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ABSTRACT 

Application of neural networks to classification of remote sensing data is 

discussed. Convkntional tw+layer backpropagation is found to give good 

results in ~lassification of remote sensing data but is not efficient in training. 

A more efficient variant, based on conjugate-gradient optimization, is used for 

classification of nsultisource remote sensing and gedgraphic data and very- 

high-dimensional data. The conjugate-gradient neural networks give excellent 

performance in classification of multisource data but do not compare as well 

with statistical methods in classifictition of very-high-dimensional data. 



CONJUGATEGRADIENT NEURAL NETWORKS IN 

CLASSIF'ICATION OF MULTISOURCE AND 

VERY-HIGH-DIMENSIONAL REMOTE SENSING DATA 

1. INTRODUCTION 

Great interest has been shown recently in classification of remotely sensed 

data using neural networks. Several researchers have applied neural network 

classifiers to  such data: Benediktsson et al. (1990b) used. two-layer 

backpropagation networks to classify multisource remote sensing and 

geographic data and compared the results to the performance of several 

statistical methods. McClelland et al. (1989) used a two-layer 

backpropagation algorithm to classify Landsat TM (Thematic Mapper) data. 

Decatur (1989a, 1989b) used two-layer backpropagation, learning vector 

quantization (LVQ) and adaptive resonance theory (ART) networks to classify 

Synthetic Aperture Radar (SAR) data and compared the results to the results 

of Bayesian classification. Ersoy et al. (1990) developed a hierarchical neural 

network (PSHNN) which they applied to classification of aircraft multispectral 

scanner data and multisource data. Heermann et al. (1990) used two-layer 

backpropagation to classify multitemporal data. Maslanik et al. (1990) used 

two-layer neural networks to classify Scanning Multichannel Microwave 

Ra.diometer (SMMR) passive microwave data. All of these researchers have 

reported promising performance by neural networks, but the neural networks 

have been found to be slow in training as compared to statistical methods. 

This research was supported in part by the National Aeronautics and Space 
Adininistration (NASA) through Grant No. NAGW-925. 



Faster training methods are thw attractive for classification of remotely 

sensed data. 

In this paper, "fast" neural networh are investigated. The neural 

network methods are applied to classification of multisource remote 

sensing/geographic data and very-high-dimensional remote hensing data. In 

this research, the principal reason for using neural network methods for 

classification of multisource remote sensing/geographic data is that these 

methods are distribution-free. Since multisource data are in general of 

multiple types, the data from the various sources can have diierent statistical 

distributions. The neural network approach does not require explicit modeling 

of the data from each source. In addition, neural network methods have been 

shown to approximate class-cohditional probabilities in the mean-squared 

sense (Wan 1990). Consequently, there is no need to treat the data sources 

independently as in many statistical methods (Benediitsaon et al. 1990b). The 

neural network approach also avoids the problem in statistical multisource 

analpis of specifying how much influence each data source should have in the 

classification (Benediktsson et al. 1990b). 

A problem with conventional multivariate Gaussian statistical 

classification of very-high-dimensional data b that this method relies on 

having nodsingular (invertible) class-specific covariance matrices. When n 

features are uaed, the training samples for each class must include at least n+l 

different samples so that the covariadce matrices are nonsingular; in high- 

dimensional eases involving limited training samples the matrices may be 

singular. In this paper, we explore the feasibility of using neural networks for 

classification of very-high-dimensional data in order to avoid this problem. 



The paper begins with a general discussion of neural networks used for 

pattern recognition, followed by a discussion of well-known neural network 

models. Next, optimization techniques for the neural network models are 

addressed with the goal of making the training procedures for *,he networks 

more efficient. Finally, classification results are given for multisource remote 

sensing data and very-high-dimensional data. 

2.. NEURAL NETWORK METHODS FOR PATTERN RECOGNITION 

A neural network is an interconnection of neurons, where a neuron can be 

described in the following way: A neuron receives input signals 

xj, j = 1,2, ..., N, which represent the activity a t  the input or the momentary 

frequency of neural impulses delivered by another neuron to this input 

(Kohonen 1988). In the simplest formal model of a neuron, the output value 

or the frequency of the neuron, o, is often represented by a function 

where K is a constant and 4 is a nonlinear function, e.g., the threshold 

function which takes the value 1 for positive arguments and 0 (or -1) for 

negative arguments. The wj are called synaptic efieacies or weights, and 8 is 

a threshold. 

In the neural network approach to pattern recognition the neural 

network operates as  a black box which receives a set of input vectors x 

(observed signals) and produces responses oi from its output neurons i, 

i = 1, ..., L where L depends on the number of information classes. A general 

idea followed in neural network theory is that oi = 1 if neuron i is active for 



the current input vector x, or oi = 0 (or -1) if it is inactive. The weights are 

learned through an adaptive (iterative) training procedure in which a set of 

training samples is presented at the input (Figure 1). The network gives an 

output response for each sample. The actual output response is compared to 

the desired response for the sample and the error between the desired output 

and the actual output is used to modify the weights in the neural network. 

The training procedure ends when the error is reduced to a prespecified 

threshold or cannot be minimized any further. Then all of the data are fed 

into the network to perform the classification, and the network provides at the 

output the class representation for each pixel. 

