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ABSTRACT 

Cisse, Fatimata. Ph.D., Purdue University, December 2014. African Starchy Foods, 

Gastric Emptying, and Starch Digestion in Malian Stunted Children. Major Professor: 

Bruce R. Hamaker. 

 

 

Starch serves as the main energy source in cereal and tuber-rich diets, and its 

glycemic response profile has been associated with health-related conditions. Sorghum 

and millet are known to have relatively low starch digestibility, a potentially desirable 

property for controlling blood glucose response and providing sustained energy. Gastric 

emptying rates of traditional sorghum and millet-based African foods of the Sahelian 

region (couscous, thick and thin porridges made from millet and/or sorghum) were 

compared to those of non-traditional “modern” foods that are mostly consumed in urban 

areas using a non-invasive 13C-labelled octanoic acid breath test in healthy volunteers. 

The obtained results showed that traditional sorghum and millet-based solid African 

foods had markedly slower in gastric emptying rate compared to rice, potatoes, and pasta 

as measured by lag phase and half-emptying time (P < 0.0001). Factors that regulate 

gastric emptying of an ingested food are of interest since their understanding may help in 

controlling overall energy intake. In a second study, Polycose® solution (rapidly 

absorbed glucose) and slow digesting, cooked and washed alginate-based waxy starch-

entrapped microspheres (of variable digestion rates) were consumed as a preload, 

followed 20 minutes later by a 13C-labeled non-nutritive paste mixture. A comparatively 

fast emptying rate was observed when the paste was consumed alone whereas the slowest 

digesting starch-entrapped microspheres preload presented the slowest paste emptying 

rate as measured by the lag phase and the half emptying time parameters of the gastric 

emptying test (P < 0.05). 
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Starch is also a dominant source of dietary energy in complimentary feeding of 

growing toddlers. After weaning, dietary glucose is generated mostly from starch which 

is the main component of most complementary foods. A new, non-invasive modified 13C-

breath test was used to assess pancreatic α-amylase activity, and the ability to digest 

sorghum porridge starch in healthy and moderately stunted toddlers from 18 – 30 months 

of age in Bamako, Mali. α-amylase insufficiency was present in both Malian healthy and 

stunted toddlers. However, children with α-amylase insufficiency digested, absorbed, and 

oxidized the released glucose from normal sorghum porridge starch at least as well as, 

and in some cases even better, than the healthy group, indicating that the α-glucosidases 

compensate for the α-amylase insufficiency, and particularly well in the stunted group. A 

thicker porridge and its α-amylase thinned counterpart were also digested well by the 

stunted group.  

Overall, this work shows value of traditional African sorghum and millet foods 

and could lead to increased demand for local foods and, thus, provide better markets for 

smallholder farmers. The clinical study conducted on toddlers suggests that thick energy 

dense porridges supply digestible carbohydrates to stunted children, and that pending 

further study could be considered for supplemental feeding programs.   
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INTRODUCTION 

African traditional cereal crops and tubers represent an important source of 

dietary carbohydrates, proteins, fibers, vitamins and minerals. They are the major energy 

source to the vast majority of African people. These crops and tubers are processed to a 

large variety of foods and beverages with improved texture, taste, aroma, nutritional and 

microbial qualities, and digestibility using some basic techniques such as fermentation. 

They are important for the low income population as they ensure food security in those 

regions. Crops such as sorghum and millets can grow in difficult semi-arid climatic 

conditions and still give fairly high yields. However, in the last ten years, sorghum and 

millet in particular have seen only a very slow increase in production compared to rice 

and maize.  

Factors such as rapid and uncontrolled urbanization, and improved economic 

status, have prompted changes in the dietary habits of many Africans with a substitution 

of traditional foods for imported or Western foods. This dietary trend has resulted in 

reduced consumption and demand for sorghum and millet, and a concomitant increased 

rice and wheat consumption, and has been noted to be a possible factor in the increasing 

prevalence of obesity and chronic diseases (diabetes and cardiovascular disease).The risk 

factors for these diseases are more common in urban than rural areas.  

Nonetheless, sorghum and millet as well as the other minor grains (fonio, teff, 

amaranth, and quinoa) are not only staple foods for African people, but they also present 

some useful quality characteristics. They are rich in phytochemicals which have 

antioxidant properties.  

An improved understanding of the health-associated attributes of traditional 

African foods could serve to minimize this nutrition transition in Africa.  Furthermore, 

identification of potential advantages or attributes of traditional African diets could lead



2 

 

2
 

to better promotion of local foods leading to better markets for smallholder farmers 

through increased productivity, demand, and utilization.  

Digestible carbohydrates, which are mainly from starchy foods, are the main 

source of dietary energy in growing children after weaning; the period when non-breast 

milk food is introduced to the child until the stoppage of breastfeeding. Weaning foods in 

Sahelian West Africa are cereal-based and starch is their major component. Glucose is 

needed for a developing weaned child, not only as the principal dietary energy source, but 

also for brain development. After weaning, glucose mainly comes from starch in 

complementary foods. Young infants lack secreted α-amylase until weaning and after this 

period malnourished toddlers have been shown to continue to have reduced α-amylase 

activity.  

Chapter 1 of this dissertation is a recapitulation of the pertinent information in the 

field of traditional African diets, and physiological properties of their major component – 

starch, weaning foods in West Sahelian Africa, starch digestion, and problems associated 

with malnutrition in children. 

Sorghum starch has been known to have slow digestible property, a potentially 

desirable property for controlling blood glucose response after meal consumption and to 

provide energy to the body in an extended manner. This important property may make 

sorghum beneficial to diabetics and moreover, a source of sustained energy. Blood 

glucose response has been related to the way starchy food empties from the stomach, 

called gastric emptying, as slow emptying rates are associated with lower glucose 

responses and fast emptying with higher responses. Chapter 2 of this dissertation 

illustrates such a study on the implication of traditional African foods on gastric 

emptying and satiety. An interesting small survey has been conducted to gather the 

impressions subjects have about traditional African foods and so called “imported” or 

modern, non-traditional foods (rice, potatoes and pasta). Comparison has been made 

between their gastric emptying rates accompanied with assessment of satiety parameters.    

Slowly digested and absorbed carbohydrates have been shown to reduce the rise 

of postprandial glucose response, as well as influence the gastric emptying rate of foods. 

The presence of nutrients in the distal part of small intestine is a key factor in the 
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stimulation of hormones from enteroendocrine L-cells which in turn regulate the motility 

of the upper gastrointestinal tract. In the past, infusion of different carbohydrate solutions 

(glucose, hydrolyzed starch) into the ileal part of small intestine showed notable 

reduction in gastric emptying time. Therefore, factors that regulate gastric emptying of an 

ingested food is of interest since their understanding may help in controlling overall 

energy intake. Chapter 3 of this dissertation focuses on studying the effect of the pre-

ingestion of slowly digestible carbohydrates on gastric emptying. The gastric emptying 

rate of a non-nutritive thick paste has been assessed using preloads with different starch 

digestion rates.  

It is known that malnutrition causes insufficiency of pancreatic enzyme 

production, including α-amylase that digests starch. Later studies provided additional 

evidence of α-amylase insufficiency in children with moderate malnutrition. The low 

luminal pancreatic α-amylase concentration in young children resulted in high amount of 

resistant starch which may have contributed to diarrhea through high osmotic load. An 

extension of the above information is that marginally and severe malnourished children 

with low pancreatic function may have starch digestion problems which interfere with 

their development and proper growth. Glucose is the only energy molecule utilized by the 

brain, and in children, 40% of the glucose needed for brain development comes from the 

diet. Chapter 4 of this dissertation presents a study on the use of a new, non-invasive 

modified 13C-breath test to assess α-amylase activity, the ability to digest sorghum starch, 

and to evaluate the gastric emptying of sorghum porridge in healthy and malnourished 

stunted children in Mali.  

Overall, this series of studies on African starchy foods, gastric emptying, and 

starch digestion in stunted children show the value of traditional African sorghum and 

millet foods and, moreover, that thick energy dense porridges adequately supply 

digestible carbohydrates to stunted children. 
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CHAPTER 1.  LITERATURE REVIEW 

1.1 Introduction  

In West African Sahelian countries (Mali, Burkina Faso, Niger, Senegal, Northern 

Nigeria, and Chad), sorghum [Sorghum bicolor (L.) Moench] and millet (Pennisetum 

glaucum) are two of the most important and widely consumed food crops. They 

constitute a main source of macronutrients (carbohydrate, protein) and, in some cases 

micronutrients (vitamins, minerals) in many African diets. They usually provide more 

than 50% of the total calories in the diet, and up to 70-80% (FAO, 1995).  

The African traditional diet is mainly based on cereal grains (sorghum, millet), 

tubers and roots (sweet potato, cassava, yam), and plantain, depending on the climatic 

zone. They are usually complemented by soups, sauces, or stews. In the Sub-Saharan 

semi-arid regions, cereal crops are the more dominant, while tubers and roots are 

prevalent in the humid tropical zones. Apart from the majority starch component,  

foods made from cereal grains, tubers, roots, and plantains are significant sources of other 

components like proteins (7 – 11% for grains, and 1 – 3% for tubers and roots), fats (1 – 

5% for grains), non-starch polysaccharides , some vitamins (mainly B vitamins), and 

minerals (calcium, zinc, iron) (FAO, 1995; Dicko et al., 2006; Obilana 

www.afripro.org.uk/; Taylor, www.afripro.org.uk/).   

In Mali, sorghum and millet are important staple cereal crops, not only because of 

their high production and the farmed area (FAOSTAT, 2013), but also for their per capita 

consumption (FAO 1995). The average consumption of millet/sorghum and maize is 

around 148 Kg/capita/year or 75% of cereal consumption. This represents a 1 bag of 100 

Kg for an average family of 8 people per month, including children. Rice consumption is 

44 Kg/capita/year or 22% of total cereal consumption. (Marjon, 2006).  

http://www.afripro.org.uk/
http://www.afripro.org.uk/
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1.2 Traditional African food  

African traditional foods can be divided in different groups like breads, thick 

(stiff) and thin porridges, grits and couscous (steamed products), snacks, and beverages. 

The composition and preparation methods of African traditional foods have been 

addressed in the past by many authors (FAO, 1995; Aboubacar et al., 1999; Aryee et al., 

2005; Aboubacar et al., 2006; Taylor et al., 2006; Kajuna, www.fao.org/; Kamal-Eldin et 

al., http://projekt.sik.se/). These food products can be fermented or unfermented. A result 

of fermentation is the improvement of some nutritional (digestibility, quality) and 

physicochemical and sensory attributes (the shelf life, aroma, texture, taste) of traditional 

foods. 

