE)

A given data set (t1, d1), . . . , (tn, dn) will be used to induce a probability distribu-

tion on the parameter space. We do this through the normalized likelihood function,

pn(ω) = cn exp(−
n∑
i=1

(di − f(ω, ti))
2),
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(or a variant of this expression), where cn is a constant so that pn is a probability

distribution on Ω. (Note that if no data has been observed, the distribution p0 is just

the uniform distribution in Ω.)

The expected dynamics estimator (EDE) with respect to this probability distri-

bution is then

D̂n(t) = Epn(ω)[f(ω, t)],

which we use as an estimator of the system’s true dynamics. Thus, instead of trying to

maximize the likelihood function in order to estimate dynamics, we average the output

dynamics, weighted by the probability as determined by the likelihood function. It

is also worth noting that the EDE is the natural estimator that is used frequently

as a part of the ensemble method, and is usually computed by Monte Carlo Markov

Chain methods.

2.5 EDE Consistency for noise-free data

In this section, we establish results about the consistency of the expected dy-

namics estimator, that is, the ability to recover the true dynamics under a specified

experimental design. The proof will be provided for two different cases:

1. When the sampled time points {tn} are chosen at random from an absolutely

continuous probability distribution µ on [0,T].

2. When the sampled time points are chosen sequentially as in [4] and [5], where

the next sampled time point will be the point with highest current uncertainty

(output variance).

Before moving forward to analyze the convergence of the EDE in these two cases,

it is worth mentioning the distinction between two different sources of uncertainties

(in both parameters and output dynamics): noise in data(aleatoric uncertainty), and

structural uncertainty (epistemic uncertainty) in the model. Given a set of noise-free

data, the corresponding set of parameter values that fit the data perfectly well can



21

still be an infinite set (usually, is a union of low-dimensional manifolds). The simplest

example for this phenomenon is when the number of data is less than the number of

model parameters.

In unidentifiable nonlinear systems, this set of ”fitted” parameters may not col-

lapse to a point mass even if all measurable outputs are known completely. This

uncertainty in parameters may never be eliminated. The forward propagation of this

uncertainty to the output space is the target in this noise-free framework.

The likelihood proposed in the noise-free setting, therefore, is not associated with

noise in data, but with the structural uncertainty in model parameters from available

data (how well a parameter set fits the data). Instead of focusing on a low-dimensional

set of ”fitted” parameters, we use an everywhere positive likelihood function to con-

strain the parameter space. From a methodological point of view, the idea here is

similar to those behind simulated annealing methods for optimization and multiple

Monte Carlo Markov Chains method for statistical inference: since the objects of

interest is difficult to identify, we relax it by heated objects that are easier to study

and use our experimental design algorithm to sequentially reduce the temperature in

an optimal way to identify the true output dynamics.

2.5.1 Randomly chosen experimental design points

To illustrate the ideas used in later results, we consider the case when the sampled

time points {tn} are chosen independently at random from an absolutely continuous

probability distribution, with the assumption that the data are noise free (i.e. d(ti) =

g(ti) for all i). In this setting, we have the following theorem, which says that in the

limit when n→∞, the expected dynamics estimator converges to the system’s true

dynamics.
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Theorem 2.5.1 Suppose there exists ω0 ∈ Ω such that f(ω0, t) = g(t) for all t ∈

[0, T ]. Suppose also {tn} are chosen independently at random from an absolutely

continuous probability distribution µ on [0,T] and that 1 ≤ r <∞. Let

pn(ω) = cn exp

(
−

n∑
i=1

|f(ω, ti)− g(ti)|r
)
,

where cn is the normalizing constant to ensure that pn is a probability distribution on

Ω. Then for all t ∈ [0, T ],

lim
n→∞

Epn [f(ω, t)] = g(t).

Moreover, the convergence is uniform in t.

Before proving the theorem, we provide some intuition. Every time a new time

point is sampled, the likelihood function is multiplied by a new term of the form

exp (− |f(ω, tn+1)− g(tn+1)|r). If ω does not correspond to the true dynamics, there

must be a region of [0, T ] where f(ω, t) differs from g(t). Since the {tn} are cho-

sen independently at random from an absolutely continuous probability distribution,

eventually multiple time points will be sampled in this region, causing the value of

the likelihood at ω go to 0. Therefore, in the limit when n → ∞, the distribu-

tion pn(ω) will concentrate more and more on the set of ω which corresponds to the

true dynamics. Hence the expected dynamics will also converge to the system’s true

dynamics.

We use the following two lemmas, whose proofs will be provided in Section 2.8.

The first is a result on the convergence of Monte Carlo integration. The second is a

result on the convergence of the EDE.

Lemma 2.5.1 Let points ti be chosen as in Theorem 2.5.1, and let 1 ≤ r < ∞.

Define

hn(ω) = exp

(
− 1

n

n∑
i=1

|f(ω, ti)− g(ti)|r
)

and

h(ω) = exp

(
−
∫ T

0

|f(ω, t)− g(t)|rdµ(t)

)
.
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Then
hn(ω)

h(ω)
→ 1 uniformly in ω ∈ Ω

and

lim
n→∞

‖hn‖n = ‖h‖∞ .

Lemma 2.5.2 Let a and b be continuous functions on Ω × [0, T ] and [0, T ], respec-

tively, and let {pn} be a sequence of probability distributions on Ω.

a) Define

h(ω) = exp

(
−
∫ T

0

|a(ω, t)− b(t)|rdµ(t)

)
,

and suppose that

(i) for any α < 1, there exists δ < 1 and C > 0 such that if ω ∈ Ω with h(ω) ≤

α ‖h‖∞, then pn(ω) < Cδn ∀n;

(ii) there exists ω0 ∈ Ω such that a(ω0, t) = b(t) for all t ∈ [0, T ].

Then

lim
n→∞

Epn [a(ω, t)] = b(t) ∀t ∈ [0, T ]

and

lim
n→∞

Varpn [a(ω, t)] = 0 ∀t ∈ [0, T ].

Moreover, for both limits, the convergence is uniform in t.

b) Assume that Ω is finite and that there exists a set S ⊂ [0, T ] such that

{ω ∈ Ω : pn(ω) 6→ 0} ⊂ {ω ∈ Ω : a(w, t) = b(t) ∀t ∈ S}.

Then for all t in S,

lim
n→∞

Epn [a(ω, t)] = b(t)

and

lim
n→∞

Varpn [a(ω, t)] = 0.

Moreover, for both limits, the convergence is uniform in t.
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Proof [Proof of Theorem 2.5.1] Let

qn(ω) = exp

(
−

n∑
i=1

|f(ω, ti)− g(ti)|r
)
.

Then pn = cnqn, and qn = (hn)n, where hn is defined as in Lemma 2.5.1, so

pn(ω) =
qn(ω)∫

Ω
qn(ω)dω

=
hnn(ω)∫

Ω
hnn(ω)dω

=

(
hn(ω)

‖hn‖n

)n
.

Let 0 < α < 1, and suppose ω ∈ Ω with h(ω) ≤ α ‖h‖∞. By Lemma 2.5.1 we have

limn→∞ hn(ω) = h(ω) and limn→∞ ‖hn‖n = ‖h‖∞. Let ε > 0 and δ = α(1 + ε)2. For

ε small, we have δ < 1, and for this ε there exists N (independent of ω) large enough

such that if n > N , then

hn(ω) ≤ (1 + ε)h(w) ≤ α(1 + ε)‖h‖∞ ≤ α(1 + ε)2 ‖hn‖n .

Hence for all n > N ,

pn(ω) =

(
hn(ω)

‖hn‖n

)n
≤ δn,

with δ < 1. Since there exists ω0 ∈ Ω such that f(ω0, t) = g(t) for all t ∈ [0, T ], we

can apply Lemma 2.5.2 (a) with a = f and b = g to obtain the uniform convergence

lim
n→∞

∫
Ω

pn(ω)f(ω, t) dω = g(t) for all t ∈ [0, T ].

The integral on the left is Epn [f(ω, t)], so this gives the desired equality.

Note that the proof depends on the sequence {ti} only through Lemma 2.5.1, so

the result holds for any sequence that yields the conclusion in that lemma. A quasi-

random sequence satisfying a low-discrepancy condition [10] is one such sequence, so

we make the following remark.

Remark 2.5.1 The conclusion of Theorem 2.5.1 is still valid if {ti} is a low-discrep-

ancy sequence, i.e.

DN({t1, ..., tN}) := sup
B⊂Ω

∣∣∣∣#{1 ≤ i ≤ N : ti ∈ B}
N

− Vol(B)

∣∣∣∣→ 0

when N approaches infinity.
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The results in this section imply that if data is collected uniformly at random,

we can recover the true dynamics from the sampled data. This is one example of a

so-called space-filling design [3]. However, in practice, randomly chosen points do not

produce an efficient experimental design, since many of the measurements will not

give much information about the system; the convergence, although guaranteed, may

be slow.

2.5.2 Design Points Using the Maximally Informative Next Experiment

Intuitively, we expect the sequential designs of [4] and [5], for which the next

sampled time point is the one that has the highest current uncertainty (variance) to

increase the convergence rate relative to randomly selected design points. On the

other hand, the measured points may no longer be dense in [0, T ], so it’s not clear

that the dynamics may be recovered on the entire interval.

In the following theorem, we extend the consistency result in the previous sub-

section to this type of sequential design, with the additional assumption that Ω is

finite. This assumption was also used in the context of parameter identification in [13]

and [14]. We conclude that we can recover the entire true dynamics, even if all the

measurements are made in a small subset of [0, T ] (in the extreme case, at one point).

As in the previous subsection, we still assume that data are subject to no error.

Theorem 2.5.2 Let ω0, r, pn be as in Theorem 2.5.1 and assume that Ω has finite

cardinality. Suppose that each tn+1 is chosen so that

Varpn(ω) [f(ω, t)] ≤ Varpn(ω) [f(ω, tn+1)] ∀t ∈ [0, T ]. (2.1)

Then

lim
n→∞

Epn [f(ω, t)] = g(t) ∀t ∈ [0, T ].

That is, the EDE converges to the true dynamics of the system. Moreover, the con-

vergence is uniform in t.



26

By choosing the next time point to be the point with highest variance, we put a

constraint on the variance of the whole dynamics: variance at other points must be

smaller than variance at the measured points, which in turn converges to 0. In this

case we deduce that the expected dynamics on the whole interval converges to some

limit dynamics. If we can prove further that a “true” parameter vector ω0 is still in

the support of the limit distribution, then obviously this limit dynamics is equal to

the true system dynamics.

As above, this is straightforward when the ti are chosen at random from an ab-

solutely continuous distribution. However, the case when Ω is an open set and ti are

chosen according to (2.1) is a bit different. In a continuous framework, a parameter

vector has measure zero and good performance of the true parameter vector does not

guarantee that it will stay in the support of the limit distribution. Such a situation

can happen in the case when the model is not robust around the true parameter and

at the chosen time points, the neighbourhood around true parameters in the param-

eter space fit the data worse than some other regions. This may cause the expected

dynamics to converge to incorrect dynamics. Though this situation is perhaps un-

likely to happen in practice, we cannot exclude such a possibility for a convergence

result.

To resolve this issue, we assume in Theorem 2.5.2 that Ω is a finite set. This

may be achieved, for example, by subdividing each coordinate axis using a fixed step

size and taking the set of points in Ω that lie on the resulting grid. An alternative

approach in which the outputs and the set of possible measured time points are

discretized instead of Ω is also suggested in Theorem 2.5.4. Both assumptions are

natural and do not hinder the applicability of the method in practice.

Proof [Proof of Theorem 2.5.2] As in the proof of Theorem 2.5.1, let

qn(ω) = exp

(
−

n∑
i=1

|f(ω, ti)− g(ti)|r
)
,

and recall that pn = cnqn. Also, let A be the set of cluster points of {tn}: points

t ∈ [0, T ] such that there exists a subsequence {tnk} of with tnk → t.
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We claim first that if pn(w) does not tend to 0 with n (so that ω has probability

above some fixed ρ > 0 for infinitely many n), then f(ω, t) = g(t) for all t ∈ A.

Indeed, consider any ω ∈ Ω, t ∈ A such that |f(ω, t) − g(t)| = c > 0. Since A is the

set of limit points of {tn}, there exists a subsequence {tnk} of {tn} such that tnk → t.

Since f and g are continuous, for k large enough, we have |f(ω, tnk)− g(tnk)| ≥ c/2.

Hence
n∑
i=1

|f(ω, ti)− g(ti)|r →∞

when n→∞, and so qn(ω)→ 0.

On the other hand, the assumption that some ω0 gives the true dynamics implies

that f(ω0, t) − g(t) = 0 for all t, hence qn(ω0) = 1. Therefore, pn(ω0)/pn(ω) → ∞.

Since Ω is a finite space, pn(ω0) ≤ 1, and hence pn(ω)→ 0. Hence pn(w) 6→ 0 implies

f(ω, t) = g(t) for all t ∈ A.

Using Lemma 2.5.2 (b) (for finite Ω) with a = f and b = g, we deduce that

lim
n→∞

Epn [f(ω, t)] = g(t) ∀t ∈ A

and

Varpn(ω) [f(ω, t)]→ 0 ∀t ∈ A.

On the other hand, the choice of tn+1 gives

Varpn(ω) [f(ω, t)] ≤ Varpn(ω) [f(ω, tn+1)] ∀t ∈ [0, T ]. (2.2)

Now we claim that

Varpn(ω) [f(ω, tn+1)]→ 0. (2.3)

Indeed, by contradiction, assume that there exists a subsequence {tnk} and a

positive constant C such that

Varpnk (ω) [f(ω, tnk+1)] ≥ C

for all k. Since [0, T ] is compact, we can drop to a subsequence to assume that tnk+1

converges to some t0 ∈ A. By the continuity of f and its derivatives on the compact

set Ω× [0, T ], there is C0 > 0 so that for all k > 0 and ω ∈ Ω,

|f(ω, tnk)− f(ω, t0)| ≤ C0 |tnk − t0| . (2.4)



28

Hence by using this inequality, we have

lim sup
k→∞

Epnk (ω) |f(ω, tnk+1)− f(ω, t0)| ≤ lim
k→∞

C0

∣∣tnk+1
− t0

∣∣ = 0

which implies that

lim
k→∞

Epnk (ω) [f(ω, tnk+1)] = lim
k→∞

Epnk (ω) [f(ω, t0)].

By a similar argument, we also have

lim
k→∞

Epnk (ω)

[
f 2(ω, tnk+1)

]
= lim

k→∞
Epnk (ω)

[
f 2(ω, t0)

]
.

Therefore

lim
k→∞

Varpnk (ω) [f(ω, tnk+1)] = lim
k→∞

Varpnk (ω) [f(ω, t0)] = 0,

which contradicts the choice of C.

From (2.2) and (2.3) we obtain

Varpn(ω) [f(ω, t)] ≤ Varpn(ω) [f(ω, tn+1)]→ 0 ∀t ∈ [0, T ].

In other words, for all t in [0, T ],

lim
n→∞

∑
ω∈Ω

pn(ω) (f(ω, t)− Epn [f(ω, t)])2 = 0. (2.5)

The fact that ω0 gives the true dynamics implies that ω0 is a maximum for qn,

hence for pn. Hence pn(ω0) ≥ pn(ω) for all ω ∈ Ω, and from the fact that Ω is finite,

we deduce that pn(ω0) ≥ 1/|Ω|. Using this with (2.5) gives

(f(ω0, t)− Epn [f(ω, t)])2 ≤ |Ω|pn(ω0) (f(ω0, t)− Epn [f(ω, t)])2

≤ |Ω|
∑
ω∈Ω

pn(ω) (f(ω, t)− Epn [f(ω, t)])2

→ 0,

as n→∞. Hence

Epn(ω) [f(ω, t)]→ f(ω0, t) = g(t) ∀t ∈ [0, T ].
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As in the discussion before the proof, the only reason we use the variance crite-

rion is to bound the variance of dynamics at unmeasured points by the variance at

measured points. This criterion can be relaxed as follows.

Theorem 2.5.3 The result from Theorem 2.5.2 is still valid if Condition (2.1) (that

the next time point has maximum variance) is replaced by the condition that the

variance at the next time point is within a fixed constant of the maximum variance.

That is, there exists C > 1 so that for all t ∈ [0, T ],

Varpn(ω) [f(ω, t)] ≤ C Varpn(ω) [f(ω, tn+1)] . (2.6)

There are several motivations for this relaxation of criterion (2.1). First, in prac-

tice, the optimization of the variance function (which is usually done by Markov

Chain Monte Carlo methods) is subject to random effects arising in the sampling

process. By using criterion (2.6), we look for a near-optimal solution of the optimiza-

tion problem; this condition is stable with respect to a MCMC scheme. Second, in

real experiments, some sets of measurements may be more expensive and technically

difficult than the others. By looking for a near-optimal solution, we make it possible

for experimenters to find an alternative measurement when the optimization problem

gives rise to an optimum that is experimentally difficult to implement. Finally, as

we will see in Section 2.6, the new criterion allows us to apply additional criteria

for point selection in order to facilitate resampling, which will be used to establish

convergence rate of the EDE in the face of noisy data.

As noted above, instead of discretizing Ω, we may discretize the output space and

the measurement space. This gives the following result.

Theorem 2.5.4 The result from Theorem 2.5.2 is still valid if we assume that Ω is

open and bounded, but that the possible outputs of the system and the set of possible

measured time points are both finite. In this case, we get convergence of the EDE on

the full (finite) set of possible measured time points.
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Proof We denote by T = {τi}Ki=1 the set of all possible measured time points and

assume that at each time point, the output function f(ω, t), as well as the true

dynamics g(t), are discretized by a finite grid. That is, the continuous function g(t)

is approximated by values (Rg(τ1), . . . , Rg(τK)), where Rg(t) is obtained from g(t)

by rounding to the nearest of some finite set of allowable output values.

By making arbitrarily small perturbations to the possible output values if neces-

sary, we can assume without loss of generality that ∀τ ∈ T , the true output value

g(τ) does not lie midway between two allowable output values. Therefore, there exists

an open neighbourhood Uω0 of ω0 such that if ω ∈ Uω0 , then Rf(ω, τ) = Rf(ω0, τ) =

Rg(τ) ∀τ ∈ T . For the remainder of the proof we use f and g to mean Rf and Rg.

As in the proof of Theorem 2.5.2, we now consider any ω ∈ Ω such that pn(ω) does

not tend to 0 with n. Assume that f(ω, t) 6= f(ω0, t) for some t in the cluster set,

A, of {ti} (since T is finite here, this is the set of points that are measured infinitely

many times). Using the same argument as in the proof of Theorem 2.5.2, we deduce

that pn(ω) ≤ pn(ω0) and pn(ω0)/pn(ω) → ∞. Note that in this case, although Ω is

not finite, the argument is still valid since pn is constant on the open set Uω0 , so that

pn(ω0) is bounded above by 1/Vol(Uω0), where Vol(U) denotes the volume of a set

U .

Therefore, pn(ω) 6→ 0 implies f(ω, t) = g(t) for all t ∈ A. Since Ω may be

infinite, Lemma 2.5.2 cannot be applied directly in this case. However, by denoting

UA = {ω ∈ Ω : f(ω, t) = g(t) ∀t ∈ A}, we have for all t ∈ A∣∣∣∣∫
Ω

pn(ω)f(w, t)dω − g(t)

∣∣∣∣ ≤ ∫
Ω\UA

pn(ω) |f(w, t)− g(t)| dω.

Since f and g are bounded and pn(ω0) < 1/Volume(Uω0), we have |pn(ω)|f(w, t) −

g(t)| ≤ Cpn(ω0) ≤ C/Vol(Uω0). Also, pn(w) → 0 on Ω \ UA, so by the Dominated

Convergence Theorem, the right hand side converges to 0 as n tends to ∞. We

deduce that Epn(ω)[f(ω, t)] → g(t) ∀t ∈ A. By a similar argument, we also have

Varpn(ω)[f(ω, t)]→ 0 ∀t ∈ A.
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We next use the fact that the set T = {τi}Ki=1 of possible measured time points is

finite to deduce that Varpn(ω)[f(ω, tn+1)]→ 0. Indeed, assume that

Varpnk (ω)[f(ω, tnk+1)] ≥ C

for some subsequence {nk} and positive constant C. Since T is finite, there exists

t0 ∈ A that appears in the subsequence {tnk} infinitely many times; this implies that

Varpnk (ω)[f(ω, t0)] 6→ 0, which is a contradiction.

Hence, Varpn(ω)[f(ω, tn+1)] → 0. Combining this with (2.1), we see that in fact

Varpn(ω)[f(ω, t)] → 0 for all t ∈ T . This proves that the EDE converges to the true

system dynamics on T .

Note that the condition of discrete measured time points in the previous result

allows us to avoid the need for the regularity condition (2.4), which does not hold for

the piecewise constant functions obtained by discretizing the system outputs. In the

next section we provide further justification for a finite set of measurement points.

2.6 EDE Consistency with Noisy Data

In practice, of course, data from experiments are subject to noise. Hence in this

section we extend the results from previous sections to the case of additive Gaussian

noise. As is common in many settings, we assume that

d(ti) = g(ti) + εi

where g(t) is the true dynamics (which is unknown), d(ti) is the measured data at

the sampled time point ti, and εi are i.i.d. Gaussian random variables (see [5] for

emperical support of this noise model).

The analysis in the case of noisy data is a bit different from that used in the

previous section. Intuitively, if ”close”, but not exactly the same points in time, t1

and at t2, are measured, and if there is a functional relation between the output at

t1 and at t2, then the measurement at t1 will also help refine the information about
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data at t2. However, theoretically, this assertion is difficult to prove and may even

be incorrect, due to nonlinearity: if the relation between output at t1 and t2 are

nonlinear, using data at t2 to constrain t1 may create a bias in the fitted output.

For example, if f2 = f 2
1 then

(f1 + e)2 = f 2
1 + 2ef1 + e2 = f2 + ef1 + e2

When using averaging, the linear error term will go away by the strong law of large

number, but the quadratic term will have positive expectation, which results in a bias

in estimation of f2. The stronger the non-linearity is, the larger the bias and that

makes it hard clarify the convergence.

In order to obtain a convergence result using noisy data, we need to be able to

average over multiple trials, which makes sense only if we measure repeatedly at

a given time. In the theorem below, as in Theorem 2.5.4, we discretize the time

interval and allow measurements to be taken at only finitely many specified points

and use a slightly different form of probability distribution. This guarantees that

experiments will be replicated many times at “important” points. When data are

collected multiple times, the average value is used to constrain the dynamics: the

larger the number of times we make the measurement at a time point t, the more

confidence we put on the average data at that point. With this framework, we again

have the convergence of the EDE to the true system dynamics.

The idea of using a finite grid to replace the whole time interval to facilitate

resampling is a common technique in the problem of parameter identification ( [13],

[14]). In studies of ODEs, under the assumption that f is analytic, this is further

supported by the following theorem from [17], which guarantees that if we can identify

the system dynamics on a finite grid, we can identify the dynamics on the whole

interval.

Theorem 2.6.1 (Sontag [17])

Assume f(w, t) depends analytically on ω and t, and let N be the dimension of

the parameter space. Then, for Lebesgue almost every randomly chosen set of 2N + 1
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experiments, the following property holds: For any two parameters that have distinct

dynamics, one of the experiments in this set will distinguish them.

We further note that the assumption of analyticity may be replaced by an as-

sumption that Ω is a finite set. That is, with this assumption we can find a finite

grid T ⊂ [0, T ] that satisfies the above property: For any two parameters that have

distinct dynamics on [0, T ], one of the experiments t ∈ T in this grid will distinguish

them.

Finally, even in the case when the parameter space Ω is an open set, by choosing

the discretized time points to be the nodes for an efficient interpolation scheme, then

by interpolating on this finite set, convergence on the finite set of times T converts

to uniform approximation on the entire interval [0, T ].

Hence throughout this section, we discretize [0, T ] to a finite grid T = {τi}Ki=1,

and assume that the experiments can be made only at the nodes of this grid. We also

continue to assume that Ω has finite cardinality. With these assumptions, we have

the following theorem.

Theorem 2.6.2 Let C > 1. Assume that Ω is finite and at step n, tn+1 ∈ T is

chosen so that

Varpn(ω) [f(ω, t)] ≤ C Varpn(ω) [f(ω, tn+1)] ∀t ∈ T .

For 1 ≤ k ≤ K, let kn(τi) be the number of experiments made at time τi up through

step n and {dj(τi)}kn(τi)
j=1 be the data values from those experiments, with dj(τi) =

g(τi) + ε; the ε are iid N(0, σ2). Define Bn = {τi : kn(τi) > 0} and

pn(ω) = cn exp

− ∑
τi∈Bn

kn(τi)

f(ω, τi)−
1

kn(τi)

kn(τi)∑
j=1

dj(τi)

r ,

where cn is the normalizing constant and r > 2 . Then

lim
n→∞

Epn [f(ω, t)] = g(t) ∀t ∈ T .

Moreover, the convergence is uniform in t ∈ T .
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The same result with r = 2 is also valid if the following condition is satisfied

lim
n→∞

log log kn(τ1)

kn(τ2)
= 0 ∀τ1, τ2 ∈ A (2.7)

where A is the set of all cluster points of {tn}.

