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ABSTRACT

Application of neural networks to classification of remote sensing data is
discussed. Conventional two-layer backpropagation is found to give good
results in elassification of remote sensing data but is not efficient in training.
A more efficient variant, based on conjugate-gradient optimization, is used for
classification of multisource remote sensing and gedgraphic data and very-
high-dimensional data. The conjugate-gradient neural networks give excellent
performance in classification of multisource data but do not compare as well

with statistical methods in classifieation of very-high-dimensional data.




CONJUGATEGRADIENT NEURAL NETWORKSIN
CLASSIFICATION OF MULTISOURCE AND
VERY-HIGH-DIMENSIONAL REMOTE SENSING DATA

1. INTRODUCTION

Great interest has been shown recently in classification of remotely sensed
data using neural networks. Several researchers have applied neural network
classifiers to such data: Benediktsson et al. (1990b) used. two-layer
backpropagation networks to classify multisource remote sensing and
geographic data and compared the results to the performance of several
statistical methods. McClelland et a. (1989) used a two-layer
backpropagation algorithm to classify Landsat TM (Thematic Mapper) data.
Decatur (1989a, 1989b) used two-layer backpropagation, learning vector
quantization ( LMQ) and adaptive resonance theory (ART) networks to classify
Synthetic Aperture Radar (SAR) data and compared the results to the results
of Bayesian classification. Ersoy et al. (1990) developed a hierarchical neural
network (PSHNN) which they applied to classification of aircraft multispectral
scanner data and multisource data. Heermann et a. (1990) used two-layer
backpropagation to classify multitemporal data. Maslanik et al. (1990) used
two-layer neural networks to classify Scanning Multichannel Microwave
Radiometer (SMMR) passive microwave data. All of these researchers have
reported promising performance by neural networks, but the neural networks
have been found to be dow in training as compared to statistical methods.

This research was supported in part by the National Aeronautics and Space
Adininistration (NASA) through Grant No. NAGW-925.




Faster training methods sre thus attractive for classification of remotely

sensed data.

In this paper, "fast" neural networks are investigated. The neural
network methods are applied to classfication of multisource remote
sensing/geographic data and very-high-dimensional remote sensing data. In
this research, the principal reason for using neural network methods for
classification of multisource remote sensing/geographic datd is that these
methods are distribution-free. Since multisource data are in general of
multiple types, the datafrom the varioussources can have diierent statistical
distributions. The neural network approach does not requireexplicit modeling
d the datafrom each source. In addition, neural network methods have been
shown to approximate class-cohditional probabilities in the mean-squared
sense( Wan 1990). Consequently, there is no need to treat the data sources
independently as in many statistical methods (Benediktsson et d. 1990b). The
neural network approach also avoids the problem in statistical multisource
analysis of specifying how much influenceeach data source should have in the

classification (Benediktsson et a. 1990b).

A problem with conventional multivariate Gaussian statistical
classification of very-high-dimensional data is that this method relies on
having nonsingular (invertible) class-specific covariance matrices. When o
features are uaed, the training samplesfor each class must include at least n+I
different samples so that the covariance matrices are nomsingular; in high-
dimensional ¢ases involving limited training samples the matrices may be
singular. In this paper, we explore the feasibility of using neural networks for

classification of very-high-dimensional data in order to avoid this problem.




The paper begins with a general discussion of neural networks used for
pattern recognition, followed by a discussion of well-known neural network
models. Next, optimization techniques for the neural network models are
addressed with the goal of making the training procedures for the networks
more efficient. Finally, classification results are given for multisource remote

sensing data and very-high-dimensional data.

2.. NEURAL NETWORK METHODSFOR PATTERN RECOGNITION

A neural network is an interconnection of neurons, where a neuron can be
described in the following way: A neuron recelves input signals
xj, j = 1,2,...,N, which represent the activity at the input or the momentary
frequency of neural impulses delivered by another neuron to this input
(Kohonen 1988). In the simplest formal model of a neuron, the output value

or the frequency of the neuron, o, is often represented by a function

N
o =K ¢S wjx; — 6) (1)

j=1
where K is a constant and 4 is a nonlinear function, e.g., the threshold
function which takes the value 1 for positive arguments and 0 (or -1) for
negative arguments. The w; are called synaptic efficacies or weights, and & is

a threshold.

In the neural network approach to pattern recognition the neural
network operates as a black box which recelves a set of input vectors x
(observed signals) and produces responses o; from its output neurons i,
i=1,..,L where L depends on the number of information classes. A genera

idea followed in neural network theory is that o; = 1 if neuron i is active for




the current input vector x, or o; = 0 (or -1) if it is inactive. The weights are
learned through an adaptive (iterative) training procedure in which a set o
training samples is presented at the input (Figure1). The network gives an
output response for each sample. The actual output response is compared to
the desired response for the sample and the error between the desired output
and the actual output is used to modify the weights in the neural network.
The training procedure ends when the error is reduced to a prespecified
threshold or cannot be minimized any further. Then all o the data are fed
into the network to perform the classification,and the network provides at the

output the class representation for each pixd.

Data representation is very important in application of neural network
models. It is possible in some problems to use continuous-valued inputs! to
the neural network but our experience in classification of remotely sensed
image data has shown it necessary to increase the network sSze, e.g., by
binarizing the input data when the data dimensionality is low (e.g., less than
10 dimensions). The reason for this binarization is mainly that rermote sensing
data are very complex and adding extra dimensions to the input data can help

in discriminating the data.