Data representation is very important in application of neural network 

models. It is possible in some problems to use continuous-valued inputs1 to 

the neural network but our experience in classification of remotely sensed 

image data has shown it necessary to increase the network size, e.g., by 

binarizing the input data when the data dimensionality is low (e.g., less than 

10 dimensions). The reason for this binarization is mainly that remote sensing 

data are very complex and adding extra dimensions to the input data can help 

in discriminating the data. 

A straightforward coding approach used by many researcher:; is to code 

the input and output by a simple binary coding scheme (0 = 00, 1 = 01, 2 = 

10, etc.). However, it is more appropriate to use the Gray-code representation 

(Lathi 1983) of the input data. The Gray-code representation can be derived 

frorn the binary code representation in the following manner: If bl b2 ... b, 

1. Using continuous-valued inputs means that the whole value is accepted by a single 
input neuron; binarieation means each input neuron accepts just one bit of the value. 



is a code word in an n - digit binary code, the corresponding Gray-code word . 

gl g2 ... g, is obtained by the rule: 

where @ is modulo-two addition. The reason that the Gray-code 

representation is more appropriate than the binary code for this a.pplication is 

that neighboring integers differ in the Gray-code by only one bit. Adjacent 

data values in the code space tend to belong to the same inforroation class. 

When they belong to the same class, the use of the Gray-code representation 

leads to  a smaller number of weight changes, since for values from a given 

class, most of the input bits are identical. 

Using Gray-coded input data has given good experimental resillts for data 

of relatively low dimensionality. However, Gray-coding of the data makes the 

decision regions both more localized and more complex as compared to 

continuous-valued inputs Figures 2 and 3 illustrate different decision regions 

for two features of remote sensing data with 4 information classes. The 

decision regions for continuous-valued input data are more uniform and the 

use of continuous-valued data can be more successful in generalization 

especially for very-high-dimensional data with a limited number of training 

samples. Ln our research, both Gray-coded and continuous-valued input data 

were used to see how each input mechanism affected the classification results. 

Representation of the output of the neural network is also important. If 

binary coding is used at the output, the number of output neurons can be 

reduced to log2M where M is the number of information classes.. However, 1 1  



using more output neurons than the minimum logzM can make the neural r 1 
network more accurate in classification. Even though adding more output 

neurons makes the network larger and therefore computat:ionally more 

complex, it can also lead to fewer learning cycles, since the Hamming distance 

(Lathi 1983) of the output representations of different classes can be larger. 

I I One output coding mechanism is temperature coding," in which the 

representation for n has 1 for its n most significant digits and 0 for the rest 

(e.g., 4 = 1111000). 

However, the most commonly used output representation is tlie following. 

The number of output neurons is selected to equal the number of classes, and 

only one output neuron is active (has the value 1) for each class. For 

example, in a four class problem, class #1 would be represented by 1000 and 

class #3 by 0010. This particular representation has the advantage that only 

one neuron should be active and all of the others should be inactive. 

Therefore, the "winner take all" principle can be used. Thus, during testing 

an input sample can be classified to the class which has the largest output 

response (output responses during testing will be real numbers in the interval 

from 0 to  1 for each output neuron). If other coding schemes were used for 

output representation, some samples might need to be rejected in testing since 

their output would not be close to any of the desired output representations. 

No such problem is evident with this representation. Therefore, this "winner 
' 

take all" representation will be used in the experiments reported here. 



3. NEURAL, NETWORK MODELS 

Several neural network models have been proposed since Rosenblatt 

(1958) introduced the perceptron in 1952. The perceptron is a one-layer 

neural network which has the ability to learn and recognize siinple patterns. 

Rosenblatt proved that if the input data are linearly separable, the training 

procedure of the perceptron will converge and the perceptron ca:n separate the 

data. However, when the input data are not linearly separable, the decision 

boundaries may oscillate indefinitely when the perceptron algorithm is applied 

(Lippman 1987). An adaptation of the perceptron algorithm is the one-layer 

delta rule. 

The delta rule, developed by Widrow and Hoff (1960) in the early 1960's, 

is a supervised training approach in which error correction is done with a 

least-mean-squares algorithm (LMS) (Anderson et al. 1988). The delta rule is 

so named because it changes weights in proportion to the difference ("delta") 

between actual and desired output responses. The delta rule neural network 

has one layer and can be used to discriminate linearly separable data (one- 

layer neural networks can form decision regions which are convex). It has 

been extended to include two or more layers, an extension called 

backpropagation. By applying neural networks with two or more layers, 

arbitrarily shaped decision regions can be formed. 

In contrast to the delta rule, the backpropagation algorithm. (Rumelhart 

et al. 1986) is a multilayer neural network algorithm that can. be used to 

discriminate data that are not linearly separable. But a problem with the 

backpropagation is that its training process is computationally very complex. 

Neural network methods, in general, need a lot of training samples to be 



successful in classification. A lot of training samples together with a 

computationally complex algorithm can result in a very long learning time. 

Rumelhart et al. (1986) added a momentum term to the backpropagation 

algorithm in order to speed up the training. This has the advantage that it 

filters out high frequency variations in the weight space. On the other hand, 

the momentum term causes an upper bound on how large an adjustment can 

made to a weight. The sign of the momentum term may also cause a weight 

to be adjusted up the gradient of the error surface instead of down the 

gradient as desired. Jacobs (1988) introduced a delta-bar-delta learning rule 

as an attempt to overcome these limitations. The training of the 

backpropagation method can also be speeded up by using optimization 

methods other than the gradient descent. Such methods are discussed in the 

next section. 