Note that if T satisfies the conditions in the discussion following Theorem 2.6.1,

then determining the dynamics in T is sufficient to determine the dynamics on all of

[0, T ].

Proof Let A = {τi : limn→∞ kn(τi) =∞} and

qn(ω) = exp

− ∑
τi∈Bn

kn(τi)

f(ω, τi)−
1

kn(τi)

kn(τi)∑
j=1

dj(τi)

r .

We claim that

{ω : qn(w) 6→ 0} ⊂ {ω : f(τi, ω) = g(τi),∀τi ∈ A}.

Indeed, consider any ω ∈ Ω, τi0 ∈ A such that |f(ω, τi0) − g(τi0)| = c > 0. Let

Xj = dj(τi0) = g(τi0) + ε and note that {Xj} is a Gaussian sequence of iid random

variables with E[Xj] = g(τi0) = f(w0, τi0). By the law of large numbers, we have

with probability 1

g(τi) = lim
n→∞

1

kn(τi)

kn(τi)∑
j=1

dj(τi)

Hence there exists N such that for all n > N∣∣∣∣∣∣g(τi0)− lim
n→∞

1

kn(τi0)

kn(τi0 )∑
j=1

dj(τi0)

∣∣∣∣∣∣ ≤ c/2

which implies (by triangle inequality)∣∣∣∣∣∣f(τi0 , ω)− lim
n→∞

1

kn(τi0)

kn(τi0 )∑
jl=1

dj(τi0)

∣∣∣∣∣∣ ≥ c/2

Therefore

∑
τi∈Bn

kn(τi)

f(ω, τi)−
1

kn(τi)

kn(τi)∑
j=1

dj(τi)

r

≥ (c/2)rkn(τi0)→∞ (2.8)
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as n→∞.

Now consider any τi ∈ A. By the law of the iterated logarithm, we have with

probability 1

lim sup
n→∞

√
kn(τi)

log log kn(τi)

f(ω0, τi)−
1

kn(τi)

kn(τi)∑
j=1

dj(τi)

 =
√

2

If r > 2, there exists a constant C such that

kn(τi)

(
f(ω0, τi)−

1

k

k∑
j=1

dj(τi)

)r

≤ C
log log kn(τi)

(kn(τi))(r/2−1)
→ 0 (2.9)

as n→∞.

Since this is true for any τi in the finite set A, we have

lim
n→∞

∑
τi∈Bn

kn(τi)

f(ω0, τi)−
1

kn(τi)

kn(τi)∑
j=1

dj(τi)

r

<∞.

Therefore, qn(ω0) is bounded below, so pn(ω0)
pn(ω)

= qn(ω0)
qn(ω)

→∞. Since Ω is a finite space,

pn(ω0) ≤ 1. This makes pn(ω)→ 0.

In the case when r = 2, we have

kn(τi)

(
f(ω0, τi)−

1

k

k∑
j=1

dj(τi)

)2

≤ C log log kn(τi)

which implies

lim sup
n→∞

∑
τi∈Bn

kn(τi)

f(ω0, τi)−
1

kn(τi)

kn(τi)∑
j=1

dj(τi)

2

≤ C1 +
∑
τi∈A

C log log kn(τi).

Equation (2.7) implies that there exists N such that for all n ≥ N

log log kn(τi) ≤
(c/2)2

2C(#A)
kn(τi0) ∀τi ∈ A

where #A denotes the cardinality of A, and c is the constant in (2.8).

Combine this inequality and (2.8) (with r = 2), we have

pn(ω)

pn(ω0)
=

qn(ω)

qn(ω0)
≤ exp

(
C1 −

c2

8
kn(τi0)

)
→ 0
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as n→∞. Hence pn(ω)→ 0.

At this point, we have proved that

{ω : pn(w) 6→ 0} ⊂ {ω : f(ω, τi) = g(τi), ∀τi ∈ A}.

Hence by Lemma 2.5.2 (b)

lim
n→∞

Epn [f(ω, τi)] = g(τi) ∀τi ∈ A

and

lim
n→∞

Varpn [f(ω, τi)] = 0 ∀τi ∈ A.

On the other hand, we have

Varpn(ω) [f(ω, t)] ≤ C Varpn(ω) [f(ω, tn+1)] ∀t ∈ T .

Using the same argument as in the proof of Theorem 2.5.2, we have

Varpn(ω) [f(ω, t)]→ 0 ∀t ∈ T

and

Epn(ω) [f(ω, t)]→ f(ω0, t) = g(t) ∀t ∈ T .

By an argument similar to that used in the proof of Theorem 2.5.4, we obtain the

following result.

Theorem 2.6.3 The result of Theorem 2.6.2 is still valid if we replace the condition

of finite cardinality of Ω with the condition of a finite set of output values and possible

measurement time points.

2.7 EDE consistency with model mismatch

So far we have investigated various schemes to design experiments for dynamics

identification, under the assumption that the investigated model is a correct model,

i.e. there exists ω0 ∈ Ω such that f(ω0, t) = g(t) for all t ∈ [0, T ]. Here we relax this

condition using the concept of ε-equivalence.
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Definition 2.7.1 Let ε > 0 and suppose g and h are continuous on [0, T ]. Then g

and h are ε-equivalent means that ‖g − h‖∞ < ε.

To obtain the main result in this section, we also need to assume that the function

outputs are discretized by a finite grid of resolution ε, similar to the discretization in

Theorem 2.5.4. However, here we use an adaptive discretization in that it changes

based on the measurements obtained so far and based on the time point.

Definition 2.7.2 Let h be continuous on [0, T ], let T and dj(τi) be as in Theo-

rem 2.6.2, and let ε > 0. Define

d∗n(τi) =

 1
kn(τi)

∑kn(τi)
j=1 dj(τi) if kn(τi) > 0

0 if kn(τi) = 0

and

Rε
nh(τi) = d∗n(τi) + sgn(h(τi)− d∗n(τi))

⌊
|h(τi)− d∗n(τi)|

ε

⌋
ε.

This choice of discretization is needed to guarantee convergence of the estimated

dynamics. With this setting, we have the following theorem, in which we use the

framework of Theorem 2.6.2 but with the output discretization just given. The proof

of this theorem is a combination of the techniques employed in Theorem 2.6.2 and

Theorem 2.5.4. Here bxc denotes the largest integer less than or equal to x.

Theorem 2.7.1 Let Ω, C, T , Bn, kn, dj(τi) be as in Theorem 2.6.2, ε0 > 0 and

assume that there is ω0 ∈ Ω such that f(ω0, t) and g(t) are ε0-equivalent. For ε > ε0

define

pn(ω) = cn exp

− ∑
τi∈Bn

kn(τi)

Rε
nf(ω, τi)−

1

kn(τi)

kn(τi)∑
j=1

dj(τi)

2 ,

where cn is the normalizing constant, and assume that at each step, the next measure-

ment is chosen so that

Varpn(ω) [Rε
nf(ω, t)] ≤ C Varpn(ω) [Rε

nf(ω, tn+1)] ∀t ∈ T .

Then, for almost every ε > ε0, the expected dynamics converges (uniformly in

t ∈ T ) to limit dynamics that are ε-equivalent to g(t).
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Proof Denote by A the set of all t ∈ T that are measured infinitely many times.

By the strong law of large numbers, we have d∗n(τ) → g(τ) for all τ ∈ A. Since Ω

and T are finite, there is a full measure set of ε > ε0 such that for all τ ∈ T and

ω ∈ Ω, the distance between g(t) and f(ω, τ) is not a multiple of ε. This implies

that limn→∞ |f(ω, τ) − d∗n(τ)|/ε is not an integer for any ω ∈ Ω and τ ∈ A, hence

that limn→∞R
ε
nf(ω, τ) exists for all such ω and τ . Also, if τ 6∈ A, then Rε

nf(ω, τ) is

constant for n large enough. Hence limn→∞Rnf(ω, τ) exists for all ω ∈ Ω, τ ∈ T .

On the other hand, the assumption on ω0 implies that for all τ ∈ T

|d∗n(τi)− f(ω0, τ)| ≤ |d∗n(τi)− g(t)|+ ε0.

For n sufficiently large, the right hand side is less than ε for all τ ∈ T . For such n we

have Rε
nf(ω0, τ) = Rε

ng(τ) for all τ in T .

Now consider ω ∈ Ω such that limn→∞R
ε
nf(ω, τ) 6= limn→∞R

ε
nf(ω0, τ) for some

τ in A. Using the same argument as in the proof of Theorem 2.6.2, we deduce that

pn(ω0)/pn(ω) → ∞. Since Ω is a finite space, pn(ω0) ≤ 1. This makes pn(ω) → 0.

We have proved that

{ω : pn(w) 6→ 0} ⊂ {ω : lim
n→∞

Rnf(ω, τ) = lim
n→∞

Rng(τ),∀τ ∈ A}.

Then by Lemma 2.5.2 (b)

lim
n→∞

Epn [Rε
nf(ω, τ)] = lim

n→∞
Epn [Rε

ng(τ)] = g(τ) ∀τ ∈ A

and

lim
n→∞

Varpn [Rε
nf(ω, τ)] = 0 ∀τ ∈ A.

On the other hand, we have

Varpn(ω) [Rε
nf(ω, t)] ≤ C Varpn(ω) [Rε

nf(ω, tn+1)] ∀t ∈ T .

Using the same argument as in the proof of Theorem 2.5.2, we have

Varpn(ω) [Rε
nf(ω, t)]→ 0 ∀t ∈ T
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and

lim
n→∞

Epn(ω) [Rε
nf(ω, t)] = lim

n→∞
Rng(t) ∀t ∈ T .

This proves that the EDE converges to limit dynamics that are ε-equivalent to the

true system dynamics on T .

2.8 Proofs of Supporting Lemmas

In this section, we provide the proofs of the two lemmas that have been used

throughout this paper.

2.8.1 Lemma 2.5.1

(Convergence of Monte Carlo integration)

Proof [Proof]

First, we note that

hn(ω)

h(ω)
= exp

(∫ T

0

|f(ω, t)− g(t)|rdµ(t)− 1

n

n∑
i=1

|f(ω, ti)− g(ti)|r
)
.

Using the Koksma-Hlawka inequality for convergence of quasi-Monte Carlo integra-

tion [12], we have∣∣∣∣∫ T

0

|f(ω, t)− g(t)|rdµ(t) − 1

n

n∑
i=1

|f(ω, ti)− g(ti)|r
∣∣∣∣∣ (2.10)

≤ rD∗n

∫ T

0

|f(ω, t)− g(t)|r−1

∣∣∣∣∂f∂t (ω, t)− g′(t)
∣∣∣∣dµ(t),

where D∗n is the discrepancy of the finite sequence {t1, t2, ..., tn} (see [10] for more

information about the discrepancy).

Since f is a C1 function on the compact set Ω× [0, T ] and g is C1 on [0, T ], there

exists M independent of ω and t such that∫ T

0

|f(ω, t)− g(t)|r−1

∣∣∣∣∂f∂t (ω, t)− g′(t)
∣∣∣∣dµ(t) ≤M. (2.11)
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Since µ is absolutely continuous with respect to Lebesgue measure, we have D∗n → 0

as n→∞.

From (2.10) and (2.11) we have for any ω ∈ Ω that

|log (hn(ω)/h(ω))| ≤ rMD∗n → 0.

Hence hn(ω)/h(ω)→ 1 uniformly in ω ∈ Ω.

Also, since hn(ω) ≤ 1 for all ω and h(ω0) = 1, we have

lim sup
n→∞

‖hn‖n = lim sup
n→∞

(∫
Ω

hnn dω

)1/n

≤ lim sup
n→∞

Vol(Ω)1/n

= 1 = ‖h‖∞ . (2.12)

To get a lower bound, let ε > 0. Note that if h(ω) ≥ 1− ε/2 and |hn(ω)−h(ω)| ≤

ε/2, then by the triangle inequality, we have hn(ω) ≥ 1−ε. Also, since h is continuous

and ‖h‖∞ = 1, we have

Cε := Vol({ω : h(ω) ≥ 1− ε/2}) > 0.

Since hn/h converges uniformly on Ω to 1 and |h| ≤ 1, there exists N(δ, ε) large

enough such that for all n ≥ N and all ω ∈ Ω, |hn(ω)− h(ω)| ≤ ε/2. Hence

Vol({ω : hn(ω) ≥ 1− ε}) ≥ Cε.

So ∫
Ω

hnn dω ≥
∫
{hn≥1−ε}

hnn dω ≥ Cε(1− ε)n

and (∫
Ω

hnn dx

)1/n

≥ C1/n
ε (1− ε).

Taking n→∞, we deduce

‖h‖∞ ≥ lim sup
n→∞

‖hn‖n ≥ lim inf
n→∞

‖hn‖n ≥ ‖h‖∞ − ε.

Since ε was arbitrary, limn→∞ ‖hn‖n = ‖h‖∞ .



41

2.8.2 Lemma 2.5.2

(Convergence of the Expected Dynamics Estimator)

Proof [Proof] We provide the proof for part (a). The proof for part (b) uses a

similar argument.

Let ε > 0 and define

U = {ω ∈ Ω : |a(ω, t)− b(t)| < ε,∀t ∈ [0, T ]}.

Since a, b are continuous and a(ω0, t) = b(t) for all t, we see that U is a neighborhood

of ω0. Then for t ∈ [0, T ], we have∣∣∣ ∫
Ω

pn(ω)a(w, t)dω − b(t)
∣∣∣ ≤ ∫

Ω

pn(ω) |a(w, t)− b(t)| dω

=

∫
Ω\U

pn(ω) |a(w, t)− b(t)| dω +

∫
U

pn(ω) |a(w, t)− b(t)| dω

≤
∫

Ω\U
pn(ω) |a(w, t)− b(t)| dω + ε

Now we claim that there exists α < 1 such that ∀ω ∈ Ω \ U , h(ω) ≤ α. Indeed,

assume that ∃ωn ∈ Ω \ U with h(ωn) → 1. Then for each n there is tn ∈ [0, T ] such

that |a(ωn, tn) − b(tn)| ≥ ε. Since Ω × [0, T ] is compact, without loss of generality,

we can assume that ωn → ω∗ ∈ Ω, tn → t∗ ∈ [0, T ]. Since a and b are continuous, we

deduce that |a(ω∗, t∗)− b(t∗)| ≥ ε and h(ω∗) = 1.

However, h(ω∗) = 1 implies that
∫ T

0
|a(ω∗, t)− b(t)|rdµ(t) = 0. Since µ is abso-

lutely continuous and a and b are continuous, this implies that a(ω∗, t) = b(t) for all

t ∈ [0, T ], which contradicts |a(ω∗, t∗)− b(t∗)| ≥ ε.

Therefore, there exists α < 1 such that ∀ω ∈ Ω \ U , h(ω) ≤ α. Hence, by using

hypothesis (i), we have∫
Ω\U

pn(ω) |a(w, t)− b(t)| dω ≤ Vol(Ω)δn sup
(ω,t)

|a(ω, t)− b(t)|

and hence ∣∣∣∣∫
Ω

pn(ω)a(w, t)dω − b(t)

∣∣∣∣ ≤ ε+ C1δ
n,
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where C1 is a constant that does not depend on t and ω. Since ε is arbitrary, we

deduce that

lim
n→∞

Epn [a(ω, t)] = lim
n→∞

∫
Ω

pn(ω)a(ω, t) dω = b(t)

uniformly in t ∈ [0, T ]. Note that this argument actually shows the somewhat stronger

statement that Epn [|a(ω, t)−b(t)|]→ 0 uniformly in t. The same argument shows that

Epn [|a(w, t)− b(t)|2] → 0 uniformly in t ∈ [0, T ]. Hence taking ā(t) = Epn [a(ω, t)],

we have

Varpn [a(ω, t)] = Epn [|a(ω, t)− b(t)|2]− |b− ā(t)|2

which converges to 0 uniformly in t ∈ [0, T ].

2.9 Numerical examples

In this section we provide numerical examples to illustrate our theoretical find-

ings and demonstrate the efficacy of our variations on the MINE method to design

experiments for dynamics identification.

2.9.1 A simple ODE model

We consider a simple biochemical system that contains 3 chemicals:

A
k1→ B

k2→ C

where k1 and k2 are the (unknown) degradation rates of A and B, respectively. We

also assume that at the beginning, the system only contains A.

We model this system using

dA

dt
= −k1A,

dB

dt
= k1A− k2B,

dC

dt
= k2B,

(A(0), B(0), C(0)) = (1, 0, 0).

In this particular example, we are interested in the dynamics of B. The param-

eter space is [0.1, 10]× [0.1, 10], the time interval is [0,180] (seconds) and the “true”
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dynamics of the system will correspond to a fixed value ω0 that is chosen randomly

from the uniform distribution on the parameter space.

The experiments are designed sequentially using criteria (2.1) or (2.6), depending

on the assumptions for a given example. In all cases, at step n + 1, the expected

dynamics and the corresponding variance function are calculated using the Markov

Chain Monte Carlo method. A Markov chain of length 10000 with respect to the

invariant measure pn is sampled on the parameter space using Griddy-Gibbs sam-

pling [16]. To speed up the sampling process, a sparse grid interpolant [7] is used to

approximate the model output. At each point of the chain, the corresponding dy-

namics is evaluated using the polynomial interpolant. The average of these sampled

dynamics is computed to approximate the EDE, and the variance is approximated in

a similar manner. The interpolant we used in this example has an estimated L∞ error

of order 10−4, which is small in comparison to the experiment error and therefore is

negligible. The error of the interpolant is estimated by the difference between the

interpolated dynamics and the exact dynamics evaluated using the MatLab solver

ode15s at 1000 parameter vectors chosen at random from the uniform distribution on

the parameter space.

First, we use the framework of Theorem 2.5.2, in which the data is collected with

no noise, the time interval is not discretized, and the experiments are designed using

condition (2.1). The selected sampling times are shown in Figure 2.1(left panel).

We see that even without the discretization of the possible sampled time points, the

algorithm focuses on two regions in time that are sufficient to capture the system

dynamics. This is consistent with the fact that the system is controlled by two

parameters. Figure 2.1 (right panel (i), solid curve) shows how rapidly the EDE

approximates the actual response. After 5 experiments, the EDE has converged to

the true system dynamics within a negligible error.

Next, we consider the case when the data are subject to Gaussian noise with

σ2 = 0.01. The dashed curve in Figure 2.1 (right panel, (ii)) represents the error of

the EDE as described in the original algorithm. The dash-dot curve (iii) corresponds
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Figure 2.1. (Two dimensional paramter space) Left: Measured time
points designed by MINE criteria. The algorithm focuses on two
regions in time that capture the system dynamics. Right: The L∞

errors of EDE on log-scale in three different cases: (i) Data collected
with no noise, using the original MINE criteria (2.1) (ii) Data with
Gaussian noise, using the original MINE criteria (2.1), (iii) Data with
noise, using criterion (2.6) on a finite set of output values and possible
measurement time points.

to the assumptions of Theorem 2.6.2. In this case, the experiments are designed

sequentially using criteria (2.6) with C = 2, and the time interval is discretized by a

uniform grid whose distance between neighbour points is equal to 20. In either case,

the algorithm provides a good approximation of the true dynamics after just a few

sequential experiments.
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2.9.2 An ODE model of the T-cell signaling pathway

In this example, we consider a mathematical model of the T-cell signaling pathway

proposed by Lipniacki et al. in [9]. This is a system of ODEs with 37 state variables,

19 parameters, and fixed initial conditions. We seek to design experiments to identify

the dynamics of pZAP, one of the state variables of the system.

In this example, the parameter space is defined relative to a nominal parameter

vector. That is, for each component of the nominal vector, we define a range of

five times smaller to five times larger than this component. The whole parameter

space is the 19-dimensional set formed by the product of these 19 intervals. The

time interval is [0,201] (seconds). The true dynamics of the system are given by

a fixed choice of ω0 that is chosen randomly from the uniform distribution on the

parameter space. The expected dynamics and the corresponding variance function

are calculated as described in the previous example. To reduce the computational

cost, we also construct a sparse grid interpolant to approximate the output of the

ODE system. We use a sparse grid with 50, 000 points to construct the interpolant.

Even so the interpolant has an L∞ error of order 10−2, so that there is some mismatch

in the model.

Figure 2.2 shows the sequence of design points created by the algorithm in 3 dif-

ferent cases: (i) Data collected with no noise, using the original MINE criteria (2.1);

(ii) Data with Gaussian noise, using the original MINE criteria (2.1); (iii) Data with

noise, using criterion (2.6) on a finite set of output values and possible measurement

time points. In all three cases, the design algorithm focuses on two distinct regions,

one of which is precisely defined, the other of which is somewhat nebulous and may

perhaps be considered as two regions, particularly in case (iii). This result suggests

that although the ODE system is controlled by 19 different parameters, the set of pos-

sible system dynamics is contained (at least approximately) in a space of dimension 3.

It is worth noting that in [5], the authors also predicted a pile-up of data points under

MINE criteria in the open-loop setting (where multiple measurements are chosen in
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Figure 2.2. (19-dimensional paramter space) Design points in three
different cases: (i) Data collected with no noise, using the original
MINE criteria (2.1) (ii) Data with Gaussian noise, using the original
MINE criteria 2.1, (iii) Data with noise, using criterion 2.6 on a finite
set of output values and possible measurement time points.

one step). Our result confirms the same property in the closed-loop case, where the

measurements are chosen sequentially with updated probability distributions.

Figure 2.3 shows the approximation error of the EDE in these three cases. As

in the previous example, the error in case (i) decreases quickly to a level consistent

with the error in the interpolant and the error in MCMC sampling. This supports

the assertion that if we know the exact values of the dynamics at three important

points, we are able to recover the whole time course of the dynamics.

Since our algorithms in case (ii) and (iii) are data-dependent, we present two

different realizations of the performance.

In the first case (left panel of Figure 2.3), the original algorithm using the MINE

criteria with noisy data does not do very well in recovering the dynamics after the

first 15 experiments. The problem here is that a measurement with significant noise,

especially in the first few steps, can cause the estimator to shift toward a region
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of parameter space in which the dynamics do not agree with the true dynamics.

Moreover, if the output function at this point of measurement is relatively insensitive

to parameter changes in this region, it may take many additional measurements to

overcome this initial misestimation.

In our example, we encounter this issue: the second measurement made at t = 201

gives a data value of nearly 1 when the true value is approximately 0.75. This mea-

surement shifts the probability distribution toward a broad region in the parameter

space where the corresponding dynamics saturate to the maximum value 1. This

reduces the system variance at time 201 to a relatively small value in comparison to

that of other time points. A direct consequence is that in the next eight experiments,

no measurement is made around time 200, and the EDE’s error does not improve.

However, during this process, the parameters that correspond to the true dynamics

gain weight, causing the variance around time 200 to increase. Finally, a measure-

ment at time 201 is made in step 11, which significantly decreases the error of the

expected dynamics estimator.

This example illustrates the fact that although the convergence of the original

algorithm is guaranteed, the convergence may be slow. Some drawbacks of the original

algorithm are removed in case (iii) by replacing criteria (2.1) by criteria (2.6) and

by restricting the set of possible time points to be finite. By making the set of

possible measurement points finite, we collapse the important regions in the time

interval to single points and facilitate resampling to get more accurate data at these

important points. Also, by using criteria (2.6), we obtain the freedom to select the

next measurement point subject to multiple criteria, as described next.

For Figure 2.3, as in the previous example, the set of all possible measurement

time points is restricted to a uniform grid of resolution 20, starting from 1. To

design experiments, we used the following ranking: among time points with relatively

high variance (specifically, that have variance larger than half of the maximum), the

time points that have already been measured are given more priority (to promote

resampling); among time points that have been measured, the points with fewer
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Figure 2.3. (19-dimensional paramter space). The L∞ errors of EDE
on log-scale in three different cases: (i) Data collected with no noise,
using the original MINE criteria (2.1) (ii) Data with Gaussian noise,
using the original MINE criteria (2.1), (iii) Data with noise, using cri-
terion (2.6) on a finite set of output values and possible measurement
time points.

measurements have more priority; among time points that have the same number of

measurements, the ones with higher variance have more priority.

The advantages of this variation of the algorithm are illustrated in Figure 2.3 (left

panel). After 2 measurements that coincide with those of the previous case (includ-

ing the point with large measurement error), the algorithm then selects a different

measurement point that leads the error to drop quickly. After 6 experiments, the ex-



49

pected dynamics estimator has converged to the true dynamics within an acceptable

error.

On the right panel of Figure 3, we consider a different realization of data on the

first measurement. In this case, the random data is obtained with small error and

leads to quick convergence of the EDEs corresponding to both criteria.

This example also illustrates the fact that the probabilistic framework in experi-

mental design works well in the case when the number of data is less than the number

of parameters, or when the model is unidentifiable: our examples couldn’t have been

done using a method of parameter estimation via optimization. Assume that in ex-

ample 2, we can make measurements with high accuracy at 3 time points 50, 100

and 200 and want to know the value at time 150. The number of data points in

this case is less than the number of parameters and any method that returns a single

parameter estimate will never be able to predict with high confidence (or any confi-

dence at all) the output value at 150. In order to do so, it needs to compute every

possible parameter values that fit the data, which is very unlikely in practice. Our

probabilistic framework provides a feasible way to address the issue: we considered

such an example in Figure 2.4, in which we quantify the uncertainty of the dynamics

with only 10 noisy measurements (σ = 0.1) that accumulate at 3 time points (see

also Figure 2.2), which is much less than the number of model parameters (19).