A straightforward coding approach used by many researcher:; is to code
the input and output by a simple binary coding scheme {0 = 00,1= 01, 2 =
10, etc.). However, it is more appropriate to use the Gray-code representation
(Lathi 1983) d the input data. The Gray-code representation can be derived
from the binary code representation in the following manner: If b; b, ... b,

1. Using continuous-valued inputs means that the whole value is accepted by a single
input neuron; binarieation means each input neuron accepts just one bit of the value.




isa code word in an n - digit binary code, the corresponding Gray-code word

g gz - gp ISObtained by the rule:

g1 =b1

gk = bx@®by_; k= 2

where @ is modulo-two addition. The reason that the Gray-code
representation is more appropriate than the binary code for this application is
that neighboring integers differ in the Gray-code by only one bit. Adjacent
data values in the code space tend to belong to the same information class.
When they belong to the same class, the use of the Gray-code representation
leads to a smaller number of weight changes, since for values from a given

class, most of the input bits are identical.

Using Gray-coded input data has given good experimental results for data
o relatively low dimensionality. However, Gray-coding o the data makes the
decision regions both more localized and more complex as compared to
continuous-valued inputs Figures 2 and 3 illustrate different decision regions
for two features of remote sensing data with 4 information classes. The
decision regions for continuous-valued input data are more uniform and the
use o continuous-valued data can be more successful in generalization
especially for very-high-dimensional data with a limited number of training
samples. In our research, both Gray-coded and continuous-valued input data

were used to see how each input mechanism affected the classification results.

Representation of the output of the neural network is aso important. |If

binary coding is used at the output, the number o output neurons can be

reduced to [logzM] where M is the number of information classes.. However,




using more output neurons than the minimum [logzM]. can make the neural

network more accurate in classification. Even though adding more output
neurons makes the network larger and therefore computationally more
complex, it can also lead to fewer learning cycles, since the Hamraing distance
(Lathi 1983) o the output representations of different classes can be larger.
One output coding mechanism is "temperature coding,” in which the
representation for n has 1 for its n most significant digits and 0 for the rest
(e.g., 4 = 1111000).

However, the most commonly used output representation is the following.
The number of output neurons is selected to equal the number of classes, and
only one output neuron is active (has the value 1) for each class. For
example, in a four class problem, class #1 would be represented by 1000 and
class #3 by 0010. This particular representation has the advantage that only
one neuron should be active and al o the others should be inactive.
Therefore, the "winner take all" principle can be used. Thus, during testing
an input sample can be classfied to the class which has the largest output
response (output responses during testing will be real numbers in the interval
from 0 to 1 for each output neuron). If other coding schemes were used for
output representation, some samples might need to be regected in testing since
their output would not be close to any o the desired output representations.
No such problem is evident with this representation. Therefore, this "winner

take al" representation will be used in the experiments reported here.




3 NEURAL,NETWORK MODELS

Several neural network models have been proposed since Rosenblatt
(1958) introduced the perceptron in 1952. The perceptron is a one-layer
neural network which has the ability to learn and recognize simple patterns.
Rosenblatt proved that if the input data are linearly separable, the training
procedure of the perceptron will converge and the perceptron can separate the
data. However, when the input data are not linearly separable, the decision
boundaries may oscillate indefinitely when the perceptron algorithm is applied
(Lippman 1987). An adaptation of the perceptron algorithm is the one-layer

delta rule.

The delta rule, developed by Widrow and Hoff (1960) in the early 1960’s,
is a supervised training approach in which error correction is done with a
least-mean-squares algorithm (LMS) (Anderson et al. 1988). The delta rule is
so named because it changes weights in proportion to the difference ("delta’)
between actual and desired output responses. The delta rule neural network
has one layer and can be used to discriminate linearly separable data (one-
layer neural networks can form decision regions which are convex). It has
been extended to include two or more layers, an extension caled
backpropagation. By applying neural networks with two or more layers,

arbitrarily shaped decision regions can be formed.

In contrast to the delta rule, the backpropagation algorithm. (Rumelhart
et al. 1986) is a multilayer neural network algorithm that can. be used to
discriminate data that are not linearly separable. But a problem with the
backpropagation is that its training process is computationally very complex.

Neural network methods, in general, need a lot of training samples to be




successful in classification. A lot of training samples together with a

computationally complex algorithm can result in a very long learning time.

Rumelhart et al. (1986) added a momentum term to the backpropagation
algorithm in order to speed up the training. This has the advantage that it
filters out high frequency variations in the weight space. On the other hand,
the momentum term causes an upper bound on how large an adjustment can
made to a weight. The sign d the momentum term may also cause a weight
to be adjusted up the gradient of the error surface instead of down the
gradient as desired. Jacobs (1988) introduced a delta-bar-delta learning rule
as an attempt to overcome these limitations. The training o the
backpropagation method can also be speeded up by using optimization
methods other than the gradient descent. Such methods are discussed in the

next section.

32 "Fast" Neural Networks

Neural network classifiers have been demonstrated to be attractive
alternatives to conventional classifiers (Benediktsson et al. 1990b, Gorman et
al. 1988). The two major reasons why these classifiers have not gained wider

acceptance are (Barnard et al. 1989):

1. They have a reputation for being highly wasteful of computational

resources during training.

