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Abstract 

A new approach to optimizing computer-generated 
holograms (CGH's) is discussed. The approach can be 
summarized most generally as hierarchically designing a 
number of holograms to add up coherently to a single 
desired reconstruction. In the case of binary holograms, 
this approach results in the interlacing (IT) and the 
iterative interlacing (IIT) techniques. In the IT technique, a 
number of subholograms are designed and interlaced 
together to generate the total binary hologram. The first 
sttbhologram is designed to reconstruct the desired image. 
The succeeding subholograms are designed to correct the 
remaining error image. In the IIT technique, the remaining 
error image after the last subhologram is circulated back to 
the first subhologram, and the process is continued a 
number of sweeps until convergence. The IT and the IIT 
techniques can be used together with most CGH synthesis 
algorithms, and result in substantial reduction in 
reconstruction error as well as increased speed of 
convergence in the case of iterative algorithms. 



I. Introduction 

Since its invention by Brown and Lohmann in the late 
1960's [I], compu ter-generated holograms (CGH's) have 
found diverse applications in many areas such as wave- 
shaping, optical computing and information processing, 
optical pattern recognition, interferometry, synthesis of 
novel optical elements, laser scanning, laser machining, 
hybrid diffractive-refractive optical elements and 3-D 
image display. CGH' s offer advantages over conventional 
bulk optical elements such as compactness, light-weight, low 
replication cost, ability to modulate complicated wavefronts, 
and physical availability at any wavelength. 

A major difficulty in implementing CGH's is the present 
status of technology for spatial amplitude and phase 
modulation of wavefronts. Increasingly, lithographic 
techniques developed for solid state semiconductor 
technology, such as photolithography and electron-beam 
lithography, is being used for the generation of CGH's [2],[3]. 
Spatial light modulators (SLM's) are also used for real-time 
processing even though they have currently low resolution 
and low light efficiency [4]. In all such technologies, 
quantization of both the amplitude and the phase of the 
desired wavefront is a necessity. Often, binary quantization 
is used, for example, (0,l) quantization indicating 
transmittance or no transmittance, and ( - 1 ,  quantization 
indicating phase modulation as 0 or . ~ c  radians. Phase 
quantization is usually preferable over amplitude 
quantization since it leads to higher diffraction efficiency. 
Several levels of masking with technologies such as e-beam 
lithography and reactive-ion etching make four- and eight- 
level phase quantization possible in practice at visible 
wavelengths [5]. 

Quantization is a nonlinear process. Hence, nonlinear 
techniques of optimization have been developed for the 



Quantization is a nonlinear process. Hence, nonlinear 
techniques of optimization have been developed for the 
synthesis of CGH's. Some of these techniques are projection 
onto constraint sets (POCS) [6],[7],[8],[9], error diffusion [lo], 
and direct binary search (DBS) [ l l ] .  

In this article, we discuss a new approach to the 
nonlinear optimization of CGH synthesis, based on 
interlacing of subholograms to generate a total hologram. 
The techniques developed are quite effective in reducing 
reconstruction error because of the nonlinear nature of 
quantization. The interlacing technique (IT) generates a 
number of subholograms, with each subsequent 
subhologram being designed to reduce the reconstruction 
error obtained previously. The iterative interlacing 
technique (IIT) involves designing all the subholograms 
successively, and then repeating the process a number of 
times until the reconstruction error is not reduced further. 

The experimental implementation of both the IT and the 
IIT techniques are first discussed in a symmetric 
configuration which allows both the holographic wavefront 
and the image wavefront to be real. In this configuration, 
Fourier transform reduces to the cosine transform (CT). In 
addition, the POCS algorithm is used. The resulting 
algorithm will be referred to as the POCS-CT algorithm. With 
this algorithm, it is especially easy to achieve the coherent 
addition of multiple wavefronts generated by the set of 
subholograms according to the IT and the IIT techniques. 

The article consists of 8 sections. Section I1 discusses the 
POCS-CT algorithm. In section 111, the IT technique of CGH 
synthesis is introduced. Section IV covers the experimental 
results with the IT technique. Section V introduces the IIT 
technique of CGH synthesis. Section VI describes 
experimental results with the IIT technique. Section VII is a 
discussion of why the IIT technique is quite effective in 
reducing reconstruction error. Section VIII is conclusions. 