1.2.1 Steps of making traditional African thick and thin porridges 

The difference between thick and thin porridges is the concentration of the flour. 

Generally, in West Africa thick porridges (tô or tuwo) are “solid” and can be eaten with 

the hand, while thin porridges (moni, bouillie or koko) are “fluid” and are drinkable or 

are eaten with utensils. Porridges prepared with malted sorghums have significantly 

lower viscosities than those of non-malted sorghums due to the presence of amylases 

(Malleshi et al., 1989; Dicko et al. 2006). These porridges are particularly useful for the 

formulation of weaning foods for infants, because of their comparatively high energy 

density (Traore et al., 2004). There are many other types of porridges found in Africa, 

including fermented porridges such as nasha, a traditional weaning food (infant porridge) 

prepared by fermentation of sorghum flour (Graham et al., 1986), and ogi, an example of 

a traditional fermented sorghum food used as weaning food, which has been 

commercialized to a semi-industrial scale (Achi, 2005).  

Scheuring et al. (1982) described the procedure of thick porridge (tô) preparation 

in Mali. Approximately 4 l of water is boiled in a pot. Wood ash extract (10 g) is mixed 

with about 650 ml of cold water in a calabash or bowl, and about 750 g of flour (sorghum 

or millet) is added. The mixture is stirred until homogenous and then swirled into the 

boiling water in the pot. The boiling mixture is stirred for about 8 min, and at this point 

the thin solution is called “bouillie” (thin porridge). Heat is then reduced by removing 

http://www.fao.org/
http://projekt.sik.se/
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part of the burning wood. About 1,300 ml of the thin porridge is removed from the pot 

and set aside in a calabash. About 1,250 g of sorghum flour is added, a handful at a time, 

to the boiling thin porridge in the pot. After each addition of flour, the paste is vigorously 

stirred with a flat wooden spoon. When the paste is too thick for stirring, a small amount 

of thin porridge from the calabash is added. The process of addition of flour followed by 

stirring and further addition of bouillie continues for about 9 min until all the bouillie 

from the calabash is used and the paste is thick and homogeneous. The fire under the pot 

is reduced, and the thick paste is allowed to cook for about 12 min. Thick porridge is 

usually prepared in the afternoon and served as an evening meal. The left over portion is 

stored overnight in a bowl covered with a piece of cloth. The following morning it is 

eaten cold or reheated. Tô is consumed by tearing off a handful and dipping it into sauce 

made with meat or fish and vegetables such as tomatoes, onions, chilies, okra, garlic, and 

baobab leaves. Okra contains mucilaginous gums that facilitates the swallowing of the 

porridge (Murty et al., 1995).  

The most important characteristics of thick porridge (tô) as noted by consumers 

are a thick (consistent) and firm texture, and non-sticky with good keeping quality. 

Regarding raw grain quality attributes, the color of the pericarp, presence or absence of a 

sub-coat, and the texture of the endosperm of sorghum and millet grain affect the quality 

of thick porridge (Murty et al., 1995). There is a good deal of varietal variation in grains 

that affects different porridge quality attributes (Murty et al., 1995). Certain cultivars 

produce an acceptable porridge when cooked in an acid medium, but not in an alkaline 

medium. Some cultivars produce good porridge with acceptable sensory quality, but 

present poor storage quality. Porridge made with tamarind extract or in acid medium is 

usually firmer in texture and lighter in color than that made with alkaline extract. In 

general, the taste of thick porridge is masked by the sauces and stews or soups consumed 

along with it, and thus might not be as important as other qualities.  

Various traditional fermented and unfermented thin porridges are prepared from 

millet and sorghum grains; they can be made with or without granules (Murty et al., 

1995). For the thin porridge without granules, a thick flour slurry is made and added to 

boiling water, the thin boiling solution is left on the fire and stirred for some minutes 
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until a change in color is seen indicating the completed cooking process. For the thin 

porridge with granules, 2/3 of the flour is mixed with water to make the granules. The 

granules are then cooked in boiled water, and slurry is made from the rest of the flour and 

added to the cooked granules. Lemon juice or tamarind extract is added to the thin 

porridges for taste and flavor purposes, and to improve the storage quality. In many 

African countries, fermented porridges are more popular than unfermented ones. 

Fermentation is believed to improve the flavor and storage quality of the traditionally 

made thin porridges.    

Factors such as urbanization and improved economic status have prompted 

changes in the dietary habits of many Africans causing a substitution of traditional foods 

with imported or Western foods (Boughton et Reardon, 1997; Popkin et al., 2001; 

Popkin, 2003; Dorelien, 2008). This dietary trend has resulted in reducing consumption 

and demand for sorghum and millet, and concomitant increased rice and wheat 

consumption (Rashcke et al., 2007). However, this progressive increase of rice 

consumption has not prevented the traditional cereal products to continue to be 

significant in the overall food consumption pattern. This is because sorghum and millet 

are still predominantly consumed in the rural areas and, even in the urban areas, the 

traditional foods are still often consumed for breakfast and dinner (Reardon, 1993). The 

consequences of the dietary transition could be the expansion of diet-related metabolic 

diseases such as Type 2 diabetes (Mbanya et al., 2010) and cardiovascular disease 

(Mbewu, 2009).             

1.3 Starch as primary source of energy 

The rate of starch digestion has a number of implications that are related to the 

improvement of energy delivery. Glucose serves as the most important form of energy for 

the brain. Studies have shown that glucose enhances cognitive function and that even the 

rate at which starch is digested to glucose molecules can have a positive impact on 

memory and mood (Benton and Nabb 2003).  

In order to be utilized as an energy source, starch must be broken down to glucose 

in the small intestine. Starch digestion begins in the mouth where it is to some degree 
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hydrolyzed by salivary α-amylase, and then undigested and digested materials travel to 

the small intestine. There they are cleaved by pancreatic α-amylase resulting in smaller 

oligosaccharide products composed of linear maltooligosaccharides (maltose, 

maltotriose, and small amount of maltotetraose and maltopentose) and branched α-limit 

dextrins. This collection of  maltooligosaccharides act as substrate for the mucosal small 

intestine brush border enzymes, maltase-glucoamylase and sucrase-isomaltase, which 

completely hydrolyzes them into glucose which is transported through the enterocytes 

into the portal vein where it is taken to the liver for processing to energy, converted to the 

storage molecule glycogen, or transported into the blood system.  

1.3.1 Physiological and metabolic effects of starch 

The rate of starch digestion affects the rate of glucose release and absorption in 

the small intestine, and this may have some health-related consequences. The 

postprandial blood glucose excursion is called the glycemic response (Gropper et al. 

2005). Rapid postprandial glucose response and sharp initial peak in the glycemic curve 

have been linked to higher risk for developing diseases such as diabetes, obesity and 

heart disease (Ludwig, 2002). It is theorized that slowly digestible starch can play a role 

in controlling the postprandial glycemic response in individuals with diabetes mellitus as 

well as to help maintain better overall glucose homeostasis (Björck and Asp, 1994).  

1.3.2 Starch classification 

The digestibility of starch is a measure of the rate and degree to which starches 

are hydrolyzed through the gastrointestinal tract.  Starch digestibility in cooked foods is 

influenced by factors such as amylose and amylopectin contents, and interaction with 

non-starch components. Amylose content of starch is inversely proportional to its 

digestibility (Rooney and Pflugfelder 1986). Starch can be classified into three different 

categories:  rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant 

starch (RS) (Englyst et al., 1992; Englyst et al., 1999; Lehmann and Robin, 2007). Each 

type of starch is based on its rate of digestion through the small intestine.  

Rapidly digestible starch 

Starches that are accessible to digestive enzymes are typically referred to as 

rapidly digestible starch. This starch fraction leads to a sharp increase in the postprandial 
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glucose response, because it is hydrolyzed to glucose very quickly. Rapidly digestible 

starch is digested and glucose is released within 20 minutes in the in vitro assay (Englyst 

et al., 1992; Englyst et al., 1996). Examples of foods high in RDS include cooked white 

rice (Englyst et al., 1996) or boiled potatoes. 

Slowly digestible starch 

The slowly digestible starch fraction is digested slower and releases glucose at a 

slower rate than rapidly digestible starch. Glucose release occurs between 20 and 120 

minutes after ingestion in the in vitro assay. Starches high in SDS function as a source of 

prolonged energy and as a means of regulating the postprandial glucose response (Brand 

et al., 1991; Fontvielle et al., 1992). Examples of SDS are pearled barley (Englyst et al., 

1999). 

Resistant starch 

Resistant starch is defined as starch that is not hydrolyzed in 2 h digestion using 

the Englyst assay, or more generally starch that escapes digestion in the small intestine 

and is deposited in the large intestine. It is considered, both scientifically and by 

regulations, as dietary fiber. It is usually fermented in the colon, providing energy to the 

microbiota and produced short chain fatty acids with particularly high content of 

butyrate. Examples of RS include raw starchy foods, such as uncooked pasta or potatoes, 

and foods with retrograded amylose (Topping, 2001). 

 

1.4 Starches in the African diet 

The African diet is composed of starchy foods from cereals, roots, tubers, 

legumes, and plantains. Cereal starches are the easiest to digest, followed by legume 

starches, and root and tuber starches having the lowest digestibility (Rooney and 

Pflugfelder 1986). However, much variability in digestion also exists within each food 

type. The digestibility of these types of starches will be discussed in further detail.  
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1.4.1 Digestibility of starch in African cereals foods 

Common sources of cereal starch in Africa are sorghum, maize, millet, and rice. 

Because the processing of foods made from these cereals is so different in Africa, their 

starch digestibility cannot be generalized.  

Cereal endosperms have vitreous and flour endosperm, the former which has a 

complex starch-protein composition in which the starch granules are embedded within a 

protein matrix. In raw grain, the protein matrix makes accessibility of the starch more 

difficult and reduces its digestibility. Therefore, in order for the starch to be accessed, the 

protein matrix of the endosperm must first be degraded. Compared with corn, sorghum 

has lower digestibility as it contains more protein and higher amounts of peripheral 

endosperm which is resistant to water and enzymes. After cooking, sorghum proteins are 

even harder to digest and appear to contain the gelatinized starch granules in a still harder 

to digest form than in other cereals (Hamaker and Bugusu, http://www.afripro.org.uk/). 

The amylose content of millet starch has been found between 20 and 22% (Beleia 1980), 

within the typical range of cereal starches.  

1.4.2 Digestibility of root and tuber starch  

Cassava, sweet potatoes, and yam are among the commonly consumed root and 

tuber starches in Africa. The raw starches of roots and tubers have been observed to have 

low digestibility in comparison with other starch types and contain more resistant starch. 