2. Their training has conventionally been associated with the heuristic
choice of a number of parameters; if these parameters are chosen
incorrectly. poor performance results, yet no theoretical basis exists for

choosing them appropriately for a given problem.




Most neural network methods are based on the minimization of a cost
function. The most commonly used optimization approach applied for the
minimization is gradient descent (Luenberger 1984). Both the delta rule and
the backpropagation algorithm are derived by minimizing the criterion

function:

N 1 N 9
E=Yeo=5% t —opy) (2)

p=1 p=1j

Llg8

where p is a pattern number, N is the sample size, t;; is the desired output of
the jth output neuron, op; is the actual output of the neuron and m is the
number of output neurons. Both the delta rule and the backpropagation
algorithm are derived from (2) using gradient descent. Both have the two
problems listed above, but can be modified to reduce the problems by using

different optimization methods.

Watrous (1988) has studied the effectiveness of learning in neural
networks and has shown that quasi-Newton methods are far superior to
gradient descent for training of neural networks. However, quasi-Newton
methods need the approximation of an inverse Hessian matrix which can be
computationally intensive in itself. Conjugate-gradient optimization {Barnard
et a. 1989, Luenberger 1984) is a method which is only slightly more
complicated than gradient descent but does not need any parameter selections
like the gain factor of gradient descent. Conjugate-gradient methods have
proved to be extremely effective in dealing with general objective functions
and are considered among the best general-purpose methods available. Also,
in our experience they converge about an order of magnitude faster than

gradient descent.
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Conjugate-gradient optimization methods differ from gradient descent
methods in that search directions in the conjugate-gradient method are not
specified beforehand but are determined at each step of the iteration. At each
step the current negative gradient vector is computed and added to a linear
combination of previous direction vectors to obtain a new conjugate direction
vector along which to move (Luenberger 1984). The gradients can be
computed using the conventional methods in neural networks (Rumelhart et

al. 1986).

The conjugate-gradient method is an "epoch™ learning algorithm, i.e.,
weights are updated in the network only after all patterns have been
presented to the network in each cycle. The direction vectors are reinitialized
(restarted) every k-th iteration (wherek is a fixed humber) since the conjugacy
usually deteriorates after several iterations. Line search (Luenberger 1984) is

performed to find the minimum of the error curve.

In this paper, conjugate-gradient versions of the delta rule and the
backpropagation are applied. The conjugate-gradient neural networks are
derived from (2) using conjugate-gradient optimization (Barnard et al. 1989).
These methods are called: CGNN-1 (1 layer: output layer) and CGNN-2 (2
layers: hidden and output layers). Both methods are implemented with a

sigmoid activation function at the neurons (Rumelhart et al. 1986)

4. EXPERIMENTAL RESULTS

The methods discussed above were applied to classification of multisource
and very-high-dimensional data sets and compared to results of statistical

methods. Three data sets were used in experiments. Two data sets consisted

- —— —
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of multisource remote sensing and geographic data. The third data set was
very-high-dimensional simulated High Resolution Imaging Spectrometer
(HIRIS) data.

The results of the neural network algorithms were compared to two
statistical classifiers: 1) the minimum Euclidean distance classifier (MD) and

2) the maximum likelihood method for Gaussian data {IML).

4.1 Experimentswith Colorado Dat a

Thefirst dataset consisted of 4 data sources:

1) Landsat MSSdata (4 data channels)

2) Elevation data (in 10 m contour intervals, 1 data channel)

3) Slope data (0-90 degrees in 1 degree increments, 1 data channel)

4) Aspect data (1-180 degrees in 1 degree increments, 1 data channel)

Each channel comprised an image o 135 rows and 131 columns; all channels

were co-registered.

The area used for classification was a mountainous area in Colorado, part
of a larger region previously analyzed by Hoffer et a. (1975, 1979). The area
has 10 ground-cover classes which are listed in Table 1. One class is water;
the others are forest types. It was very difficult to distinguish among the
forest types using the Landsat MBS data alone since the forest classes showed
very similar spectral responses. With the help of elevation, slope and aspect
data, they could be better distinguished.

Reference data were compiled for the area by comparing a cartographic

map to a color composite of the Landsat data and also to a line priinter output
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of each Landsat channel. By this method 2019 reference points (11.4% of the
area) were selected comprising two or more homogeneous fields in the imagery
for each class. Two experiments were conducted with this data set. In the
initial experiment, the largest field for each class was selected as a training
field and the other fields were used for testing the classifiers. Overall 1188
pixels were used for training and 831 pixels for testing the classifiers. This
was the same data used in (Benediktsson et al. 1990b) for conventional

backpropagation.

4.1.1 Resultsof the First Experiment on Colorado Data

The results of the classifications are shown in Tables 2.a (training) and
2b (test), where OA represents overall accuracy (weighted by the number of
pixelsin each class) and AVE means average (over the classes) accuracy. (The
ML method was not applicable, because the data were not truly Gaussian and
a few of the covariance matrices were singular.) The results for the MD
method are clearly unacceptable since the method gave only 43.27% overall

accuracy for training data and 22.26% overall accuracy for test data.