3.2 "Fast" Neural Networks 

Neural network classifiers have been demonstrated to be attractive 

alternatives to conventional classifiers (Benediktsson et al. 1990b, Gorman et 

aP. 1988). The two major reasons why these classifiers have not gained wider 

acceptance are (Barnard et al. 1989): 

1. They have a reputation for being highly wasteful of co~nputational 

resources during training. 

2. Their training has conventionally been associated with the heuristic 

choice of a number of parameters; if these parameters are chosen 

incorrectly. poor performance resuIts, yet no theoretical bask exists for 

choosing them appropriately for a given problem. 



Most neural network methods are based on the minimization of a cost 

function. The most commonly used optimization approach applied for the 

minimization is gradient descent (Luenberger 1984). Both the delta rule and 

the backpropagation algorithm are derived by minimizing the criterion 

function: 

where p is a pattern number, N is the sample size, tpj is the desired output of 

the jth output neuron, opj is the actual output of the neuron and m is the 

number of output neurons. Both the delta rule and the backpropagation 

algorithm are derived from (2) using gradient descent. Both have the two 

problems listed above, but can be modified to reduce the problems by using 

different optimization methods. 

Watrous (1988) has studied the effectiveness of learning in neural 

networks and has shown that quasi-Newton methods are far superior to 

gradient descent for training 6f neural networks. However, quasi-Newton 

methods need the approximation of an inverse Hessian matrix which can be 

computationallqt intensive in itself. Conjugate-gradient optimization (Barnard 

et al. 1989, Luenberger 1984) is a method which is only slightly more 

complicated than gradient descent but does not need any parameter selections 

like the gain factor of gradient descent. Conjugate-gradient methods have 

proved to be extremely effective in dealing with general objective functions 

and are considered among the best general-purpose methods available. Also, 

in our experience they converge about an order of magnitude faster than 

gradient descent. 



Conjugate-gradient optimization methods differ from gradient descent 

methods in that search directions in the conjugate-gradient mc:thod are not 

specified beforehand but are determined at each step of the iteration. At each 

step the current negative gradient vector is computed and added to a linear 

combination of previous direction vectors to obtain a new conjugate direction 

vector along which to move (Luenberger 1984). The gradients can be 

computed using the conventional methods in neural networks (IRumelhart et 

al. 1986). 

The conjugate-gradient method is an "epoch" learning algorithm, i.e., 

weights are updated in the network only after all patterns have been . 

presented to the network in each cycle. The direction vectors are reinitialized 

(restarted) every k-th iteration (where k is a fixed humber) since the conjugacy 

usually deteriorates after several iterations. Line search (Luenberger 1984) is 

performed to find the minimum of the error curve. 

In this paper, conjugate-gradient versions of the delta rule and the 

backpropagation are applied. The conjugate-gradient neural networks are 

derived from (2) using conjugate-gradient optimization (Barnard et al. 1989). 

These methods are called: CGNN-1 (1 layer: output layer) and CGNN-2 (2 

layers: hidden and output layers). Both methods are implemented with a 

sigmoid activation function a t  the neurons (Rumelhart et al. 1986) 

4. EXPERIMENTAL RESULTS 

The methods discussed above were applied to classification of multisource 

and very-high-dimensional data sets and compared to results of statistical 

methods. Three data sets were used in experiments. Two data sets consisted 



of multisource remote sensing and geographic data. The third data set was 

very-high-dimensional simulated High Resolution Imaging Spectrometer 

(HIRIS) data. 

The results of the neural network algorithms were compared to two 

statistical classifiers: 1) the minimum Euclidean distance classifier (MD) and 

2) the maximum likelihood method for Gaussian data (MI,). 

4.1 Experiments wi th  Colorado Data 

The first data set consisted of 4 data sources: 

1) Landsat MSS data (4 data channels) 

2) Elevation data (in 10 m contour intervals, 1 data channel) 

3) Slope data (0-90 degrees in 1 degree increments, 1 data channel) 

43 Aspect data (1-180 degrees in 1 degree increments, 1 data channel) 

Each channel comprised an image of 135 rows and 131 columns; all channels 

were ceregistered. 

The area used for classification was a mountainous area in Colorado, part 

of a larger region previously analyzed by Hoffer et al. (1975, 1979). The area 

has 10 ground-cover classes which are listed in Table 1. One c1:t.s~ is water; 

the others are forest types. I t  was very difficult to distinguish among the 

forest types using the Landsat MSS data alone since the forest classes showed 

very similar spectral responses. With the help of elevation, slope and aspect 

data, they could be better distinguished. 

Reference data were compiled for the area by comparing a cartographic 

map to a color composite of the Landsat data and also to a line priinter output 



of each Landsat channel. By this method 2019 reference points (11.4% of the 

area) were selected comprising two or more homogeneous fields in the imagery 

for each class. Two experiments were conducted with this data set. In the 

initial experiment, the largest field for each class was selected as a training 

field and the other fields were used for testing the classifiers. Overall 1188 

pixels were used for training and 831 pixels for testing the classifiers. This 

was the same data used in (Benediktsson et  al. 1990b) for conventional 

backpropagation. 