Roots and tubers contain B-type crystallite structure with longer double helices, making 

them more resistant to enzymatic digestion.  In vitro studies show that these starch 

granules did not contain surface pores as previously found on some cereal starch 

granules, and which facilitate digestion of the raw starches (Fannon et al., 1992).  

Cassava, the plant from which tapioca starch is derived, has been found to have 

about 14 to 24% amylose (Moorthy, 2002). In vitro studies have shown that raw cassava 

starch is more susceptible to enzyme hydrolysis than other tuber starches such as sweet 

potato, carrot, and potato (Rocha 2010).  

Sweet potatoes vary in amylose content depending on type, but generally are 

found to to be in the range between 20 and 25% (Moorthy 2002). The raw starch exhibits 

A-type arrangement and is also more likely to be hydrolyzed by α-amylase. In 
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comparison to regular potato starch, sweet potato starch has smaller granule size which 

increases its digestibility.  

Yam shows lower digestibility compared with other commonly used root and 

tuber starches and a higher amylose content at approximately 30% (Freitas et al 2004). 

The starch granules of yam are larger and are classified as B-type (Wickramasinghe 

2009). Yam starch, along with sweet potato starch, appears to have shorter branch chains 

within their amylopectin structures. 

Cooked Sorghum and millet pastes and foods have been shown to contain starch 

with slow digesting properties (Aryee et al., 2005; Lichtenwalner et al., 1978; Zhang et 

al., 1998; Archana et al., 2001; Shin et al., 2004). This slow digesting property of starches 

is desirable nowadays as it may relate to the management and prevention of obesity and 

diabetes. Slowly digestible starch is digested and absorbed releases glucose more slowly 

for extended absorption, and may digest into the ileal part of the small intestine (Liu et 

al., 2006; Aprianata et al., 2009). An extended release and absorption of glucose by the 

body implies a way to provide energy in a sustained manner. Moreover, African 

traditional crops in general, and sorghum and millet specifically, do not contain gluten, 

and therefore they can be used as potential source of carbohydrate for people suffering 

from celiac and other allergic diseases. Slowly digestible carbohydrates reduce the initial 

rise in blood glucose, and hold the possibility of reducing the gastric emptying rate of 

foods through the ileal brake mechanism (Lee et al., 2013). 

 

1.5 Gastrointestinal tract 

1.5.1 Functions of the stomach 

The stomach has 4 major regions (fundus, body, antrum, and pylorus) and 3 main 

motor functions (storage, mixing and emptying). The fundus and the body act as storage 

compartments of the undigested foods, while the antrum represents the grinder, mixer, 

and siever of solid foods. The stomach has a flexible volume and can accommodate up to 

4 L of food. It plays an important role in controlling the rate of nutrient delivery to the 

body through regulating gastric emptying (Delzenne et al., 2010). The stomach secretes 
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gastric juice (gastric acid, bile salts, and digestive enzymes) which dilutes the food bolus 

and helps in its mixing and homogenization. The homogeneous food bolus or chyme will 

continue to be mixed and is directed from the antrum to the pylorus under the effect of 

peristaltic waves of the stomach wall which are initiated by its contractions. The 

peristaltic waves spread out toward the antrum and continue down to the pyloric valve 

(Urban et al., 1990; Schulze 2006). The pylorus contracts and slows down the emptying 

rate from the stomach to the duodenum. As the peristaltic waves get more and more 

intense, antrum emptying is favored as well as the movement of the chyme with small 

particles (less than 1 – 2 mm) (Thomas 2006) and its passage through the pylorus and to 

the duodenum. Comparatively large particles greater than 1 – 2 mm will return back into 

the stomach and are ground again before they reach the required size to pass through the 

pylorus. This is a continual process until all the ingested food gets reduced in size, mixed, 

and converted into the correct particle-sized chyme (Figure 1.1). 

1.5.2 Ileal brake mechanism 

Food intake is tightly regulated by many neural and hormonal factors in the 

gastrointestinal tract that signal and influence locally gut motility and the hypothalamus 

of the central nervous system (Leibowitz et al., 2004; Murphy et al., 2006; Cummings et 

al., 2007). The gut-brain axis and ileal brake mechanisms, which are controlled by 

several factors including gut hormones, are central to the regulation of food intake. The 

ileal brake mechanism is a distal small intestinal feedback to the proximal gastrointestinal 

tract (stomach and proximal small intestine (Figure 1.2) that inhibits stomach emptying 

rate and overall gut motility. This is through the release of gut hormones, such as peptide 

YY (PYY), glucagon-like peptide-1 (GLP-1), and cholecystokinin (CCK) (Konturek et 

al., 2004; Murphy et al., 2006; Woods et al., 2004). It helps to control the transit of the 

ingested food in order to optimize nutrient digestion and absorption. These gut hormones, 

which are secreted from intestinal endocrine L-cells into the blood circulation, are 

released in response to the presence of macronutrients (glucose, fatty acids, and peptides) 

in the gut. They act on the afferent nerves or directly on the hypothalamic arcuate nucleus 

to inhibit the expression and release of the neuropeptide Y (NPY) and agouti related 

protein (AgRP) known to stimulate food intake (Konturek et al., 2004; Leibowitz et al., 
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2004). Therefore, gut hormones play a key role in communicating between the gut and 

the brain, a link called the gut-brain axis. Accordingly, there is the possibility that the 

gastrointestinal system can be targeted to stimulate the secretion of its hormones using 

appropriate food-based approaches to regulate food intake. 

1.5.3 Peptide YY – PYY 

PYY, secreted by the L-cells in the gut with higher secretion in the ileal part of 

the small intestine and the colon, is a 36 amino acid peptide involved in the ileal brake 

mechanism, as well as the gut-brain axis. It is released into circulation after food 

consumption in proportion to the size of the meal, the amount of calories ingested and its 

levels rise 1 – 2 hours after meal ingestion. It presents inhibitory properties on gut 

motility during digestion and absorption of meals. PYY, which is secreted mainly in 

response to lipids and carbohydrates (Kim et al., 2005; Layer et al., 1995), is promoted by 

ileal absorption and reduces food intake. Degen et al. (2005) reported change in plasma 

PYY levels and its inhibitory effect on food intake using different doses in an exogenous 

infusion. The higher the PYY dosage resulted in greater plasma level and the lower food 

intake. Peripheral administration of PYY3-36 significantly reduced food intake and body 

weight in rodents and suppressed appetite and food intake when intravenously infused 

into humans. This resulted in an increase in the expression of the early response gene c-

fos in the ARC (Batterham et al., 2002).   

1.5.4 Glucagon-like peptide 1 – GLP-1 

GLP-1 is secreted by the same L-cells that secrete PYY. L-cells are more 

abundant in the distal small intestine and colon. As an incretin hormone, GLP-1 has 

several functions such as stimulation of insulin secretion, suppression of glucagon, and 

stimulation of β-cells neogenesis. GLP-1 released in response to the presence of nutrients 

in the gut, and specifically to carbohydrates (Ritzel et al., 1997; Kim et al., 2005), is also 

one of the hormones that triggers the ileal brake mechanism (Layer et al., 1995; Degen et 

al., 2006). Therefore, it participates in regulation of appetite and energy intake. 

Intravenous infusion of GLP-1 (50 pmol/Kg.h) showed enhanced satiety and reduced 

energy intake by 12% in normal weight healthy men, respectively, after an energy fixed 

breakfast and an ad libitum lunch compared to a saline control (Flint et al., 199). It was 
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shown to slow gastric emptying, and decrease the feeling of hunger and increase satiety 

(Naslund et al., 1998; Little et al., 2006). GLP-1 as it regulates blood glucose 

concentration (Orskov, 1992), is known to be metabolized very rapidly (Deacon et al., 

1996; Kieffer et al., 1995). Degen et al. (2006) showed that GLP-1 first peaks 15 – 30 

min after meal ingestion and a second peak occurs several hours later.    

1.5.5 Gastric emptying rate 

The rate at which nutrients are digested and absorbed in the small intestine 

depends on the emptying rate from the stomach of the ingested food. Gastric emptying is 

known to play a major role in the regulation of postprandial glucose and energy intake. 

Slow emptying rate has been associated with low blood glucose levels (Horowitz et al., 

1993). It also has been shown to be directly proportional to satiety and hunger (Bergmann 

et al., 1992).  

Several factors influence the rate of emptying of a food, including viscosity, 

nutrient content, physical properties, composition, and volume. A number of studies have 

investigated the effect of high viscosity of polysaccharide gums on gastric emptying rate 

and postprandial blood glucose response. Addition of guar gum to isocaloric meals 

reduced gastric emptying rate and glycemic response (Torsdottir et al., 1989), while 

mixing guar gum and starch decreased starch hydrolysis rate, but had no effect on 

postprandial blood glucose (Leclere et al., 1994). In another study, test meals containing 

nutrients compared to non-nutrients ones had greater influence on gastric emptying than 

viscosity, while high viscosity positively affected satiety (Maricani et al., 2001). By 

comparing homogenized and solid-liquid meals, the physical form of a food was found to 

impact gastric emptying rate and satiety (Bergmann et al., 1992), with viscosity and 

volume more associated with satiety (Santangelo et al., 1998; Marciani et al., 2000; Rolls 

et al., 1998). 

Gastric emptying is in part regulated by the gut hormones (PYY, GLP-1) which 

are secreted in response to the presence of nutrients in the GI tract. The role of the small 

intestine on gastric functions (secretions and emptying) was studied in the past using 

perfusion techniques. Findings showed that different macronutrients perfused into the 

ileum have a regulatory effect on gastric functions (Miller et al., 1981; Azpiroz et al., 
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1985; Layer et al., 1990; Siegle et al., 1990). This indicated that the intestinal phase is a 

major regulator of digesta to the duodenum (gastric emptying) to make digestion and 

absorption more efficient. PYY and GLP-1 are secreted in response to macronutrients in 

the ileal part of the small intestine and are responsible for the ileal brake and are involved 

in the gut-brain axis mechanisms. 

Gastric emptying rate has been shown to be affected by the concentration and 

exposure time of glucose in the small intestine (Lin et al., 1989). Infusion of glucose 

solutions (0.06 – 2.0 mol/L) or hydrolyzed starch in proximal and distal parts of the small 

intestine of dogs resulted in reduced gastric emptying rates of a solid test meal with slower 

emptying for the distal infusion (Lin et al., 1992). The perfusion of carbohydrate solution 

(75% rice starch + 25% glucose) showed a reduction in gastric emptying of a homogenized 

mixed meal (60% carbohydrate, 20% protein, 20% fat) and this effect was more 

pronounced when an amylase inhibitor was added (Jain et al., 1989). The inhibition of 

intestinal amylase in humans showed a reduction in gastric emptying time of rice starch 

and decrease in peak rise of postprandial plasma glucose by 85% (Layer et al., 1986).  