Model mismatch: Finally, we illustrate the effect of model mismatch on the

convergence of the EDE by using different sparse grid interpolants to approximate

the system output. In this particular example, we run the algorithm with the relaxed

MINE criteria on a finite set of measured time points and output values with three

different sparse grids of 1000, 2000, 9000 grid points, respectively. The estimated

L∞-errors of the three interpolants are 0.2, 0.1 and 0.05. As in the previous example,

the errors of the interpolants are estimated by the difference between the interpolated

dynamics and the exact dynamics evaluted using the MatLab solver ode15s at 1000

parameter vectors chosen uniformly at random from the parameter space. These

interpolants are considered as approximate models with varying degrees of mismatch.
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In each case, the EDE is evaluated after 10 points selected according to criteria (2.6)

with C = 2.

The results of this example are given in Figure 2.3. It is not surprising that all

three cases give good estimates of the true dynamics: since we are not concerned with

the identification of parameters, as long as the dynamics space of the approximate

models are close to the dynamics space of the true model, the algorithm will work

well. Although the sparse grid interpolant with 1000 grid points is not a good ap-

proximation of the system output, it has enough degrees of freedom to capture the

behaviour of the system so that a weighted average over parameter space gives a good

estimation of the true dynamics.

2.10 Conclusion

Building upon the Maximally Informative Next Experiment algorithm, we have

developed several variants of a model-based experiment design algorithm. This al-

gorithm uses existing data to produce a probability distribution on parameter space

and then identifies possible measurement points whose output values have large vari-

ance under this distribution. We have also proven the convergence of the associated

EDE (expected dynamics estimator) to the true system dynamics under a variety of

assumptions on the model and data, even when the chosen experiments cluster in a

small finite set of points. This approach provides an effective way to incorporate

the knowledge arising from nonlinear models into the experiment design process. We

illustrated our results with numerical examples on various models of cellular pro-

cesses.

There are several avenues for future work. First, in [5], the authors proposed sev-

eral MINE criteria for experimental design. In this work, we establish the theoretical

foundations for one of them. The next step would be validating other MINE criteria

within a more general model setting.
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Figure 2.4. (19-dimensional paramter space). Left: EDEs using dif-
ferent sparse grid interpolators to approximate the dynamics. The
EDEs are evaluated after 10 steps. Right: Expected dynamics esti-
mator and predicted confidence intervals of the output dynamics with
ε = 0.05
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Second, in this paper, we focused on the identification of observable outputs and

did not attempt to address the extrapolation problem, in which measurements of

one output are used to make inference about an unobservable output. However, it is

worth noting that our framework can be naturally extended to identify unobservable

outputs that are theoretically identifiable given that all information about possible

observable outputs is known. The problem of determining which unobservable out-

puts are identifiable in a given experimental setting will be addressed in one of our

independent but related works.
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CHAPTER 3. EFFECTIVE SAMPLING SCHEMES FOR BEHAVIOR

DISCRIMINATION IN NONLINEAR SYSTEMS

3.1 Preface

The material presented in this chapter was originally published in the International

Journal for Uncertainty Quantification:

Vu Dinh, Ann E. Rundell and Gregery T. Buzzard. Effective sampling schemes for

Behavior Discrimination in nonlinear systems. International Journal for Uncertainty

Quantification.

This article has been reproduced with material omitted or summarized to befit

the focus of this dissertation. It has been modified to conform to the format required.

3.2 Abstract

Behavior discrimination is the problem of identifying sets of parameters for

which the system does (or does not) reach a given set of states. While there are a va-

riety of methods to address this problem for linear systems, few successful techniques

have been developed for nonlinear models. Existing methods often rely on numerical

simulations without rigorous bounds on the numerical errors and usually require a

large number of model evaluations, rendering those methods impractical for studies

of high-dimensional and expensive systems.

In this work, we describe a probabilistic framework to estimate the boundary

that separates contrasting behaviors and to quantify the uncertainty in this estima-

tion. In our approach, we directly parameterize the, yet unknown, boundary by

the zero level-set of a polynomial function, then use statistical inference on available

data to identify the coefficients of the polynomial. Building upon this framework,
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we consider the problem of choosing effective data sampling schemes for behavior

discrimination of nonlinear systems in two different settings: the low-discrepancy

sampling scheme, and the uncertainty-based sequential sampling scheme. In both

cases, we successfully derive theoretical results about the convergence of the expected

boundary to the true boundary of interest.

We then demonstrate the efficacy of the method in several application contexts

with a focus on biological models. Our method outperforms previous approaches to

this problem in several ways and proves to be effective to study high-dimensional and

expensive systems.

Keywords: Representation of uncertainty, Variance Reduction methods, High-

dimensional methods, Classification, Sequential Data, Probabilistic inference, Biolog-

ical modeling.

3.3 Introduction

Behavior discrimination, or parameter synthesis, is the problem of identifying sets

of parameters for which the system does (or does not) reach a given set of states.

This problem appears in science and engineering contexts in various forms. For

examples, in studies of biological systems, regions of the parameter/input space with

different qualitative behaviors need to be treated differently and should be identified

before other tools, such as sensitivity analysis, identifiability analysis or model order

reduction can be performed. Similarly, in optimal control theory, the constrained

optimization problem is well-defined only on the feasible region of the parameter

space and the task of computing that region is crucial in designing the control [1]. In

uncertainty quantification of discontinuous model response with limited model runs,

a preliminary step to identify the structure of the discontinuity also needs to be done

before the reconstruction of the model response can be established [3].

While there are a variety of methods to address this problem for linear systems,

few techniques have been developed for nonlinear models. One of the recent successful
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methods for behavior discrimination of enzymatic reaction networks is proposed by

Donze et.al. in [4] and later [5], based on a system’s reachability and robustness

analysis. This algorithm employs Monte Carlo sampling and sensitivity analysis to

explore the space P of possible parameter values and identify subsets of P which

robustly satisfy a property φ. If a subset of P does not satisfy/violate that property,

the algorithm iteratively subdivides it until each subdivisions entirely satisfies or

entirely violates φ, or which are of insignificant size. The expected result of the

overall procedure is a partition of P into small subsets around the boundary between

satisfaction and violation of φ and larger regions where the satisfaction or violation

is robust.

As discussed in [4] and [5], this approach has a few limitations. First, the refine-

ment process implies that the number of partitions increases exponentially with the

number of unknown parameters. Thus, in practice, some variables must be held fixed

while analyzing the behavior of the model. Second, a common issue in studying com-

plex ODE systems is that the cost for evaluation of system output for a particular set

of parameter values can be very expensive. For systems with a large number of equa-

tions and unknown parameters, it is usually not computationally feasible to sample

enough points by Monte Carlo sampling to explore the parameter space. Third, the

method relies on numerical simulations, without rigorous bounds on the numerical

errors. Finally, although the method generates a map that partitions the parame-

ter space into regions of the same behavior, no analytical formula to describe the

boundary is derived.

In this paper we introduce an alternative way to identify the boundary between

the satisfaction and violation regions of a property φ. In our approach, we directly

parameterize the, yet unknown, boundary by the zero level-set of a polynomial func-

tion, then use statistical inference on available data to identify the coefficients of the

polynomial.

This idea of using statistical inference to locate the surface of discontinuity was

proposed by Sargsyan et. al. [3] for uncertainty quantification of mathematical models
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with discontinuity and limited model runs. It is worth noting that [3] focused on

finding a probabilistic description of the boundary between the ”good” and ”bad”

regions based on given data, and did not specify an effective way to choose the

points where data should be collected for inference. In most examples, Monte Carlo

sampling (which can be expensive in complex systems) was employed to choose the

points of inference, with an implicit assumption that the selected data contain enough

information to constrain the distribution on the set of possible boundaries effectively.

Since no estimator of the true boundary was specified, no theoretical result about the

convergence or rigorous bound on the numerical errors was provided.

To resolve the issue of computational cost, as well as to provide a theoretical

foundation for the usage of statistical inference to locate the surface of discontinuity,

in this paper, we investigate two classes of sampling methods to choose the points

that need to be evaluated for inference: the low-discrepancy sampling method and

the the sequential sampling method. The former is a well-known and effective class of

sampling schemes to study high dimensional structure, while the latter selects points

where current understanding about the location of the boundary is most uncertain.

As we will show later in our computational results, the low-discrepancy sampling

method can quickly identify the general structure of the boundary, while after a

burn-in period, the sequential sampling only samples at points near the boundary

of interest. With these effective sampling schemes, the number of model evaluations

needed to produce a fair approximation of the boundary is significantly smaller than

that required by the methods discussed above.

Our method has several advantages over previous approaches. First, the number

of points to be sampled is relatively insensitive to the number of unknown parameters.

Thus, the algorithm is a practical method to study high dimensional/computationally

expensive systems. Second, by parameterizing the boundary as a zero level set of a

polynomial function, we successfully explore a large class of boundary curves, in-

cluding the case when the boundary has multiple components, which has not been

addressed and analyzed in the literature. Third, for both classes of sampling schemes,
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we are able to provide theoretical results about the convergence of the estimated sur-

face to the boundary of interest. Finally, by employing a probabilistic framework, our

method provides a feasible way to quantify uncertainty in the discriminations. This

enables further uncertainty analysis of the system of interest.

The paper is organized as follows. Section 2 provides the mathematical frame-

work and describes our algorithm of behavior discrimination, as well as compares the

method with other approaches to the problem. Section 3 establishes the convergence

of the estimated surface to the boundary of interest for the two mentioned classes

of sampling schemes. In Section 4, we investigate various mathematical models of

biological systems to illustrate the efficacy of the method in applications. Further

properties about the performance of the algorithm is provided by simulation in Sec-

tion 5. Finally, in section 6, we conclude the paper with discussions about the method

and some descriptions of future work.

3.4 Methodology

3.4.1 Description of the algorithm

In this work, we consider a continuous nonlinear system that can be described by

a functional relation between a parameter vector ω and the system output y

y = F (ω)

where ω = (ω1, ω2, ..., ωn) ∈ Ω ⊂ IRn is the parameter vector; F is a continuously

differentiable function of its arguments and y = (y1, y2, ..., yny) is the vector of system

outputs.

For a given set of parameter values, our algorithms first solve the system, then

decide whether or not the corresponding trajectory satisfies the property of interest.

Hereafter, we will use G(ω) to denote the response of the system with parameter

ω, in which G(ω) = 1 if the system satisfies the property of interest, and G(ω) =

−1 otherwise. Since the closed form of G is unknown and evaluating G might be
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expensive, we seek to approximate G by a simple rule of discrimination with small

error using as few evaluations of G as possible.

Probabilistic representation and uncertainty quantification of the discrim-

ination

To identify the boundary that separates the ”good” and ”bad” region, we assume

without loss of generality that the boundary of interest ∂Γ is the zero level set of

a smooth function Γ(ω) that can be well approximated by polynomials. Moreover,

the polynomial approximations are expressed in the Legendre basis, instead of the

monomial basis:

f(c, ω) =
N∑
i=0

ciηi(ω)

with the vector c contained in some coefficient space C. In other words, the boundary

of interest will be modeled as the set {ω ∈ Ω : f(c, ω) = 0}, where the coefficient c

needs to be inferred from available data.

In our method, based on the collected data (ωi, G(ωi)), 1 ≤ i ≤ m, a probability

distribution πm is generated on C, where πm(c) corresponds to the likelihood that the

zero level set of the polynomial f(c, ·) is the boundary that separates the two regions

πm(c) ∝ exp

(
−

m∑
i=0

|G(ωi)− φ(c, ωi)|

)
(3.1)

where φ(c, ω) = sign(f(c, ω)). Note that this distribution may be generalized (see

Remark 3.4.1).

This distribution, when propagated to the space of all possible boundary curves,

induces a probabilistic representation of the boundary. The expected prediction func-

tion with respect to the distribution πm is defined as:

φ̄m(ω) = Eπm [φ(c, ω)] (3.2)

while the uncertainty in the discrimination at a point ω can partially be represented

by the variance in prediction

Varπm [φ(c, ω)] (3.3)
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Effective sampling schemes for behavior discrimination

We will illustrate in this paper that when the collected data ωi, 1 ≤ i ≤ m satisfies

certain patterns, the zero level set of φ̄m(ω) will converge to the true boundary.

Specifically, we investigate the convergence of the algorithm in two separate settings:

1. Low-discrepancy sampling method: ωi, 1 ≤ i ≤ m is a sequence with low

discrepancy.

2. Sequential sampling method: data is collected sequentially, where the next data

point ωm+1 is taken at the point where the maximum of variance in prediction

with respect to πm is achieved.

ωm+1 = arg max
ω∈Ω

Varπm [φ(c, ω)] (3.4)

3.4.2 Main results

The intuition behind the low-discrepancy sampling schemes is simple: if the data

we sample on the parameter space is dense enough, and assuming that the boundary

between the contrasting behaviors is smooth, we will have enough information to

recover the true boundary that separates the two regions. Since low-discrepancy

sampling is a well-known and effective scheme to unravel high-dimensional structure

(see, for example, [6]), it is natural to use such sampling schemes for discrimination.

This intuitive idea is supported by the following result:

Theorem 3.4.1 Assume that the approximate model is correct, i.e.

∃c0 ∈ C : G(ω) = φ(c0, ω) ∀ω ∈ Ω

and {ωi} has discrepancy Dm tending to 0 when m→∞.

Then with πm and φ̄m defined as in (3.1) and (3.2), we have

lim
m→∞

φ̄m(ω) = G(ω) ∀ω ∈ Ω
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That is, the predicted classification converges pointwise to the true classification.

Moreover, for all ε > 0, if we denote

D−1(ε) = sup{m+ 1 : Dm ≥ ε}

Then for m = Θ
(
D−1(ε) +N 1

ε
log 1

ε

)
, where N is the number of terms in the polyno-

mial expansion, we have ∫
Ω

|φ̄m(ω)−G(ω)|dω ≤ ε

This theorem guarantees that when data is collected with a low-discrepancy

scheme, the predicted curves converge to the true boundary that separates two re-

gions. The theorem also provides a numerical bound for the number of points to be

sampled to achieve a given level of accuracy. Notice that the number of evaluations

needed to approximate the boundary within a given accuracy ε does not directly

depend on the dimension d of the parameter space, but on the dimension of the co-

efficient space N . For a fixed degree of smoothness of the true boundary surface, N

will increase as a polynomial in d when d becomes larger.

However, by exploring the whole parameter space by a low-discrepancy sequence,

we also collect data at insignificant points that do not give much information about the

location of the boundary. For complicated systems where the cost for each evaluation

of data is high, such a strategy may not be practical. The sequential sampling scheme

is proposed to address the issue. By choosing to observe the response at the point with

highest uncertainty, the method introduces an effective way to refine the structure

of the boundary. While at first sight this method may appear to be heuristic, the

convergence of the method is also guaranteed by the following result:

Theorem 3.4.2 Assume that the approximate model is correct, C has finite cardi-

nality, and data is collected sequentially as in (3.4).

ωm+1 = arg max
ω∈Ω

Varπm [φ(c, ω)]
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Then

lim
m→∞

φ̄m(ω) = G(ω) ∀ω ∈ Ω

That is, the predicted classification converges pointwise to the true classification.

In the rest of the paper, the algorithm will be analyzed under the setting spec-

ified above. However, we make the following remarks about how the results can be

generalized and varied to adapt to different applications. The needed modifications

to the proofs are straightforward but are omitted for clarity.

First, we notice that the form of the distribution πm can be generalized to weighted

forms. This accounts for the fact that in some applications, some samples are given

more weight than others. For example, discriminations between oscillatory and non-

oscillatory dynamics in the face of noise can be made only with certain degree of con-

fidence, and those with higher confidence should be given more weight in the analysis.

In feasible analysis of optimal control, one would prefer an under-approximation of

the feasible set over an over-approximation one, and two types of misclassification

should be weighted differently.

Remark 3.4.1 (Generality of the distribution form) Theorem 3.4.1 and The-

orem 3.4.2 are still valid when the probability distribution in (3.1) is of the form:

πm(c) ∝ h(c) exp

(
−

m∑
i=0

k(ωi)D(G(ωi), φ(c, ωi))

)
where h, k are arbitrary positive weight functions on (C) and Ω, D is a metric on

the set of real numbers. Note that the choice of D does not have much influence on

the distribution since the values of G and φ are restricted to ±1.

Second, criteria (3.4) corresponds to an optimization problem, which may be

difficult in some situations. In Remark 3.4.2, we relaxed this condition to a sub-

optimization problem that can be solved easily in most cases. Not only does this

mean that we don’t need to find the optimal sample with high accuracy, it also

implies that as long as we take into account the uncertainty in prediction and make

an effort to reduce it, a quick convergence toward the true boundary is to be expected.
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Remark 3.4.2 (Generality of the sequential sampling criteria) The convergence

result from Theorem 3.4.2 are still valid when criteria (3.4) is replaced by the con-

dition that the variance at the next evaluation point is within a fixed constant of the

maximum variance. That is, there exists C > 1 so that for all ω ∈ Ω and m ≥ 1

Varπm(c) [φ(c, ω)] ≤ C Varπm(ω) [φ(c, ωm+1)] . (3.5)

3.4.3 Comparison to other approaches

One main difference between our method and other algorithms of boundary de-

tection and behavior discrimination comes from our choice of estimator: instead of

trying to maximize the likelihood function in order to estimate the boundary, we

average the possible curves of discontinuity, weighted by the likelihood function. Our

expected estimator has several advantages over the maximum likelihood estimator.

First, a prediction using the averaging method is more stable than the prediction of an

algorithm based on the maximum likelihood estimator [7]. Secondly, the problem of

identifying the maximum likelihood estimator is a global optimization problem, which

is more difficult in both theoretical and computational aspects, while the expected es-

timator can be computed easily by employing the Monte Carlo Markov chain method

(whose convergence is relatively insensitive to dimension [8]). Finally, the probabilis-

tic framework we propose in this paper provides a feasible way to quantify uncertainty

in the discriminations, which is not available in other techniques.

Another key difference is the choice of design points where data is collected. De-

signed to address the problem of behavior discrimination in high-dimensional and

computationally expensive systems, the sequential design takes into account the in-

formation that one gains (or alternatively, the uncertainty one reduces) by collecting

data. Not only does this provide a theoretical foundation for the convergence of

the methods but also the number of model evaluations needed to produce a fair ap-
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proximation of the boundary using our method is smaller than other methods in the

literature.

It is worth noting that although our method shares the same idea of using statis-

tical inference for boundary detection employed in [3], the method of inference here

is quite different from the Bayesian framework suggested in that paper: instead of

using the posterior distribution for inference, our computations are based on a prior

distribution, which represents current understanding about the system. By this, we

simplify the computing process and relax further assumption on the achieved values

and the expected error in the next evaluation. The choice of basis functions (tensored

Legendre polynomials) also helps produce more stable results than the monomial basis

employed in [3].

The mathematical formulation of the problem of behavior discrimination also

shares a lot of similarity with the problem of classification from machine learning.

In fact, to some extent, our algorithm can be framed as an active Bayesian learning

algorithm for classification. The distinguishing feature is the choice of data collected

for learning: data for statistical learning (either in passive or active learning settings)

are generally sampled from some underlying natural unknown distribution and learn-

ing this distribution is also a part of the process [9]. Our problem setting, however,

allows us to get the response at any point on the parameter space, which provides

us more freedom in data sampling. To the best of our knowledge, no analysis of a

similar algorithm with either low-discrepancy or sequential data exists in the machine

learning literature. From an application point of view, the ability to quantify and

reduce uncertainty in inferences also distinguishes the method from other machine

learning based classification techniques.

3.5 Convergence results

In this section, we establish results about the convergence of the expected predic-

tion function, that is, in the limit when the number of samples m approaches infinity
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(following the algorithms described in the previous section), the approximation zero

level set converges to the boundary between the two regions.

For simplicity, we define for every c ∈ C, the binary classifications

φ(c, ω) = sign(f(c, ω))

and

G(ω) = sign(Γ(ω))

(We recall that Γ is the smooth function whose zero level set is assumed to be the

boundary that separates regions with different behaviors. Hence, G is the classifica-

tion function of the parameter space by behaviors.)

3.5.1 Low-discrepancy sampling

We first consider the case when the sequence of samples {ωm} has discrepancy

approaching 0 when m→∞. More precisely, for a sequence of points {ωi} ⊂ Ω and

a subset B of Ω, let #Bm be the number of points of ω1, . . . , ωm contained in B. Then

the discrepancy of the first m points is

Dm({ω1, ..., ωm}) = sup
B⊂Ω

∣∣∣∣#Bm

m
− Vol(B)

∣∣∣∣, (3.6)

and the low-discrepancy condition means that Dm tends to 0 as m tends to infinity.

This condition covers a large class of sampling schemes, for example: (1) when

the set of {ωi} is grid points of a multi-level sparse grid in parameter space (2) {ωi}

is quasi-random, such as those that are collected by Latin hypercube sampling (3)

when {ωi} is sampled independently from an absolutely continuous distribution, or a

Markov Chain whose invariant measure is such a distribution.

Theorem 3.5.1 Assume that the approximate model is correct, i.e.

∃c0 ∈ C : G(ω) = φ(c0, ω) ∀ω ∈ Ω

and {ωi} has discrepancy Dm tending to 0 when m→∞.
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Then with πm and φ̄m defined as in (3.1) and (3.2), we have

lim
m→∞

φ̄m(ω) = G(ω) ∀ω ∈ Ω.

That is, the predicted classification converges pointwise to the true classification.

Moreover, for all ε > 0, if we denote

D−1(ε) = sup{m+ 1 : Dm ≥ ε},

then for m = Θ
(
D−1(ε) +N 1

ε
log 1

ε

)
, where N is the number of terms in the polyno-

mial expansion, we have ∫
Ω

|φ̄m(ω)−G(ω)|dω ≤ ε.

Theorem 3.4.1 guarantees that when data is collected by one of the schemes dis-

cussed above, the predicted curves converge to the true boundary that separates two

regions. The theorem also provides a numerical bound for the number of points to

be sampled to achieve a given level of accuracy.

Preliminary lemmas

Before moving forward to provide the proof for Theorem 3.4.1, we first establish

the following two lemmas

Lemma 3.5.1 Let g be a non constant polynomial on a compact subset P ⊂ Rn.

Denote V = {p ∈ P : g(p) = 0}.

Then there exists k and C1 depending only on g such that

Vol({p ∈ P : |g(p)| ≤ ε}) ≤ Vol({p ∈ P : dist(p, V ) ≤ (C1ε)
1/k})

for all ε > 0.

Proof By Lojasiewicz inequality (see, for example, [10]), there exists k and C1

depends only on g such that

dist(p, V )k ≤ C1|g(p)|.
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Hence, for every p that satisfies |g(p)| ≤ ε, we have dist(p, V ) ≤ (C1ε)
1/k. This

deduces

{p ∈ P : |g(p)| ≤ ε} ⊂ {p ∈ P : dist(p, V ) ≤ (C1ε)
1/k}.

Lemma 3.5.2 Let V be an algebraic surface with Hausdorff dimension n − 1 on a

compact subset P ⊂ Rn. Then

Vol({p ∈ P : dist(ω, V ) ≤ ε}) ≤ C2ε ∀ε > 0,

where C2 depends only on V and the volume constant in n dimensions.

Proof Since V has Hausdorff dimension n− 1, there exist C depending only on V

such that for all ε > 0, the number of balls with radius ε needed to cover V (K(ε))

satisfies

K(ε) ≤ C

εn−1
.

It is worth noting that such cover of V will also contain the set

{p ∈ P : dist(ω, V ) < ε}

as a subset. Since the volume of a n-dimensional ball with radius r is equal to Cnr
n,

we deduce that

Vol({p ∈ P : dist(p, V ) ≤ ε}) ≤ C

εn−1
Cnε

n = CCnε

which completes the proof.

Proof of Theorem 3.4.1

Throughout this section, we denote

em(c) =
1

m

m∑
i=1

|φ(c, ωi)−G(ωi)|, (3.7)

e(c) =

∫
Ω

|φ(c, ω)−G(ω)| dω (3.8)
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and

Cε = {c ∈ C : e(c) ≤ ε} (3.9)

The proof for Theorem 3.4.1 can be summarized as follows: In Lemma 3.5.3, we

prove that outside the set of ”good” candidates Cε (on which the error of prediction is

less then ε), the distribution πm converges to zero exponentially at a rate depending

on Vol (Cε). Lemma 3.5.5 and 3.5.6 establish a lower bound on Vol (Cε) in term of ε

and N (the number of terms in the polynomial expansion). The combination of those

results completes the proof of Theorem 3.4.1.

Lemma 3.5.3 Let ε > 0 and m ≥ D−1(ε/8). For all c ∈ C \ Cε, we have

πm(c) ≤ exp(−mε/4)

Vol (Cε/4)

Proof Denote rm(c) = exp (−em(c)) and

qm(c) = exp

(
−

m∑
i=1

|φ(c, ωi)−G(ωi)|

)
.