The two neural network approaches, the one-layer CGNN-1 and the
two-layer CGNN-2, were trained with Gray-coded input vectors rather than
binary input vectors, as discussed in Section 3. Since the data are of relatively
low dimensionality, it was necessary to expand the dimensionality and use
Gray-coded inputs rather than continuous-valued inputs. Experimental
results verified this (results using continuous-valued inputs were about 10%
lower in overall accuracy than the results using Gray-coded inputs). Since five

of the seven data channels take values in the range from 0 to 255, each data
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channel was represented by 8 bits and therefore 8 input neurons. The total
:number of inputs was 78 t1=757 (one extra input is always active and is
used tO compute the biases (Rumelhart et al. 1986) of the neurons in the
succeeding layers). Since the number of information classes was 10, the
number of output neurons was selected as 10. The training of the neural
networks was considered tO have converged if the norm of the gradient of the

error at the outputs was less than 0.0001.

The training procedure for the CGNN-1 network did not converge but
found a minimum at 319 iterations. The highest overall accuracy (94.87%)
and the highest average accuracy (92.49%) for training data were achieved
then. However, the best overall accuracy for test data was reached at 100
iterations (55.11%). A major problem with the CGNN-1 and other neural
networks is deciding when tO stop the training procedure. If a neural network
isovertrained it will not necessarily give the best accuracies for test data. The
reason is that the network gets too specific to the training data and does not
generalize as well. The 319 iterations required to train the CGNN-1 took 547
CPU sec.; the classification of the data took only 10 sec.

The CGNN-2 was implemented in experiments with two or more layers
(output and hidden layers). Having more than one hidden layer did not
improve the classification performance of this neural network, so only the
results with two layers are discussed here. Two-layer networks with 8, 16, 32,
48 and 64 hidden neurons were tried but the performance o the CGNN-2 in
terms of classification accuracy was not improved by using more than 32
hidden neurons. Therefore, 32 hidden neurons were used in the experiments

reported here.
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The CGNN-2 showed the best performance of all the methods in terms of
overall and average classification accuracies of both training and. test data. As
with the CGNN-1, the training procedure of the CGNN-2 did not converge.
At 676 iterations the error function could not be decreased and the training
procedure stopped. For test data, the CGNN-2 gave very similar accuracies to
the CGNN-1. At 200 iterations the highest overall and average accuracies of
test data were reached, 56.32% and 52.59% respectively. In these experiments
the CGNN-2 had an overtraining problem similar to the CGNN-1; it gave
somewhat less than optimal results for test data classified by the network

giving the most accurate results for training data.

The CGNN-2 was much dower in training than the CGNN-1 because of
the 32 hidden neurons. Training the CGNN-2 for 676 iterations took 4709
sec. However, the classification of the data took 21 sec which is about twice

the time consumed by the CGNN-1.

The results in this experiment illustrate how important it is to select
representative training samples when training a neural network. The CGINN-
2 network gave more than 97% overall accuracy of training data but only just
more than 55% for test data. The training data used here might not be
representative since only one training field was selected for each information
"class. This iimited each information class to a single subclass. The
classification results for the training fields indicate that if representative
training samples are available, the neural networks can do very wdl in
classification of multisource data. Significantly, arriving at a truly
representative set of training samples can be very difficult in practical remote

sensing appiications. In order to demonstrate how wel the classification
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methods could do with a more representative sample, a second experiment on

the Colorado data was conducted, as discussed below.

4.1.2 Results of t he Second Experiment on Colorado Data

To achieve a more representative training sample, uniformly spaced
samples were selected from all fields available for each class. ‘The remaining
samples were used for testing. By this approach, 1008 samples were obtained
for training and 1011 samples for testing (Table 3). By considering the JM
distances (Swain 1978) between the different training fieldsin the MSS data, it
was determined that the Landsat MSS source should be trained on 13 data
clases. The selection d the data classes was done in the following way. If a
fidd from a specific class was more distant than 0.85 in the sense d JM
distance from another field within the same class, the fields were considered to
be from two different data classes (using a definition of JM distance with a
maximum of 1.00). Using this criterion, class 3 (mountane/subalpine meadow)
was split into two data classes, and class 7 (Engelmann spruce) was divided
into 3 data classes. All o the other information classes had only one data
class. In the methods applied below, the classifiers were trained on the

resulting 13 data classes.

The results o this experiment are shown in Tables 4.a (training) and 4b
(test). Since the training data are more representative than in Section 4.1.1,
the test results are significantly better (compare to Table 2.b). However, the
results in both Tables 2 and 4 show that the MD is not an acceptable choice

for classfication of this dataset.
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The neural network methods were trained as in Section 4.11. There
were 57 inputs; 13 output neurons accounted for the 13 data classes. The
input data were Gray-coded and the convergence criterion for the training

procedures was the same as in Section 4.1.1.

The training procedure for the CGNN-1 stopped after 344 iteration when
the error function did not decrease further. The highest overall accuracy of
training data was reached at 344 iterations (82.24%). The highest overall
accuracy of test data was reached at 200 iterations (79.62%). The highest
average accuracy of test data was also achieved at 200 iterations. At 343
iterations the overall accuracy of test data was 79.43% and the average

accuracy was 68.91%.