Compared to lipid (oleate) and protein (amino acid), carbohydrate (glucose) had the most 

potent effect in slowing the motility of SI, when isoenergetic amounts were infused (Siegle 

et al., 1990) (Figure 1.3). 

1.5.6  Satiety  

Carbohydrate ingestion has been shown to influence eating behavior including 

satiety and food intake. It is useful to note the difference between satiation and satiety. 

Satiation is the feeling involved in meal termination, whereas satiety is the feeling of 

fullness that persists after eating (Figure 1.4). It has been shown that dextrose infusion in 

the stomach at fast rate resulted in food intake reduction compared with saline, whereas 

intravenous infusion did not show any difference (Shide et al., 1995). Glucose infused 

intraduodenally also has shown a decrease in subsequent food intake, hunger suppression, 

increase in fullness and overall satiety ratings compared to when it was infused 

intravenously (Lavin et al., 1996). The authors speculated that this effect was due to the 

release of insulin or intestinal hormones via small intestine stimulation. The consumption 



16 

 

1
6
 

of 250 ml of glucose drink (30%) with added guar gum (2%) by healthy volunteers resulted 

in a decrease in hunger and increase in satiety ratings. The guar gum was added to delay 

gastric emptying and absorption the glucose (Lavin et al., 1995).  

Variable digestion and absorption profiles are observed in different types and forms 

of starches. For example, starches that have a resistant component that reaches the large 

intestine undigested caused greater satiety feeling than low fiber foods and rapid digestible 

starch (Willis et al., 2009; Raben et al., 1994; Kendall et al., 2010). Satiety and satiation 

were assessed in preschool children (24 to 48 months) using three rice soups with different 

starch levels (4, 8, and 12%). The results showed that higher satiation and satiety were 

observed with the highest level of starch (Alvina et al., 2000).  

1.6 Malnutrition: definition and causes  

Malnutrition is defined as “a state of nutrition in which a deficiency, excess or 

imbalance of energy, protein, or other nutrients, including minerals and vitamins, causes 

measurable adverse effects on body function and clinical outcome” (Puntis, 2010).  The 

prevalence of undernourishment in the world is estimated at 11.3% (805 million people) 

(FAO, 2014).  Worldwide, malnutrition is associated with more than 50% of the 10 

million annual deaths occurring in children under 5 years (Pelletier et al., 1993). 

Malnutrition of children (0 – 59 months) is a public health concern in Africa, particularly 

in the Sahelian countries where 40% of the children are stunted (UNICEF, 2013).  

There are four different types of malnutrition: stunting, wasting, underweight, and 

overweight which are classified based on weight and height indices.  Whereas stunting 

(low height for age) indicates long-term malnutrition and poor health, wasting (low 

weight for height) refers to a short-term response to insufficient intake. Overweight (high 

weight for height) implies obesity while, underweight (low weight for age) may be 

considered as stunting and/or wasting. Stunting, wasting, and underweight have different 

forms such adequate, mildly malnourished, moderately malnourished, and severe 

malnourished (Table 1.1). The different malnutrition forms are interrelated (Richard et 

al., 2012). 
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In 2011, 26 % (around 165 million) of the world’s children were stunted, whereas 

16 % (101 million) were underweight and 8 % (52 million) were wasted (WHO/UNICEF, 

2011). Out of the 42 countries facing food crisis, 36 are in Africa, this a major problem 

because it is estimated that one child in three is underweight on the African continent. 

Although these different prevalences showed an overall decrease in stunting among 

children under 5 years, the general progress is still insufficient and children remain at 

risk. Interestingly, the trend for overweight has increased in Africa from 4 to 7% from 

1990 to 2011 (WHO/UNICEF, 2011). In Mali, 1 in 3 children were shown to suffer from 

chronic malnutrition. Stunting among children 3 – 36 months was 30% in 1995 – 1996, 

and became 33% in 2001 for the same age group (PSNAN, 2005). In Sudan, Kenya, and 

Tanzania, 6%, 19%, and 28% of children with severe malnutrition who entered in the 

hospital died (Mahgoub et al., 2012).    

In Mali, malnutrition is an important factor leading to high infant mortality and 

morbidity. According to the results of the Demographic Health Survey III (DHS III-Mali 

2001), the nutritional situation is often exacerbated by economic crises such as drought 

and locust invasions, and led to a rather alarming health situation with child and maternal 

mortality rates of 113 in 1000 and 582 per 1000 live births, respectively. The results of 

the same DHS III showed that 38% of children under 5 years in Mali suffer from some 

kind of chronic malnutrition and half of those from severe chronic malnutrition. A survey 

conducted in 2011 using the methodology SMART (Standardized Monitoring and 

Assessment of Relief and Transitions)  on children 6 – 59 months showed that at the 

national level, 11% had acute malnutrition, with 2% severe cases; and  there was 27% 

with chronic malnutrition, of which 9% were severe cases and 20% were underweight. 

Although, the Sikasso region is the wettest part of Mali, with good agricultural 

productivity, it had the highest prevalence level of malnutrition among children under 

five years. The results of the survey SMART 2011 showed that the Sikasso region is 

below the emergency threshold for wasting 6.5% with 1% of severe cases.  

This high prevalence of malnutrition in Mali stems from many interdependent 

factors such as medical, behavioral, and economic. (Tefft et al., 2003).  
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Malnutrition is often associated with decreased pancreatic function (Sauniere & 

Sarles, 1988), poor cognitive development, and frequent infectious diseases (Rytter et al., 

2014). Knowing the causes, consequences, and the possible means to prevent 

malnutrition will help to develop strategies to fight this global problem (Imdad et al., 

2011).   

1.7 Energy and nutrient needs of infants and young children  

During the first few months of life, breast milk represents a sufficient source of 

nutrition (energy and nutrient) for the newborn. However, starting 4 – 6 to 24 month’s 

natural milk becomes insufficient to support the growth of the child. At this age range, 

children have increased needs for energy and nutrients to support their growth and 

development. Thus, complementary food is necessary to be added to the breast milk in 

order to help cover energy and nutrient deficits (Rowland & Whitehead, 1978). 

According to WHO/UNICEF (1998), the total energy requirements are classified based 

on age range and are 682, 830, and 1092 kcal/day for 6 – 8, 9 – 11, and 12 - 23 months of 

age, respectively. Energy required from the complementary (weaning) foods is 269, 451, 

and 746 kcal/day for these age groups (Dewey and Brown, 2003). A recently conducted 

US longitudinal study proposed new total energy requirements that are 25% to 32% less 

than the 1998 WHO/UNICEF requirements.  Requirements from complementary foods 

take into account that the child is breastfed. If the child is not breastfed, then the total 

energy requirement will necessarily be supplied by the complementary foods. Nutrient 

density of complementary foods can be problematic during the weaning period 

Complementary foods should have a high nutrient density in order to satisfy the children 

needs. Also, micronutrients must in some cases be provided in relatively high amounts. 

For example, 6 – 8 months breastfed children need 9 times more iron and 4 times more 

zinc than an adult (Stephen et al., 2012; Dewey, 2013). Achieving the necessary energy 

requirement depends on meal frequency.  The minimum daily meal number varies from 3 

to 5 (Stephen et al., 2012).  
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1.8 Starch digestion and absorption in early infancy  

Starches are the main source of dietary energy for the developing infant and 

growing child, particularly in developing countries. There are different enzymes that are 

responsible for the digestion of starch and lactose and sucrose in the human. These 

enzymes are salivary α-amylase, pancreatic α-amylase, and the brush border α-

glucosidases for starch (and starch-derived product) digestion, lactase for lactose, and 

sucrase for sucrose. There is α-amylase in human milk which may help children in starch 

digestion from weaning foods (Lindberg and Skude, 1982; Dewitt et al., 1990). Salivary 

α-amylase has low activity at birth and increases rapidly and, in a normal infant, reaches 

a high level by the third month after birth. Hodge et al., (1983) found that salivary α-

amylase is present in the gastric aspirates of premature infants and the enzyme was highly 

active. On the other hand, pancreatic α-amylase is not detectable during the gestation 

period and its activity starts after 1 month after birth. Pancreatic α-amylase reaches an 

adequately high level after 24 months of age (weaning age) (McClean and Weaver, 1993) 

(Figure 1.5). Small intestine brush border α-glucosidases are present in infants one 

month and at a high level (Lebenthal et Lee 1980), which indicates that young infants 

have the ability to digest starch and absorb glucose. α-Glucosidases were shown to have 

the ability to digest glucose polymers directly to glucose even when pancreatic secretion 

is absent (Kerzner et al., 1981).  

1.9 Traditional weaning foods  

In developing countries, traditional complementary foods are generally starch-

based prepared from local available cereals such as millet, sorghum, maize, rice, or 

wheat. During cooking, the starch granules swell in the presence of the heat and 

gelatinize to form a viscous, bulky paste on cooling which is difficult to consume by 

children, particularly if they have immature pancreatic function; which in case starch may 

not be fully digested (McClean & Weaver, 1993). On the other hand the presence of other 

sources of amylase may also help in starch digestion such as from saliva and breast milk 

(if infants are still breastfed) (Dewit et al., 1990), and as well the small intestinal α-
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glucosidases (Lebenthal & Lee, 1984). In order to make these traditional weaning foods 

easy to consume and be digested by young infants, less flour is often added to make the 

viscosity acceptable (1000 – 3000 cP), therefore decreasing the energy delivered in the 

food (Mosha and Svanberg, 1983). Traditional weaning foods are low energy dense, low 

nutrient content, and possible infected by bacteria due to unhygienic preparation 

conditions (Weaver 1994). An ideal weaning food type should be high in energy and 

nutrient content, microbiologically safe, easily ingested and digested, able to be 

frequently consumed, culturally acceptable, locally available, and cheap (Weaver, 1994).  

Increase of the flour content or addition of fat, oil, sugar or complex 

carbohydrates, or fortification with legumes, are ways to increase the energy and nutrient 

density of the traditional weaning foods which also makes them thick, bulky, viscous and 

difficult to digest (Hellstrom et al., 1981; Nout & Ngoddy, 1997). Germination or 

malting, fermentation, extrusion, and fortification are different techniques used to 

increase the energy and/or nutrient densities of traditional weaning foods.     