11. The POCS-CT Algorithm 

In the POCS-CT algorithm, both the hologram and the 
image wavefronts are treated as real (or all in phase except 
for n: phase shift) by using Hermitian symmetry. 

In Fourier transform holography, the front and the 
back focal planes of a lens are used as the hologram and the 
image planes. Then, the transformation between the two 
planes is essentially the Fourier transform, which is 
approximated in numerical computations by the discrete 
Fourier transform (DFT). Hence, we will describe the POCS- 
CT algorithm below in terms of discrete-space signals and 
discrete-space transforms. 

For the sake of simplicity, the sampled image wavefront 
x(*,') at the focal plane will be treated as real and symmetric: 

where N, and N2 are .the number of sampling points used 
along the x- and y-directions. The sampling distance is 
assumed to be 1. Eq. (1) implicitly assumes that x(nl,n2) is 
periodic in both directions in addition to being symmetric: 

Then, Eq. (1) is actually the same as 

Eq. (3) shows that the signal is symmetric with respect 
to the origin. With such a signal, the 2-D DFT reduces to the 
2-D discrete symmetric cosine transform (DSCT) of the 
second kind [12]: 



w h e r e  

1/2 k2=0/ N2/2 
v0c2)= otherwise 

The inverse transform is: 

It is straightforward to show that X(n,,n2) also satisfies 
Eqs. (1) through (3). 

The POCS algorithm is incorporated by dividing the 
image plane into four quadrants, as shown in Fig. 1. Two 
quadrants are allowed to contain the desired image and its 
mirror image through the origin, and the other two 
quadrants are allowed to be a random image and the 
corresponding mirror image through the origin, 
respectively. The rest of the procedure for the POCS-CT 
algorithm for the synthesis of a binary hologram is as 
follows: 

A. X(n,,n,) is computed according to eq. (4). 

B. X(nl,n2) is binarized according to 

1 X(n1 ,n2)10 
,nn)={(, otherwise 

C. The 2-D inverse DSCT of X1(n1,n,) is computed according 
to eq. (6) to give xt(n,,n,). 



D. The reconstruction error is computed using the 
minimum mean-square error formula [ l l ]  rederived in the 
Appendix for convenience: 

where h is a scaling parameter as discussed in Appendix A, 
and the summation is over the image quadrant (or the 
image region if the desired image occupies a smaller region 
than a quadrant). Eq. (8) is what is used in the rest of the 
paper to compare various results. 

E. The image quadrants (quadrants 1 and 3 in Fig. 1) are set 
equal to the desired image. The remaining two quadrants 
are allowed to retain their current values. This results in an 
updated sequence x"(n, ,n,) : 

- x(nl ,n2) for nl , n 2 ~  I 
x(n ln2)={ x1(n1, n2) ofherwise 

F. Steps A through E are repeated until convergence or 
until an error criterion is met. 

The convergence of the POCS-CT algorithm can be 
proven in the same way as the convergence of the iterated 
phase methods[8]. The speed of convergence of the method 
has been tested in the generation of the CGH for a 128x128 
edge-enhanced binary cat-brain image shown in Fig. 2. The 
convergence was assumed to be obtained when the absolute 
difference Ai between the successive reconstructions x i - 1  

and xi ,  



is zero. The experimental results are shown in Table 1. It is 
observed that convergence is obtained rapidly within 9 
iterations. 

The POCS-CT algorithm can be compared to the POCS 
algorithm in which the constraint in the image domain is to 
restrict the image amplitude to a desired value and to allow 
the phase to float [7]. This method will be referred to as 
Hirsch method in the recainder of the paper. Such a 
comparison is shown in Table 2 with the same cat-brain 
image, in which the POCS-CT reconstruction error is 
observed to be larger than the POCS algorithm with random 
phase. This is not surprising since random phase allows an 
extra degree of freedom. The POCS-CT algorithm can 
actually be extended by allowing the phase to be random in 
the desired image domain while still forcing the total image 
to have Hermitian symmetry [13]. Then, the hologram is 
still real [13]. The main reason why random phase reduces 
reconstruction error is that the dynamic range of 
amplitude variations in the hologram domain are 
significantly reduced. 



111. The Interlacing Technique 

The major source of reconstruction error from CGH's 
is the quantization of amplitude and phase during the 
synthesis of the CGH. Consider the possibility of having 
multiple holograms designed to add up coherently to a 
single desired image. Each hologram can be coded coarsely, 
but all the holograms can be added linearly in the end so 
that the total number of quantization levels equals the 
desired number of quantization levels, whether they are 
for amplitude or phase. 