The two layer CGNN-2 was trained with 8, 16 and 32 hidden neurons.
Using more than two layers did not improve the accuracy of the network.
The classification results with 8 hidden neurons were the best and are shown
in Tables 4.a and 4.b. The training procedure stopped after 933 iterations for
which the highest overall accuracy was reached (87.80%) together with the
highest average accuracy (79.62%). Using the 8 hidden neurons improved the
overall accuracy of training data by over 5% and the average accuracy by
over 6% as compared to the CGNN-1. However, the CGNN-2 training
procedure was more time-consuming than the CGNN-1, as seen in Table 4.a
Although the training results were better for the CGNN-2 with 8 hidden
neurons as compared to the CGNN-1, the test results were worse, both in
terms of overall accuracies and average accuracies. The best accuracy for test
results with the CGNN-2 were achieved at 150 iterations (overall: 79.23%,

average: 65.62%). The results at 933 iterations were lower (overal: 77.65%,

S —
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average: 65.05%).

The results of this experiment show that the neural network, methods can
do much better in classification when representative training samples are used.
The highest overall accutacy for test data with the neural network methods
was reached with the CGNN 1 (79.62%). Adding hidden neurons did not
improve the performance of the networks in terms of classification accuracy
for test data, even though it did improve the accuracy for training data. Using
hidden neurons also dowed the training procedure. As mentioned before, one
d the major problems with the neural network methods is determining how to
prevent them from “overtraining.” The highest accuracy for test data may be

achieved with fewer iterations than the training procedures require.

Up to this point the neural networks have been tested on relatively low-
dimensional data with a limited number o samples. It is interesting to see
how the networks perform on a data set with more features and more samples.
For that purpose an experiment on another multisource data set, the

Anderson River data, was conducted.

4.2 Experimentswith Anderson River Data

The Anderson River data set is a multisource data set made available by
the Canada Centre for Remote Sensing (CCRS) (Goodenough et al. 1987). The
imagery involves a 2.8 km by 2.8 km forestry site in the Anderson River area
o British Columbia, Canada, characterited by rugged topography, with
terrain elevations ranging from 330 to 1100 m above sea level. The forest
cover is primarily coniferous, with Douglas fir predominating up to

approximately 1050 m elevation, and cedar, hemlock and spruce types
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predominating at higher elevations. The Anderson River data set consists of

six data sources;

1) Airborne Multispectral Scanner (ABMSS) with 11 data channels (10

2)

3)

4)

5)

6)

channelsfrom 380 to 1100 nm and 1 channel from 8 to 14 um).

Steep Mode Synthetic Aperture Radar (SAR) with 4 data channels
x—HH, X—H\ x5, 1. —11v)2.

Shallow Mode SAR with 4 data channels (X-HH, X-HV, L-HH, L-HV).

Elevation data, 1 data channel, with elevation in meters = 61.996 +

(7.2266 x pixel value).
Slope data, 1 data channel, with slope in degrees = pixd value.
Aspect data, 1 data channel, with aspect in degrees = 2 x pixel value.

The ABMSS and SAR data were recorded during the week of July 25 to

31, 1978. Each channel comprises an image d 256 lines and 256 columns. All

of the images are co-registered with pixel resolution of 12.5m.

There are 19 information classes in the ground reference map provided by

CCRS. In the experiments reported here, only the 6 predominant classes were

used, as listed in Table 5. Training samples were selected on a uniform grid

as 10% of the total sample size of aclass. Theinformation classes in the data

have been shown to be very hard to separate (Benediktsson et a. 1990¢).

2. X- and L-band synthetic aperture radar imagery (horizontal polarization transmit (HH)
and horizontal/vertical polarization receive (HV)).




19

4.2.1 Resultsof Experiments ON Anderson River Data

The results for each of the classification methods are shown in Tables 6.a
(training) and 6.b (tet).  Although the MD method did much better in
classification of training and test data than for the Colorado data, it did
significantly worse than the multivariate Gaussan ML method. It is
questionable for two reasons whether it is appropriate, from a theoretical
:standpoint, to use a multivariate Gaussian distribution for all of the sources:
first, because the topographic sources were not Gaussian; and second, because
no information was available for modeling the dependencies between all the
data sources. In view of this, the ML method showed surprisingly good
performance in terms of training and test accuracy. Three o the data sources
[ABMSS, SAR sh, SAR st) can be modeled as Gaussian. Those three sources
consist of 19 of the 22 data channels used in the classification. The number of
the Gaussian channels is one o the reasons for the relatively good

performance of the M|, method.

The CGNN-1 and CGNN-2 were originaly trained with Gray-coded
input data. Each of the 22 data channels was coded with eight bits and
therefore 177 (or 8*22 + 1) input neurons were used for each networks. The
data were trained on the six information classes in Table 5 Therefore, six
output neurons were selected. The convergence criterion for the training
procedures was the same as in the Colorado experiments (gradient o the error

function has to be less than 0. 0001 for the training procedure to "converge").
After 295 iterations, the training procedure d the CGNN-1 had reached
minimum error. The highest overall accuracy o training data was achieved

then (OA: 73.50%, Ave 248%.  These results were significantly better than
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the results reached by the statistical methods. The best test result using the
CGNN-1 was also achieved at 295 iterations. the CGNN-1 gave overal

accuracy of 67.88% and average accuracy of 66.48%.