Consider ε > 0 and m ≥ D−1(ε/8), if we denote B = {ω : φ(c, ω) 6= G(ω)}, then

|e(c)− em(c)| = 2

∣∣∣∣#{ωi ∈ B}m
− Vol(B)

∣∣∣∣ ≤ 2D−1(ε/8) = ε/4

for all c ∈ C.

Hence, for c ∈ Cε/4, we deduce that em(c) ≤ |e(c)− em(c)|+ e(c) ≤ ε/2.

Therefore

‖rm‖mm =

∫
C
|rm(c)|m ≥

∫
Cε/4
|rm(c)|m ≥ exp(−mε/2) Vol (Cε/4).

Now for c ∈ C \ Cε, since |e(c) − em(c)| ≤ ε/4, we deduce that em(c) > 3ε/4. Hence

rm(c) ≤ exp(−3ε/4) and

πm(c) =
qm(c)∫
C qm(c)dc

=

(
rm
‖rm‖m

)m
≤ exp(−mε/4)

Vol (Cε/4)
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Lemma 3.5.4 For c1, c2 ∈ C, we have

|e(c1)− e(c2)| ≤ 2 Vol({ω : |f(c1, ω)| ≤ |f(c2, ω)− f(c1, ω)|}).

Proof For any c ∈ C, denote

Ωc = {ω ∈ Ω : φ(c, ω) 6= G(ω)}

We have

e(c2)− e(c1) = 2

(∫
Ω1

dω −
∫

Ω2

dω

)
= 2

(∫
Ω1\Ω2

dω −
∫

Ω2\Ω1

dω

)
≤ 2 Vol({ω : sign(|f(c1, ω)|) 6= sign(|f(c2, ω)|)}).

Note that for a, b ∈ R and b 6= 0, sign(a) 6= sign(b) implies |a| < |a− b|. Then

|e(c1)− e(c2)| ≤ 2 Vol({ω : |f(c1, ω)| ≤ |f(c2, ω)− f(c1, ω)|}).

Lemma 3.5.5 There exists C > 0, k ≥ 1 depending only on C and Ω such that for

all c1, c2 ∈ C and ε > 0

|e(c1)− e(c2)| ≤ C|c1 − c2|1/k.

Proof Let c1, c2 ∈ C. Since C and Ω are compact and f is smooth, there exist C3

depending only on C and Ω such that

|f(c2, ω)− f(c1, ω)| ≤ C3|c2 − c1|

We deduce

Vol({ω ∈ Ω : |f(c1, ω)| ≤ |f(c2, ω)− f(c1, ω)|}) (3.10)

≤Vol({ω ∈ Ω : |f(c1, ω)| ≤ C3|c2 − c1|}).
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Using this and Lemma 3.5.4, we have

|e(c1)− e(c2)| ≤ 2 Vol({ω ∈ Ω : |f(c1, ω)| ≤ C3|c2 − c1|}). (3.11)

Applying Lemma 3.5.1 with ε = C3|c2 − c1| and V = {ω ∈ Ω : f(c1, ω) = 0}, we

deduce that there exist C1 and k depending only on c1 such that

Vol({ω : |f(c1, ω)| ≤ C3|c2 − c1|} (3.12)

≤Vol({ω ∈ Ω : dist(ω, V ) ≤ (C1C3|c2 − c1|)1/k}).

On the other hand, by Lemma 3.5.2 with ε = (C1C3|c2 − c1|)1/k, we have

Vol({ω ∈ Ω : dist(ω, V ) ≤(C1C3|c2 − c1|)1/k}) (3.13)

≤C2(C1C3|c2 − c1|)1/k.

Combining (3.10), (3.11), (3.12) and (3.13), we deduce

|e(c1)− e(c2)| ≤ 2C2(C1C3)1/k|c2 − c1|1/k.

Since C is compact, the constants can also be chosen independent of c1.

Lemma 3.5.6 For Cε defined as in (3.7), k the constant defined in Lemma 3.5.5 and

N the dimension of the coefficient space, there exists C depending only on C and Ω

such that for all ε > 0

Vol(Cε) ≥ CεNk

Proof Recall that c0 is the true vector of coefficients (hence e(c0) = 0). Then for

c ∈ C such that |c − c0| ≤
(
ε
C

)k
, where k and C are defined as in Lemma 3.5.5, we

have

|e(c)− e(c0)| ≤ C|c− c0|1/k ≤ ε

which implies that c ∈ Cε.
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Therefore

B = {c ∈ C : |c− c0| ≤
( ε
C

)k
} ⊂ Cε

and

Vol(Cε) ≥ Vol(B) = C1

( ε
C

)Nk
where C1 is the volume constant in N -dimensional space.

Proof of Theorem 3.4.1

Proof We have∫
Ω

∣∣G(ω)− φ̄m(ω)
∣∣ dω =

∫
Ω

|Eπm [G(ω)− φ(c, ω)]| dω

≤
∫

Ω

Eπm [|G(ω)− φ(c, ω)|]dω = Eπm

[∫
Ω

|G(ω)− φ(c, ω)| dω
]

= Eπm [e(c)] =

∫
e(c)>ε/2

e(c)πm(c)dc+

∫
e(c)≤ε/2

e(c)πm(c)dc (3.14)

≤ Vol(C) exp(−mε/8)
1

Vol(Cε/8)
+ ε/2 (3.15)

with the inequality obtained by using Lemma 3.5.3 for m ≥ D−1(ε/16). Hence if we

further choose m that satisfies

Vol(C) exp(−mε/8)
1

Vol(Cε/8)
≤ ε/2

or equivalently, in Θ-notation (using Lemma 3.5.6)

m = Θ

(
D−1(ε/16) +Nk

1

ε
log

1

ε

)
then ∫

Ω

∣∣G(ω)− φ̄m(ω)
∣∣ dω ≤ ε,

which completes the proof of Theorem 3.4.1.
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3.5.2 Sequential sampling

The sequential sampling scheme is proposed to study high-dimensional and ex-

pensive systems. By choosing to observe the response at the point with highest

uncertainty, the method introduces an effective way to reduce the uncertainty and

refine the structure of the boundary. While at first sight this method may appear to

be heuristic, the convergence of the method is also guaranteed by the following result:

Theorem 3.5.1 Assume that the approximate model is correct, C has finite cardi-

nality, and data is collected sequentially as in (3.4).

ωm+1 = arg max
ω∈Ω

Varπm [φ(c, ω)]

Then

lim
m→∞

φ̄m(ω) = G(ω) ∀ω ∈ Ω

That is, the predicted classification converges pointwise to the true classification.

Before moving forward to provide the proof of the theorem, it is worth noting

that in the sequential setting, an additional condition is imposed on the coefficient

space: the space is supposed to have finite cardinality. This condition comes from

the fact that in a continuous framework, a coefficient vector has measure zero and

good performance of the true coefficient vector does not always guarantee that it

will stay in the support of the limit distribution. Though this situation is perhaps

unlikely to happen in practice, we cannot exclude such a possibility for a convergence

result. We also want to note that this assumption was also commonly used in the

context of parameter identification [11,12]. In practice this condition may be achieved

without affecting the model’s ability to approximate the true boundary, for example,

by subdividing each coordinate axis using a fixed step size and taking the set of points

in that lie on the resulting grid.

Proof Denote

qm(c) = exp

(
−

m∑
i=1

|φ(c, ωi)−G(ωi)|

)
,
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Then πm = Cmqm. Also, let A be the set of cluster points of {ωm}: points ω ∈ Ω

such that there exists a subsequence {ωmk} of with ωmk → ω.

Step 1: We claim first that if πm(c) does not tend to 0 with m (so that c has prob-

ability above some fixed ρ > 0 for infinitely many m), then f(c, ω) = G(ω) for all

ω ∈ A.

Proof:

Consider any c ∈ C, ω ∈ A such that |φ(c, ω) − G(ω)| > 0. Then there exists a

subsequence {ωmk} of {ωm} such that ωmk → ω and |φ(c, ωmk)−G(ωmk)| ≥ 1. Hence

m∑
i=1

|φ(c, ωi)−G(ωi)| → ∞

when m→∞, and so qm(c)→ 0.

On the other hand, the assumption that there exists c0 such that φ(c0, ω) = G(ω)

for all ω implies that qm(c0) = 1. Therefore, πm(c0)/πm(c) → ∞. Since C is a finite

space, πm(c0) ≤ 1, and hence πm(c) → 0. Hence πm(c) 6→ 0 implies φ(c, ω) = G(ω)

for all ω ∈ A.

We deduce that

lim
m→∞

Eπm [φ(c, ω)] = G(ω) ∀ω ∈ A

and

Varπm [φ(c, ω)]→ 0 ∀ω ∈ A.

Step 2: Now we claim that

Varπm [φ(c, ωm+1)]→ 0. (3.16)

Proof:

We have

Eπm
[
|φ(c, ωm+1)−G(ωm+1)|2

]
=

∑
c:πm(c)→0

|φ(c, ωm+1)−G(ωm+1)|2πm(c) +
∑

c:πm(c)6→0

|φ(c, ωm+1)−G(ωm+1)|2πm(c).
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However, by the same argument as above, πm(c) 6→ 0 implies that c makes only a

finite number of mistakes in prediction, which implies that φ(c, ωm+1) = G(ωm+1) for

m large enough. Therefore

Eπm
[
|φ(c, ωm+1)−G(ωm+1)|2

]
→ 0

and

Varπm [φ(c, ωm+1)] = Eπm
[
|φ(c, ωm+1)−G(ωm+1)|2

]
− (G(ωm+1)− Eπmφ(c, ωm+1))2

≤ Eπm
[
|φ(c, ωm+1)−G(ωm+1)|2

]
→ 0.

Step 3: The choice of ωm+1 gives

Varπm [φ(c, ω)] ≤ Varπm [φ(c, ωm+1)] ∀ω ∈ Ω, (3.17)

and the right hand side tends to 0 as m→∞ by step 2.

Then for all ω ∈ Ω

lim
m→∞

∑
πm(c)6→0

|φ(c, ω)− Eπmφ(c, ω)|2 = 0.

From the fact that πm(c0) ≥ πm(c) ∀c ∈ C and φ(c0, ω) = G(ω) ∀ω ∈ Ω, we have

|G(ω)− Eπmφ(c, ω)|2 = |φ(c0, ω)− Eπmφ(c, ω)|2

≤ #C
∑
|φ(c, ω)− Eπmφ(c, ω)|2πm(c) = #C Varπm [φ(c, ω)]→ 0

as m→∞. Hence

lim
m→∞

Eπmφ(c, ω) = G(ω) ∀ω ∈ Ω.

3.6 Behavior Discrimination in enzymatic networks.

3.6.1 A model of the acute inflammatory response to infection

We applied our method to a model of the acute inflammatory response to infection.

This 4-equation, 22-parameter model was presented in [13], where the state variables
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P , NA, D, and CA, correspond to the amounts of pathogen, pro-inflammatory medi-

ators (e.g., activated neutrophils), tissue damage, and anti-inflammatory mediators

(e.g., cortisol and interleukin-10), respectively.

The response is a complex process that exhibits both pro and anti-inflammatory

behaviors. The pro-inflammatory elements are responsible for eliminating the pathogen,

but pathogen killing can cause collateral tissue damage. This in turn triggers an es-

calation in the pro-inflammatory response, creating a positive feedback cycle. The

anti-inflammatory elements counteract this cycle, minimizing tissue damage and pro-

moting healing. However, in cases of extreme infection, this delicate balance is de-

stroyed, which leads to a potentially lethal amount of tissue damage.

In this example, we validated our method by reproducing results previously ob-

tained in [13], and later in [4]. Death is defined as a sustained amount of tissue dam-

age (D) above a specified threshold value and constitutes the undesirable outcome

we wish to avoid. The two unknown parameters considered are the initial amount

of pathogen, P0, and the initial amount of anti-inflammatory mediators, CA0. The

parameter space Ω is defined relative to a nominal parameter vector; that is, for each

component of the nominal vector, we define a range of 10 times smaller to 10 times

larger than this component. The growth rate of pathogen was set to 0.3 and other

parameters to their nominal values as in [4].

For boundary detection, we evaluate the model on the grid points of the 16-

point, 36-point and 80-point two dimensional uniform sparse grid. The result is

presented in Figure 3.1A, where the parameter space is scaled to the unit square.

The expected boundary is computed using a 105-point Monte Carlo Markov Chain

on a 13-dimensional coefficient space (that is, N=13). The result is similar to what

achieved in [4], but the number of model evaluations needed to produce this result is

significantly lower.
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Figure 3.1. (A) A model of the acute inflammatory response to in-
fection: The predicted boundaries computed by sparse sampling at
the 16-point, 36-point and 80-point sparse grid nodes. (B) A model
of collagen degradation: the design points and predicted boundaries
computed at the nodes of the 80-point sparse grid. In both figures,
the expected boundaries are computed using a 105-point Monte Carlo
Markov Chain on a 13-dimensional coefficient space.
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3.6.2 A model of collagen degradation

Our second example is performed on the biochemical network adapted from [14]

and later extended in [5], which models the loosening of the extra-cellular matrix, a

crucial process in angiogenesis, the sprouting of new blood vessels as a reaction to

signals that indicate the need for additional oxygen in certain tissues. The system

consists of 12 differential equations that integrates on a long time scale, which makes

model evaluations become very expensive.

We investigate the relative contribution of MT1-MMP and MMP2 on collagen

proteolysis using a combination of constraints imposed on (1) the amount of collagen

that has been degraded after a given time and (2) the respective contribution of

any of the two enzymes onto collagen degradation. Studying those two properties,

we are able to create the division maps in Figure 3.1B. The region above the solid

curve corresponds to the case when the amount of collagen degraded by MT1-MMP

is greater than that degraded by MMP2; the region on the right of the other curve

corresponds to the case when the system does (does not) manage to degrade 90%

of the collagen before 12 hours. Similar to the previous example, the boundaries in

Figure 3.1B were computed using data at the first 80 grid points of a uniform sparse

grid. This division map replicates the result about collagen proteolysis previously

achieved in [5] with a lower number of evaluations.

In Figure 3.2A, we employ the sequential sampling scheme to approximate the

blue boundary in Figure 3.1B with higher accuracy using the same number of model

evaluations. Starting with a prior data set collected at the first 16 points of a uniform

sparse grid, we use the relaxed variance criteria to choose the next sample point

until 80 data points are obtained. We can see that the boundary generated by the

sequential sampling method converges quickly to the true boundary in less than a

hundred model evaluations. This advantage comes from the fact that after a burn-in

period, the algorithm selects points near the true boundary and focuses the probability

distribution on C on a few regions that contain potential candidates.
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As we emphasized earlier in the introduction, the framework proposed in this

method provides a natural probabilistic representation of the classifying boundary,

which enables further uncertainty analysis of the system. This is a feature that dis-

tinguishes the algorithm from other approaches. In Figure 3.2B, we provide a contour

map of the variance in prediction with respect to the data-dependent probability dis-

tribution πm constructed on the coefficient space. The variance map can be considered

as a representation of the uncertainty in discrimination, or a measure of confidence

one has in classification. From the figure, we also notice that the region with high

variance encloses around the true boundary, illustrating the fact that after a burn-

in period, the sequential sampling scheme only selects points that are close to the

boundary.

3.6.3 A model of the T-cell signaling pathway

Our next example is a mathematical model of the T-cell signaling pathway pro-

posed by Lipniacki et al. in [15]. This is a system of ODEs with 37 state variables,

19 parameters, and fixed initial conditions. We seek to design a sampling scheme

to identify the boundary between the region of the parameter space where pERK, a

state variable of the system, stabilizes at a high level of concentration, and the region

at which pERK’s concentration is less than a threshold level. In this example, the

parameter space is defined relative to a nominal parameter vector. That is, for each

component of the nominal vector, we define a range of 5 times smaller to 5 times

larger than this component. We focus our attention on the 8 most sensitive param-

eters determined by a global sensitivity analysis algorithm. The whole parameter

space is the 8-dimensional set formed by the product of these 8 intervals. The time

interval for analysis is [0, 6000] (seconds).

For the sake of clarity in illustrations, we first investigate the performance of the

algorithm in the case when all but the three most sensitive parameters are fixed.

Starting with a prior data set collected at the first 44 points of a three-dimensional
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Figure 3.2. Relative contribution of MT1-MMP and MMP2 to colla-
gen degradation. The boundary separates points for which the con-
tribution of MT1-MMP is dominant from points for which MMP2’s
contribution is dominant: (A) Design points and predicted boundary
derived by the sequential sampling scheme. (B) A characterization
of uncertainty in discrimination by variance. Notice that the points
with high variance lie around the true boundary, which explains why
the data sampled on the figure on the left also tends to focus around
the true boundary.
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uniform sparse grid, we use the relaxed variance criteria to choose the next sample

point until 144 data points are obtained. Figure 3.3A shows the boundary surface

where the region above the surface corresponds to parameter values that will stabilize

the concentration of pERK at a level higher than a fixed threshold. Similar to the

previous example, samples selected by the sequential scheme tends to focus more and

more along the boundary surface.

We then consider the case when 8 most sensitive parameters are varied in the in-

terval mentioned above. To evaluate the performance of of different sampling schemes

in learning the structure of the boundary, we look at three different scenarios. In the

first scenario, the Latin hypercube sampling is employed to collect 400 data points

for inference. In the second scenario, starting with 100 data points chosen uniformly

at random on the parameter space, the sequential sampling scheme is performed until

400 samples are obtained. Finally, to compare with the best possible performance,

in the last scenario, we consider the ideal case when the sampling scheme is designed

by an omniscient oracle that at each step knows all the points for which current pre-

diction is incorrect. Starting with 100 data points chosen uniformly at random (the

same as in the second scenario), the oracle uses the estimated boundary as above to

derive a expected prediction function. Upon testing the expected prediction func-

tion on thousands of samples, the oracle would add the misclassified samples into the

training data set and continue the process.

Since the same algorithm of boundary computation is employed in all three sce-

narios, this examples provides a fair evaluation of the performance of these sampling

schemes. The results are provided in Figure 3.3B. We can see that the sequential

sampling scheme significantly outperforms the Latin hypercube sampling, and has

comparable performance to the ideal case.

This result indicates that the sequential sampling scheme can effectively approx-

imate a complex surface in 8-dimensional space with reasonable accuracy using only

400-500 samples. We want to note that this result is not likely to be produced by

traditional methods for behavior discrimination. For example, if the discrimination
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Figure 3.3. A model of the T-cell signalling pathway with discrimi-
nation based on a threshold value for pERK at the final simulation
time: (A) 3-dimensional case: Design points and predicted bound-
ary derived by the sequential sampling schemes with N=57. (B) 8-
dimensional case with N=321: Error in prediction as the number of
samples increase in three different scenarios: Latin hypercube sam-
pling, sequential sampling scheme and oracular sampling

is done by iteratively subdividing cubes that neither satisfy nor violate the property

of interest into smaller hypercubes, every time a subdivision is performed, 28 − 1

new elements are created and the number of samples needed to check if each of those

elements satisfies/violates the property is almost as large as the number of samples

we used in this example.
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3.7 Additional properties

In this section, through 2D examples, we validate the theoretical results estab-

lished in the Section 3, as well as illustrate other properties of our algorithm. In

most examples (except example 5.3), the synthetic discontinuous output u1, u2, ..., um

are generated by evaluating the signum function along some discontinuity curve

r(x, y) = 0:

u = sign (r(x, y))

Throughout this section, except example 5.2, the boundaries are computed by

Griddy Gibbs Markov Chains of 105 points on the coefficient space, while the number

of terms in the approximation is set at 13 (i.e., we consider the first 13 terms in the

sparse grid expansion of Γ).

3.7.1 Convergence

Figure 3.4 demonstrates the convergence of the algorithm in both low-discrepancy

and sequential settings. In this experiment, data u1, u2, ..., um are generated by eval-

uating the signum function along the discontinuity curve r(x, y) = 0:

u = sign (r(x, y)) (3.18)

The parameter space in this case is [−1, 1]×[−1, 1], whereas the discontinuity function

is described by r(x, y) = y − (x− 1
4
)2.

To compute the prediction error of each estimated classification, we evaluate the

model at 106 points collected at random (uniformly) and compute the predicted results

using one of the two sampling schemes. The blue curve corresponds to the case when

data is sampled at the grid points of the sparse grid with uniform grid points, while

for the red curve, data are collected using the sequential scheme with prior data given

by the first 16 sparse gird points (low discrepancy case). In both cases, we can see

that when the number of sampling points increases, the error of prediction converges
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Figure 3.4. Convergence rate of prediction error for the function in
equation (3.18) when number of samples increases. In both cases,
when the number of sampling points increase, the error of prediction
converges to zeros. However, the convergence rate of the sequential
scheme is significantly faster than that of the sparse grid sampling.

to zero. However, the convergence rate of the sequential scheme is significantly faster

than that of the sparse grid sampling.

3.7.2 Dependence on the number of terms in polynomial expression

In Figure 3.5A, we consider a case when the discontinuity curve cannot be ex-

pressed as the level set of a polynomial function, in which

r(x, y) = y2 − (x3 − 2x− 1− 3ex) (3.19)

and the input space is [−6, 6]× [−6, 6].

In this example, to reconstruct the boundary with high accuracy, the model is

evaluated at 500 points, which are chosen uniformly at random in the input space. The

algorithm to identify the boundary is employed with increasing number of terms in

the polynomial approximation expressions. The expected boundaries were computed

by a Markov Chain of 105 points using the Griddy Gibbs sampling method. The
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error rates were derived by the empirical prediction error on 106 points collected at

random (uniformly). On the left panel, we plot the error rates in terms of the number

of basis functions used in the approximation. On the right panel, the approximated

boundaries with various degree of approximation were illustrated. As expected, when

the number of terms used in the approximation increases, the predicted boundary

converges to the true boundary of discrimination.

3.7.3 Boundary with multiple components

We illustrate the fact that our algorithm can deal with cases when the boundary

of interest has disconnected components. In this example, the model response is

computed by the elliptic function

r(x, y) =
y2

4
−
(
x3

8
− x

2

)
(3.20)

on [−2, 2]× [−2, 2].

The constructed boundary is plotted in Figure 3.6A, using 200 sample chosen

uniformly at random.

3.7.4 Robustness

In this particular example, we consider the behavior of our algorithm when some

of the assumptions are not met. In this case, the synthetic discontinuous data

u1, u2, ..., um are generated by evaluating a bivariate error function with discontinuity

strength parameter γ, discontinuity curve r(x, y), and an additional global oscillatory

structure with amplitude δ:

ui = erf (γ(r(xi, yi))) + δ sin
(π

3
(yi + xi)

)
(3.21)

It is worth noting that this example violates (mildly) some conditions of our al-

gorithm: (1) the response function is not discontinuous, but changes sharply across a

curve, (2) the curve of discontinuity is not a perfect zero level set of any polynomial
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Figure 3.5. (A) Decrease in prediction error when the number of terms
(N) in the approximation increases for the function in equation (3.19).
(B) Sample predicted boundary with different value of N. The bound-
aries are computed using 500 samples collected uniformly at random,
while the error rates are estimated by the empirical prediction error
on 106 uniformly distributed random points.
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functions (but approximately is) and (3) the responses on both sides of the disconti-

nuity curve are not flat, but have some additional oscillatory structure. Despite those

violations, the function itself still resembles behavior of a yes/no response, and hence

would work well with our algorithm for behavior discrimination.

In Figure 3.6B, we replicate this example as used previously in [3], where the input

parameter space is [0.5, 6]×[0, 2], while the discontinuity curve is a shifted and rescaled

inverse function that goes through (2, 2) and (5, 0), i.e., r(x, y) = y− 20
3

(
1
x
− 1

5

)
. The

amplitude of the oscillatory structure is set to δ = 0.1, and the steepness parameter

is γ = 2. In the figure, the first 40 points generated by the sequential sampling

are shown along with a expected boundary using 40 samples. We also computed

the expected boundary derived by using first 80 nodes of a uniform sparse grid to

make it convenient to compare the two methods. We can see that both methods of

sampling provide good estimates of the boundary. The boundary is reconstructed

with better quality than in [3], where data are collected at random locations. This

example confirms the robustness of our method under perturbation of the system of

interest. This feature is important for studies of reaction networks, where in some

cases, the qualitative behavior of interest can only be determined within a certain

level of confidence.

3.8 Conclusions and discussions

In this work, we investigated the problem of choosing effective data sampling

schemes for behavior discrimination of nonlinear systems. Using a probabilistic frame-

work to estimate the boundary and quantify the uncertainty in discrimination, we give

results about two classes of sampling schemes: the low-discrepancy sampling, and the

sequential sampling. In both cases, we successfully derived theoretical results about

the convergence of the expected boundary to the true boundary of interest. We then

demonstrate the efficacy of the method in different application contexts. The method

proves to be effective to study high-dimensional and expensive systems.
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Figure 3.6. (A) Example of a boundary with multiple components:
discrimination between the region of positive and negative values of
the elliptic function in equation (3.20) (B) Performance of the algo-
rithm when multiple assumptions of the setting are mildly violated
(equation (3.21)).