Malt is used to partially digest gelatinized starch, thus reducing the viscosity of 

bulky traditional weaning foods through the action of amylases. Cereal grains are used to 

make malt and this amylase-rich flour helps to lower the viscosity of the thick gruels, 

increase their ingestion, as well as their further digestion and absorption (may double the 

energy density) (Nout, 1993, Weaver et al., 1995). Amylase partially digests the starch to 

easily digestible molecules like dextrins and maltose which have less water-binding 

capacity (Hellstrom et al., 1981).  
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Table 1.1 The different degrees of malnutrition  

 

 Weight for height Height for age Weight for age  

Adequate ≥ -1.0 ≥ - 1.0 ≥ -1.0 

Mild <-1.0 -  ≥ -2.0 <-1.0 -  ≥ -2.0  <-1.0 -  ≥ -2.0 

Moderate < -2.0 -  ≥ -3.0 < -2.0 -  ≥ -3.0 < -2.0 -  ≥ -3.0 

Severe  < -3.0 < -3.0  < -3.0  
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Figure 1.1 Different parts of the stomach and their functions.  

Adapted from Rayner and Horowitz, 2005 
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Figure 1.2 Ileal brake activation.  

Adapted from Lee et al., 2013 
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Figure 1.3 Changes in gastric emptying rate and gut motility after infusion of nutrients. 

Bars represent means + SD of 4 dogs. Adapted from Siegle et al., 1990. 
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Figure 1.4 Satiation and satiety 

Adapted from Benelam, British Nutrition Foundation. www.nutrition.org.uk/satiety 

  

http://www.nutrition.org.uk/satiety
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Figure 1.5 Pre and post natal pancreatic enzymes distribution. 

Adapted from McClean and Weaver, 1993
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CHAPTER 2. IMPLICATION OF AFRICAN TRADITIONAL FOODS ON GASTRIC 

EMPTYING AND SATIETY 

2.1 Abstract  

Starch serves as the main energy source in cereal and tuber-rich diets, and its 

glycemic response profile has been related to health-related conditions. Sorghum and 

millet are known to have comparably low starch digestibility, a potentially desirable 

property for controlling blood glucose response and providing sustained energy. It was 

postulated that these effects may be through a slowing of gastric emptying. Thus, the aim 

of this study was to assess gastric emptying rates of traditional sorghum and millet-based 

African foods of the Sahelian region (couscous, thick and thin porridges made from 

millet and/or sorghum) versus non-traditional “modern” foods that are mostly consumed 

in urban areas, under the hypothesis that these indigenous foods provide a sustained 

energy delivery to the body that is related to a slower gastric emptying and concomitant 

moderated glycemic response, and may be related to satiety. A non-invasive 13C-labelled 

octanoic acid breath test method and subjective pre-test and satiety response 

questionnaires were used. An initial study was done to assess and compare the gastric 

emptying rate of traditional African sorghum and millet based foods (sorghum thick 

porridge, millet thick porridge, millet couscous, and two thin millet thin porridges) to that 

of rice, boiled potatoes and pasta. Fourteen healthy volunteers [mean ± SD age: 22.79 ± 

2.11 y; BMI (in Kg/m2) 20.48 ± 1.73] participated in the initial study. However, in the 

initial study, we did not take into account the 13C enrichment difference that exists 

between C4 (sorghum, and millet) and C3 (rice, potatoes, and wheat) plants which can 

affect the gastric emptying rate assessment. Actually, C4 plants contain inherently high 

amount of endogenous 13C which is a confounding factor in their baseline 13C enrichment 

levels. 
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To overcome this, we conducted a second study with six volunteers [mean ± SD age: 

24.33 ± 3.27 y; BMI (in kg/m2) 22.52 ± 1.54] to assess gastric emptying rate of the 

different test meals made with and without the 13C tracer (13C-octanoic acid). Both 

studies were done in Bamako, Mali. Participants consumed test meals mixed with 100 mg 

of 13C-labelled octanoic acid and collected breath samples were analyzed. Traditional 

sorghum and millet-based solid African foods were markedly slower in gastric emptying 

rate compared to rice, potatoes, and pasta as measured by lag phase and half-emptying 

time (P < 0.0001). Millet couscous and rice had higher fullness and lower hunger scores 

compared to others (all P < 0.05), suggesting a bias towards satiety scoring in the case of 

rice as seen in a pre-test questionnaire.  

Traditional sorghum and millet-based African foods were concluded to provide 

same meal slow gastric emptying to provide sustained energy delivery to the body more 

than non-traditional, modern foods that are nowadays considered desirable by urban 

consumers. 
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2.2 Introduction 

Sorghum and millet, as two of the most important and widely consumed food 

crops in Africa, constitute a main source of macronutrients (carbohydrate, proteins) and, 

in some cases, micronutrients (vitamins, minerals) in many African diets. Since these 

crops are able to grow in semi-arid conditions and are mostly consumed by 

disadvantaged people, they are considered by FAO to be “crops for poor people” (FAO, 

1995). Traditional West African sorghum and millet foods are served in different forms, 

such as liquid (thin porridges, with and without granules) and solid (very thick and 

medium thick porridges, and couscous) foods (Rooney et al., 1987). 

Factors such as urbanization and improved economic status have prompted 

changes in the dietary habits of many Africans with a substitution of traditional foods for 

imported or Western foods (FAO, 1995; Raschke et al., 2007; Popkin et al., 2001; 

Dorelien, 2008). This dietary trend has resulted in reduced consumption and demand for 

sorghum and millet, and a concomitant increased rice and wheat consumption (Raschke 

et al., 2007), and has been noted to be a possible factor in the increasing prevalence of 

obesity and chronic diseases (diabetes and cardiovascular disease) (Folake et al., 2008). 

For example, in one study rapid health deterioration and increases of obesity and chronic 

diseases in sub-Saharan African migrants to Australia were attributed to changes in 

dietary habits from traditional foods (Renzaho et al., 2006). An improved understanding 

of the health-associated attributes of traditional African foods could serve to minimize 

this nutrition transition in Africa.  Furthermore, identification of potential advantages or 

attributes of traditional African diets could lead to better promotion of local foods leading 

to better markets for smallholder farmers through increased demand.  

Traditional African diets are rich in starch, comprised largely by foods such as 

porridges, flatbreads, and agglomerated products made from cereal grains and tubers, 

whereas Westernized diets contain higher proportions of animal-source and processed 

foods, the latter often with rapidly digestible carbohydrates, as well as added sugars and 

salt.  Starch serves as the main energy source for cereal-rich diets; and sorghum and 

millet are known to have comparably low starch digestibility, a potentially desirable 
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property for controlling blood glucose response after meal consumption and to provide 

energy to the body in an extended manner (Lichtenwalner et al., 1978; Zhang et al., 1998; 

Archan et al., 2001; Lee et al., 2013). Blood glucose response of starchy foods can be 

related to gastric emptying rate, as slow emptying rates are associated with lower glucose 

responses and fast emptying with higher responses (Torsdottir et al., 1984; Mourot et al., 

1988).   

Several factors influence the rate of gastric emptying of a food, including nutrient 

content, physical properties, composition, and volume. A number of studies have 

investigated the effect of high viscosity caused by polysaccharide gums on postprandial 

blood glucose response, glucose diffusion rate, and gastric emptying rate in relation to 

satiety and hunger. For example, addition of guar gum to meals of the same composition 

was shown to reduce gastric emptying rate and glycemic response (Torsdottir et al., 

1989). Contrarily, mixing of guar gum and starch caused a decrease of starch hydrolysis 

rate, but had no effect on postprandial rise in blood glucose (Leclere et al., 1994). In 

another study, test meals with varied viscosity and nutrient content (low-viscosity no 

nutrient, low-viscosity nutrient, high-viscosity no nutrient, high-viscosity nutrient) were 

shown to have a cumulative effect in slowing gastric emptying and enhancing satiety 

(Marciani et al., 2001). However, test meals containing nutrients compared to the non-

nutrients ones had greater influence than viscosity on gastric emptying, while high 

viscosity had high effect on satiety. Gastric emptying rate has been shown to be directly 

proportional to satiety and hunger (Bergmann et al., 1992). Although the physical form of 

a food has been reported as having an impact on gastric emptying rate and satiety by 

comparing homogenized and solid-liquid meals (Santangelo et al., 1998), viscosity and 

volume were more associated with satiety (Marciani et al., 2000; Rolls et al., 1998).  

Gastric emptying is also well known to be regulated by gut hormones which are 

triggered in the small intestine by different macronutrients. The ileal-secreted gut 

hormones, glucagon like peptide-1 (GLP-1) and peptide YY (PYY), in response to the 

presence of glucose, fatty acids, and peptides are responsible for the ileal brake 

mechanism (Spiller et al., 1984; Siegle et al., 1990; Avesaat et al., 2014). This distal 
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small intestinal feedback to the proximal gastrointestinal tract (stomach and the proximal 

small intestine) is known to inhibit gut motility including gastric emptying rate. 

This study aimed to test the hypothesis that traditional African foods made from 

sorghum and millet have slower gastric emptying than non-traditional, modern foodstuffs 

such as rice, potatoes, and wheat pasta that are commonly eaten today in African cities. 

The overall goal of this work was to understand whether traditional sorghum and millet 

foods of West Africa have positive attributes, such as low glycemic response and the 

providing of sustained energy to the body, which can be used to promote these grains in 

its urban areas for health reasons and to provide better markets for local smallholder 

farmers. 

An initial study was done to assess and compare the gastric emptying rate of 

traditional African sorghum and millet based foods (sorghum thick porridge, millet thick 

porridge, millet couscous, and two thin millet thin porridges) to that of rice, boiled 

potatoes and pasta. Subjects’ impressions about African traditional foods, and satiety 

were also assessed. However, in the initial study, we did not take into account the 13C 

enrichment difference that exists between C4 (sorghum, and millet) and C3 (rice, 

potatoes, and wheat) plants which can affect the gastric emptying rate assessment. 

Actually, C4 plants contain inherently high amount of endogenous 13C which is a 

confounding factor in their baseline 13C enrichment levels. To overcome this, we 

conducted a second study testing the test meals made with sorghum and millet with and 

without the tracer (13C-octanoic acid).    

2.3 Subjects/Materials and methods 

2.3.1 Subjects eligibility 

Eligibility criteria were:  males or females aged 20 – 50 years, normal body mass 

index (18 kg/m2 ≤ BMI ≤ 25 kg/m2), not under any medication, no history of any 

gastrointestinal disease or surgery, no diabetes, and no smoking. After the screening for 

eligibility, 14 healthy volunteers (12 men and 2 women) participated in the initial study. 

For the second study, 6 subjects (3 men and 3 women) were recruited. For both studies, 

participants were asked to avoid intense physical activity the day before and during the 
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test days as well as reduce or avoid, if possible, the consumption of naturally 13C-

enriched foods, for example corn, sorghum, millet, and cane sugar-based products during 

the testing period. A written consent form approved by the Institutional Review Board of 

Purdue University and the National Ethical Committee for Health and Life Sciences in 

Mali was obtained from each subject before his or her participation in the study. 