4.1.1 Results of the First Experiment on Colorado Data 

The results of the classifications are shown in Tables 2.a (training) and 

2.b (test), where OA represents overall accuracy (weighted by the number of 

pixels in each class) and AVE means average (over the classes) accuracy. (The 

ML method was not applicable, because the data were not truly Gaussian and 

a few of the covariance matrices were singular.) The results for the MD 

method are clearly unacceptable since the method gave only 43.27% overall 

accuracy for training data and 22.26% overall accuracy for test ditta. 

The two neural network approaches, the one-layer CGNN-1 and the 

two-layer CGNN-2, were trained with Gray-coded input vectors rather than 

binary input vectors, as discussed in Section 3. Since the data are of relatively 

low dimensionality, i t  was necessary to expand the dimensiona,lity and use 

Gray-coded inputs rather than continuous-valued inputs. I3xperimental 

results verified this (results using continuous-valued inputs were: about 10% 

lower in overall accuracy than the results using Gray-coded inputs). Since five 

of the seven data channels take values in the range from 0 to 255, each data 



channel was represented by 8 bits snd therefore 8 input neurons. The total 

:number of inputs was 7*8 + 1 = 57 (one extra input is always active and is 

used to compute the biases (Rumelhart et al. 1986) of the neurons in the 

succeeding layers). Since the number of information classes was 10, the 

number of output neurons was selected as 10. The training of the neural 

networks was considered to have converged if the norm of the gradient of the 

error at  the outputs was less than 0.0001. 

The training procedure for the CGNN-1 network did not converge but 

found a minimum a t  319 iterations. The highest overall accuracy (94.87%) 

and the highest average accuracy (92.49%) for training data were achieved 

then. However, the best overall accuracy for test data was reached at  100 

iterations (55.11%). A major problem with the CGNN-1 and other neural 

networks is deciding when to stop the training procedure. If a neural network 

is overtrained it will not necessarily give the best accuracies for test data. The 

reason is that the network gets too specific to the training data and does not 

generalize as well. The 319 iterations required to train the CGNN-1 took 547 

CPU sec.; the classification of the data took only 10 sec. 

The CGNN-2 was implemented in experiments with two 01- more layers 

(output and hidden layers). Having more than one hidden layer did not 

improve the classification performance of this neural network, so only the 

results with two layers are discussed here. Two-layer networks with 8, 16, 32, 

48 and 64 hidden neurons were tried but the performance of the CGNN-2 in 

terms of classification accuracy was not improved by using more than 32 

hidden neurons. Therefore, 32 hidden neurons were used in the experiments 

reported here. 



The CGNN-2 showed the best performance of all the methods in terms of 

overall and average classification accuracies of both training and. test data. As 

with the CGNN-1, the training procedure of the CGNN-2 did not converge. 

At 676 iterations the error function could not be decreased and the training 

procedure stopped. For test data, the CGNN-2 gave very similar accuracies to 

the CGNN-1. At 200 iterations the highest overall and average accuracies of 

test data were reached, 56.32% and 52.59% respectively. In these experiments 

the CGNN-2 had an overtraining problem similar to the CGIW-1; it gave 

:somewhat less than optimal results for test data classified by the network 

giving the most accurate results for training data. 

The CGNN-2 was much slower in training than the CGNN-1 because of 

Ithe 32 hidden neurons. Training the CGNN-2 for 676 iterations took 4709 

sec. However, the classification of the data took 21 sec which is about twice 

the time consumed by the CGNN-1. 

The results in this experiment illustrate how important it is to select 

representative training samples when training a neural network. The CGNN- 

2 network gave more than 97% overall accuracy of training data but only just 

more than 55% for test data. The training data used here ]might not be 

representative since only one training field was selected for each information 

' class. This iimited each information class to a single subclass. The 

classification results for the training fields indicate that if ]mepresentative 

training samples are available, the neural networks can do very well in 

c:lassification of multisource data. Significantly, arriving at a truly 

representative set of training samples can be very difficult in practical remote 

sensing appiications. In order to demonstrate how well the classification 



methods could do with a more representative sample, a second experiment on 

the Colorado data was conducted, as discussed below. 

4.1.2 Results of the Second Experiment on Colorado Data 

To achieve a more representative training sample, uniformly spaced 

samples were selected from all fields available for each class. The remaining 

samples were used for testing. By this approach, 1008 samples were obtained 

for training and 1011 samples for testing (Table 3). By considering the JM 

distances (Swain 1978) between the different training fields in the MSS data, it 

was determined that the Landsat MSS source should be trained on 13 data 

classes. The selection of the data classes was done in the following way. If a 

field from a specific class was more distant than 0.85 in the sense of JM 

distance from another field within the same class, the fields were considered to 

be from two different data classes (using a definition of JM distance with a 

maximum of 1.00). Using this criterion, class 3 (mountane/subalpine meadow) 

was split into two data classes, and class 7 (Engelmann spruce) was divided 

into 3 data classes. All of the other information classes had only one data 

class. In the methods applied below, the classifiers were tr,ained on the 

resulting 13 data classes. 