We will consider the following strategy: the first 
hologram is designed to reconstruct the desired image. It 
results in an actual reconstructed image xrec l (n 1 ,n2,). The 
error image is 

The second hologram is designed to reconstruct 
-e I ( n  i ,nt) /hi .  Since the optical system is linear, the sum of 

the two reconstructions would yield null error if the second 
hologram were perfect and the normalization factor is hl. 
This being not the case, the total reconstruction yields an 
error image e2(ni,n2) with a normalization factor of hn for  
both subholograms. A third hologram is designed to 
reconstruct -e2(n i ,n 2)/h2 yielding an error image e d n l  ,n2). 
This process is continued, say, for M holograms. 

In the rest of the paper, we will consider binary 
quantization only. Each hologram point is 0 or 1. This means 
it is not possible to add up M holograms for M>1 since each 
hologram has to be at least binary-coded. Hence, the only 
possibility to superpose a number of holograms is to 



subholograms are designed as discussed above and 
interlaced together to generate the total hologram. 

It is observed that initially 1/M of the total number of 
hologram points are utilized to reconstruct the desired 
image, resulting in relatively large reconstruction error. As 
subsequent subholograms are successively included to 
reduce the reconstruction error, the final result is  a mean- 
square reconstruction error which is hopefully less than 
the mean-sqare reconstruction error if the total hologram 
was allocated as a whole without subdivisions. In the 
following sections, the IT technique is indeed shown to yield 
better performance. 

A major design consideration is the interlacing 
geometry. A geomety with two subholograms is shown in 
Fig. 3. The first subhologram consists of the odd-indexed 
rows, and the second subhologram consists of the even- 
indexed rows. This can be generalized to M subholograms. 
Then, each subhologram contains every Mth row of the total 
hologram. Obviously, the rows replaced by columns can be 
considered the same geometry. 

A second interlacing geometry can be considered to be 
the checkerboard pattern shown in Fig. 4. for M=2. The 
experimental results with these two geometries are 
discussed in the next section. A large number of other 
geometries are possible, and it is an important research 
topic to determine which geometry is optimal. 



IV. Experiments with the Interlacing Technique 

The experiments were mostly performed with the first 
geometry discussed above. The desired image was the cat- 
brain image of Fig. 2. The number M of subholograms was 
chosen equal to a power of 2. Thus, M equals 2k, k an integer. 

Each subhologram has to be designed by a particular 
CGH synthesis technique. In the first set of experiments to 
be reported in this section, the POCS-CT algorithm was 
chosen for this purpose. 

Experiments were conducted for k=O,l,..., 7. The k=O 
case corresponds to no interlacing. The results for the first 
geometry discussed in the last section are shown in Table 3. 
In this and all succeeding tables, the MSRE results are 
normalized with respect to the k=O POCS-CT MSRE. Based on 
the results of Table 3, the following observations can be 
made: 

i) All of the interlacing cases (k>O) yield less MSRE than the 
noninterlacing case (k=O). 

ii) The MSRE decreased until W ,  and then increased again. 
This indicates that there is an optimal number of 
subholograms, and a larger subdivision of the total 
hologram results in suboptimal performance. 

An example of the binary holograms generated with a 
postscript laser printer is shown in Fig. 5. The optical 
reconstructions for k=O and k=4 after photoreduction of the 
printer outputs are shown in Figs. 6 and 7. The visual 
observations led to the following additional conclusions: 



iii) The interlacing technique causes more of the 
reconstruction error to be "pushed" to the non-image 
quadrants.  

iv) As a result of reduced error, the overall contrast of the 
reconstructed image is improved. 

Experiments were also camed out with the second 
geometry with two subholograms. The results did not yield 
much improvement over the POCS-CT method. This can be 
explained as follows [14]: 

For a single hologram (k=O), the reconstructed image is 
given by Eq. (6) without any quantization. For the IT 
technique with the second geometry, the first subhologram 
is used for reconstructing the desired image and has 

X(nl Inn) Both (nl ,n2) are even or odd 
~ ' ( n l  ,na)={O otherwise 

(12) 

or equivalently 

then the reconstructed image without any quantization will 
b e  

Thus, the reconstructed image is the sum of the desired 
image and the same image shifted one-half period in both x- 
and y-directions. This significantly 'distorts the 
reconstruction since the two images overlap each other. 