89

Nevertheless, there are some limitations to this method that are worth mention-

ing. First, although we are able to give an estimate of the convergence rate for the

low-discrepancy setting, no such estimate is provided for the sequential setting (al-

though we did provide a consistency result in that case). Second, one of our main

assumptions in the paper is that the boundary of interest is well approximated by a

finite polynomial expansion. In practice, however, the number of terms needed for

approximation is difficult to be determined in advance. A more practical extension

of the method should include an adaptive scheme to determine the number of terms

in an effective way. These will be subjects of future work.
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CHAPTER 4. DATA-FREE IDENTIFIABILITY ANALYSIS OF BIOLOGICAL

SYSTEMS

4.1 Introduction

Parameter estimation by means of data fitting has always been a critical step

in the model building process. Even before applying rigorous estimation methods to

a model to estimate the model parameters based on experimental data, one needs to

verify whether the model parameters, or a subset of parameters, or some given quan-

tities of interest are identifiable or can be constrained based on the measurements of

output variables [1]. This step is usually referred to as system identifiability analysis.

The literature on identifiability analysis makes a distinction between two main

types of analysis: structural and practical identifiability. Assuming an ideal context

of error-free model structure and noise-free measurements, a system is said to be

structurally identifiable if there do not exist two different parameter values that give

rise to the same system outputs. Practical identifiability analysis, on the other hand,

considers the issue of accurately estimating parameters from noisy data.

Since structural analysis is done without any actual experimental observation

and addresses the question of determining a priori whether there is any chance of

uniquely estimating model unknown parameters, it is also called prior identifiability

analysis. Structural identifiability has generated huge interest in various fields of

applied science, especially in the context of experimental design. Reviews about

methods for structural identifiability analysis can be found in [1,2]. The development

of widely-applicable methods for structural identifiability analysis for general non-

linear dynamic models is still an active research problem. In general, there is no

method amenable to every model, thus at some point we have to face the selection of

one of several possible methods [1].
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The limitations of the concept of structural identifiability come from its core as-

sumptions that all system outputs are fully observed with no error. Naturally, such

ideal assumptions cannot hold true in reality: in most applications in systems biology,

not all state variables incorporated in a model can be measured directly; moreover,

experimental data are usually noisy and insufficient considering the size of the model,

and measurements might be available only at some specific region or time/length

scales that are subject to randomness. Structural identifiability fails to capture the

constraints one has on the experimental setting as well as the structure of the predic-

tive noise, thus sometimes gives correct but misleading answers. As we will illustrate

through examples, it may happen that although the system is theoretically iden-

tifiable, the features that distinguish different dynamics are not detectable due to

technical limitations, or arise in a time/spatial scale that can not be captured by

experiment. Since one of the main ideas behind structural analysis is to determine if

a system is possibly identifiable by careful experimental design, pure theoretical iden-

tifiability analyses loses some utility when disassociated from experimental settings.

As an effort to address this issue, we explore the concept of data-free identifiability,

which concerns the question of unique system identification under a given experimen-

tal setting, without actual experimental observation. As a data-independent property,

data-free identifiability can be considered as a generalization of structural identifia-

bility while at the same time addressing identifiability in the face of experimental

constraints and noise.

With this novel concept, we propose a Bayesian approach to address system identi-

fiability when data are not yet available. As we illustrate throughout this paper, our

approach is global, strongly theoretically supported, amenable to high-dimensional

cases, can be used to study various types of identifiability and is compatible with a

large class of experimental settings. The framework is also built not only to assess

parameter identifiability but also to quantify the uncertainty in prediction of any

quantity of interest, and hence, can be used to address dynamics identifiability, a

concept that has become of growing interest in the recent years [3, 4, 6]. This also
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draws a direct connection between studies of identifiability and the concept of uncer-

tainty quantification in predictive sciences. With this method, we also attempt to lay

a unifying framework for the problems of structural/practical identifiability analysis,

dynamics identifiability analysis and a priori uncertainty quantification.

The chapter is organized as follows. Section 4.2 provides the detailed algorithm

for data-free identifiability analysis and introduces the method in various settings.

We then investigate its performance and compare the results with those of previous

approaches in the literature in Section 4.3. Theoretical results on the algorithm’s

convergence is provided in Section 4.4. Finally, we conclude the paper with some

remarks, discussions and description of future work.

4.2 Data-free identifiability

4.2.1 Mathematical setting

To fix ideas, we consider biological systems that can be described by a set

of ordinary differential equations (ODEs), although we note that the method can

be extended to any continuous parametric system. The considered model is of the

following form

ẋ = α(ω, x, t)

x(0) = x0(ω)

g = g(ω)

where t ∈ [0, T ], the time interval where the system is observed; x = (x1, x2, ..., xnx) ∈

M , a subset of IRn containing the initial state; ω = (ω1, ω2, ..., ωnω) ∈ Ω ⊂ IRnω is

the parameter vector; g = (g1, g2, ..., gng) ∈ IRng is the vector of quantities of interest

that needs to be predicted but cannot be accessed by experiments; α is a known

continuously differentiable functions of its arguments.

In our framework, the quantity of interest g is either a known function of parameter

ω or a black-box type function that can be evaluated point-wise. For the most part,
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we focus on two special types of quantities of interest, namely, the parameter of the

system and the dynamics of certain unobserved state variables. For convenience, we

also denote by fi the functions that map an parameter vector ω to its corresponding

output xi, i.e. for all ω ∈ Ω and t ∈ [0, T ], xi(t) = fi(ω, t) will be its corresponding

system output at the given time.

To investigate the experimental setting, we define the set of all theoretically pos-

sible measurements that we can make for inference as

A = {(i, t) : 1 ≤ i ≤ nx, t ∈ [0, T ]}

where the pair (i, t) corresponds to a measurement collected of xi(t), the value of

ith-state variable xi at time t. In practice, however, full observation of the system

is not practical; for example, not all state variables incorporated in a model can be

measured directly, or some may be available only at some specific region or time

scales. In this paper, we denote by E the set of all practically possible measurements

that we can make for inference and refer to it as the experimental constraint.

Since data in practice is usually contaminated by noise and other type of un-

certainties, throughout this paper, we denote the data obtained by measurements by

d(t) = x(t)+ε where ε is a random variable describing the noise in measurements. For

simplicity, we assume that the noise in measurements are identically independently

distributed Gaussian noise with known variance σ2. We note that other models of

noise in measurements can also be considered without significant changes in either

theoretical or computational aspect.

4.2.2 Uncertainty and identifiability

The major limitation of structural identifiability analysis is that normally, the

analysis is done under the assumption that the full time course of certain (or more

often, all) output dynamics can be obtained precisely (E = A and σ = 0). While

this assumption is general in theoretical studies of dynamical systems, it may not be

considered as a natural assumption in practice.
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To tackle this limitation, we need to consider the fact that in actuality, the number

of data we can collect is finite and may even be smaller than the number of model

parameters; moreover, the collected data may be severely contaminated by noise.

However, by doing so, we introduce two types of uncertainty in our analysis, namely,

the uncertainty that comes from lack of information (since we could not make enough

measurements) and the uncertainty that comes from random noise. With the new

uncertainties, we are no longer be able to define “identifiability” as a yes/no property,

and we need to define continuous quantities to quantify/measure system identifiabil-

ity. As we will illustrate in later sections, one such measure is the uncertainty in

prediction of the quantity of interest. This draws direct connections between studies

of identifiability, the concept of uncertainty quantification in predictive sciences, and

the theory of design of optimal experiments.

In the problem of data-free identifiability analysis, we ask ourselves the following

question: if we are to make measurements under the practical experimental constraint

E and the noise level σ, i.e., xi(t) is known up to an amount of Gaussian noise with

variance σ2 for all (i, t) ∈ E , can we identify the system parameters/quantities of

interest? More precisely, as we discussed above, we aim to quantify the uncertainty

in prediction of the quantities of interest, and check if any of the quantities can be

estimated with low uncertainty.

Since generally we have various types of experimental constraints and can choose

whether to include noise in the analysis, we end up with different types of experimental

settings, each of which is interesting in its own way and has its own challenges. In

the scope of our paper, we only focus on three types of identifiability:

1. |E| <∞ and σ > 0 (practical data-free identifiability)

2. E 6= A and σ = 0 (constrained structural identifiability)

3. E = A and σ = 0 (structural identifiability)
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In the next section, we introduce a Bayesian framework for practical data-free

identifiability analysis. We then consider the limit of that formulation when |E| → ∞

and σ → 0 and achieve, separately, the other two types of identifiability.

In noise-free cases (σ = 0) where the concept of identifiability can be interpreted

as a yes/no property, we have the following formal definition of constrained structural

identifiability.

Definition 4.2.1 (Constrained structural identifiability (σ = 0)) Given E ⊂ A,

the system is said to be E-identifiable if for any two parameter vectors ω1 and ω2 in

the parameter space Ω, fi(ω1, t) = fi(ω2, t),∀(i, t) ∈ E holds if and only if ω1 = ω2.

We note that when E = A, we achieve the conventional concept of structural

identifiability.

4.3 A unifying framework for data-free identifiability analysis and a priori

uncertainty quantification

4.3.1 A Bayesian framework for practical data-free identifiability analysis

( |E| <∞ and σ > 0)

Before moving forward to introduce our framework for identifiability analysis,

we want to note that the problem of estimating uncertainty in model prediction in

the presence of noise has been studied intensively in the context of experimental

design of linear models [5]. The main assumptions of such analysis are that the

model is linear and the random added noise is normal and independently identically

distributed (i.i.d.). Another implicit assumption that comes with the condition of

linearity is that when there are enough measurements, one can estimate uniquely the

system parameters for every realization of data (i.e., the model is identifiable).

For linear models with additive i.i.d Gaussian noise, classical result implies that the

uncertainty in estimation depends only on the experimental setting and not on data.

Therefore, experiments can be designed to reduce uncertainty before measurements
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are made. Such ideal conditions are no longer valid either when the model is non-

linear [6] or the normal assumption is violated [7]. For a nonlinear model, such as

those arising in systems biology, different realizations of data may lead to different

values of uncertainty in prediction, and one needs to take into account the effect of

data on uncertainty.

Another issue with biological systems is non-identifiability [8]: given a realization

of data, there might be several or even an infinite set of parameter values that can

fit the data equally well. In order to make reasonable predictions of the quantity

of interest and address identifiability, one needs to either keep track of all parameter

configurations that are consistent with data or use a probabilistic framework to assign

the likelihood of each parameter configuration conditioned on the given realization of

data.

In our framework, given an experimental constraint E = {(i1, t1), (i2, t2), ..., (ik, tk)}

and level of noise σ we define the probability distribution π(ω1, ω2, ε) as the likeli-

hood of ω1 being the estimated parameter values if data is generated by the ”true”

parameter ω2 and contaminated by the random noise ε, i.e. dij(ti) = fij(ω2, ti) + εj.

While this probability cannot be written analytically, its conditional distributions

with respect to each variable ω1, ω2 and ε can be described by

ε|ω1, ω2 ∝ N (0, σ2)

ω1|ω2, ε ∝ exp

(
− 1

2σ2

k∑
j=1

|fij(tj, ω1)− (fij(tj, ω2) + εj)|2
)

ω2|ω1, ε ∝ exp

(
− 1

2σ2

k∑
j=1

|fij(tj, ω1)− (fij(tj, ω2) + εj)|2
)
π0(ω2)

where π0(ω2) is the prior distribution of ω2.

Here, we note that the formula for π(ω2|ω1, ε) is derived by the Bayes formula

π(ω2|ω1, ε) ∝ π(ω1|ω2, ε)π0(ω2|ε)

and the fact that ε is independent of ω2.
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The expected uncertainty in prediction of the quantity of interest g is represented

by the variance-covariance matrix

Uπ(g) = Covπ(ω1,ω2)[g1(ω1)− g1(ω2), g2(ω1)− g2(ω2), ..., gng(ω1)− gng(ω2)]

while the identifiability index of g is defined as the inverse of the variance-covariance

matrix

Iπ(g) = (Uπ(g))−1.

It is worth noting that when the f ’s are linear functions and the quantities of in-

terest are model parameters (g(ω) = ω), U(g) coincides with the well-known variance-

covariance matrix of the maximum likelihood estimator in the context of experimental

design. In this case, I(g) also acts effectively as an upper bound for and is asymptoti-

cally (when number of data points approach infinity) equal to the Fisher Information.

4.3.2 A reinterpretation of structural identifiability

As a data-independent property, data-free identifiability can be considered

as a generalization of structural identifiability while at the same time addressing

identifiability in the face of experimental constraints and noise. In this section, we

illustrate that by using the framework for practical data-free identifiability proposed

in the previous section, we can prove that in the limit when the number of data goes

to infinity and when the measurement error approaches 0, we achieve the traditional

structural identifiability and a more general type of structural identifiability with

constrained experimental setting that we dub constrained structural identifiability.

This provides a new interpretation of traditional structural identifiability.

Structural identifiability(E = A and σ = 0)

We first recall the concept of structural identifiability.
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Definition 4.3.1 Structural identifiability: A system structure is said to be identifi-

able if for any two parameter vectors ω1 and ω2 in the parameter space Ω, fi(ω1, t) =

fi(ω2, t),∀t ∈ [0, T ], 1 ≤ i ≤ nx holds if and only if ω1 = ω2.

We can see from the definition that structural identifiability are just data-free

identifiability when E = A and σ = 0. Moreover, as we illustrate below, structural

identifiability can be regarded as the limit of practical data-free identifiability when

the number of data points goes to infinity.

Indeed, consider a hypothetical infinite experiment {(i1, t1), (i2, t2), ..., (ik, tk), ...} ∈

A such that the sequence becomes dense in A in the limit as k →∞. Following the

framework proposed previously for fixed k and σ = 0, the posterior distribution with

uniform prior of ω2 given data is

πk(ω
1, ω2) ∝

k∏
j=1

1fij (tj ,ω1)=fij (tj ,ω2).

We then have the following theorem

Theorem 4.3.1 Denote Θ = Ω × Ω = {(ω1, ω2) : ω1, ω2 ∈ Ω} and consider the

following probability distributions on Θ:

πk(ω
1, ω2) ∝

k∏
j=1

1fij (tj ,ω1)=fij (tj ,ω2)

Then ith-parameter of the model is identifiable if and only if

lim
k→∞

Uπk(ω
i) = 0

Proof: We note that the support of πk is just the set of all (ω1, ω2) that have

the same output dynamics at {t1, t2, ..., tk}. By assumption, {t1, t2, ..., tk, ...} is dense

in [0, T ], which implies that the support of πk is contained the set of all pairs of

parameters (ω1, ω2) with fij(tj, ω1) = fij(tj, ω2) ∀j. Intuitively, if there is such a pair

(ω1, ω2) with ω1 6= ω2 that satisfies this condition, then the variance with respect to
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πk of ‖ω1 − ω2‖ will be bounded away from zero. Similarly, if the ith parameter is

unidentifiable, the variance of |ωi1 − ωi2| will also be bounded away from zero.

This theorem, however, has practically no use, since the computation of πk cor-

responds to the task of identifying all pairs of parameter with identical dynamics,

and the form of the distribution makes it impossible to use any practical method to

sample from πk.

We then propose an alternative form of the distribution of πk as follows

π̂k(ω
1, ω2) ∝ exp

(
− 1√

k

k∑
j=1

|fij(tj, ω1)− fij(tj, ω2)|2
)

In some sense, our method is directly related to the idea behind simulated anneal-

ing and multiple heated chains: the object {(ω1, ω2) : fij(tj, ω1) = fij(tj, ω2) ∀j} is

difficult to identify, so we relax it by a heated object (characterized by the probability

distribution π̂k) that is easier to study.

It is worth noting that since the support of π̂k is no longer the set of all pairs of pa-

rameter with identical dynamics, the uncertainty estimated using this approximated

distribution is an overestimation of the uncertainty. However, despite the approxi-

mate nature of this alternative distribution, we still have the following theorem which

guarantees that this approximation of uncertainty is equivalent to the actual model

uncertainty.

Theorem 4.3.2 (Structural identifiability (or equivalently, A-identifiability))

Consider the following probability distributions on Ω× Ω:

π̂k(ω
1, ω2) ∝ exp

(
− 1√

k

k∑
j=1

|fij(tj, ω1)− fij(tj, ω2)|2
)

and approximate Uπk(ω
i) by

Uπ̂k(ω
i) = lim

n→∞
V arπn(ω1,ω2)[ω

1
i − ω2

i ]

Suppose the ith parameter of the model is identifiable. Then

lim
k→∞

Uπ̂k(ω
i) = 0
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Moreover, if Ω is finite, the converse is also true.

Theorem 4.3.2 provides a criteria for inference on the identifiability of each pa-

rameter of the system and provides a probabilistic computational method to address

the problem of a priori identifiability analysis. The main part of the computational

process will be evaluating the variance of (ωi1 − ωi2) with respect to πk, which can be

done by generating a Monte-Carlo Markov Chain with πk as the invariant measure.

The convergence rate of MCMC is relatively insensitive to dimension, and the method

can be employed to study high-dimensional systems.

Constrained structural identifiability(E 6= A and σ = 0)

The arguments in the previous subsection also extend to the case when E 6= A.

For a given experiment setting E , we define a (theoretical) continuous distinguisha-

bility function DE(ω1, ω2) with respect to E and assume that there exists a sequence

of functions Dk(ω1, ω2) such that

1.

DE(ω1, ω2) = DE(ω2, ω1), ∀(ω1, ω2) ∈ Ω× Ω (4.1)

2.

DE(ω1, ω2) ≥ 0, ∀(ω1, ω2) ∈ Ω× Ω (4.2)

3.

DE(ω1, ω2) = 0 ⇔ fi(ω1, t) = fi(ω2, t) ∀(i, t) ∈ E (4.3)

4. ∣∣∣∣Dk(ω1, ω2)

k
−DE(ω1, ω2)

∣∣∣∣ = O

(
1√
k

)
uniformly in(ω1, ω2) ∈ Ω× Ω (4.4)

We note that the existence of the continuous distinguishability function for any

experimental constraint is guaranteed by the following theorem
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Theorem 4.3.3 Assume that E is a non-empty subset of A, then there exist contin-

uous functions DE satisfies (4.1)-(4.3).

We then have the following result

Theorem 4.3.4 (Constrained data-free identifiability) Given the experimental

constraint E and the distinguishability function DE(ω
1, ω2). Consider the following

distribution

π̂k(ω
1, ω2) ∝ exp

(
−Dk√

k

)
where Dk satisfies (4.4).

Suppose the ith parameter of the model is E-identifiable. Then

lim
k→∞

Uπ̂k(ω
i) = 0

If Ω is finite, the converse is also true.

The proofs of Theorem 4.3.4 and Theorem 4.3.3 are given in section 5.

4.3.3 Dynamics identifiability and a priori uncertainty quantification

For high-dimensional and complex biological systems, unidentifiability is some-

what expected. Therefore, some recent research on biological systems has shifted from

parameter identification to identifying a quantity of interest (in most cases, some ob-

servable/ unobservable output dynamics). The most straightforward example of this

phenomenon is when the model parameterization is redundant: some parameters are

totally insensitive to the system output and measurements may not contain enough

information to effectively identify the parameter. Despite this, one does not really

need to estimate such redundant parameters to gain understanding about some out-

put dynamics which might be well-constrained by the data.

This gives rise to the problem of a priori uncertainty quantification, that is, by

inferences on available data, one wishes to forwardly propagate the uncertainty in

parameters to the output space to test if certain quantities of interest can be effectively
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constrained. This leads us to the concept of the E-identifiability of a given quantity

of interest.

Definition 4.3.2 Given an experimental constraint E, a quantity of interest g(ω) is

said to be E-identifiable if for any two parameter vectors ω1 and ω2 in the parameter

space Ω, g(ω1) = g(ω2) holds if and only if DE(ω1, ω2) = 0.

We then have the following theorem

Theorem 4.3.5 Given the experimental constraint E and the corresponding distin-

guishability function DE . Consider the following distribution

πk(ω1, ω2) ∝ exp

(
−Dk√

k

)
where Dk satisfies (4.2).

Suppose the quantity of interest g(ω) is identifiable then we have

lim
n→∞

Uπn(g(ω)) = 0

If Ω is finite, the converse is also true.

We note that the framework built in this section does not require the quantities

of interest to be the dynamics outputs of an ODEs systems, and in fact can be used

to quantify the uncertainty in prediction of any quantities of interest.

4.3.4 Computational procedure

In summary, the computational procedure to investigate all types of identifiability

can be outlined as follows:

Step 1. Define problem: determine the parameter spcae (Ω) and type of analysis

– The quantity of interest g (e.g, parameter/dynamics)

– The experimental constraints E
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– The noise structure ε (in the normal cases, the standard deviation σ)

Step 2. Design the distinguishability function DE , as well as the mathematical formu-

lation of the distribution πn on Θ.

Step 3. Generate a Monte Carlo Markov Chain {θk} with πk(ω1, ω2, ε) as the invariant

distribution.

Step 4. Compute the variance with respect to πk of (g(ω1)− g(ω2)) and use this as the

criteria to assess E-identifiability (via the uncertainty in predition Uπ(g)) of the

quantity of interest.

The probabilistic framework for identifiability analysis proposed in this chapter is

made possible by the employment of Monte Carlo Markov Chains method to sample

from a likelihood function on some high-dimensional parameter spaces. Since direct

computation of the likelihood function are costly, in practice, approximation methods

are usually employed to reduce some of the computational burden.

Throughout this work, we use the Griddy Gibbs sampling [12] as an effective way

to sample from the likelihood functions of interest.

4.4 Results

This section proceeds in an increasing order of complexity. In the first step,

we provide insight into the method via studies of practical data-free identifiability

and structural identifiability. Then the method is twisted to tackle the problem of

identifiability in more general experiment settings. Finally, the question of dynamics

identifiability and a priori uncertainty quantification are also investigated.
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4.4.1 An intuitive example

To illustrate ideas, we consider the following toy example of a simple biochem-

ical system that contains 3 chemicals:

X1
k1→ X2

k2→ X3

where k1 and k2 and are the (unknown) degradation rates of X1 and X2, respectively.

We also assume that at the beginning, the system contains only X1.

We model this system using

dx1

dt
= −ω1x1,

dx2

dt
= ω1x1 − (ω2 + ω3)x2,

dx3

dt
= (ω2 + ω3)x2,

(x1(0), x2(0), x3(0)) = (1, 0, 0).

Note that the parameterization of the system is designed to be redundant since

ω2 and ω3 appear only as ω2 +ω3; this makes the system theoretically unidentifiable.

In this particular example, the parameter space is [0.1, 10] × [0.1, 10] × [0.1, 10],

the time interval is [0,10] (seconds) and is converted to log space for convenience. The

measurements of the concentration of X2 are to be made at two different time points

t = 1s and t = 3s, contaminated by independent Gaussian noise of standard deviation

σ = 0.01. We assume that at the time the analysis is performed, measurement at

t = 1s and t = 3s are not yet available. The analysis in this case, therefore, is a

data-free identifiability analysis.

We then employ the framework proposed above to assess the identifiability of (i)

the model parameters ω1, ω2, ω3, and (ii) the concentration of x1(t), x2(t), x3(t) for

all t ∈ [0, T ]. For simplicity, we consider g as separate one-dimensional quantities of

interest and ignore the correlation between them. The result is provided in Figure

4.1, where the individual uncertainty in prediction of ωi’s and xi(t)’s are plotted.

The uncertainty is presented by variance in prediction of parameter/dynamics by

a sample of 105-point Monte Carlo Markov chain from the joint distribution of ω1
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and ω2 as in [citation] by the Griddy Gibbs sampling. Notice that since the range of

parameter in log-scale is [−1, 1], an uncertainty index around 0.5 corresponds to highly

unidentifiability, while a quantity with uncertainty index of order 10−2 is considered

to be highly identifiable.

In this example, all system parameters are practically unidentifiable. The systems

dynamics also could not be predicted with high accuracy, except for the part of the

second state variable X2 after 1s. (Note that the identifiability of X2 after 1s is

somewhat expected, since X2 is the observable output of the system). We also provide

in Figure 4.2 the dynamics corresponding to very different parameter configurations

that give rise to indistinguishable outputs at times t = 1s and t = 3s. It is also worth

noting that with this system, some data realizations of the outputs at t = 1s and

t = 3s do lead to parameter identifiability, while some data realizations do not. This

also highlights the fact that different realizations of data in a nonlinear model may

lead to different values of uncertainty in prediction.

4.4.2 A model of influenza A virus infection

We perform structural identifiability (A-identifiability) analysis on a model of

influenza A virus infection, proposed by Baccam et al. in [9].

∂T

∂t
= −βTV

∂I

∂t
= βTV − δI

∂V

∂t
= cI − pV

where T is the number of uninfected target cells (epithelial cells), I is the number of

productively infected cells, and V is the infectious viral titer expressed in TCID50/ml

which is the only state variable to be measured.

This model was previously analyzed in [2] using the implicit function method.