The results of this experiment are shown in Tables 4.a (training) and 4.b 

(test). Since the training data are more representative than in Section 4.1.1, 

the test results are significantly better (compare to Table 2.b). However, the 

results in both Tables 2 and 4 show that the MD is not an acceptable choice 

for classification of this data set. 



The neural network methods were trained as in Section 4.1.1. There 

were 57 inputs; 13 output neurons accounted for the 13 data classes. The 

input data were Gray-coded and the convergence criterion for the training 

procedures was the same as in Section 4.1.1. 

The training procedure for the CGNN-1 stopped after 344 iteration when 

the error function did not decrease further. The highest overall accuracy of 

training data was reached a t  344 iterations (82.24%). The highest overall 

accuracy of test data was reached at 200 iterations (79.62%). The highest 

average accuracy of test data was also achieved a t  200 iterations. At 343 

iterations the overall accuracy of test data was 79.43% and the average 

accuracy was 68.91%. 

The two layer CGNN-2 was trained with 8, 16 and 32 hidden neurons. 

Using more than two layers did not improve the accuracy of the network. 

The classification results with 8 hidden neurons were the best and are shown 

in Tables 4.a and 4.b. The training procedure stopped after 933 iterations for 

.which the highest overall accuracy was reached (87.80%) together with the 

highest average accuracy (79.62%). Using the 8 hidden neurons ~mproved the 

overall accuracy of training data by over 5% and the average accuracy by 

over 6% as compared to the CGNN-1. However, the CGNN-2 training 

procedure was more time-consuming than the CGNN-1, as seen in Table 4.a. 

Although the training results were better for the CGNN-2 with 8 hidden 

neurons a s  compared to the CGNN-1, the test results were worse, both in 

terms of overall accuracies and average accuracies. The best accuracy for test 

results with the CGNN-2 were achieved a t  150 iterations (overall: 79.23%, 

a.verage: 65.62%). The results a t  933 iterations were lower (overall: 77.65%, 



average: 65.05%). 

The results of thi experiment ahow that the neural network, methods can 

do much better in classification when representative training samples are used. 

The highest overall accutacy for test data with the neural network methods 

was reached with the CGNN-1 (79.62%). Adding hidden neurons did not 

improve the performance of the networks in terms of classification accuracy 

for test data, even though it did improve the accuracy for training data. Using 

hidden neurons also slowed the training procedure. As mentioned before, one 

of the major problems with the neural network methods is determining how to 

prevent them from "overtraining." The highest accuracy for test data may be 

achieved with fewer iterations than the training procedures require. 

Up to this point the neural networks have been tested on relatively low- 

dimensional data with a limited number of samples. It is interesting to see 

.how the networks perform on a data set with more features and more samples. 

For that purpose an experiment on another multisource data set, the 

Anderson River data, was conducted. 

4.2 Experiments with Andemon River Data 

The Anderson River data set is a multisource data set made available by 

the Canada Centre for Remote Sensing (CCRS) (Goodenough et a.1. 1987). The 

imagery involves a 2.8 km by 2.8 k m  forestry site in the Anderson River area 

of British Columbia, Canada, characterited by rugged topography, with 

terrain elevations ranging from 330 to 1100 m above sea level. The forest 

cover is primarily coniferous, with Douglas fir predomina.ting up to 

approximately 1050 m elevation, and cedar, hemlock and tlpruce types 



predominating a t  higher elevations. The Anderson River data set consists of 

six data sources: 

1) Airborne Multispectral Scanner (ABMSS) with 11 data channels (10 

channels from 380 to 1100 nm and 1 channel from 8 to 14 pm). 

2) Steep Mode Synthetic Aperture Radar (SAFt) with 4 data channels 

(x-HH, x-HV, L-HH,L-HV)~. 

3) Shallow Mode SAFt with 4 data channels (X-HH, X-HV, L-HH, L-HV). 

4) Elevation data, 1 data channel, with elevation in meters = 61.996 + 
(7.2266 x pixel value). 

5) Slope data, 1 data channel, with slope in degrees = pixel value. 

6) Aspect data, 1 data channel, with aspect in degrees = 2 x pixel value. 

The ABMSS and SAR data were recorded during the week of July 25 to 

31, 1978. Each channel comprises an image of 256 lines and 256 columns. All 

of the images are co-registered with pixel resolution of 12.5m. 

There are 19 information classes in the ground reference ma]? provided by 

CCRS. In the experiments reported here, only the 6 pred0minan.t classes were 

used, as listed in Table 5. Training samples were selected on a uniform grid 

as 10% of the total sample size of a class. The information class~es in the data 

have been shown to be very hard to separate (Benediktsson et al. 1990~). 

2. X- and L-band synthetic aperture radar imagery (horizontal polarization tr.snsmit (HH) 
and horizontaljvertical polarization receive (HV)). 



4.2.1 Results of Experirnenta on Anderson River Data 

The results for each of the classificatioh methods are shown in Tables 6.a 

(training) and 6.b (test). Although the MD method did much better in 

classification of training and test data than for the Colorado data, it did 

significantly worse than the multivariate Gaussian ML method. It is 

(questionable for two reasons whether it is appropriate, from a theoretical 

:standpoint, to w e  a multivariate Gaussian distribution for all of the sources: 

first, because the topographic sources were not Gaussian; and second, because 

no information was available for modeling the dependencies between all the 

data sources. In view of this, the ML method showed surprisingly good 

performance in terms of training and test accuracy. Three of the data sources 

[ABMSS, SAR sh, SAR st) can be modeled as Gaussian. Those three sources 

consist of 19 of the 22 data channels used in the classification. The number of 

the Gaussiaxi channels is one of the reasons for the relatively good 

performance of the MI, method. 