For the second subhologram, which is used to 
reconstruct the error image, the situation is the same. The 
distortions reduce the effectiveness of error reduction by 



interlacing. This example shows the importance of sampling 
geometry.  

It is interesting to observe that the same problem also 
exists in the first geometry. However, the shift of the image 
corresponding to the second term in Eq. (14) is in the x- 
direction or the y-direction only. This means the shifted 
image is in the region where the random image exists, and 
the random image also moves to the region of the desired 
image and may cause problems. This is why it was 
important initially to zero the random image regions. 



V. The Iterative Interlacing Technique 

Let er(ni,nz) be the final error image with the IT 
technique together with the final normalization factor ht. In 
the iterative interlacing technique (IIT), this error is 
circulated back to .the first subhologram to reduce the MSRE 
further (actually the ordering in which the subholograms 
are reactivated can be chosen in many ways). This is done 
by letting the desired image for the first subhologram to 
generate be 

The new error image is 

The second subhologram is designed to reconstruct 
x recz(n i ,n 2)  -e i'(n i ,n2) pi' , where hi' is the normalization 
factor after the first subhologram during the second sweep. 
It yields a new error image ezl(nl,nn). A third subhologram 

is designed to reconstruct xrec3(ni,n2)-ez1(ni,n2)/h2', where 
I 

h2 is the normalization factor after the second subhologram 
during the second sweep. This process is continued for all 
the subholograms. One such run through all the 
subholograms is called a sweep. A number of sweeps is 
carried out until convergence or until some error criterion 
is met. 



VI. Experiments with the Iterative Interlacing 
Technique 

The experimental results with the IIT technique for the 
cat-brain image when the subholograms were designed by 
the POCS-CT algorithm are shown in Table 4. These results 
lead to the following conclusions: 

i) In all cases considered, the IIT results give considerable 
further gains over the IT results alone. 

ii) The MSRE decreased significantly in the first 3 or 4 
sweeps and then leveled off. 

iii) The minimum MSRE occurred at a larger number of 
subholograms (k=5) as compared to the IT technique. For 
larger k, the MSRE remains stable. 

iv) In Table 4, 8 sweeps are shown since more number of 
sweeps led to very little reduction in the MSRE. There were 
no further reductions after 15 sweeps. 

Both the IT and the IIT techniques can be used with 
other CGH synthesis algorithms for the subholograms. We 
experimented with Hirsch's method and the DBS algorithm 
together with the IIT method. 

The results with Hirsch's method are shown in Table 5. 
As expected, the MSRE is considerably lower than with the 
POCS-CT algorithm. Otherwise, the overall trends are very 
similar to the results in Table 4, but the gains obtained with 
the IIT technique are even more pronounced: 45% further 
reduction in the MSRE is obtained after 5 sweeps. 



The results with the DBS algorithm are shown in Table 
6, in comparison to the results with the POCS-CT algorithm. . 
A major concern with the DBS algorithm is the computation 
time, which grows very fast with the hologram size. Because 
of this, the size of the cat-brain image was reduced to 
64x64 by undersampling. It is observed that the IIT 
method reduces the MSRE by a small margin over the DBS 
method alone after 3-4 sweeps. More interestingly, the 
computation time is reduced to about 1/5 of the DBS 
method alone. We also observe that k=l case has the 
smallest MSRE while k=2 case has the smallest computation 
time. It can be concluded that the DBS algorithm can be 
considerably improved, especially in terms of computation 
time by proper choice of the number of subholograms. 



VII. Discussion 

We believe that the main reason for the superior 
performance of the IIT technique together with a particular 
CGH synthesis algorithm over the performance of the CGH 
synthesis algorithm by itself is the ability of the IIT 
technique to reach a deeper minimum of the MSRE function, 
and possibly also at a faster pace. 