In the case when only V is measured, it is reported that β, δ, c are identifiable with
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Figure 4.1. Uncertainty in identifying model parameters and dynam-
ics: Experiments are to be made for x2(1) and x2(3), where data
contains noise of standard deviation σ = 0.01. (Top) Identifiability of
model parameters: g1(q) = q1, g2(q) = q2, g3(q) = q3. (Bottom) Iden-
tifiability of model dynamics: gk,t(q) = xk(t), k = 1, .., 3, t ∈ [0, T ].
Notice that since the range of parameter in log-scale is [−1, 1], an
uncertainty index around 0.5 corresponds to highly unidentifiability,
while a quantity with uncertainty index of order 10−2 is considered to
be highly identifiable.



108

Figure 4.2. The dynamics of x2(t) with two different parameter con-
figurations that have same output at t = 1s and t = 3s.
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a minimum of 6 measurements (that is, V need to be measured at at least 6 time

points), and p is unidentifiable.

We perform our identifiability analysis on this model, using the L2-distance be-

tween the output V ’s as the distinguishability measure, and Dn = nD. Uπ(β), Uπ(δ),

Uπ(c) and Uπ(p) are presented in Figure 4.3A. Notice that since the range of parame-

ter in log-scale is [−1, 1], our analysis indicates that with just V being measured, only

c is identifiable while the others are not. Moreover, since this is a low-dimensional

nonlinear dynamical system, the generated MCMC also proposes good candidates

for pairs of parameter sets with similar dynamics. In Figure 4.3B, we plotted the

dynamics corresponding to two different parameter sets with indistinguishable dy-

namics. The figure clearly indicates that β is unidentifiable. Similar examples with

indistinguishable dynamics for significantly different δ can also be obtained.

It is worth noting that there are many possible explanations of the discrepancy

between our analysis and those of [2], the most likely of which is that the features

that distinguish different dynamics of the system are not detectable due to technical

limitations, or arise in a different time scale that can not be captured by experiment.

From a theoretical point of view, the structural identifiability analysis in [2] is more

rigorous; while in terms of experimental design, our a priori identifiability analysis

provide more accurate insight about the system.

4.4.3 Analysis of Goodwin’s model

In this example, we study the structural identifiability of Goodwin’s model [10].

The state variable x1 represents an enzyme concentration whose rate of synthesis is

regulated by feedback control via a metabolite x3 while x2 regulates the synthesis of

x1. The model includes rational kinetics consisting of a Hill-like term, and is given

by the following system of ODEs:
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Figure 4.3. Structural identifiability analysis of Baccam’s model.
(Top) Uncertainty in identifying model parameters. (Bottom) Two
different parameters set with indistinguishable dynamics. Notice that
since the range of parameter in log-scale is [−1, 1], an uncertainty in-
dex around 0.5 corresponds to highly unidentifiability, while a quan-
tity with uncertainty index of order 10−2 is considered to be highly
identifiable.



111

ẋ1 = −bx1 +
a

A+ xη3

ẋ2 = αx1 − βx2

ẋ3 = γx2 − δx3

x1(0) = 0.3617; x2(0) = 0.9137 x3(0) = 1.3934

As in the previous example, the parameter space is defined relative to a nominal

parameter vector: for each component of the nominal vector, we define an uncertainty

range of 10 times smaller to 10 times larger than this component. The time interval

is [0, 100] (minutes).

In the situation for which all states x1, x2, x3 can be measured, a review on per-

formances of current structural identifiability analysis methods applied to Goodwin’s

model can be found in [1]. The results can be summarized as follows:

1. The similarity transformation approach could not be applied.

2. The Taylor and generating series approaches suggest that Goodwin model is

structurally locally identifiable.

3. The differential algebra approach, as implemented in DAISY, results in the non-

identifiability of the model. No results about local identifiability were reported.

4. The method based on the implicit function theorem with fixed η indicates that

the remaining parameters are structurally locally identifiable provided η > 2.

5. The dynamic reaction networks that fixes both η and A derives the structural

local identifiability of the remaining parameters.

In the analysis of the model, we use the summation of the L2-distance between

the output xi’s as the distinguishability measure, with the empirical discrepancy

Dn = nD. The parameter space is defined relative to a nominal parameter vector
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selected from [10] . That is, for each component of the nominal vector, we define a

range of 10 times smaller to 10 times larger than this component.

The uncertainty in prediction of ωi is presented by variance in prediction of pa-

rameter/dynamics by a sample of 105-point Monte Carlo Markov chain from the joint

distribution of ω1 and ω2 as in [citation] by the Griddy Gibbs sampling. The uncer-

tainty in prediction of ωi is presented in Figure 4.4A. Since the range of parameter in

log-scale is [−1, 1], the result indicates that with the full system outputs measured,

β and δ are identifiable, but σ is not. Similar to the previous example, we use the

generated MCMC to propose candidates for pair of parameter sets with similar dy-

namics, one of which is presented in Figure 4.4B. We also perform the same analysis

for the case σ = 3. The results still suggests that α and δ are identifiable, while the

rest are not.

This example also highlights a difference between our approach and other current

methods of a priori identifiability analysis. While most methods focus on the local

properties of the system, our probabilistic approaches concentrate more on global

identifiability within a certain parameter space.

4.4.4 A model of the T-cell signalling pathway

Our next example is a mathematical model of the T-cell signaling pathway pro-

posed by Lipniacki et al. in [11]. This is a system of ODEs with 37 state variables, 19

parameters, and fixed initial conditions. As in the previous example, the parameter

space is defined relative to a nominal parameter vector: for each component of the

nominal vector, we define a range of 10 times smaller to 10 times larger than this

component. The time interval is [0, 100] (minutes).

To simplify the analysis, we first restrict our attention to the identifiability of

the five most sensitive parameters: pSHP binding rate to TCR complex (ly1), LCK

dephosphorylation rate (ls1), TCR phosphorylation rate (tp), ZAP spontaneous phos-

phorylation rate (z0) and ERK phosphorylation rate (e1). The entire time course of
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Figure 4.4. Identifiability analysis of Goodwin’s model: (Top) Uncer-
tainty in identifying model parameters; Notice that since the range of
parameter in log-scale is [−1, 1], an uncertainty index around 0.5 cor-
responds to highly unidentifiability, while a quantity with uncertainty
index of order 10−2 is considered to be highly identifiable. (Bottom)
Two different parameters set with indistinguishable dynamics
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the concentration of pERK (x36 + x37) and pZAP (x31) is used as the experimental

constraint E for constrained structural identifiability analysis of the five parameters.

The identifiability of ωi is presented in Figure 4.5A, which implies the identifiability

of the third and the fifth parameters and the unidentifiability of other parameters.

The uncertainty in prediction different state variables (Uπ(xi(t))) are plotted in

4.5B. The result is consistent with biological insights about the model. Since the

downstream component of the signaling pathway starts with pZap (x34) and ends

with pERK and ppERK (x36, x37) and the phosphorylation/dephosphorylation rate

of MEK/pMEK are assumed to be known, understanding about the time courses

of those pZap and pERK+ppERK helps identify the dynamics of the substrates in

between, including ppMEK x34. LCK (x27) can be partially identified because of

two reasons: (1) the dynamics of pZap (x31) is completely determined by the LCK-

membrane complexes x9, x10 and the interactions with the downstream component (2)

the dynamics of LCK is controlled by the creation and degradation of LCK-membrane

complexes, which in turn, are strongly influenced by a feedback from ppERK. The

dynamics of free TCR, however, also depends strongly on the dynamics of another

protein, SHP, and cannot be identified by our experiment setting.

The figure also indicates that the early time scale of the system is more sensitive

to uncertainty in parameters. This suggests that further and more careful experiment

design in this early time scale can help identify the parameter with more accuracy,

yet inference using the estimation of the dynamics at this time should be done with

more caution.

In the second instance of this example, we consider a more practical setting when

the level of phosphorylated ERK (x36+x37) is to be measured at 10 minute, 50 minute

and 100 minute while a single measurement at 10 minute of pZap is to be obtained.

Since this experiment setting is strongly under-determined, it is not surprising that

all model parameters are somewhat unidentifiable (Figure 4.6A). Similarly, due to

lack of knowledge of other important parameters, the dynamics of pMEK, LCK and

TCR could not be constrained (Figure 4.6B). However, the figure suggests that the
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Figure 4.5. Analysis of Lipniack’s model: (Top) Variance in predic-
tiing ωi; (Bottom) Variance in predicting different state variables.
Notice that since the range of parameter in log-scale is [−1, 1], an
uncertainty index around 0.5 corresponds to highly unidentifiability,
while a quantity with uncertainty index of order 10−2 is considered to
be highly identifiable.
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Figure 4.6. Analysis of Lipniack’s model

combination of a few measurements of phosphorylated ERK and pZap can help iden-

tify the dynamics of both of them. From an experimental design point of view, an

additional measurement of either phosphorylated ERK or pZap at around 5 minutes

needs to be made for a complete study of the time courses of both substrates.

To the best of our knowledge, such an analysis of under-determined system in a

general experiment setting can not be obtained by any previous approach to identi-

fiability analysis.
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4.5 Convergence analysis

Proof of the Theorem 4.3.3

Proof We consider two separate cases

1. E is finite.

Assume that E = {(i1, t1), (i2, t2), ..., (iN , tN)}, then by defining

DE =
N∑
j=1

|fij(ω1, tj)− fij(ω2, tj)|2

and Dn = nDE , we can easily check that DE and Dk satisfy all the required

condition.

2. E is infinite.

Since E is infinite, there exist an infinite sequenceE = {(i1, t1), (i2, t2), ..., (in, tn), ...} ∈

E that is dense in E . Denote

DE(ω1, ω2) =
∞∑
j=1

1

2j
|fij(ω1, tj)− fij(ω2, tj)|2

Since f ’s are continuous, we deduce that DE is well-defined, symmetric and

non-negative. Moreover, DE(ω1, ω2) = 0 if and only if fij(ω1, tj) = fij(ω2, tj) ∀j.

Since E is dense in E and f ’s are continuous, this is equivalent to fi(ω1, t) =

fi(ω2, t) ∀(t, i) ∈ E .

Proof of the Theorem 4.3.4

Proof Denote qn(ω1, ω2) = exp
(
− 1√

n
Dn(ω1, ω2)

)
and

rn(ω1, ω2) = exp

(
− 1√

n

Dn(ω1, ω2)

n

)
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For any ε > 0, there exists C = C(ε/4) such that if n ≥ C(ε/4), we have∣∣∣∣Dn(ω1, ω2)

n
−DE(ω1, ω2)

∣∣∣∣ ≤ ε/4 ∀ω1, ω2 ∈ Ω. (4.5)

Denote

Vε = {(ω1, ω2) ∈ Ω× Ω : DE(ω1, ω2) ≤ ε}

Note that since (ω, ω) ∈ Vε ∀ω ∈ Ω, ε > 0, we deduce that Vε 6= ∅ for all ε > 0.

For (ω1, ω2) ∈ Vε/4, we deduce from (4.5) that Dn(ω1,ω2)
n

≤ ε/2 if n ≥ C(ε/4).

Therefore, for each n

‖rn‖n =

(∫
Ω×Ω

|rn(ω1, ω2)|n
)1/n

≥

(∫
Vε/4

|rn(ω1, ω2)|n
)1/n

≥ exp

(
− ε

2
√
n

)[
Vol(Vε/4)

]1/n
(4.6)

Now consider (ω1, ω2) /∈ Vε with n ≥ C(ε/4) and note that in this case Dn(ω1,ω2)
n

>

3ε/4, we have

πn(ω1, ω2) =
qn(ω1, ω2)∫

Ω×Ω
qn(u1, u2)du1 du2

=

(
rn
‖rn‖n

)n
(4.7)

On the other hand, from (4.6) and the fact that rn(ω1, ω2) ≤ exp(− 3ε
4
√
n
), we get

rn
‖rn‖n

≤
exp(− 3ε

4
√
n
)

exp
(
− ε

2
√
n

) [
Vol(Vε/4)

]1/n ≤ exp(− ε
4
√
n
)[

Vol(Vε/4)
]1/n (4.8)

Therefore

πn(ω1, ω2) ≤ exp(−
√
nε/4)

Vol (Vε/4)
(4.9)

On the other hand, by the symmetry of the distinguishability function, we see that

πn is also symmetric

Eπn(ω1,ω2)[ω
1
i − ω2

i ] = 0.

We conclude that

V arπn(ω1,ω2)[ω
1
i − ω2

i ] = Eπn(ω1,ω2)[ω
1
i − ω2

i ]
2

=

∫
Vε

|ωi1 − ωi2|2πn(ω1, ω2) +

∫
Ω×Ω−Vε

|ωi1 − ωi2|2πn(ω1, ω2)
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≤ max
Vε
|ω1
i − ω2

i |2 +
exp(−

√
nε/4)

Vol (Vε/4)

∫
Ω×Ω−Vε

|ωi1 − ωi2|2

Fixing ε and taking n→∞ gives

lim
n→∞

V arπn(ω1,ω2)[ω
i
1 − ωi2] ≤ max

Vε
|ωi1 − ωi2|2

Since this is true for every ε > 0, we deduce

lim
n→∞

V arπn(ω1,ω2)[ω
i
1 − ωi2] ≤ max

DE(ω1,ω2)=0
|ωi1 − ωi2|2

Therefore, if ωi is identifiable, we have limn→∞ V arπn(ω1,ω2)[ω
1
i − ω2

i ] = 0.

Moreover, if Ω is finite, assume that there exists ω∗1, ω
∗
2 such that ω∗1 6= ω∗2 and

D(ω∗1, ω
∗
1) = 0. Denote

V0 = {(ω1, ω2) : D(ω1, ω2) = 0}

and let #(V0) be the cardinality of V0.

Since ∣∣∣∣Dn(ω1, ω2)

n
−D(ω1, ω2)

∣∣∣∣ = O

(
1√
n

)
uniformly in Ω× Ω, there exists C such that∣∣∣∣Dn(ω∗1, ω

∗
2)

n
− Dn(ω1, ω2)

n

∣∣∣∣ ≤ C√
n

for all (ω1, ω2) ∈ V0.

Hence,
πn(ω∗1, ω

∗
2)

πn(ω1, ω2)
=
qn(ω∗1, ω

∗
1)

qn(ω1, ω2)

= exp

(
−Dn(ω∗1, ω

∗
1)√

n
+
Dn(ω − 1, ω2)√

n

)
≥ exp(−C) > 0

for all (ω1, ω2) ∈ V0.

Therefore

πn(ω1∗, ω2∗) ≥ exp(−C)

#(V0)

∑
(ω1,ω2)∈V0

πn(ω1, ω2)

However, since πn converges to 0 outside V0 (by (4.9), we deduce that πn(ω1, ω2)

is bounded away from 0 and

V arπn(ω1,ω2)[ω
1
i − ω2

i ] ≥ πn((ω1∗, ω2∗))|ω1∗
i − ω2∗

i |2 ≥ C ′ > 0

which completes the proof.



120

Proof of the Theorem 4.3.5

Proof By the same argument as in the proof of Theorem 4.3.4, we have

V arπn(ω1,ω2)[g(ω1)− g(ω2)] = Eπn(ω1,ω2)[g(ω1)− ηi(ω2)]2

=

∫
Vε

|g(ω1)− g(ω2)|2πn(ω1, ω2) +

∫
Ω×Ω−Vε

|g(ω1)− g(ω2)|2πn(ω1, ω2)

≤ max
Vε
|g(ω1)− g(ω2)|2 + C exp(−nε/4) Vol (Vε/4)

which implies

lim
n→∞

V arπn(ω1,ω2)[g(ω1)− g(ω2)] ≤ max
D(ω1,ω2)=0

|g(ω1)− g(ω2)|2

Therefore, if g(ω) is E-identifiable, we have limn→∞ V arπn(ω1,ω2)[g(ω1)− g(ω2)] =

0.

Similarly, when Ω is finite, assume that there exists ω∗1, ω
∗
2 such that ω∗1 6= ω∗2 and

D(ω∗1, ω
∗
2) = 0, we can deduce that

V arπn(ω1,ω2)[g(ω1)− g(ω2)] ≥ πn((ω∗1, ω
∗
2))|g(ω∗1)− g(ω∗2)|2 ≥ C ′ > 0

which completes the proof.

4.6 Discussions and Conclusions

In this paper, we introduce the concept of a data-free identifiability analysis, which

concerns with the question of system identification under a given experimental setting,

without actual experimental observation. Building upon this concept, we suggest a

probabilistic approach to address the problem of data-free identifiability analysis. Our

approach is global, amenable to high-dimensional cases, can be used to study various

types of identifiability and is compatible with a large class of experimental settings.

With this method, we attempt to lay a unifying framework to the problems of struc-

tural identifiability analysis, dynamics identifiability analysis and a priori uncertainty
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quantification in the case of unidentifiability. We then perform the analysis for differ-

ent biological systems in various experiment settings, and compare the performance

with those of other methods of identifiability analysis. The method is proved to be a

reliable analysis and is able to provide different and unique insights about the studied

systems.

One interesting question about the method is: in case of unidentifiable systems,

is it possible to use the Markov Chain with invariant measure πn to find pairs of

parameter sets with indistinguishable outputs, as we did in some of the examples?

The answer is, in general, no. As we emphasized in earlier parts of the report, the

number of model evaluations for a pure probabilistic method to find an optimum

(even local) of an objective function with a given accuracy will increase exponentially

in the dimension. Even for a system of 5 parameters, the space Ω×Ω has dimension

10, and finding such pairs of parameter sets is not really practical. Our method focus

more on the practical existence of an off-diagonal solution to the problem, without

estimating such a solution.

In the paper, we characterize the parameter uncertainty by variance. It is worth

noting that similar theoretical results (and variations of the method) using other

characterizations of uncertainty, such as entropy measure, can also be derived.
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CHAPTER 5. CONVERGENCE OF THE GRIDDY GIBBS SAMPLING AND

OTHER PERTURBED MARKOV CHAINS

5.1 Abstract

The Griddy Gibbs sampling was proposed by Ritter and Tanner (1992) as a

computationally efficient approximation of the well-known Gibbs sampling method.

The algorithm is simple and effective and has been used successfully to address prob-

lems in various fields of applied science. However, the approximate nature of the

algorithm has prevented it from being widely used: the Markov chains generated by

the Griddy Gibbs sampling method are not reversible in general, so the existence and

uniqueness of its invariant measure is not guaranteed. Even when such an invari-

ant measure uniquely exists, there was no estimate of the distance between it and

the probability distribution of interest, hence no means to ensure the validity of the

algorithm as a means to sample from the true distribution.

In this paper, we show, subject to some fairly natural conditions, that the

Griddy Gibbs method has a unique, invariant measure. Moreover, we provide Lp

estimates on the distance between this invariant measure and the corresponding mea-

sure obtained from Gibbs sampling. These results provide a theoretical foundation

for the use of the Griddy Gibbs sampling method. We also address a more general

result about the sensitivity of invariant measures under small perturbations on the

transition probability. That is, if we replace the transition probability P of any Monte

Carlo Markov Chain by another transition probability Q where Q is close to P , we

can still estimate the distance between the two invariant measures. The distinguish-

ing feature between our approach and previous work on convergence of perturbed

Markov Chain is that by considering the invariant measures as fixed points of linear

operators on function spaces, we don’t need to impose any further conditions on the



124

rate of convergence of the Markov Chain. For example, the results we derived in this

paper can address the case when the considered Monte Carlo Markov Chains are not

uniformly ergodic.

Keywords: Griddy Gibbs, nonreversible Markov Chain, perturbed Markov ker-

nel, non-uniformly ergodic Markov Chain

5.2 Introduction

The need to generate samples from a probability function or estimate moments of

such a distribution arises in many fields of applied science, including Bayesian statis-

tics, computational physics, computational biology and computer science. A common

difficulty in generating such samples is that the distribution (hereafter denoted by π)

may be high-dimensional and computationally intractable. To resolve this problem,

many sampling-based approaches have been proposed: the basic idea is to construct

a Markov chain with a tractable transition mechanism that has π as its invariant

distribution.

One of the most widely applicable methods to construct such a Markov chain is the

method of Gibbs sampling. This algorithm generates an instance from the distribution

of each variable in turn, conditional on the current values of the other variables. This

reduces the sampling problem to a series of one-dimensional problems. The method

of Gibbs sampling is very computationally effective, especially in the case when π is

high-dimensional. Gibbs sampling applies even in the case that the distribution is

known only up to a normalizing constant, which occurs commonly in fitting models

to data.

However, the use of the Gibbs sampling method is hindered by several factors.

First, the method requires the one-dimensional conditional densities to be known,

or at least to be easy to sample directly. In most contexts, such knowledge about

the conditional densities is usually not available. Second, in many fields of applied

sciences, sampling from the conditional distributions is computationally expensive,
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despite the fact that they are one-dimensional. For instance, in systems biology,

evaluating (up to a normalizing factor) the value of the distribution function π at

one point might be equivalent to solving a high-dimensional system of differential

equations.

To address these issues, Ritter and Tanner (1992) proposed in [3] an approximate

method – the Griddy Gibbs method – as an alternative. The Griddy Gibbs sam-

pling method evaluates the conditional density on a grid and uses piecewise linear or

piecewise constant functions to approximate the cumulative distribution function of

the conditional distributions based on these grid values. The resulting distribution is

used to generate random variables with approximately the right distribution.

This method has been used successfully to address problems in various fields of

applied science: statistical inference ( [15] [16]), chemical analysis ( [20]), systems

biology ( [21], [22]), medical science( [7]), statistical computing and data analysis( [12]

[14]), economics( [8] [17] [19]), ecological modelling( [18]), acoustics ( [9]), and time

series analysis ( [10] [11] [13]). However, the approximate nature of the algorithm still

prevents it from being widely used. The approximation by linear or constant functions

leads to theoretical questions about the ergodic properties of the constructed Markov

chains and about the validity of the algorithm as a means to sample from the true

distribution.

Many adjustments to overcome the approximate nature of the algorithm have

been proposed. In [1], a Metropolis chain is embedded in the algorithm to ensure

that the equilibrium distribution is exactly π even on a coarse grid. In [2], a similar

strategy is proposed, in which the Multiple-try Metropolis algorithm is embedded

in the sampling process. In both approaches, the convergence of the algorithms are

guaranteed, but the computational costs increase considerably, the algorithms are

more difficult to set up, and the approximations are restricted to piecewise linear and

piecewise constant functions.

In this paper, we show, assuming that the approximations to the distribution are

bounded from above and bounded away from zero, that the Griddy Gibbs method
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has a unique, invariant measure. Moreover, we provide Lp estimates on the distance

between this invariant measure and the corresponding measure obtained from Gibbs

sampling. Subject to appropriate hypotheses, our main results about Griddy Gibbs

are the following.

1. Although the Markov chains generated by the Griddy Gibbs sampler are not

reversible in general, they admit unique invariant measures.

2. For 2 ≤ p ≤ ∞, there is an Lp-estimate of the distance between the limit

invariant measure and the correct distribution π, which guarantees the Lp-

convergence of the algorithm.

The first result is obtained using tools from the theory of Markov processes. We

then extend the Markov chain transition operator to Lp-spaces and use techniques

from the theory of functional analysis on Hilbert vector spaces to prove the second

result. These results provide a theoretical foundation for the use of the Griddy Gibbs

sampling method with some guarantees of convergence.

In this paper, we go beyond these results for Griddy Gibbs sampling in two ways.

First, the approximation scheme does not need to be piecewise linear or piecewise

constant: any reasonable approximation scheme can be employed to obtain Griddy

Gibbs sampling. In fact, in the case that the distribution is smooth but the compu-

tational cost of determining the value of the conditional distribution is much greater

than the cost for approximation, high order polynomial interpolations are preferred

since they increase the accuracy of the sampling process and reduce the number of

function evaluations.

Second, we generalize our method to give results about the sensitivity of invari-

ant measures under small perturbations on the transition probability. That is, if we

replace the transition probability P of any Monte Carlo Markov Chain by another

transition probability Q where Q is close to P , can we still estimate the distance

between the two invariant measures? Our paper provides a positive answer to this

question, given some mild conditions imposed on Q. The distinguishing feature be-
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tween our approach and other work [29–31] on convergence of perturbed Markov

Chain is that by considering the invariant measures as fixed points of linear operators

on function spaces, we don’t need to impose any further conditions on the rate of con-

vergence of the Markov Chain. For example, the results we derive in this paper can

address the case when the considered Monte Carlo Markov Chains are not uniformly

ergodic.

The paper is organized as follows. Section 2 provides the mathematical framework

used in the paper, as well as descriptions of the Gibbs and Griddy Gibbs sampling

methods. Section 3 discusses the existence, uniqueness and regularity results for the

invariant measure. We develop in Section 4 results about the sensitivity of invariant

measures under small perturbations on the transition probability for general non-

uniformly ergodic Monte Carlo Markov Chains. The estimates are then extended

to the case when the distribution of interest has non-compact support in Section

5. Finally, we provide in Section 6 numerical examples to illustrate our theoretical

findings and demonstrate the utility of the Griddy Gibbs sampling method.

5.3 Mathematical framework

The problem addressed by the Gibbs algorithm is the following (see [26] for ref-

erence). We are given a density function π̂, on a state space with bounded Lebesgue

measure D ⊂ IRd. This density gives rise to an absolutely continuous probability

measure π on D, by

π(A) =

∫
A

π̂(x)dx, ∀A ∈ B

where B denotes the σ-algebra of Borel sets on D. Without loss of generality, we

assume throughout this paper that the the distribution π has finite variance. In

other words, the density function π̂ ∈ L2(D).