The CGNN-1 and CGNN-2 were originally trained with Gray-coded 

input data. Each of the 22 data channels was coded with eight bits and 

therefore 177 (or 8*22 + 1) input neurons were used for each networks. The 

data were trained on the six information classes in Table 5. Therefore, six 

output neurons were selected. The convergence criterion for the training 

procedures was the same as in the Colorado experiments (gradient of the error 

function has to  be less than 0.0001 for the training procedure to "converge"). 

After 295 iterations, the training procedure of the CGNN-1 had reached 

minimum error. The highest overall accuracy of training data was achieved 

then (OA: 73.50%, Ave: 72.45%). These results were significantly better than 



the results reached by the statistical methods. The best test rtsult using the 

CGNN-1 was also achieved at  295 iterations: the CGNN-1 gave overall 

accuracy of 67.88% and average accuracy of 66.48%. 

The CGNN-2 was tested extensively with two layers of neurons since 

adding more layers did not improve the classification accuracy. In contrast to 

the CGNN-1, the CGNN-2 gave better results with continuous-valued inputs 

than Gray-coded inputs (Benediktsson et al. 1990~). The results of the 

classifications with continuous-valued inputs are reported here. The reason 

for this good performance with the continuous-valued inputs is the relatively 

high dimensionality of the data (22 input features). The CGNN-2 was 

implemented with 23 input neurons and 20 hidden neurons. Adding more 

'hidden neurons did not increase the classification accuracy. When the training 

procedure stopped (the error function did not decrease further) after 1333 

iterations, the overall accuracy of training data had reached 75,13% and the 

average accuracy 74.93%. The CGNN-2 outperformed all the alther methods 

in classification of training data. Also, the CGNN-2 was by far the best 

method in classification of test data. The highest accuracies of test data were 

reached after 1300 iterations (OA: 72.77%, Ave: 73.32%). These accuracies 

are excellent for classification of these data (Benediktsson et al. 1990~). 

However, after 1300 iterations, the test performance of the CGNN-2 fell off 

significantly. The test accuracies decreased until the training procedure was 

stopped. At 1333 iterations, the overall accuracy of test data was only 66.54% 

and the average accuracy only 65.03%- Obviously the training procedure of 

the CGNN-2 had the problem of overtraining. However, the CGNN-1 was 

reasonably fast in training the data. Because of binarization of the inputs, the 



CGNN-1 was almost as time consuming as CGNN-2. 

4.3 Experiments with Simulated HIRIS Data 

This experiment investigated how well the statistical met,hods and the 

neural network models perform as classifiers of very-high-dimensional data 

(data that have many features, possibly hundreds of them). In these 

experiments, the very-high-dimensional data were simulated High Resolution 

Imaging Spectrometer (HIRIS) data. The HIRIS instrument is planned to be a 

part of a cluster of scientific instruments forming the Earth Observing System 

(EOS). A simulation program called RSSIM (Kerekes et al. 1989) was used to 

simulate the data. 

The simulated data used in the experiments were Gaussian distributed, 

- which is one of the reasons why multivariate statistical approaches were used 

for the classification. However, a problem with using conventional 

multivariate statistical approaches for classification of high-dimensional data 

is that these methods rely on having nonsingular (invertible) class-specific 

covariance matrices. As mentioned earlier, when n features are used, the 

training samples for each class need to include a t  least n+l diferent samples 

:3o that the matrices are nonsingular. Therefore, the covariance matrices may 

be singular in high-dimensional cases involving limited training aamples. 

The RSSIM simulation program generated 201 spectral bands of HIRIS 

data based on statistics from Earth surface reflectance measurenlents taken at 

a site in Finney County, Kansas, on May 3, 1977. A total of 1551 

observations were combined from three information classes: -winter wheat, 

summer fallow, and an "unknown" class. Each class consisted of 675 samples. 



The information classes were assumed to be Gaussian distributed:. 

For these experiments, three feature sets (20-, 40- and 60-dimensional) 

were extracted from the 201 data channels. Each feature set co~lsisted of data 

!channels uniformly spaced over the HIRIS spectral range (0.4 ,u.m to 2.4 pm) 

excluding the water absorption bands. Also, the 20-dimensional data set was 

selected as a subset of the 40-dimensional data set and the 40 dimensional 

data set was selected as a subset of the 60-dimensional data set. 

Experiments were conducted using both statistical classification 

:slgorithms and the neural network methods (CGNN-1 and CGNN-2). To see 

how sample size affected the performance of all the alg;orithms, the 

experiments were conducted for 100, 200, 300, 400, 500 and 600 training 

samples per class. In each case, the overall sample size was the same for all of 

the classes; therefore, the overall accuracy and the average a.ccuracy were 

equal. 

4.3.1 Experimental Results with Simulated HIRIS data. 

The data were relatively separable according to the average JM-distance 

of all feature sets (Benediktsson et al. 1990~). However, classes 2 (summer 

fallow) and 3 (unknown) were not as distinguishable from each other as both 

of them were from class 1 (winter wheat). 