The CGNN-2 was tested extensively with two layers of neurons since
adding more layers did not improve the classification accuracy. In contrast to
the CGNN-1, the CGNN-2 gave better results with continuous-valued inputs
than Gray-coded inputs (Benediktsson et al. 1990c). The results of the
classifications with continuous-valued inputs are reported here. The reason
for this good performance with the continuous-valued inputs is the relatively
high dimensionality of the data (22 input features). The CGNN-2 was
implemented with 23 input neurons and 20 hidden neurons. Adding more
'hidden neurons did not increase the classification accuracy. When the training
procedure stopped (the error function did not decrease further) after 1333
iterations, the overall accuracy of training data had reached 75.13% and the
average accuracy 74.93%. The CGNN-2 outperformed all the other methods
in classification of training data. Also, the CGNN-2 was by far the best
method in classification of test data. The highest accuracies of test data were
reached after 1300 iterations (OA: 72.77%, Ave 73.32%). These accuracies
are excellent for classification o these data (Benediktsson et al. 1990c).
However, after 1300 iterations, the test performance of the CGINN-2 fell of
significantly. The test accuracies decreased until the training procedure was
stopped. At 1333 iterations, the overall accuracy of test data was only 66.54%
and the average accuracy only 65.03%. Obviously the training procedure of
the CGNN-2 had the problem of overtraining. However, the CGNN-1 was

reasonably fast in training the data. Because of binarization o the inputs, the
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CGNN-1was almost as time consuming as CGNN-2.

4.3 Experimentswith Simulated HIRIS Data

This experiment investigated how well the statistical methods and the
neural network models perform as classifiers of very-high-dimensional data
(data that have many features, possibly hundreds of them). In these
experiments, the very-high-dimensional data were simulated High Resolution
Imaging Spectrometer (HIRIS) data. The HIRIS instrument is planned to be a
part of a cluster of scientific instruments forming the Earth Observing System
(EOS). A simulation program called RSSIM (Kerekeset al. 1989) was used to
simulate the data.

The simulated data used in the experiments were Gaussian distributed,

- which isone of the reasons why multivariate statistical approaches were used

for the classification. However, a problem with using conventional
multivariate statistical approaches for classification of high-dimensional data
is that these methods rely on having nonsingular (invertible) class-specific
covariance matrices. As mentioned earlier, when n features are used, the
training samples for each class need to include at least n+| different samples
so that the matrices are nonsingular. Therefore, the covariance matrices may
be singular in high-dimensional cases involving limited training samples.

The RSSIM simulation program generated 201 spectral bands of HIRIS
data based on statistics from Earth surface reflectance measurements taken at
a site in Finney County, Kansas, on May 3, 1977. A tota o 1551
observations were combined from three information classes. winter wheat,

summer fallow, and an "unknown" class. Each class consisted o 675 samples.
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The information classes were assumed to be Gaussian distributed:.

For these experiments, three feature sets (20-, 40- and 60-dimensional)
were extracted from the 201 data channels. Each feature set consisted of data
channels uniformly spaced over the HIRIS spectral range (0.4 um to 24 um)
excluding the water absorption bands. Also, the 20-dimensional data set was
selected as a subset of the 40-dimensional data set and the 40 dimensional

data set was selected as a subset of the 60-dimensional data set.

Experiments were conducted using both statistical classification
algorithms and the neural network methods (CGNN-1 and CGNN-2). To see
how sample size affected the performance of all the algorithms, the
experiments were conducted for 100, 200, 300, 400, 500 and 600 training
samples per class. In each case, the overal sample size was the same for all of

the classes; therefore, the overall accuracy and the average accuracy were

equal.

4.3.1 Experimental Resultswith Simulated HIRIS data.

The data were relatively separable according to the average JM-distance
of al feature sets (Benediktsson et a. 1990c). However, classes 2 (summer
fallow) and 3 (unknown) were not as distinguishable from each other as both

of them were from class 1 (winter wheat).

The results of the experiments with the simulated HIRIS data are shown
in Figures 4 (training), 5 (test) and 6 (time of classification plus training). In
every case, the statistical ML method was superior to the neural network
methods. The ML method, when applicable, was overall the most accurate and

fastest, in classification of the 20- and 40-dimensional data sets. The
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performance of the ML method improved with more features and more
training samples. However, it could not be applied to the 60-dimensional data
because of a singular covariance matrix. As noted earlier, the singularity

problem is a shortcoming of the ML method.

The MD classfier performed poorly. It is very fast but cannot
discriminate the classes adequately. Since it does not use any second order
statistics, it is likely to perform poorly in classification of high-dimensional
data (Lee 1989). Also, it shows saturation, i.e., above a certain number o
dimensions its classification accuracy does not increase. In these experiments,
the MD classification accuracy did not improve for data sets more complex

than the 20-dimensional data.

The CGNN-1 and CGNN-2 were implemented in the experiments with
continuous-valued inputs because the results using continuous-valued inputs
were found to be about 10% better than with Gray-coded inputs
(Benediktsson et a. 1990a, Benediktsson et al. 1990c¢). Again, the high
dimensionality of the data is the reason for the good performance of the

continuous-valued input representation.