In many applications, we want to estimate the expectations of functions φ : D →

IR with respect to π, i.e. we want to estimate

π(φ) = Eπ[φ(X)] =

∫
D

φ(x)π̂(x)dx.



128

If D is high-dimensional, and πu is a complicated function, then direct integration

(either analytic or numerical) of these integrals is infeasible.

The classical Monte Carlo solution to this problem is to simulate independent and

identically distributed random variables X1, X2, ..., XN ≈ π(.) and then estimate π(φ)

by

πN(φ) =
1

N

N∑
i=1

φ(Xi). (5.1)

This gives an unbiased estimate with standard deviation of order O(1/
√
N). However,

if πu is complicated, it is difficult to directly simulate i.i.d. random variables from π.

The Markov chain Monte Carlo (MCMC) approach is introduced instead to construct

on D a Markov chain that is computationally efficient and that has π as a stationary

distribution. That is, we want to define easily-simulated Markov chain transition

probabilities P (x, y) for x, y ∈ D such that∫
D

π̂(y)P (x, y)dy = π̂(x), for a.e. x ∈ D.

In principle, if we run the Markov chain (started from anywhere) to obtain samples

Xn, then for large n the distribution of Xn will be approximately stationary, and the

sequence {Xn} can be used to estimate π(φ) as in equation (5.1).

5.3.1 Gibbs transition

The Gibbs transition is a transition probability on D defined as follows:

1. The ith component Gibbs transition Pi leaves all components except the ith

component unchanged and replaces the ith component by a draw from the full

distribution π conditional on all other components:

Pi(x1, . . . , xi, . . . , xd) =
πu(x1, . . . , xi, . . . , xd)∫ 1

−1
πu(x1, . . . , t, . . . , xd)dt

,

where t appears in the ith position.

2. The Gibbs sampler is defined as

P (x, y) = P1(y1, x2, . . . , xd)P2(y1, y2, x3, . . . , xd) · · ·Pd(y1, y2, . . . , yd)
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where x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd).

Now let {Xn}, n ≥ 0 be a time-homogeneous Markov process generated by the

Gibbs sampling algorithm with transition probability P . Then

P (Xn ∈ A|X0 = a) = P n(a,A), ∀A ∈ B

where P n is defined recursively by

P 1 = P, P n(a, y) =

∫
D

P (x, y)P n−1(a, x)dx.

We also define the transition operator T on P(D), the space of probability measures

on D, by

Tµ(A) =

∫
D

P (x,A)µ(dx). (5.2)

This transition operator can also be considered as a linear operator on Lp(D), 1 ≤

p ≤ ∞, by defining

Tf(y) =

∫
D

P (x, y)f(x)dx

Moreover, the operator T n obtained by replacing P by P n in (5.2) is equal to the

operator obtained by applying T n times, T n = T ◦ T ◦ ... ◦ T .

5.3.2 Ergodic properties of the Markov Chains generated by the Gibbs

sampling

By standard results about ergodicity of Gibbs sampling method, we know that

under rather general conditions, T admits a unique invariant measure, which is the

distribution π that we want to sample, i.e. Tπ = π. Moreover, the distribution of

Xn converges in total variation norm to π. We state here Theorem 6 from [4] that

justifies the convergence of the Gibbs sampling method:

Theorem 5.3.1 ( [4]) Assume that for each 1 ≤ i ≤ d, the conditional distributions

π(Xi|Xj, j 6= i) have densities, say pi, with respect to some dominating measure ρi.

Suppose further that for each 1 ≤ i ≤ d, there is a set Ai with ρi(Ai) > 0, and a δ > 0

such that for each 1 ≤ i ≤ d
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1. π(Xi = xi|Xj = xj, j 6= i) > 0 whenever xk ∈ Ak for k ≤ i and xi+1, ..., xd

arbitrary.

2. π(Xi = xi|Xj = xj, j 6= i) > δ whenever xk ∈ Ak for k ≤ d.

Then for π-a.e. x ∈ D:

sup
C∈B
|P n(x,C)− π(C)| → 0

In the rest of the paper, we will assume that the distribution of interest π satisfies

conditions of Theorem 5.3.1 and has finite variance.

5.3.3 Griddy Gibbs transition

Now, in the Griddy Gibbs sampling method, at each point in the sampling space

and on each dimension, we use some approximation scheme to approximate Pi. The ith

component Griddy Gibbs transition leaves all components except the ith component

unchanged and replaces the ith component by a draw from Qi that approximates the

conditional expectation on all other components. I.e.,

Qi(x1, ..., yi, ..., xd) ≈
πu(x1, ..., yi, ..., xd)∫ 1

−1
πu(x1, ..., t, ..., xd)dt

(5.3)

The transition probability and transition operator of the new Markov chain are defined

similarly:

Q(x, y) = Q1(y1, x2, ..., xd)Q2(y1, y2, ..., xd)...Qd(y1, y2, ..., yd) (5.4)

Q1 = Q, Qn(a, y) =

∫
D

Q(x, y)Qn−1(a, x)dx

Sµ(A) =

∫
D

Q(x,A)µ(dx) (5.5)

We note that since the approximations on each dimension are different, the Markov

chain {Yn} generated by Griddy Gibbs algorithm is not reversible in general.
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Gibbs: {Xn}
T,P−→ π

Griddy Gibbs: {Yn}
S,Q−→ η

Figure 5.1. Comparison between Gibbs sampling and Griddy Gibbs
sampling: Although the two transition operators P and Q are close,
the Markov chain {Yn} is not reversible in general, so the existence
and uniqueness of the invariant measure η is not guaranteed. Even
when η uniquely exists, an estimate of the distance between π and η
is needed to guarantee the validity of the Griddy Gibbs sampling.

Throughout this paper, we will use the notation {Xn}, T, P to describe a Markov

chain generated by Gibbs sampling, its transition operator and its transition prob-

ability, respectively. The corresponding notations for Griddy Gibbs are {Yn}, S, Q.

A comparison between the notations used for the Gibbs sampling and Griddy Gibbs

sampling is provided in Figure 5.1.

5.4 Existence, uniqueness, and regularity of the invariant measure of a

monte carlo markov chain generated by the griddy gibbs sampling

In this section, we will prove that the transition operator S (obtained from the

Griddy Gibbs algorithm as in (5.3), (5.4), (5.5)) admits a unique invariant measure

η, assuming that the approximations Qi are uniformly bounded above and away from

0:

∃M, ε > 0, such that ε ≤ Qi(x) ≤M, ∀1 ≤ i ≤ d, ∀x ∈ D. (5.6)

We also prove that under this condition, η is absolutely continuous with respect to

Lebesgue measure and admits a bounded density function.

We note that condition (5.6) is general and does not hinder the application of the

Griddy Gibbs sampling method, since we can always use additional cutoff functions
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on the approximation scheme to guarantee the boundedness from above and below of

fi, without significantly affecting the accuracy of the approximation scheme.

The outline of the proof is as follow. By verifying Doeblin’s condition (see The-

orem 5.4.1), we can prove the existence and uniqueness of the invariant measure η;

moreover, the distribution of {Yn} (obtained by the Griddy Gibbs algorithm) con-

verges to η in total variation norm. Using this and Lemma 5.4.1, we deduce that η is

absolutely continuous with respect to Lebesgue measure. Finally, using Lemma 5.4.2,

we can prove that the density function of η is bounded.

5.4.1 Existence and uniqueness

To verify the existence and uniqueness of the invariant measure, we use the fol-

lowing result from [6] on the convergence of transition probabilities. As before, we

will denote by B the σ-algebra of Borel sets on D.

Theorem 5.4.1 ( [6]) Suppose that the Markov chain Zn with transition probability

K(x, ·) satisfies the Doeblin condition:

∃k ∈ N, ε > 0, and a probability measure φ on (D,B) such that

Kk(x,C) ≥ εφ(C),∀x ∈ D, ∀C ∈ B.

Then there exists a unique invariant probability measure ξ such that for all n ∈ N

and all x ∈ D,

sup
C∈B
|Kn(x,C)− ξ(C)| ≤ (1− ε)((n/k)−1).

Using this result, we can prove that under condition (5.6), the distribution of the

Markov chain {Yn} generated by the Griddy Gibbs sampling method converges to

a stationary distribution η in total variation norm. This is a direct analog of the

convergence given in Theorem 5.3.1 above (although we still have to show that η is

near π).
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Theorem 5.4.2 (Existence and uniqueness of the invariant measure for S) Assume

that the approximation scheme {fi}di=1 satisfies condition (5.6). Then there exists a

unique probability measure η that is invariant under S, and this η satisfies

sup
C∈B
|Qn(x,C)− η(C)| → 0

for all x ∈ D.

In other words, ∀x ∈ D, Qn(x, ·)→ η(·) in total variation norm.

Proof We will prove that the transition probability Q constructed in the Griddy

Gibbs sampling algorithm satisfies Doeblin’s condition of Theorem 5.4.1. Recall that

the transition probability in the Griddy Gibbs algorithm is given by

Q(x,C) =

∫
C

f1(y1, x2, . . . , xd)f2(y1, y2, . . . , xd) · · · fd(y1, y2, . . . , yd) dy1dy2 . . . dyd.

Recall that fi ≥ ε on D from (5.6). Hence with Vol(C) denoting the Lebesgue measure

of C, we have

Q(x,C) ≥ εdVol(C),∀x ∈ D, ∀C ∈ B.

This is Doeblin’s condition with k = 1, φ is the Lebesgue measure on D, so applying

Theorem 5.4.1, we have

sup
C∈B
|Qn(x,C)− η(C)| → 0

5.4.2 Some supporting lemmas

To establish results about regularity of the invariant measure η of Markov chains

generated by Griddy Gibbs sampling, we need the following two lemmas. The first

result is about the absolute continuity of η, while the second result provides a basic

inequality for the transition operator as a linear operator on Lp space. The proofs

are standard, but we sketch them for completeness.

Lemma 5.4.1 Let µn be a sequence of probability measures on (D,B) that converges

in total variation norm to a measure µ. Assume further that each µn is absolutely
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continuous with respect to Lebesgue measure. Then µ is also absolutely continuous

w.r.t Lebesgue measure and admits a non-negative density function.

Proof Consider any Borel measurable set A with |A| = 0. By the assumption of

absolute continuity, µn(A) = 0, hence µ(A) = limµn(A) = 0. Since A was arbitrary,

µ is absolutely continuous w.r.t. Lebesgue measure.

Lemma 5.4.2 For 1 ≤ p ≤ ∞, let K(x, y) be a bounded function on D×D, and let

Lg(y) =

∫
K(x, y)g(x)dx

for g ∈ Lp(D). Then

a) L: L2(D)→ L2(D) is a compact linear operator. Moreover

||L||L(L2,L2) = ||K||L2(D×D).

b) L: L1(D)→ L1(D) is a bounded linear operator. Moreover, if K(x, y) is a transi-

tion probability function, then

||L||L(L1,L1) ≤ 1.

c) L maps L1(D) to L∞(D), and

||L||L(L1,L∞) ≤ ||K||∞.

d) If g ∈ L2(D) and 2 ≤ p ≤ ∞ then

‖Lg‖p ≤ ||K||p max{‖g‖1, ‖g‖2}.

Proof Part a) of the Lemma is a well-known result about Hilbert-Schmidt integral

operators. For reference, cf. [5].

For b) and c), let M = supD×D |K(x, y)| = ||K||∞. Then for all y ∈ D we have

|Lg(y)| =
∣∣∣∣∫ K(x, y)g(x)dx

∣∣∣∣ ≤M

∫
|g(x)|dx.
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In other words,

||Lg||∞ ≤ ||K||∞||g||1.

Integrating over D gives

||Lg||1 ≤ Vol(D)||Lg||∞ ≤ Vol(D)||K||∞||g||1,

which proves b) and c). Finally, if K is a transition probability, we have∫
|Lg(y)|dy =

∫ ∣∣∣∣∫ K(x, y)g(x)dx

∣∣∣∣ dy ≤ ∫ ∫ K(x, y)dy|g(x)|dx =

∫
|g(x)|dx

which implies ||L||L(L1,L1) ≤ 1.

For d), consider the linear operator W defined on L2(D×D) and on L∞(D×D)

as

Wφ =

∫
D

φ(x, y)g(x)dx

Then from part a) and c), we have W is a bounded linear operator that maps

L2(D × D) to L2(D), and maps L∞(D × D) to L∞(D). Moreover, the following

inequalities are satisfied:

‖Wφ‖L2(D) ≤ ‖g‖L2(D)‖φ‖L2(D×D)

‖W (φ)‖L∞(D) ≤ ‖g‖L1(D)‖φ‖L∞(D×D)

Using Riesz-Thorin interpolation theorem (see [28]), we deduce that W also maps

Lp(D ×D) to Lp(D), and

‖Wφ‖Lp(D) ≤ max{‖g‖L2(D), ‖g‖L1(D)}‖φ‖Lp(D×D)

Replace φ by K, noticing that Lg = W (K)i, we deduce

‖Lg‖p ≤ ||K||p max{‖g‖1, ‖g‖2}.
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5.4.3 Regularity

These two previous lemmas allow us to prove the following result.

Theorem 5.4.3 (Regularity of invariant measure) The invariant measure η of S is

absolutely continuous w.r.t Lebesgue measure on D. Moreover, there exists η̂ ∈ L∞(D)

so that for each C ∈ B,

η(C) =

∫
C

η̂(x)dx.

Also, η̂ is invariant under S: Sη̂ = η̂.

Proof The proof of this theorem is straightforward from the previous theorems

and lemma. From Theorem 5.4.2 and Lemma 5.4.1, we know that η is absolutely

continuous and admits a density function:

η(dx) = η̂(x)dx

with η̂ ∈ L1(D).

Now considering S as a bounded linear operator on L1(D), we have∫
A

η̂(x)dx = η(A) = Sη(A) =

∫
D

Q(x,A)η(dx)

=

∫
D

∫
A

Q(x, y)dy η̂(x)dx =

∫
A

(∫
D

Q(x, y)η̂(x)dx

)
dy.

Since A was arbitrary, we deduce that

η̂(x) =

∫
Q(x, y)η̂(x)dx

or η̂ = Sη̂. From Lemma 5.4.2, S maps L1(D) to L∞(D). Hence η̂ = Sη̂ ∈ L∞(D),

so η̂ is a bounded function.

Remark 5.4.1 Since D is a subset with bounded measure of Rd, η̂ also belongs to

Lp(D), for all 1 ≤ p ≤ ∞.
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5.5 Sensitivity and convergence of non-uniformly ergodic Markov Chains

Before proceeding to give result about the sensitivity of the invariant measures

under perturbation, we want to make a remark that the assumption of uniformly

boundedness away from 0 of the approximations Qi was introduced only to guarantee

the existence and uniqueness of an absolutely continuous invariant measure η.

As we mentioned before, we can always use additional cutoff functions on the ap-

proximation scheme to guarantee the boundedness from below of Qi, without signifi-

cantly affecting the accuracy of the approximation scheme. However, as an analysis of

convergence of perturbed Monte Carlo Markov Chains, condition( 5.6) is replaced by

any condition that guarantees the existence and uniqueness of the invariant measure

η and the ergodicity of the Markov chain {Yn}. In a similar manner, the assump-

tions of Theorem 2.1 can be replaced by the existence and uniqueness of the invariant

measure π and the ergodicity of the Markov chain {Xn}.

In short, we will assume the following conditions in the subsequent analyses

1. the invariant measures π, η of the Markov Chain exists and are unique.

2. the Markov Chain {Xn}, {Yn} are ergodic (not necessarily uniformly ergodic).

3. the distributions π, η have finite second moments.

The distinguishing feature between our approach and other work [29–31] on con-

vergence of perturbed Markov Chain is that by considering the invariant measures

as fixed points of linear operators on function spaces, we don’t need to impose any

further conditions on the rate of convergence of the Markov Chain. For that reason,

the results we derived in this paper can address the case when the considered Monte

Carlo Markov Chains are not uniformly ergodic.

5.5.1 Continuity of eigenspaces for eigenvalue 1

We recall from the previous part of the paper that the two transition operators T

and S admit unique absolutely continuous invariant measures π and η, respectively.



138

Before proceeding to derive estimates of the distance between π̂ and η̂, we provide

in this section two key lemmas to further investigate properties of the transition

operators T and S as operators on L2(D).

In Lemma 5.5.1, we will prove that the eigenspaces correspond to eigenvalue λ = 1

of T and S are one-dimensional subspaces spanned by π and η, respectively. Lemma

5.5.2 investigates a special case when it is possible to estimate the distance between

the positive invariant eigenvectors of two close operators.

Lemma 5.5.1 Using the same notation as in the section 2.3 and consider T, S as

operators on H = L2(D), we have

• {v ∈ H : Tv = v} = 〈π̂〉

• {v ∈ H : Sv = v} = 〈η̂〉,

where 〈π̂〉 denotes the span of π̂.

Proof Consider any w ∈ H − {0} such that Tw = w. Then∫
|Tw(y)|dy =

∫ ∣∣∣∣∫ P (x, y)w(x)dx

∣∣∣∣ dy ≤ ∫ ∫ P (x, y)dy|w(x)|dx =

∫
|w(x)|dx.

Equality happens only when∣∣∣∣∫ P (x, y)w(x)dx

∣∣∣∣ =

∫
|P (x, y)w(x)|dx

for a.e. y ∈ D.

Since P (x, y) > 0, this happens only if w does not change sign on D. Therefore, if

we define

w∗ =
w

‖w‖L1(D)

then w∗ is the density function of a probability measure on D. Moreover, we also have

Tw∗ = w∗. Since π is the unique invariant measure that is also a fixed point of T , we

deduce that w∗ = π̂. Hence, w ∈ 〈π̂〉.

Lemma 5.5.2 Let M and N be Hilbert-Schmidt integral operators on H = L2(D).

Assume further that u, v ∈ H such that
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(i) ||u||H = ||v||H = 1

(ii) {w ∈ H : Mw = w} = 〈u〉

(iii) {w ∈ H : Nw = w} = 〈v〉

(iv) u, v are positive functions.

Then there exists α > 0 depends only on M such that

‖v − u‖H ≤ C(α)‖M −N‖L(H,H).

Proof Since H is a Hilbert space, we can write

H = 〈u〉 ⊕K

where K is the orthogonal complement of the linear space spanned by u. For the sake

of convenience, in the rest of the proof, we will denote ‖ · ‖H simply by ‖ · ‖.

First we show that there exists α > 0 such that

‖(M − I)k‖ ≥ α‖k‖ ∀k ∈ K.

By way of contradiction, suppose that ∃αn → 0, ‖kn‖ = 1, kn ∈ K such that ‖Mkn−

kn‖ = αn. Since M is a compact operator on H, by extracting a subsequence, we can

assume that Mkn → k∞ ∈ H. On the other hand, we have ‖Mkn − kn‖ = αn → 0.

By the triangle inequality, we have

‖kn − k∞‖ ≤ ‖kn −Mkn‖+ ‖Mkn − k∞‖ → 0.

We deduce that kn → k∞, and hence that ‖k∞‖ = 1. Since K is closed we have

k∞ ∈ K, and since M is continuous we have Mk∞ = k∞. By (ii), Mu = u has no

nontrivial solution in K, so we deduce that k∞ = 0, which contradicts ‖k∞‖ = 1.

On the other hand, we can uniquely decompose

v = λu+ k (5.7)
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for some λ ∈ IR, k ∈ K. Since u and v are fixed points of M and N , respectively, we

deduce that

Mv = M(λu+ k) = λMu+Mk = λu+Mk

and

Nv = v = λu+ k.

Therefore

‖M −N‖L(H,H) ≥ ‖Mv −Nv‖ = ‖(λu+Mk)− (λu+ k)‖ = ‖Mk − k‖ ≥ α‖k‖.

The orthogonal decomposition in (5.7) gives

1 = ‖v‖2 = λ2‖u‖2 + ‖k‖2 = λ2 + ‖k‖2,

so

λ2 = 1− ‖k‖2 ≥ 1−
(
‖M −N‖L(H,H)

α

)2

.

This plus the same decomposition also gives

‖v − u‖2 = (λ− 1)2‖u‖2 + ‖k‖2 = λ2 − 2λ+ 1 + ‖k‖2

= 2(1− λ) = 2
1− λ2

1 + λ
.

On the other hand, from the facts that u, v are positive functions (by (iv)) with ‖u‖ =

1 (by (i)) and the orthogonal decomposition of v, we have λ = 〈u, v〉 =
∫
D
uv dx ≥ 0.

Hence

‖v − u‖2 ≤ 2(1− λ2) = 2‖k‖2 ≤ 2
‖M −N‖2

L(H,H)

α2

or

‖v − u‖ ≤
√

2
‖M −N‖L(H,H)

α
.

5.5.2 Convergence results

In this section, we answer the question about the sensitivity of the invariant of a

Monte Carlo Markov Chain under kernel perturbations: given that ‖P −Q‖ < ε (or
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equivalently, given a small perturbation on the transition operator), can we estimate

the distance ‖π − η‖ between the two invariant measures?

The outline of this section is as follows. Using Lemma 5.5.1 and 5.5.2, we derive

the L2-estimate of the distance between η̂ and π̂.

Then, knowing that S maps L1(D) to L∞(D), we bound the L∞-norm by L2-norm

to produce an L∞-estimate, and then apply Lemma 5.4.2 to derive the Lp estimate

for 2 ≤ p ≤ ∞.

Since the proofs require us to switch back and forth between norms, let us recall

that if f ∈ L∞(D) then

‖f‖1 ≤ C‖f‖2 and ‖f‖2 ≤ C‖f‖∞

where C =
√

Vol(D).

Theorem 5.5.1 (L2-estimate)

There exists δ(π), C(π) > 0 such that for ‖P −Q‖2 < δ(π), we have

‖π̂ − η̂‖2 ≤ C(π) ‖P −Q‖2

Proof For clarity, we replace π̂ and η̂ with π and η respectively. Applying the

previous theorem with u = π
‖π‖2 , v = η

‖η‖2 , we have∥∥∥∥ π

‖π‖2

− η

‖η‖2

∥∥∥∥
2

≤
√

2
‖T − S‖

α
. (5.8)

Then ∥∥∥∥ π

‖π‖2

− η

‖η‖2

∥∥∥∥
1

≤ C

∥∥∥∥ π

‖π‖
− η

‖η‖

∥∥∥∥
2

≤ C
√

2
‖T − S‖

α

with C =
√

Vol(D). By the triangle inequality∣∣∣∣ ∥∥∥∥ π

‖π‖2

∥∥∥∥
1

−
∥∥∥∥ η

‖η‖2

∥∥∥∥
1

∣∣∣∣ ≤ C
√

2
‖T − S‖

α
.

Since π and η are probability measures, we have ‖π‖1 = ‖η‖1 = 1, and hence∣∣∣∣ 1

‖π‖2

− 1

‖η‖2

∣∣∣∣ ≤ C
√

2
‖T − S‖

α
.
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This leads to

1− ‖π‖2

‖η‖2

≤ C
√

2
‖T − S‖

α
‖π‖2. (5.9)

If we assume further that the right hand side is less than 1, then

‖η‖2 <
‖π‖2

1− C
√

2‖T−S‖
α
‖π‖2

. (5.10)

The triangle inequality plus (5.8) and (5.9) give

‖π − η‖2 ≤
∥∥∥∥ π − ‖π‖2η

‖η‖2

∥∥∥∥
2

+

∥∥∥∥ η − ‖π‖2η

‖η‖2

∥∥∥∥
2

≤
√

2
‖T − S‖

α
‖π‖2 + C

√
2
‖T − S‖

α
‖π‖2‖η‖2

and then (5.10) gives

‖π − η‖2 ≤
√

2
‖T − S‖

α
‖π‖2

(
1 + C

‖π‖2

1− C
√

2‖T−S‖
α
‖π‖2

)
. (5.11)

Since T is defined by π, we can consider α as a function of π only. Moreover, with

δ(π) = α/(2C
√

2 ‖π‖2) and ‖T − S‖ ≤ δ(π), the right hand side of (5.9) is at most

1/2, and the constant in parentheses in (5.11) is at most 1+2C‖π‖2. Hence we define

C(π) =

√
2 ‖π‖2 (1 + 2C ‖π‖2)

α

and note that from Lemma 5.4.2,

‖T − S‖L(L2,L2) = ‖P −Q‖L2(D×D).

Hence for ‖P −Q‖2 < δ(π), changing back to the original notations, we have the

desired estimate

‖π̂ − η̂‖2 ≤ C(π) ‖P −Q‖2 .

Remark 5.5.1 From (5.10) and the choice of δ(π), we see that if ‖P −Q‖2 < δ(π),

then ‖η̂‖2 < 2‖π̂‖2.
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Theorem 5.5.2 (L∞-estimate)

There exists δ′(π), C ′(π) > 0 such that if P,Q ∈ L∞(D × D) and ‖P −Q‖∞ <

δ′(π) then

‖π̂ − η̂‖∞ ≤ C ′(π) ‖P −Q‖∞ .