The results of the experiments with the simulated HIRIS data are shown 

in Figures 4 (training), 5 (test) and 6 (time of classification plus training). In 

every case, the statistical ML method was superior to the neural network 

methods. The ML method, when applicable, was overall the most accurate and 

fastest, in classification of the 20- and 40-dimensional data sets. The 



performance of the ML method improved with more features and more 

training samples. However, it could not be applied to the 60-dinlensional data 

because of a singular covariance matrix. As noted earlier, the singularity 

problem is a shortcoming of the ML method. 

The MD classifier performed poorly. It is very fast but cannot 

discriminate the classes adequately. Since it does not use any second order 

statistics, it is likely to perform poorly in classification of high-dimensional 

data (Lee 1989). Also, it shows saturation, i.e., above a certain number of 

dimensions its classification accuracy does not increase. In these experiments, 

the MD classification accuracy did not improve for data sets ]nore complex 

than the 20-dimensional data. 

The CGNN-1 and CGNN-2 were implemented in the experiments with 

continuous-valued inputs because the results using continuous-valued inputs 

were found to be about 10% better than with Gray-coded inputs 

(Benediktsson et al. 1990a, Benediktsson et al. 1990~). Again, the high 

dimensionality of the data is the reason for the good perforinance of the 

continuous-valued input representation. 

Of the neural network methods applied, CGNN-2 showed in most cases 

better performance than the CGNN-1 in terms of overall classification 

:rccuracy. The neural network methods performed, in general, slightly better 

as the numbek of training samples was increased. Their performance also 

improved in terms of overall accuracy when more features were used. 

Although the ML-method was superior to the neural networks in most cases, 

the results of this experiment show that the neural networks can do almost as 

well as the MI, method when the training sample size is small. For instance, 
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when 200 training samples were used for 40-dimensional datta, both neural 

networks outperformed the Gaussian ML in terms of overall alccuracy of test 

data. The reason for this is that the ML method is undertrained (e.g., 400 

training samples per class would be more appropriate for 40 features). 

However, these results demonstrate the capabilities of the neural networks 

when a small representative sample size is used. Also, the neural networks 

clearly outperformed the statistical methods when 60 features were used. 

The CGNN-1 uses no hidden neurons, and in the experiments with high- 

dimensional data it did not do much worse than the CGNN-2. The relatively 

good performance of the CGNN-1 is consistent with good sepa:rability of the 

data. The CGNN-1 is computationally less intensive than the CGNN-2, so it 

could be considered a reasonable alternative for classification of very-high- 

dimensional data. 

In defense of the neural network methods, it should be noted that the 

Gaussian maximum likelihood method had an unfair advantage since the 

simulated data were generated to be Gaussian. Furthermore, neural networks 

are relatively easy to implement and do not need any prior information about 

the data whereas a suitable statistical model has to be availab1.e for the ML 

method. Also, neural network methods were shown earlier to have potential 

for classifying difficult multitype data sets. However, the neural networks 

tend not to have as much ability to generalize as the statistical methods, 

.which was evident in the test data results. These methods will not compare 

.ravorably with the statistical methods in terms of speed unless implemented 

on parallel machines. Currently their computation time required for training 

increases substantially with an increased number of training samples; the 



statistical methods require very little additional time as the t'raining sample 

size increases (Figure 6). 

6. CONCLUSIONS 

The two conjugate-gradient neural network models, CGNN-1 and 

CGN'N-2, performed well as pattern recognition methods for multisource 

remotely sensed data. Both neural networks performed well in c:lassification of 

test data and the two layer CGNN-2 was, a s  expected, in most cases the better 

of the two. However, the neural network models have an overtraining 

problem. If their training procedure goes through too many learning cycles, 

the neural networks will get too specific in class,ifying the training data and 

give less than optimal results for test data. This overtraining problem is a 

shortcoming that has to be considered in the application of neural networks 

for classification. 

The neural network models have the advantage that they are 

distribution-free and therefore no prior knowledge is needed about the 

underlying statistical distributions of the data. This is an obvious advantage 

over most statistical methods requiring modeling of the data; such modeling is 

difficult when there is no prior knowledge of the distribution fu~nctions or the 

data are non-Gaussian. 

However, the neural networks, especially the CGNN-2, are 

comput.ationally complex. When the sample size was large in the experiments, 

the training time could be relatively long. The training of the CGNN-2 is 

more efficient than conventional backpropagation and requires fewer 

parameter selections. However, as in the conventional backpropagation, the 



number of hidden neurons must be selected empirically. Use of too many 

hidden neurons increases the computational complexity and can degrade the 

network performance. 

The experiments also demonstrated the importance of the representation 

of the data when a neural network is used. In the experiments, Gray-coded 

inputs gave better accuracy when the data were relatively low-dimensional but 

continuous-valued input representation was superior when the data were 

very-high-dimensional. Input representation is a subject of ongoing research. 