Of the neural network methods applied, CGNN-2 showed in most cases
better performance than the CGNN-1 in terms o overall classification
accuracy. The neural network methods performed, in genera, slightly better
as the number of training samples was increased. Their performance aso
improved in terms of overall accuracy when more features were used.
Although the ML-method was superior to the neural networks in most cases,
the results d this experiment show that the neural networks can do amost as

well as the ML method when the training sample size is small. For instance,
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when 200 training samples were used for 40-dimensional data, both neural
networks outperformed the Gaussian ML in terms of overall accuracy of test
data. The reason for this is that the ML method is undertrained (e.g., 400
training samples per class would be more appropriate for 40 features).
However, these results demonstrate the capabilities of the neural networks
when a small representative sample size is used. Also, the neural networks

clearly outperformed the statistical methods when 60 features were used.

The CGNN-1 uses no hidden neurons, and in the experiments with high-
dimensional data it did not do much worse than the CGNN-2. The relatively
good performance of the CGNN-1 is consistent with good separability of the
data. The CGNN-1 is computationally less intensive than the CGNN-2, s0 it
could be considered a reasonable alternative for classification of very-high-

dimensional data.

In defense of the neural network methods, it should be noted that the
Gaussian maximum likelihood method had an unfair advantage since the
simulated data were generated to be Gaussian. Furthermore, neural networks
are relatively easy to implement and do not need any prior information about
the data whereas a suitable statistical model has to be available for the ML
method. Also, neural network methods were shown earlier to have potential
for classifying difficult multitype data sets. However, the neural networks
tend not to have as much ability to generalize as the statistical methods,
which was evident in the test data results. These methods will not compare
favorably with the statistical methods in terms of speed unless implemented
on paralel machines. Currently their computation time required for training

increases substantially with an increased number of training samples;, the
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statistical methods require very little additional time as the training sample

size increases (Figure 6).

5. CONCLUSIONS

The two conjugate-gradient neural network models, CGNN-1 and
CGN'N-2, performed well as pattern recognition methods for multisource
remotely sensed data. Both neural networks performed well in classification of
test data and the two layer CGNN 2 was, as expected, in most cases the better
of the two. However, the neural network models have an overtraining
problem. If their training procedure goes through too many learning cycles,
the neural networks will get too specific in classifying the training data and
give less than optimal results for test data. This overtraining problem is a
shortcoming that has to be considered in the application of neural networks

for classification.

The neural network models have the advantage that they are
distribution-free and therefore no prior knowledge is needed about the
underlying statistical distributions of the data. This is an obvious advantage
over most statistical methods requiring modeling of the data; such modeling is
difficult when there is no prior knowledge of the distribution functions or the

data are non-Gaussian.

However, the neural networks, especiadly the CGNN-2, are
computationally complex. When the sample size was large in the experiments,
the training time could be relatively long. The training of the CGNN-2 is
more efficient than conventional backpropagation and requires fewer

parameter selections. However, as in the conventional backpropagation, the
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number of hidden neurons must be selected empirically. Use of too many
hidden neurons increases the computational complexity and can degrade the

network performance.

The experiments also demonstrated the importance of the representation
of the data when a neural network is used. In the experiments, Gray-coded
inputs gave better accuracy when the data were relatively low-dimensional but
continuous-valued input representation was superior when the data were

very-high-dimensional. Input representation is a subject of ongoing research.

Any trainable classifier needs to be trained using representative training
samples, but the neural networks are more sensitive to this than are the
statistical methods. If the neural networks are trained with representative
training samples, the results showed that a one-layer or a two-layer net can do
even better than statistical methods in multisource classification of test
samples. Although the neural network methods were inferior to the statistical
methods in the classification of the very-high-dimensional simulated HIRIS
data, the HIRIS data were simulated to be Gaussian and, therefore, the neural
network methods did not have much chance o doing better than the
statistical methods. The neural network models are more appropriate when
the data are o multiple types and cannot be modeled by a convenient
multivariate statistical model. However, the results of the experiments with
neural network methods showed that when the number o training samples is
limited and the Gaussian ML classifier is undertrained, the neural networks

can outperform the ML in classification of Gaussian data.
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Table 1l

Training and Test Samples for Information Classes
in the First Experiment on the Colorado Data Set

Class# | Information Class Training Size | Testing Size
1 water 408 195
2 Colorado blue spruce 88 24
3 mountane/subalpine meadow 45 42
4 aspen 75 65
5 Ponderosa pine 105 139
6 Ponderosa pine/Douglas fir 126 188
7 Engelmann spruce 224 70
8 Douglas fir/white fir 32 44
9 Douglas fir/Ponderosa pine/aspen 25 25
10 Douglas fir /white fir/aspen 60 39

Total 1188 831




Table?2

Classfication Results for (a) Training Samplesand

(b) Test Samplesin the First

xperiment on Colorado Data,.