Proof As in the proof of the previous theorem, we replace π̂ and η̂ with π and η

respectively. Using part the fact that π and η are fixed by T and S, respectively, plus

the triangle inequality and c) of Lemma 5.4.2, we have

‖η − π‖∞ = ‖Sη − Tπ‖∞ ≤ ‖Sη − Tη‖∞ + ‖Tη − Tπ‖∞

≤ ‖P −Q‖∞‖η‖1 + ‖P‖∞‖η − π‖1

≤ C‖P −Q‖∞‖η‖2 + C‖P‖∞‖η − π‖2, (5.12)

with C =
√

Vol(D). With δ(π) and C(π) as in the previous theorem, define

δ′(π) =
δ(π)

C
and C ′(π) = 2C‖π‖2 + C2‖P‖∞C(π).

If ‖P −Q‖∞ < δ′(π), then as mentioned previously,

‖P −Q‖2 ≤ C‖P −Q‖∞ < δ(π).

We start with 5.12 and then use ‖η‖2 < 2‖π‖2 and ‖π − η‖2 ≤ C(π) ‖P −Q‖2 from

remark 5.5.1 and theorem 5.5.1 to get

‖η − π‖∞ ≤ C‖P −Q‖∞‖η‖2 + C‖P‖∞‖η − π‖2

≤ 2C‖P −Q‖∞‖π‖2 + C‖P‖∞C(π)‖P −Q‖2

By collecting terms and noticing that ‖P −Q‖2 ≤ C‖P −Q‖∞, we deduce that

‖η − π‖∞ ≤
(
2C‖π‖2 + C2‖P‖∞C(π)

)
‖P −Q‖∞

= C ′(π)‖P −Q‖∞
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Theorem 5.5.3 (Lp-estimate, 2 ≤ p ≤ ∞)

Let 2 ≤ p ≤ ∞, there exists δ′(π), C ′(π) > 0 such that if P,Q ∈ Lp(D ×D) and

‖P −Q‖p < δ′(π) then

‖π̂ − η̂‖p ≤ C ′(π) ‖P −Q‖p .

Proof As before, we replace π̂ and η̂ with π and η respectively. Applying Lemma

5.4.2 (part d), noticing that η and π belong to L2(D), we have:

‖Sη − Tη‖p ≤ ‖P −Q‖p max{‖η‖1, ‖η‖2}

and

‖Tη − Tπ‖p ≤ ‖P‖p max{‖η − π‖1, ‖η − π‖2}.

Using the fact that π and η are fixed by T and S, respectively, plus the triangle

inequality and c) of Lemma 5.4.2, we have

‖η − π‖p = ‖Sη − Tπ‖p ≤ ‖Sη − Tη‖p + ‖Tη − Tπ‖p

≤ ‖P −Q‖p max{‖η‖1, ‖η‖2}+ ‖P‖p max{‖η − π‖1, ‖η − π‖2}

≤ C‖P −Q‖p‖η‖2 + C‖P‖p‖η − π‖2, (5.13)

with C =
√

Vol(D). The rest of the proof concludes as in the proof of the previous

theorem.

5.6 Extension to non-compact support distributions

While most of the assumption of the method on the ergodicity of the Markov

Chains are quite general, one restriction of the method comes from the assumption

of bounded parameter space D. Since the key ideas of our analysis of sensitivity of

the invariant measures rely on moving back and forth between the Lp-norms, this

condition could not be easily removed from the framework.

However, it is worth noting that for distributions with non-compact support, a

variation of the Griddy Gibbs sampling method can be developed as followed: first, a
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rectangular domain D is chosen by prior knowledge about π, then the Griddy Gibbs

sampling with πnew = π|D (normalized by a constant) is proceeded as usual. By our

previous analyses, the Monte Carlo Markov Chains generated by this process will have

a unique invariant measure η whose distance to π can be estimated by the following

theorem

Theorem 5.6.1 Let 2 ≤ p ≤ ∞. Assume that π has non-compact support on Rd

and that there exists C > 0 so that:∫
Rd
‖x‖1π̂(x)p dx ≤ C1 <∞ (5.14)

and ∫
Rd
‖x‖1π̂(x) dx ≤ C2 <∞ (5.15)

where ‖x‖1 = |x1|+ ...+ |xd|. Denote

Dt = {x ∈ Rd : ‖x‖∞ > t}

where ‖x‖∞ = maxi |xi|.

Then there exists δ′(π), C ′(π) > 0 such that if P,Q ∈ Lp(D×D), ‖P −Q‖p < δ′(π)

and t ≥ C2/2 then

‖π̂ − η̂‖p ≤ C ′(π,Dt) ‖P −Q‖p +
C2

2t
‖π̂‖p +

C1

t‖π̂‖p
(5.16)

Proof We denote

f =
π̂p

‖π̂‖p
and X is a random variable whose density function is f .

By the Chebyshev’s inequality, we have for i = 1, 2, ...d

P[|Xi| > t] ≤ 1

t

∫
Rd
|xi|f(x) dx

=
1

t‖π̂‖p

∫
Rd
|xi|π̂p(x) dx
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Hence

‖π̂‖Lp(Rd\Dt) = P[‖X|∞ > t] ≤
∫
Rd ‖|x‖1π̂

p(x) dx

t‖π̂‖p
By a similar argument, we have

‖π̂‖L1(Rd\Dt) ≤
1

t

∫
Rd
‖|x‖1π̂(x) dx ≤ C2

t

On the other hand, results for distribution with compact support in D implies∥∥∥∥∥η̂ − π̂∫
Dt
π̂

∥∥∥∥∥
Lp(D)

≤ C ′(π,Dt)‖P −Q‖p,

We deduce that, for t ≥ 2C2, we have

‖π̂ − η̂‖Lp(Rd) ≤ ‖π̂ − η̂‖Lp(D) + ‖π̂‖Lp(Rd\Dt)

≤

∥∥∥∥∥η̂ − π̂∫
Dt
π̂(x) dx

∥∥∥∥∥
p

+

∫
Rd\Dt π̂(x) dx∫

Dt
π̂

‖π̂‖p + ‖π̂‖Lp(Rd\Dt)

≤ C ′(π,Dt) ‖P −Q‖p +
C2

2t
‖π̂‖p + ‖π̂‖Lp(Rd\Dt)

≤ C ′(π,Dt) ‖P −Q‖p +
C2

2t
‖π̂‖p +

C1

t‖π̂‖p

Corollary 5.6.1 Let 2 ≤ p ≤ ∞ and assume that π has non-compact support on Rd

and that there exists C3, C4 > 0 so that:

1.
∫
Rd |x|

2π̂(x) dx ≤ C3 <∞

and

2. ‖π̂‖L2p−1 ≤ C4 <∞

Then result (5.16) is true with C1 =
√
C3C

p
4 and C2 = 1 + C4.

That is, if prior estimates on the second moment of π and the L2p−1-norm of π̂

are available, the Griddy Gibbs algorithm can be adjusted accordingly to produce a

good estimate on the distance between the two invariant measures.
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Proof By Holder’s inequality with

u(x) = ‖x‖1π̂(x)1/2, v(x) = π̂p−1/2

we have ∫
Rd
‖x‖1π̂

p(x) dx ≤
(∫
Rd
‖x‖2

1π̂(x) dx

)1/2(∫
Rd
π̂2p−1(x) dx

)1/2

≤
√
C1C

p
2 .

and ∫
Rd
‖x‖1π̂(x) dx ≤

∫
‖x‖1≤1

π̂(x) dx+

∫
‖x‖1>1

‖x‖2
1π̂(x) dx ≤ 1 + C4

5.7 Numerical examples

In this section, we provide numerical examples to illustrate our theoretical findings

and demonstrate the utility of the Griddy Gibbs sampling method. First, we validate

the estimates derived in previous sections in a simple 2D example. We then proceed

to investigate the performance of the Griddy Gibbs sampling in a practical example

arising from systems biology, in which it is necessary to employ the Griddy Gibbs

sampling method, and demonstrate the use of the method in making inferences about

the system.

5.7.1 A 2D example

In this example, we investigate the performance of the Griddy Gibbs sampling

algorithm on grids of various resolutions in a simple 2D example. The chosen distri-

bution for has the following density function

π(x, y) =
1

2
Beta(

x+ 1

2
, 2, 5) ∗Beta(

y + 1

2
, 2, 5)

+
1

2
Beta(

x+ 1

2
, 2, 2) ∗Beta(

y + 1

2
, 2, 2)
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Figure 5.2. Left: Error of the 1D marginal empirical cumulative dis-
tribution function, and Right: error of the empirical cumulative dis-
tribution function, both as a function of the number of points used in
the approximation grid.

where Beta(x, α, β) is the one-dimensional Beta distribution with parameter α and

β.

This distribution was chosen specifically to illustrate the developed framework in

the case of compact support: it has compact support in its domain [−1, 1] × [−1, 1]

and has non-independent components, but the 1D marginal density functions can be

obtained in simple form.

Using this probability distribution, we illustrate the estimates provided in previous

sections, by expressing the L2 and L∞ distance between the estimator (using Griddy

Gibbs) and the true distribution of interest in terms of the number of points used

in the grid of approximation. For a fixed grid, a Griddy Gibbs chain of length 105

is generated, using standard linear interpolation as the approximation scheme for 1-

dimensional distributions. We then use the sampled points to estimate the empirical

cumulative distribution function (ECDF) and the 1D marginal ECDF of the invariant

distribution of the chains. Finally, the L2 and L∞ distance between the estimated

ECDFs with different number of grid points and the true CDF are calculated. We

note that in the context of our example, it is more convenient to work with CDFs
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rather than with PDFs for two main reasons: (i) CDFs can be approximated using

nonparametric estimators; and (ii) there is a well-developed theoretical machinery for

the comparison of CDFs using such estimators. Moreover, it is well-known that the

ECDF is a non-parametric, unbiased estimator that converges uniformly to the true

CDF (a result known as the Glivenko - Cantelli theorem [25]).

The results are illustrated in Figure 2. The error of both ECDF and the marginal

ECDF of the first variable decrease faster than O( 1
n
) and approximately as fast as

O( 1
n2 ) when the number of the grids point n increases, until it reaches a level at

which the error of the Griddy Gibbs sampling is dominated by the error of the Monte

Carlo simulation. Since the accuracy of standard 1D linear approximation method is

bounded by O( 1
n
), and can be as fast as O( 1

n2 ) if the function has bounded second

derivative, this confirms our theoretical results about linear dependency between error

of the 1D approximation, and the distance from the estimated distribution to the true

distribution of interest.

5.7.2 An example in systems biology.

In this example, we consider a mathematical model of the T-cell signaling pathway

proposed by Lipniacki et al. in [23]. The behaviour of the system is modelled as an

ODE system controlled by 19 different parameters with 37 state variables and fixed

initial conditions:

ẋ = α(ω, x) (System of ODEs)

x(0) = x0(ω) (Initial conditions)

y(t) = f(ω, t) = β(ω, x(t)) (Output)

Here x = (x1, x2, ..., xnx) ∈ M ⊂ IRnx is the state variable, with M a subset of

IRnx containing the initial state, and f(ω, t) ∈ IR is the output response (system

dynamics). In the scope of this paper, we are interested in the dynamics of pZap, one

of the state variables of the system. The vector of unknown parameters is denoted
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by ω = (ω1, ..., ωN) ∈ IRN and is assumed to belong to a subset Ω of IRN . These

functions and initial conditions depend on the parameter vector ω ∈ Ω.

The traditional approach to study such a system is to estimate values of the

parameters from observations. However, in the field of systems biology, usually it is

not possible to estimate all parameters in a given model, in particular if the model is

complex and the data is sparse and noisy. Thus, to represent explicitly the state of

knowledge, it is best to consider not a single parameter valuation but the whole space

of uncertain parameters. The uncertainty in parameter values is often characterized

by a probability distribution π(ω) on the set of all possible parameter values, based on

how the output of the system driven by a particular parameter valuation fits previous

data. This gives a distribution with density

π̂(ω) = cn exp

(
−

n∑
i=1

|f(ω, ti)− d(ti)|2
)
, (5.17)

where cn is a normalizing constant, (t1, d1), ...(tn, dn) is the set of previous data.

Inference about the system will be made based on π. For example, in [21] [24],

the optimal experiment is chosen at the time point where the maximum value of the

normalized variance of the outputs with respect to π is achieved. Another example

was given in [22] where the expected dynamics estimator to recover the correct system

dynamics is defined as the expected value of the system dynamics with respect to the

distribution π.

This motivates the problem of sampling with respect to the distribution π. As

noted in the introduction, the use of the standard Gibbs sampling method is hindered

by two factors: first, there is no closed-form formula for the distribution π or for the

corresponding one-dimensional conditional distributions; second, the evaluation of the

unnormalized distribution at one point is computationally expensive (it is equivalent

to solving a high dimensional system of differential equations). It is then necessary to

approximate the conditional distribution by functions of simpler forms. The Griddy

Gibbs method therefore is a suitable choice for this sampling process.
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In this particular example, we restrict the analysis to the five most sensitive pa-

rameters with respect to perturbation. This choice is based on previous knowledge

about the dynamics of the system and on the result of a global sensitivity analysis

using sparse grid interpolation( [27]).

To further reduce the computational cost, we also employ a sparse grid interpolant

to approximate the output of the ODE system. That is, the output functions of the

system of ODEs are evaluated on a sparse grids of 105 points on the parameter

space, then the method of sparse grid interpolation is employed to approximate the

outputs at other sets of parameter values. Moreover, the one-dimensional conditional

distributions are then approximated by piecewise linear functions on grids of fineness

δ = 0.2 (which corresponds to a grid with 11 equally spaced points). It is worth noting

that although this is a two-leveled approximation, it still fits into the framework

developed in previous sections.

We will compare the performance of the Griddy Gibbs sampling with the variation

of Gibbs sampling suggested by Tierney et al. in [1]. In Tierney’s algorithm, a

Metropolis chain is embedded to ensure that the equilibrium distribution is exactly π

even on a coarse grid. The drawback is that the computational cost is at least twice

as much as Griddy Gibbs sampling using the same grid. Moreover, the algorithm is

more difficult to set up and is restricted to piecewise linear and piecewise constant

approximations.

In Figure 5.3, we use samples from Griddy Gibbs and from Tierney’s algorithm

to compare the conditional and marginal distribution derived from the ECDFs. In

the left panel, we compare the conditional distributions (using samples from Griddy

Gibbs and Tierney’s algorithm) of the second parameter on the first paramter, for

various values of this parameter. In the right panel, the difference between the two

marginal joint distributions of the first and the second variable are computed. We also

compare the difference between the two marginal joint distributions of the first and

the second variable while using various numbers of samples in Figure 5.4. The results

from Figure 5.3 and Figure 5.4 suggest that the Griddy Gibbs sampling method is as
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effective as Tierney’s algorithm (whose convergence is also guaranteed theoretically)

in generating Markov Chains with with respect to a given invariant measure: the

difference between the two marginal distributions is of the same magnitude as the

error of the Monte Carlo method itself.

We then investigate the performance of the Griddy Gibbs sampling in making

inferences about dynamics. For this we consider the Expected Dynamics Estimator

based on one single simulated data point. This generates a distribution π1 as in (5.17)

with n = 1, and we then use this distribution to estimate the system dynamics by

D̂1(t) = Eπ1(ω)[f(ω, t)].

The results are provided in Figure 5.5 (Left). The expected dynamics are calculated

using the empirical mean of the output values on the previous two sets of samples.

Once again, the performance of the Griddy Gibbs sampling is as good as Tierney’s

algorithm in computing the expected dynamics.

Finally, Figure 5.5 (Right) compares the auto-correlation coefficients of the Monte

Carlo Markov Chains generated by the two algorithms. To compute the auto-correlation

coefficients, two Monte-Carlo Markov Chains of length 105 were generated by the two

algorithms, respectively. The figure illustrates the fact that not only is the compu-

tational cost of Tierney’s algorithm (to generate one instance of the chain) higher,

but also its auto-correlation function converges (to zero) at a much lower rate. In

this particular example, if one wants to get two sets of i.i.d samples with the same

number of points by both algorithms, the computational cost for Tierney’s algorithm

is at least ten times that of the cost for Griddy Gibbs.

5.8 Conclusion

We have shown, subject to some fairly natural conditions, that the Griddy Gibbs

method has a unique, invariant measure. Moreover, we gave Lp estimates on the

distance between this invariant measure and the corresponding measure obtained
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Figure 5.3. Conditional and marginal distribution for the T-cell
model. Left: The difference between the conditional distributions
on the first parameters (one curve for each value of this parameter).
Right: The difference between the marginal joint distributions of the
first two parameters, achieved from Griddy Gibbs and Tierney’s al-
gorithm. Figure 4 shows that the differences between corresponding
ECDFs are of the same magnitude as the error of the Monte Carlo
method (O( 1√

N
), where N is the number of samples)
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Figure 5.4. The difference between the marginal distributions com-
puted by Griddy Gibbs and Tierney’s algorithm is of the same mag-
nitude as the error of the Monte Carlo method itself (O( 1√

N
), where

N is the number of samples).
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Figure 5.5. Left: The expected dynamics estimator based on one
data point, generated by Griddy Gibbs and Tierney’s samples. Right:
Auto-Correlation coefficients of the Markov Chains generated by
Griddy Gibbs algorithm and Tierney’s algorithm.
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from Gibbs sampling. These results provide a theoretical foundation for the use of

the Griddy Gibbs sampling method.

Moreover, using the theoretical framework developed to validate the Griddy Gibbs

sampling method, we also successfully provided a more general result about about the

sensitivity of invariant measures under small perturbations on the transition proba-

bility. Our results imply that if we replace the transitional probability P of a Monte

Carlo Markov Chain by a different transitional probability Q that is close to P in

Lp norm (2 ≤ p ≤ ∞), the distance between the two invariant measures (in Lp) is

bounded by a constant times the Lp-distance between P and Q, provided that the ap-

proximation schemes satisfy a mild condition provided in the paper. This condition

is very general and does not hinder the application of the Griddy Gibbs sampling

method, since it can always be guaranteed simply by using additional cutoff func-

tions on the approximation scheme, without significantly affecting its accuracy. The

method can be generalized to validate other Monte Carlo Markov Chain sampling

methods that involve approximation.

We also gave numerical examples to illustrate our theoretical findings and demon-

strate the utility of the method in different applications. The numerical results con-

firm the linear relation between the distance between the invariant measures and the

accuracy of the approximation scheme derived in theory. Moreover, our examples

illustrate that Griddy Gibbs performs as well as its variants in applications and that

the algorithm is simpler to implement and less computationally expensive. Addi-

tionally, the Markov Chains generated by this algorithm have significantly smaller

auto-correlation coefficients than those of other variant algorithms. These features

demonstrate that Griddy Gibbs is a simple and effective sampling method that can

be employed in applications with confidence in its validity.
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

This dissertation is concluded here with a comprehensive summary of the work per-

formed, presentation of future work, and discussion of the conclusions drawn.

6.1 Summary of work

The work presented in this dissertation comprises the development of a procedure

to enable uncertainty quantification and experimental design of non-linear mathemat-

ical models within the practical and theoretical limitations of the biological contexts.

This work partially overcomes these limitations through several approaches and suc-

cessfully addresses multiple problems arising from the field. Those include

(i) The problem of experimental design for dynamics identification:

We proposed a novel estimator and formalized a process to quantify the un-

certainty in prediction the dynamics of interest, as well as provided theoretical

foundation for the use of the Maximal Informative Next Experiment approach

and improved its performance in several settings.

(ii) The problem of behavior discrimination in nonlinear models:

We considered the problem of choosing effective data sampling schemes for

behavior discrimination of nonlinear systems in two different settings: the low-

discrepancy sampling scheme and the uncertainty-based sequential sampling

scheme. In both cases, we successfully derived theoretical results about the

convergence of the expected boundary to the true boundary of interest. Both

methods have also proven to be effective in studies of expensive high-dimensional

biological systems in various contexts. The analysis proposed in the work is
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novel and may be applicable to other settings, while the performance of the

algorithm is state-of-the-art to the best of our knowledge.

(iii) The problem of data-free identifiability analysis and data-free uncertainty quan-

tification.

We introduced and explored the novel concept of data-free identifiability, which

further extends the concept of structural identifiability, taking into account any

constraints on the experimental setting. We also proposed a Bayesian approach

to address system identifiability when data are not yet available. This approach

is global, strongly theoretically supported, amenable to high-dimensional cases,

can be used to study various types of identifiability and is compatible with

a large class of experimental settings. The framework is also built not only to

assess parameter identifiability but also to quantify the uncertainty in prediction

of any quantity of interest.

This work also draws a direct connection between studies of identifiability

and the concept of uncertainty quantification in predictive sciences. With

this method, we attempt to lay a unifying framework for the problems of

structural/practical identifiability analysis, dynamics identifiability analysis and

data-free uncertainty quantification.

(iv) The convergence of perturbed Monte Carlo Markov Chains:

We investigated the performance of the Griddy Gibbs sampling in different bi-

ological examples and provided a theoretical foundation for the use of Griddy

Gibbs sampling and other Monte Carlo Markov Chain methods. The distin-

guishing feature between our approach and previous work on convergence of

perturbed Markov Chains is that by considering the invariant measures as fixed

points of linear operators on function spaces, we don’t need to impose any fur-

ther conditions on the rate of convergence of the Markov Chain. For example,

the results we derived in this paper can address the case when the considered
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Monte Carlo Markov Chains are not uniformly ergodic, which had not been

addressed in the perturbed Markov Chain literature.

6.2 Future work: Localized analysis/uncertainty quantification and un-

supervised behavior discrimination of biological systems

As emphasized earlier, one of the objectives of this research is to lay a theoret-

ical framework for the problem of localized analyses and uncertainty quantification

of high-dimensional biological systems in the face of system unidentifiability and

discontinuous/sharp responses. With the successful use of behavior discrimination

in mapping the parameter space by qualitative behaviors, we are equipped with a

powerful tool to tackle the problem of localized analysis/uncertainty quantification.

The only obstacle remaining is the approximation of smooth functions on arbitrarily

shaped domains with unstructured samples, which has recently emerged as an active

research direction in uncertainty quantification [2].

In Figure 6.1, a preliminary example is presented, in which we contrast the per-

formances of global versus localized methods of uncertainty quantification. This ex-

ample is extracted from my collaborative work [3] in the theory of robust explicit

model predictive control, that extends and adapts our proposed framework to fit the

new application context. This outstanding performance is also expected in analyses

of biological systems, such as sensitivity analysis or model order reduction.

Another revenue for future work comes from a limitation of our behavior dis-

crimination framework, namely, the necessity of strict definitions of the contrasting

behavior of interest. In our setting, the number of contrasting behaviors as well as

their definitions has to be specified in advance. The lack of information about what

behaviors are relevant to a given biological systems motivates us to build an unsu-

pervised behavior discrimination framework, in which the algorithm would propose

and define the behaviors itself. This question is directly related to the task of unsu-
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Figure 6.1. Comparison of (Top) non-smooth EMPC control surface
and (Bottom) Localized EMPC controller
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Figure 6.2. The 2-dimensional parameter space of the Fitz Hugh-
Nagumo model is partitioned according to dynamics behavior using
the spectral clustering method based on the Pearson correlation dis-
tance: Red and green regions correspond to the oscillatory and tran-
sient behavior of the membrane potential. Blue and black regions
both correspond to cases when the membrane potential saturates at a
high level; the distinghuishing feature is that in the black region, the
membrane potential decreases at the begining before being activated
and saturating.

pervised learning that has been of huge interest in the field of machine learning for

many years [4].

In Figure 6.2, we provide a preliminary example in which an unsupervised be-

havior discrmination is performed on the Fitz-Hugh Nagumo model [5], a simplified

version of the Hodgkin-Huxley model, which models in a detailed manner activation

and deactivation dynamics of a spiking neuron. In this example, the 2-dimensional

parameter space of the Fitz Hugh-Nagumo model is partitioned according to dynam-

ics behavior using the spectral clustering method [6] based on the Pearson correlation

distance [7]. Despite being simple, the Fitz-Hugh Nagumo model produces several

different types of dynamics, and the fact that the algorithm can distinguish between

major behaviors without a labeling process or a strict definition of behavior promise

a lot of potential for further study of the approach.
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6.3 Conclusion

Through the newly developed procedures, this dissertation has addressed many

challenges in studying biological systems and successfully created a general proba-

bilistic framework for uncertainty quantification and experimental design in the face

of unidentifiability, sharp model responses with limited number of model simulations,

constraints on experimental setting, and even in the absence of data. The proposed

methods have strong theoretical foundations and have also proven to be effective in

studies of expensive high-dimensional biological systems in various contexts.

These procedures are particularly suited to enable immediate gains in biological

studies. By taking advantage of these proposed procedure for UQ and experimental

design, discovery sciences can more efficiently evaluate hypotheses and allocate re-

sources for experimentation. Thereby, the framework and procedure developed herein

are poised to benefit many applications of computational biology, systems biology as

well as further uses of mathematical modeling in biology.

However, it is worth noting that this work is structured to address those problems

in analyzing non-linear systems in a general mathematical setting. For that reason,

the strategies developed herein are not limited by either the type of model or appli-

cation contexts and are applicable beyond the scope of biological studies to improve

the efficiency in analyzing mathematical models in other fields of predictive science.
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