Any trainable classifier needs to be trained using representative training 

samples, but the neural networks are more sensitive to this than are the 

statistical methods. If the neural networks are trained with representative 

training samples, the results showed that a one-layer or a two-1a:yer net can do 

even better than statistical methods in multisource classification of test 

samples. Although the neural network methods were inferior to the statistical 

methods in the classification of the very-high-dimensional sim.ulated HIRIS 

data, the HlRIS data were simulated to be Gaussian and, therefore, the neural 

network methods did not have much chance of doing better than the 

statistical methods. The neural network models are more appropriate when 

the data are of multiple types and cannot be modeled by a convenient 

multivariate statistical model. However, the results of the experiments with 

neural network methods showed that when the number of training samples is 

limited and the Gaussian ML classifier is undertrained, the neural networks 

(can outperform the ML in classification of Gaussian data. 
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CAPTIONS TO ILLUSTRATIONS 

Figure 1. Schematic Diagram of Neural Network Training Procedure. 

Figure 2. Decision Regions for Neural Network with Gray-Coded Inputs. 

Figure 3. De~ision Regions for Neural Network with Continuous-Valued 

Inputs. 

Figure 4. Classification of Simulated HIRIS Data: Training Samples. 

Figure 5. Classification of Simulated HIRIS Data: Test Samples. 

Figure 6. Classification of Simulated HIRIS Data: Time of Training and 

Classification. 



Table 1 

Training and Test Samples for Information Classes 
in the First Experiment on the Colorado Data Set 

Class # 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Information Class 

water 

Colorado blue spruce 

mountane/subalpine meadow 

aspen 

Ponderosa pine 

Ponderosa pine/Douglas fir 

Engelmann spruce 

Douglas fir/white fir 

Douglas fir/Ponderosa pine/aspen 

Douglas fir/white fir/aspen 

Total 

Training Size 

408 

88 

45 

75 

105 

126 

224 

32 

2 5 

60 

Testing Size 

195 

24 

42 

6 5 

139 

188 

7 0 

4 4 

2 5 

3 9 

1188 83 1 



Table 2 

Classification Results for a) Training Samples and 
(b) Test Samples in the First d xperiment on Colorado Data,. 

Table 2.a 

Table 2.b 

Method 

MD 
CGNN-1 
CGNN- I 
CGNN-2 
CGNN-2 
# of ~ixeis 



Table 3 

Training and Test Samples for Information Classes 
in the Second Experiment on the Colorado Data Set 

I Class # Information Class Training Size '1 
water 

Colorado blue spruce 

mountane/subalpine meadow 

aspen 

Ponderosa pine 

Ponderosa pine/Douglas fir 

Engelmann spruce 

Douglas firlwhite fir 

Douglas fir/Ponderosa pinelaspen 

Douglas firlwhite firlaspen 

Testing Size 

302 

5 6 

44 

70 

157 

122 

147 

38 

2 5 

50 

Total 1 1008 1011 1 



Table 4 

Classification Results for Training Samples and 
(b) Test Samples in the Second on Colorado Data. 

Table 4.b 

Table 4.b 

Method 
10 

MD 20.0 
CCNN-1 78.0 
CGNN- 1 78.0 
CCNN-2 78.0 
CGNN-2 72.0 
# of ~ixels 50 

OA 
37.98 
79.62 
79.43 
79.23 
77.65 
1011 

AVE 
35.49 
69.07 
68.91 
65.62 
65.05 
1011 



Table 5 

Information Classes, Training and Test Samples 
Selected from the Anderson River Data Set. 

Class # 
1 
2 
3 
4 
5 
6 
Total 

Size 

9715 
5511 
5480 
5423 
3173 

12600 

41902 

Information Class 

Douglas Fir (31-40m) 
Douglas Fir (21-30m) 
Douglas Fir + Other Species (31-40m) 
Douglas Fir + Lodgepole Pine (21-30m) 
Hemlock + Cedar (31-40m) 
Forest Clearings 

Training Testin 

548 
542 
317 

1260 11340 

4189 37713 



Table 6 

Classification Results for the Anderson River 
Data Set: (a) Training Samples, (b) Test Samples. 

Table 6.a 

Method 

MD 
ML 
CGNN-1 
CGNN-2 
CGNN-2 

Table 6.b 

Percent Agreement with Referencc: for Class 

# of pixels 

Number of 
iterations 

295 
1300 
1333 

1 2 3 4 5 6 
40.4 8.9 47.6 87.7 42.3 72.4 
54.6 31.8 87.8 90.9 81.4 73.3 
69.4 45.2 72.3 74.5 87.7 85.8 
78.3 51.9 77.0 71.8 85.8 80.2 
78.4 52.3 77.4 72.0 86.4 80.2 
971 551, 548 542 317 1260 

CPU 
time 

68 
1095 
5129 

10601 
10896 

Method 

MI 
ML 
CG,NN-1 
CGNN-2 
CGNN-2 
# of pixels 

OA 
50.51 
68.23 
73.50 
74617 
75.13 
4189 

AVE 
46.55 
69.92 
72.45 
74.93 
74.43 
4189 

Number of 
iterations 

,295 
1300 
1333, 

Percent Agreement 
1 2 , s  4 5 8 

39.7 8.9 48.4 70.2 
50.8 27.7 84.5 81.9 
69.5 38.2 68.7 68.1 
70.9 49.1 76.9 71.4 
65.7 28.2 65.8 69.9 
87.44 4960 4932 4881 
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Figure 6. Classification of Simulated HlRlS Data: Time of Training and Classification. 
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