The IIT technique resembles simulated annealing to 
reach the global minimum of a nonlinear energy or error 
function [15]. In simulated annealing, the temperature 
parameter T is initially kept high, allowing wrong moves on 
a stochastic basis. This serves the purpose of avoiding 
getting trapped in a local minimum. As iterations increase, T 
is reduced, and more and more correct moves reducing the 
value of the energy function is allowed. Similarly, in the IIT 
technique, initially one subhologram is active for 
optimization, leading to a suboptimal minimization of the 
MSRE. As more and more subholograms are activated, more 
optimal minimization of .the MSRE is obtained, but the 
procedure is still suboptimal at each time point since only 
one subhologram is active. As the sweeps increase, 
minimization of the MSRE becomes more optimal since each 
subhologram is contributing closer to its best performance. 
The IIT technique appears to reach a deep minimum 
because of gradual increase in optimality as described 
above. Whether this minimum is the global minimum or 
close to the global minimum requires further research to 
determine. It is known that deep minima obtained by the 
DBS algorithm are very close to the global minimum [ll]. 
Since the IIT results are comparable to the DBS results, the 
minima obtained by the IIT technique are indeed expected 
to be close to the global minimum. 



In terms of performance and granularity of the 
hologram, the IIT results together with the synthesis 
techniques discussed in the previous sections resemble the 
DBS results. The IIT algorithm also resembles the error 
diffusion algorithm since hologram apertures are 
successively and iteratively designed by attempting to 
reduce error. However, the error considered is in the image 
domain rather than the hologram domain, and error 
reduction is carried out by a whole subhologram rather 
than being cell-oriented. 

The IIT algorithm also resembles the cyclic coordinate 
descent (CCD) algorithm in optimization theory [16]. 
However, CCD involves freezing all variables except one at 
each step of optimization, and is known to be very slow. In 
contrast, IIT uses a subhologram with many variables to be 
optimized, and is experimentally observed to converge 
considerably faster than the case when all the variables are 
simultaneously being optimized. This has been observed to 
be especially striking in the case of the DBS algorithm. 

The discussion above implies that the approach of 
dividing resources in subgroups and allocating each 
subgroup in the same way as the subholograms are 
allocated should work well in a number of nonlinear 
optimization problems. We observed this to be the case in 
transform image coding [17] and neural networks [18]. 



VIII. Conclusions 

The IT and the IIT technique together with a particular 
CGH synthesis algorithm appears to be very effective in 
reducing the MSRE over what is achievable with the CGH 
synthesis algorithm alone, in addition to speeding up the 
convergence time. 

The MSRE was reduced by the IIT technique together 
with Hirsch's method by about 45% over Hirsch's method 
alone, and by about 27% wi,th the POCS-CT method over the 
POCS-CT method alone. When the IIT technique was used 
together with the DBS algorithm, the improvement in the 
MSRE was small since the DBS algorithm is very efficient, 
but the reduction in computation time was about 5 times. 
This feature is expected to be especially useful with large 
hologram sizes. 

The IIT technique is believed to be a general strategy 
valid in nonlinear optimization problems. Its ability to reach 
deep minimum and its fast convergence speed makes it a 
potential approach for solving a number of large-scale 
problems involving nonlinear optimization. 



Appendix 

The mean square error (MSE) is defined between the 
original image x and the reconstructed image x' as 

where h is a constant scaling factor. h for which the MSRE is 
minimized is found by taking the partial derivative of Eq. 
(A.l) with respect to h and setting this derivative equal to 
zero: 
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Table 1. Convergence of the POCS-CT algorithm. 



Table 2. Comparison of the POCS algorithms. 

MSRE 

POCS Algorithms 

POCS 
(Hirsch) 

0.556 

POCS-CT 

1 .OOO 



Table 3. Mean-Square Reconstruction Error 
with the Interlacing Technique. 

MSRE 

. 

k=O 

1.000 

k=3 

0.909 

k=l 

0.909 

k=6 

0.929 

k=2 

0.907 

k=7 

0.936 

k=4 

0.918 

k=5 

0.927 



Table 4. Mean-Square Reconstruction Error with the IIT 
Technique as a Function of the Number of Sweeps 
and the Number of Subholograms When the 
Subholograms Are Designed by the POCS-CT 
Algorithm (Image Size is 256x256). 

MSRE 

k=O k=l 

0.909 

0.845 

0.812 

0.793 

0.784 

0.783 

0.777 

0.773 

1 

1 

2 

3 

4 

5 

6 

7 

8 

1.000 

k=2 

0.907 

0.802 

0.770 

0.758 

0.756 

0.748 

0.747 

0.745 

k=3 

0.909 

0.780 

0.745 

0.752 

0.745 

0.742 

0.740 

0.739 

k=4 

0.918 

0.805 

0.768 

0.753 

0.746 

0.742 

0.739 

0.738 

k=6 

0.929 

0.809 

0.768 

0.751 

0.744 

0.740 

0.737 

0.735 

k=5 

0.927 

0.807 

0.767 

0.751 

0.743 

0.739 

0.736 

0.735 

k=7 

0.936 

0.809 

0.768 

0.751 

0.744 

0.739 

0.737 

0.736 



Table 5. Mean-Square Reconstruction Error with the IIT 
Technique as a Function of the Number of Sweeps 
and the Number of Subholograms When the 
Subholograms Are Designed by Hinch's Method 
(Image Size is 256x256). 