2.3.2 Test meals 

Six starch-based solid meal staples were tested, rice, boiled potatoes, wheat pasta, 

sorghum thick porridge, millet thick porridge, and millet couscous; and two millet thin 

porridges (with and without granules made from millet flour). Solid test meals were 

served with a tomato sauce made with onions, tomato paste, and fresh tomatoes, plus a 

seasoning of salt, black pepper, celery and green pepper. The two thin porridges were 

served as is. All test meals were prepared locally based on typical preparation methods 

used in Mali. Rice, potatoes, and pasta were cooked in slightly salted water. Thick 

porridges and thin porridge without granules were prepared similar to the conventional 

cooking methods as described by Scheuring et al. (1982). For the thin porridge with 

granules, 2/3 of the flour was mixed with water to make the granules. The granules were 

then cooked in boiled water, and slurry was made from the rest of the flour and added to 

the cooked granules. Lemon juice was added to the thin porridges for taste purposes. 

Millet couscous was prepared by mixing the flour with a small amount of water in order 

to make small fine particles. The particles were sieved with a medium diameter 

traditional sieve for uniformity after which they were steamed three times consecutively. 

Before adding the sauce (200 g), 100 mg of 13C-octanoic acid (Sigma-Aldrich, St. Louis, 

MO) was mixed into each subject’s weighed test meal portion (500 g) as a tracer, 

therefore the total amount of test meal given was 700 g. Test meals were cooled for 10 to 

20 min before serving. After ingestion of the test meals, each subject was allowed 150 

mL of water.  
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2.3.3 Procedure 

This study was performed in Bamako, Mali at the Sotuba Agricultural Research 

Center of the Institut d’Economie Rurale (IER). Gastric emptying was assessed using the 

13C-octanoic acid breath test (Ghoos et al., 1993; Choi et al., 1997; Clegget al., 2010).  

Subject impressions (n=14) of differences between traditional and imported foods 

were assessed by a pre-test questionnaire (Table 2.1) following completion of the 

consent form. Information gained from the questionnaire included subject food 

preferences, consumption frequency, impressions of satiety effects of traditional and 

“imported” foods, gender, and age. 

One test meal experiment was performed on each day in a random order, with all 

subjects provided the same meals. Subjects were asked to come to the Sotuba Center at 

9:30 AM for nine consecutive days and were instructed to fast overnight from midnight 

to 10:00 AM prior to the test. Each test meal was given at 10:00 AM and eating time was 

less than 15 min, with subjects asked to eat as much as they would like until they felt full 

and well satiated (Rolls et al., 1990; Erdmann et al., 2007).  Breath samples were taken in 

duplicate before eating the test meal (to be used as a baseline value) and during the 4 h 

period after eating, in 15 min intervals during the first two h, then every 30 min for the 

final 2 h. The test meals were weighed before and after they were presented to the 

subjects and from this the energy intake was calculated using food composition tables. 

The amount of test meal consumed on dry weight basis was converted into energy intake 

by multiplying the weight of the food by its caloric value (USDA, National Nutrient 

Database for Standard Reference Release 24, 2011; FAO, 1995).  

Visual analogue scales (VAS, in mm) were used to assess fullness, hunger, desire 

to eat, and prospective food consumption in both studies (Rolls et al., 1990; Cassady et 

al., 2012), and were performed before testing, right after eating, and 2 and 4 hours after 

test meal consumption. For example, fullness was rated by placing a mark on a 100 mm 

VAS at a position that showed degree of fullness between “Not at all full” on the left to 

“Extremely full” on the right. All other parameters (hunger, desire to eat, and prospective 

consumption) were rated in the same manner. Breath samples were analyzed using a 13C 
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breath analyzer (POCone, Otsuka Co., Japan), an infrared spectrophotometer that 

determines the ratio of 13CO2 to 12CO2 (Sanaka et al., 2007; Braden et al., 1999; 

Schadewaldt et al., 1997). The breath analyzer POCone automatically conducts two self-

diagnoses when its turns on and the precision of the instrument was checked once as 

described in its instruction manual before starting the test.    

In the second, the gastric emptying rate assessment was repeated (n-6) in order to 

take into account the endogenous 13C in C4 plants. The sorghum and millet thick and thin 

porridges, and the millet couscous, were tested on two occasions with and without the 

13C-octanoic acid. This was to provide baseline reference data for 13C in breath CO2 

associated with the inherently higher amount of endogenous 13C in C4 plants which 

includes sorghum and millet (Schoeller et al., 1980). Rice, potatoes and pasta were tested 

only with the 13C-octanoic acid, because their endogenous 13C contents were considered 

negligible.  

Calculation of gastric emptying parameters 

The breath analyzer provides data in terms of the change in the 13CO2 delta over 

baseline (DOB, ‰), where the 13CO2/
12CO2 ratio of a sample gas is compared to the 

corresponding ratio of a reference gas (i.e. baseline value). For sorghum and millet thick 

and thin porridges, and millet couscous, the 13CO2 DOB values obtained without tracer 

was subtracted from the corresponding values of 13CO2 DOB obtained with tracer. This 

difference was used in the calculations. The amount of ingested tracer for each subject 

and each test meal was calculated by subtracting the remaining amount of tracer from the 

initial dose given. Using the appropriate 13CO2 DOB for each test meal, CO2 production, 

the amount of tracer ingested percent dose 13C recovery per hour (PDR), and cumulative 

percentage dose recovery over time (CPDR) was calculated (Ghoos et al., 1993; Braden 

et al., 2007; Haycock et al., 1978). CO2 production was assumed to be 300 mmol/(m2 

body surface area x hour), with body surface area calculated using the formula developed 

by Haycock et al. (1978).  After calculating PDR and CPDR values from the obtained 

data set and these functions were modeled using the following equations to discern 

parameters related to the gastric emptying rate.  
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ctbcaty   Where y = percentage dose recovery per hour, t = time in hours, a, b, 

and c = constants.  

)1( ktemy    Where y = cumulative percentage dose recovery over time, t = 

time in hours, m, k, and β = constants and m = total cumulative dose recovery 

when time is infinite.  

Modeling of data was achieved by nonlinear regression using SAS statistical analysis 

software (SAS 9-3TS1M1, Institute Inc., Cary, NC) and was confirmed using a macro 

program in Excel (Microsoft Corp., Redmond, WA).  Gastric emptying parameters were 

then calculated using the following formulas:  

Lag phase (i.e. time required for the 13CO2 excretion rate to attend its maximal 

level) (Sanaka et al., 2010).  

kLagT /)(ln)(      

Half emptying time (i.e. time necessary for half of the 13C dose to be metabolized) 

(Sanaka et al., 2010). 

(T1/2) = 


1

21ln()
1

( 
k

)    

Statistical analyses 

The pre-test questionnaire results were reported as percentage of participants 

(n=14) responding.  

For purpose of comparison of gastric emptying data, test foods were separated 

into solid and liquid groups. Solid foods were rice, boiled potatoes, pasta, sorghum thick 

porridge, millet thick porridge, and millet couscous. Liquids were the two thin porridges. 

Comparisons of lag phase, half-emptying times and values across foods, the amount of 

test meal consumed, the energy intake as well as the PDR curves at each time point  were 

analyzed by one-way repeated-measure ANOVA with post-hoc Tukey tests used to form 

statistical groupings (α=0.05) using the statistical package SAS 9-3TS1M1.  

Fullness, hunger, desire to eat, and prospective consumption scores of the 

different test meals were also compared at α=0.05 using repeated measures analysis of 

variance with Bonferroni correction for multiple comparisons using IBM SPSS Statistics 

v.19.0 Window software package. The different ratings at each time point were compared 
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using one-way ANOVA with post-hoc Tukey tests to form statistical groupings (α=0.05) 

using IBM SPSS Statistics v.21 software package.  

All values were reported as mean values ± SEM (standard error of means) unless 

otherwise stated and compared at significance level α=0.05. The means with same letter 

are not significantly different whereas those not sharing the same letter are significantly 

different when p < 0.05.  

2.4 Results 

The gastric emptying data from the initial study is not given here since it was not 

valid because of the inherent endogenous 13C in sorghum and millet based foods. The 

pre-test questionnaire results are from the initial study and the satiety data is shown for 

both studies. 

2.4.1 Subjects characteristics 

Fourteen healthy volunteers (12 men, 2 women) between the ages of 20 – 26 

years old (mean ± SD 22.79 ± 2.11) with a mean (± SD) BMI of 20.48 ± 1.73 Kg/m2 were 

recruited by local advertisement in the area of the research center at Sotuba, a periurban 

section of Bamako where the study was conducted. All subjects were free of any 

gastrointestinal disease and were not using any medication throughout the duration of the 

study.  

The characteristics of the six subjects (3 men, 3 women) used to do the second 

study were mean (± SD) age=24.33 ± 3.27 and mean (± SD) BMI=22.52 ±1.54 kg/m2.  

2.4.2 Pre-test questionnaire 

In Mali, solid foods (rice, boiled potatoes, pasta, sorghum and millet thick 

porridges, and millet couscous) are consumed mostly for lunch and/or dinner, while thin 

porridges with granules are taken for breakfast. Results revealed that 100% of the 

participants consumed thin porridge with granules once per day as breakfast, while thin 

porridge without granules was never eaten. This would differ in other West Africa 

Sahelian countries where plain thin porridges are commonly consumed. The majority of 

participants reported consumption of rice and couscous more than once in a week (around 
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43% and 36%, respectively) (Table 2.2). Thick porridges were most often eaten once per 

week or more than once per week (50% and 43% of participants, respectively) (Table 

2.2). Rice was the preferred lunch option for 71% of the participants (Table 2.3). Thin 

porridge with granules as well as potatoes was preferred for breakfast with equal 

responses of 43% of the participants, while millet thick porridge was preferred by 36% of 

the participants for dinner (Table 2.3). In terms of perceived satiating properties, millet 

couscous and rice were rated highest in the pre-test questionnaire with values 43% and 

36%, respectively (Table 2.4).   

2.4.3 Consumption amount and energy intake  

Table 2.5 reports the amount of test meal consumed in the second study (n=6) 

(subjects consumed meals until full). There was no statistically significant difference 

among the solid types of food (rice, 593 ± 54.7 g; boiled potatoes, 620.3 ± 50.4 g; pasta, 

446.3 ± 47.1 g; sorghum thick porridge, 426 ± 36.5 g; millet thick porridge, 522 ± 54.8 g; 

and millet couscous, 464 ± 39.8 g). However when analyzed together with the thin 

porridges, the later had significantly high amount consumed (Table 2.5). Among the 

tested foods, the mean energy intake was significantly lower for boiled potatoes (2031.5 

± 89.5 kJ) (485.5 kcal) compared to rice (3222.4 ± 135.6 kJ) (770.2 kcal), pasta (2635 ± 

78.5 kJ) (629.8 kcal), sorghum thick porridge (2269.1 ± 102.3 kJ) (542.3 kcal), millet 

thick porridge (3571.3 ± 202.6 kJ) (853.6 kcal), and millet couscous (2609.2 ± 104.9 kJ) 

(623.6 kcal).  