Table 2.a
Method Number of | CPU " Percent Agreement with Reference for Class
Iterations | Time 1 2 3 4 5 8 7 8 9 10 || oA | AVE
| MD 2 473 1000 311 280 00 00 674 594 440 283 | 43.27 | 40.55
CGNN-1 100 186 | 100.0 989 822 987 69.5 849 99.6 90.8 840 983 || 94.11 | 90.67
GNN-1 319 557 | ]000 989 822 987 705 857 1000 989  92.0 100.0 | 94.78 | 92.49
CGNN-2 200 1427 | 100.0 1000 93.3 100.0 857 92.1 100.0 100.0 100.0 100.0 || 97.64 | 97.11
CGNN-2 878 4730 11000 1000 956 1000 886 960 1000 1000 _100.0 100.0 || 98.40 | 98.02
# of pixels 88 45 75 10§ 126 224 32 25 60 || 1188 | 1188 |
Table2b
Method Number of Percent Agreement with Reference for Class
Iterations | 1 2 3 4 5 6 7 8 9 10 OA AVE_J
| MD . 389 1000 00 169 00 89 757 45 40 128 | 2226 | 2599
CGNN-1 100 964 833 405 415 115 438 1000 2.3 120 B87.2 | 55.11 | 51.83
CGNN-1 319 949 833 333 385 115 441 1000 23 180 79.5 || 54.03 | 50.34
CGNN-2 200 990 83.3 452 385 17.3 404 1000 2.3 120 949 | 56.32 | 53.29
CGNN-2 876 979 792 381 415 151 420 1000 23 160 821 | 5535 | 51.42
# o pixels 195 24 42 65 139 188 70 44 25 39 || 831 | 831




Table 3

Training and Test Samples for Information Classes
in the Second Experiment on the Colorado Data Set

]
Class # | Information Class Training Size | Testing Size
1 water 301 302
2 Colorado blue spruce 56 56
3 mountane/subalpine meadow 43 44
4 aspen 70 70
5 Ponder osa pine 157 157
6 Ponder osa pine/Douglas fir 122 122
7 Engelmann spruce 147 147
8 Douglas fir/white fir 38 38
9 Douglas fir/Ponderosa pine/aspen 25 25
10 Douglas fir/white fir/aspen 49 50

Total 1008 1011




Table 4

Classification Resul ts for (a) Training Samples and
(b) Test Samplesin the Second Experiment on Colorado Data.

Table4.b
Method Number of | CPU Percent Agreement with Reference for Class
Iterations | Ti 1 2 3 4 5 8 7 _8 9 10 OA | AVE
| MD 2 415 982 256 371 378 00 735 0.0 400 245 | 40.28 | 37.80
CGNN-1 200 375 | 100.0 857 535 843 6§86 746 100.0 237 58.0 91.8 || 82.24 | 72.82
CGNN-1 343 644 | 1000 857 558 829 61.1 696 1000 283 580 939 | 82.24 | 73.13
CGNN-2 150 292 | 1000 91.1 46.5 87.1 689 770 1000 34.2 80 91.8 | 83.23 | 70.26
CGNN-2 933 1719 | 1000 964 488 957 643 918 1000 605 400 98.0 | 87.70 | 79.55
| # of pixels 301 §6 43 70 187 122 147 38 25 49 1008 | 1008
Table4.b
Method Number of Percent Agreement with Reference for Class
Iterations 1 2 3 4 5 8 7 8 9 10 OA | AVE
| MD 40.1 1000 341 300 325 08 694 00 280 200 | 37.98 | 3549
CGNN-1 200 100.0 857 455 757 548 7486 980 184 600 78.0 | 79.62 | 69.07
CGNN-1 343 100.0 857 477 729 554 730 980 184 800 78.0 | 79.43 | 68.91
CCNN 2 150 100.0 96.4 273 829 611 656 986 283 200 780 | 79.23 | 65.62
CONN 2 933 100.0 87.5 388 771 561 83.1 966 395 200 720 | 77.65 | 65.05
# of pixels 302 56 44 70 157 122 147 38 25 50 1011 | 1011




Table 5

Information Classes, Training and Test Samples
Selected from the Anderson River Data Set.

Class # Size Information Class Trainingj Testing |
1 9715 | Douglas Fir (31-40m) 971 8744

2 5511 | Douglas Fir (21-30m) 551 4960

3 5480 | Douglas Fir T Other Species (31-40m) 548

4 5423 | Douglas Fir + L odgepole Pine (21-30m) 542

5 3173 | Hemlock * Cedar (31-40m) 317

6 12600 | Forest Clearings 1260 . 11340
Total 41902 4189 37713




Table 6

Classification Resultsfor the Anderson River
Data Set: (a) Training Samples, (b) Test Samples.

Table6.a
Method | Number of | CPU Percent Agreement with Reference for Class
iterations | time 1 2 3 4 5 6 OA | AVE
MD 68 | 40.4 89 476 877 423 724 50.51 | 46.55
ML 1095 | 546 318 878 909 814 733 68.23 | 69.92
CGNN-1 295 5129 | 694 452 723 745 877 858 73.50 | 72.45
CGNN-2 1300 10601 | 783 51.9 770 718 858 802 74.17 | 74.93
| CGNN-2 1333 10896 | 784 523 774 72.0 86.4 802 75.13 | 74.43
| # of pixels 971 551 548 542 317 1260 || 4189 | 4189
Table6b
Method Number of Percent Agreement with Reference for Class
iterations 1 2 3 4 5 8 OA | AVE
MD 39.7 89 484 702 48.0 7.7 50.83 | 47.48
ML 50.8 27.7 84.5 819 738 72.0 64.30 | 65.12
CGNN-1 ,295 83.5 38.2 68.7 68.1 79.8 80.7 67.88 66.48
CGNN-2 1300 70.9 49.1 76.9 714 85.5 80.1 72.77 | 72.32
CGNN-2 1333, 65.7 28.2 658 69.9 81.6 79.1 86.54 | 65.03
# of pixels 8744 4960 4932 4881 2856 11340 | 37713 | 37713
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