MSRE 

k=O k=2 k=l  k=4 

0.508 

0.369 ------ 
0.331 

0.318 

0.313 

0.310 

0.308 

0.307 

k=3 k=6 

0.528 

0.376 

0.331 

0.31 5 

0.309 

0.306 

0.304 

0.302 

k=5 

0.521 

0.375 

0.332 

0.316 

0.310 

0.307 

0.305 

0.304 

0.496 

0.369 

0.334 

0.321 

0.315 

0.313 

0.311 

0.310 

k=7 

0.537 

0.382 

0.335 

0.319 

0.31 1 

0.307 

0.305 

0.304 

1 0.556 0.494 0.495 

2 0.405 0.375 

3 

4 

5 

6 

7 

8 

0.367 

0.349 

0.341 

0.336 

0.333 

0.332 

0.343 

0.332 

0.328 

0.324 

0.323 

0.321 



Table 6. Mean-Square Reconstruction Error and Computation 
Time with the IIT Technique as a Function of the Number 
of Sweeps, the number of Subholograms, and the Compu- 
tation Time When the Subholograms Are Designed by the 
DBS algorithm or the POCS-CT algorithm (Image Size is 
64x64). 

Note: CPU time valid up to  0.1 s 

MSRE and Computation Time (Sec.) 

1 

6 

8 

MSRE 

cPU(s) 

MSRE 

:PU(s) 

MSRE 

ZPU(s) 

MSRE 

CPU(s) 

MSRE 

3Y.J (s) 

MSRE 

ZPU(s) 

MSRE 

CPU(s) 

MSRE 

CPU(s) 

k=3 k= 1 k=2 

POCS- 
CT 

0.899 

0.15 

0.756 

0.17 

0.709 

0.19 

POCS- 
CT 

0.859 

0.13 

0.786 

0.13 

0.742 

0.14 

1.000 

0.06 

0.1 5 

0.731 

0.1 5 

0.730 

0.1 9 

0.726 

0.19 

0.726 

0.20 

POCS- 
CT 

0.877 

0.06 

0.760 

0.10 

0.725 

0.11 

DBS 

0.840 

5.14 

0.714 

6.03 

0.665 

6.64 

DBS 

0.732 

1.71 

0.674 

3.27 

0.642 

4.55 

0.644 

27.34 

---- 

DBS 

0.805 

1.89 

0.683 

2.69 

0.651 

3.25 

5.44 

0.623 

6.40 

0.619 

8.63 

0.618 

10.04 

0.61 5 

12.29 

0.1 1 

0.700 

0.1 1 

0.695 

0.1 2 

0.690 

0.14 

0.687 

0.1 5 

4.33 

0.635 

5.22 

0.630 

5.96 

0.627 

6.75 

0.625 

9.07 

0.20 

0.687 

0.20 

0.683 

0.23 

0.676 

0.24 

0.674 

0.27 

7.22 

0.637 

7.76 

0.633 

8.26 

0.632 

11.32 

0.631 

12.05 



Fig. l .  Hermitian Symmetry Used in the 
POCS-CT Algorithm. 
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Random 
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Fig. 2. The Edge-Enhanced Cat Brain Cross- 
Section Image of Size 128x128. 



Fig. 3. The Interlacing Geometry Used in 
the IT and the IIT Techniques. 
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Fig. 4. Another Interlacing Geometry Used in 
the IT and the IIT Techniques. 



Fig. 5. A Binary Hologram Generated by 
the Interlacing Technique. 



Fig. 6. The Optical Reconstruction of the 
Cat Brain Image When the Hologram 

is Designed by the POCS-CT Algorithm. 



Fig. 7. The Optical Reconstruction of the Cat 
Brain Image When the Hologram is 
Designed by the IT Technique together 

with the POCS-CT Algorithm and the 
Number of Subholograms is 8. 
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