2.4.4 Gastric emptying of the different test meals 

Table 2.6 reports the baseline breath 13CO2 content of each subjects during the 

testing period. Table 2.7 reports the baseline reference data for 13C in breath CO2 

associated with the inherently amount of endogenous 13C in sorghum and millet based 

test meals. Figure 2.1 shows the mean rate of recovery of 13C in breath after ingestion of 

labeled octanoic acid in solid foods. Traditional African sorghum and millet solid foods 

(sorghum thick porridge, millet thick porridge, millet couscous) were characterized by a 

later peak time of recovery at two hours after ingestion of the test meal followed by a 

plateau, whereas the non-traditional, modern ones (rice, pasta and potatoes) had a very 
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early peak time around one h after ingestion followed by a decrease of the PDR curves 

back to baseline. During the first and last hours, there was a significant difference in the 

rate of recovery of 13C between the traditional foods and the non-traditional ones (P 

<0.0001 at 15 min, 210 min, 240 min, P = 0.0002 at 30 min, P = 0.0163 at 45 min, P = 

0.0064 at 60 min). The two thin porridges showed similar 13C label recovery rate (Figure 

2.3) and their gastric emptying parameters did not show any significant difference 

(P=0.6583 and P= 0.6198 respectively for lag phase and half emptying time) (Figure 

2.6). The gastric emptying parameters of thin porridges were slightly lower than the 

traditional solid foods. Figures 2.2 and 2.4 represent the cumulative percentage dose of 

13CO2 recovered curves after consumption of the solid foods and the thin porridges. 

Figures 2.5 and 2.6 show the mean values of the gastric emptying parameters [lag phase, 

T (Lag) and half-emptying time, T1/2] of solid foods and thin porridges respectively.   

Rice [T(Lag) = 1.3 ± 0.2, T1/2 = 2.6 ± 0.3], boiled potatoes [T(Lag) =1.5 ± 0.1, T1/2 = 2.9 

± 0.3], and pasta [T(Lag) =1.2 ± 0.04, T1/2 = 2.8 ± 0.2] were comparably fast emptying 

and did not differ significantly from one another for either parameter; while traditional 

sorghum and millet foods (sorghum thick porridge, millet thick porridge, and millet 

couscous) were substantially higher, showing slower gastric emptying than the non-

traditional foods and did not differ from one another for the half-emptying time (5.4 ± 

0.4, 4.5 ± 0.1, and 5.3 ± 0.06, respectively), and lag time (2.5 ± 0.04, 2.1 ± 0.1, and 2.5 ± 

0.06, respectively).  Thus, the studied solid foods could be clustered in two groups:  

- Fast gastric emptying group:  rice, boiled potatoes, and pasta   

- Slow gastric emptying group:  sorghum and millet thick porridges, and millet 

couscous 

2.4.5 Satiety  

Figures 2.7 and 2.8 display mean fullness and hunger scores of the solid test 

meals after 4 h following consumption for all 14 participants. A main effect of meal type 

and meal type by time interaction were observed for subjective hunger scores (P < 0.001, 

P < 0.001), fullness (P = 0.009, P = 0.012), desire to eat (P = 0.008, P < 0.001), but not 

prospective consumption (P = 0.05, P = 0.005). Rice and millet couscous presented the 
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highest postprandial fullness score and lowest hunger and desire to eat scores compare to 

all other solid test foods (P < 0.05).    

Figures 2.9 and 2.10 display mean fullness and hunger scores of the test meals after four 

hours following consumption (n=6). Figures 2.11, and 2.12 exhibit the mean ratings for 

“desire to eat”, and “prospective consumption” of all test meals for four hours after 

ingestion respectively. Fasting scores for all satiety parameters at the beginning of the 

experiment did not differ among the different foods (fullness P=0.893, hunger P=0.899, 

desire to eat P=0969, prospective consumption P=0.986). Consumption of the test meals 

resulted in a significant increase in fullness and decrease in hunger, desire to eat, and 

prospective consumption in all treatments (P<0.05). After ingestion of the different test 

meals, no significant differences were observed in fullness and prospective consumption 

scores between them at 2 and 4 hours. However, there were significant differences in 

hunger at 2 and 4 hours (P=0.021 and P=0.015 respectively).  Rice and sorghum thick 

porridge were significantly different from thin porridge w/o granules (P=0.021 and 

P=0.047). The different test meals were significantly different in “desire to eat” scores 

only at 4 hours after eating (P=0.030).  

Overall, statistical significant difference was seen in all parameters between the 

treatments in the big group (n=14) when compared to the small group (n=6).  

2.5 Discussion  

Among the  foods tested, the traditional solid African foods (sorghum and millet 

thick porridges, and millet couscous) had markedly slower gastric emptying rates 

compared to the non-traditional, modern foods more commonly consumed in urban areas 

(rice, boiled potatoes, and pasta). Among the fast gastric emptying modern foods, none 

had significantly different gastric emptying or lag times. Pasta has been reported to have 

relatively slow gastric emptying (Torsdottir et al., 1984; Mourot et al., 1988), though this 

could be because the pasta in this study was cooked longer resulting in a softer and more 

rapidly digesting material.    

It may seem apparent that the two thick porridges would slow gastric emptying 

due to a viscosity effect that has been shown in several studies (Russell et al., 1985; 
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Torsdottir et al., 1991; Leclere et al., 1994), however it is notable that millet couscous 

was as slow as the two thick porridges. Couscous is a granular, non-viscous food. We 

speculate that the mechanism of slowing gastric emptying may be related to the ileal 

brake mechanism caused by slowly digesting starch associated with dense small 

particulates that are likely to be still present, though in smaller size, at the entry point of 

the pylorus into the duodenum. In this scenario, associated distal glucose release in the 

ileum could trigger the ileal brake and slow gastric emptying (Layer et al., 1990; 

Torsdottir et al., 1991; Lin et al., 1992). Mechanistically, the thick porridges might also 

trigger the ileal brake due to a comparably slow digestion of starch related to the 

viscosity effect. Indeed, sorghum and millet foods are generally known to have 

comparably low starch digestibility that may deposit glucose more distally in the small 

intestine (Lichtenwalner et al., 1978; Zhang et al., 1998; Archan et al., 2001; Lee et al., 

2013), and may explain why foods made from them have slow gastric emptying rate.  

Slow gastric emptying rates are directly associated with lower glycemic responses 

(Torsdottir et al., 1984; Mourot et al., 1988), as well as higher satiating properties 

(Marciani et al., 2001; Santangelo et al., 1998). Slowly digestible and absorbed 

carbohydrates have been shown to reduce the rise of postprandial blood glucose response 

(Jenkins et al., 1978), and this could well be related to slower gastric emptying which 

portions out food slowly for digestion. Our results suggest that the types of traditional 

African foods used in this study with their slowly digesting starch property may trigger 

the ileal brake and result in slow gastric emptying of the same meal. This also would 

provide sustained energy to the body in the postprandial period.  We speculate further 

that our results may help to explain the possible association between the changes in 

dietary habits from traditional to non-traditional foods, also known as the nutrition 

transition, and the increase in obesity prevalence that has been noted by Renzaho et al. 

(2006) and others.     

It should be noted that volume has been shown in some reports to have greater 

effect on satiety than gastric emptying rate (Rolls et al., 1998; Marciani et al., 2000). In 

our study, there was not a statistically significant difference between the amounts of test 

meal consumed among the studied foods, but our test meals presented differences in 
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gastric emptying rate. Therefore, for the foods studied, volume was not a factor in 

controlling gastric emptying.    

The pre-test questionnaire results showed thin porridge with granules as the most 

widely consumed meal type for breakfast. Thick porridges, rice, and couscous were more 

consumed during lunch or dinner. One hundred percent of the participants noted in the 

pre-test questionnaire that rice, couscous, and potatoes are considered to be most 

satiating, followed by pasta (85.7%) and then thick porridges (57.1%). Participants 

ranked millet couscous and rice as the most perceived satiating foods.  

Subjective postprandial satiety scores were similar to rankings from the pre-test 

questionnaire. It seems probable, and we speculate here, that fullness and hunger feelings 

may be influenced by a preconceived idea that one has about a food. Satiety is a complex 

feeling that is influenced by both physiological and cognitive factors. Livingstone et al. 

(2000) noted that the methodology used to evaluate satiety parameters is subjective and, 

thus, has an impact on the obtained results and their interpretation. Indeed, a recent study 

reported that satiety might be influenced by people’s preconceived ideas about the food 

such as beliefs, and expectations (Brunstrom et al., 2011). They found that satiety scores 

after meal consumption were affected by the expected satiety when they gave the same 

amount of smoothies made after showing two different portions of fruits (small and large 

fruits). The group that saw the large portion of fruits gave high ratings for fullness after 

consumption of the smoothie, whereas the other group that saw the small portion rated 

high hunger and low fullness. Cassady et al. (2012) showed that the same test meal 

presented different physiological responses and satiating ratings when subjects had 

different perceptions related to the behavior of the test meal during the gastric phase.  

Higher energy intake and hunger ratings, faster gastric emptying and reduced fullness 

ratings were found when subjects perceived that liquids were ingested compared to when 

perceived solids. Brunstrom et al. (2008) reported that expected satiety is directly 

proportional to familiarity with foods.             



55 

 

5
5
 

2.6 Conclusions  

Our findings show that traditional African foods made from sorghum and millet 

have markedly slower gastric emptying rates, assessed by the 13C octanoic acid breath 

test, compared to non-traditional, modern foods that are today commonly consumed in 

urban areas. We conclude that the slow emptying rate and concomitant sustained energy 

delivery of these traditional West African staple foods might be important in 

understanding the nutrition transition from traditional to non-traditional foods in urban 

areas of developing countries associated with the rise in obesity and metabolic syndrome 

diseases. Moreover, this desirable attribute of traditional sorghum and millet foods in 

West Africa might be used to enhance their image in urban areas and to promote 

consumption to provide better market access for local smallholder farmers. Preconceived 

ideas about a food’s satiety quality may influence its subjective satiety scores. 
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Table 2.1 Pre-test questionnaire 

Questions  Possible Answers  

How often do you eat (test meal 

name)?  

a. Once in a day:…Yes (  )…No (  ) 

b. More than once a day….Yes (  )….No (  ) 

c. Once in a week:…Yes (  )…No (  ) 

d. More than once a week...Yes (  )…No (  ) 

e. Once in a month Yes (  )…No (  ) 

f.    More than once a month .Yes (  )…No (  ) 

g. Once in a year....Yes (  )…No (  ) 

h. More than once a year….Yes (  )....No (  ) 

i.    Have never eaten Tô....Yes (  )….No (  )  

j.    If the answer is “d” or “e”, ask why?  

 

Does the consumption of (test 

meal name) provide you 

fullness? 

(a) Yes  

(b)  No  

(c)  I don’t know 

Which food do you prefer to eat 

for breakfast? 

Which food do you prefer to eat 

for lunch? 

Which food do you prefer to eat 

for dinner? 

Which food do you think will 

provide you more fullness? 

Rank these foods according to 

their satiating effect?  

(a) Rice  

(b) Sorghum Tô 

(c) Millet Tô 

(d) Millet couscous 

(e) Thin porridge with granules 

(f) Thin porridge without granules 

(g) Pasta  

(h) Potatoes (boiled) 
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Table 2.2 Frequency of consumption of the different test meals  

(n = 14) 

Frequency 

of 

consumption  

Percentage 

Rice Boiled 

potatoes 

Pasta Thick 

porridge  

Millet 

couscous 

Thin 

porridge 

w/o 

granules 

Thin 

porridge 

with 

granules 

Once a day 28.57 0 7.14 7.14 0 0 100 

More than 

once a day 
28.57 0 0 0 0 0 0 

Once a week 0 21.43 21.43 50 28.57 0 0 

More than 

once a week 
42.86 14.29 14.29 42.86 35.72 0 0 

Once a 

month 
0 42.86 21.43 0 7.14 0 0 

More than 

once a 

month 

0 21.43 28.57 0 7.14 0 0 

Once a year 0 0 7.14 0 21.43 0 0 

More than 

once a year 
0 0 0 0 0 0 0 

Have never 

eaten 
0 0 0 0 0 100 0 

Total 100 100 100 100 100 100 100 
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Table 2.3 Frequency of preference of the different test meals  

(n = 14) 

 Percentage 

Breakfast Lunch Dinner More fullness 

Rice 7.14 71.43 14.28 35.72 

Boiled potatoes 42.86 0 21.43 7.14 

Pasta 7.14 7.14 7.14 7.14 

Sorghum thick 

porridge 

0 0 0 0 

Millet thick 

porridge 

0 7.14 35.72 7.14 

Millet couscous 0 14.29 14.29 42.86 

Thin porridge 

w/o granules 

0 0 7.14 0 

Thin porridge 

with granules  

42.86 0 0 0 

Total  100 100 100 100 
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Table 2.4 Responses to “Does the consumption of (test meal name) provide you fullness  

(n = 14) 

 Percentage 

“Yes” “No” “Don’t know” Total 

Rice 100 0 0 100 

Boiled potatoes 100 0 0 100 

Pasta 85.71 0 14.29 100 

Thick porridge 57.14 42.86 0 100 

Millet couscous 100 0 0 100 

Thin porridge 

w/o granules 
14.29 85.71 0 100 

Thin porridge 

with granules  
14.29 85.71 0 100 
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Table 2.5 Amount of test meal consumed  

Values are means of measurements from 6 subjects. Means not sharing the same letter are 

significantly different at α=0.05.  

Meal type Amount consumed, g           SEM  

Rice 593bac 54.7 

Boiled potatoes 620ba 50.4 

Pasta 446.3bc 47.1 

Sorghum thick porridge 426.8c 36.5 

Millet thick porridge 522bac 54.8 

Millet couscous 464bc 39.8 

Thin porridge without granules 700a - 

Thin porridge with granules 700a - 
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Table 2.6 Subjects’ daily baseline 13CO2 values prior to testing over the whole testing 

period (n = 6)  

    Subject 

 

Days 1 2 3 4 5 6 

1 0 0 0.1 0.6 -0.5 0 

2 0 0.1 0.5 -0.3 -0.3 -0.1 

3 0 -0.3 -0.1 -0.2 0.2 -0.1 

4 -0.2 -0.6 0 -0.1 0.1 0.3 

5 -0.1 0.2 0 -0.1 0.1 -0.3 

6 0.6 -0.3 0 0 0.4 0.3 

7 0.8 -0.3 0.1 0.1 0 -0.2 

8 0.3 -0.4 0.1 0.2 -0.6 0.1 

9 0 0.1 -0.5 0.2 -0.1 0 

10 -0.3 0.4 -0.1 0.1 -0.2 0.1 

11 0.1 -0.6 0.5 0.8 0.2 -0.2 

12 -0.6 0 -0.2 -0.3 -0.1 -0.6 

13 0.2 0.1 -0.8 -0.1 0 -0.1 
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Table 2.7 Mean values for postprandial 13CO2 associated with the higher endogenous 13C 

found in sorghum and millet-based test meals 

These were treated as baseline reference samples and values were subtracted from 13C-

octanoic acid gastric emptying test values for these foods.  

Values are means of breath 13CO2 (DOB, ‰) of the sorghum and millet-based test meals 

for all subjects (n=6).  

 

     

 

Time   

Sorghum thick 

porridge 

Millet thick 

porridge 

Millet 

couscous 

Thin porridge 

without 

granules 

Thin porridge 

with granules 

0 -0.1 0.0 -0.1 0.0 0.0 

15 0.3 -0.4 -0.2 0.3 0.4 

30 0.8 -0.1 0.2 0.6 0.7 

45 0.9 0.1 0.2 1.4 1.3 

60 1.1 0.4 0.6 2.0 1.9 

75 1.5 0.8 0.9 2.4 2.5 

90 2.0 1.2 0.9 2.8 2.8 

105 1.8 1.7 1.6 3.3 3.3 

120 1.9 2.2 2.3 3.5 4.0 

150 2.9 2.6 2.8 3.6 4.7 

180 2.8 3.0 2.9 3.3 4.7 

210 3.3 3.4 3.2 3.2 4.8 

240 3.3 3.3 3.5 3.0 5.2 

  



68 

 

6
8
 

 

Figure 2.1 Curves of 13CO2 excretion (%dosee/h) after ingestion of the different solid test 

meals and the corresponding fitting curves (solid lines). 

Values are mean of excretion measured in 6 subjects. 
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Figure 2.2 Curves of the cumulative breath 13CO2 excretion over time of the different 

solid test meals. 

Values are means of cumulative breath 13CO2 excretion in 6 subjects 

  

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4

C
u
m

m
u
la

ti
v
e 

P
er

ce
n
ta

g
e 

D
o

se
 R

ec
o

v
er

ed
 p

er
 H

o
u
r 

Time (Hours)

Rice

Boiled potatoes

Pasta

Sorghum thick

porridge
Millet thick porridge

Millet couscous



70 

 

7
0
 

 

Figure 2.3 Curves of 13CO2 excretion (%dose/h) after ingestion of the different liquid test 

meals and the corresponding fitting curves (solid lines). 

Values are mean of excretion measured in 6 subjects. 
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Figure 2.4 Curves of the cumulative breath 13CO2 excretion over time of the different 

liquid test meals. 

Values are means of cumulative breath 13CO2 excretion in 6 subjects. 
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Figure 2.5 Gastric emptying parameters. Mean (± SEM) of lag phase and half emptying 

time of the different solid test meals. 

Different letters indicate statistically significant differences between treatments. 
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Figure 2.6 Gastric emptying parameters. Mean (± SEM) of lag phase and half emptying 

time of the different liquid test meals. 

Different letters indicate statistically significant differences between treatments. 
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Figure 2.7 Subjective fullness ratings after ingestion of the different test meals, n = 14. 

Comparisons are based on repeated-measures ANOVA with post hoc Bonferroni multiple 

comparison tests. Significant main effects of treatment and treatment-by-time interactions 

were observed (P < 0.001). 
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Figure 2.8 Subjective hunger ratings after ingestion of the different test meals, n = 14. 

Comparisons are based on repeated-measures ANOVA with post hoc Bonferroni multiple 

comparison tests. Significant main effects of treatment and treatment-by-time interactions 

were observed (P < 0.001).  
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Figure 2.9 Subjective fullness ratings after ingestion of the different test meals, n = 6. 

Comparisons are based on repeated-measures ANOVA with post hoc Bonferroni multiple 

comparison tests. Significant main effects of treatment and treatment-by-time interactions 

were not observed (P =0.356 and P=0.460 respectively). 
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Figure 2.10 Subjective hunger ratings after ingestion of the different test meals, n = 6. 

Comparisons are based on repeated-measures ANOVA with post hoc Bonferroni multiple 

comparison tests. Significant main effects of treatment and treatment-by-time interactions 

were observed (P=0.002 and P < 0.001 respectively). 
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Figure 2.11 Subjective “desire to eat” ratings after ingestion of the different test meals,  

n = 6. 

Comparisons are based on repeated-measures ANOVA with post hoc Bonferroni multiple 

comparison tests. No significant main effects of treatment (P=0.053) and significant effect 

treatment-by-time interactions were observed (P=0.005).   
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Figure 2.12 Subjective “prospective consumption” ratings after ingestion of the different 

test meals, n = 6. 

Comparisons are based on repeated-measures ANOVA with post hoc Bonferroni multiple 

comparison tests. No Significant main effects of treatment (P=0.251) and significant effect 

treatment-by-time interactions were observed (P=0.002). 
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CHAPTER 3. PRE-INGESTION OF SLOWLY DIGESTIBLE STARCH-ENTRAPPED 

MICROSPHERES AFFECTS GASTRIC EMPTYING RATE OF A NON-

NUTRITIVE PASTE  

3.1 Abstract  

In the past, infusion of different carbohydrates solutions (glucose, hydrolyzed 

starch) in the distal part of the small intestine showed reduction in gastric emptying time, 

the ileal brake. However, the effect of distal glucose delivery on gastric emptying rate 

using a dietary carbohydrate approach has not been studied in humans. We hypothesized 

that slowly digestible carbohydrates given in a pre-meal load can be used to moderate 

nutrient delivery rate to the body through delayed gastric emptying.  Thus, the purpose of 

this study was to show how slowly digestible carbohydrates can be used to moderate 

gastric emptying rate. Institutional Review Board (IRB) Purdue University approval was 

obtained. Ten subjects [mean ± SD age: 28 ± 5.77 y; body mass index (in kg/m2): 22.32 ± 

1.86] participated in the study at four occasions separated by one week washout periods 

using a non-invasive 13C-labelled octanoic acid breath test method to evaluate the 

emptying rate of a non-nutritive viscous paste made from sodium alginate and agar.  

Breath samples were collected and analyzed. Polycose® solution, representing a rapidly 

digestible starch (maltodextrin) and slowly digestible, cooked and washed alginate-based 

waxy starch-entrapped microspheres (of variable digestion rates:  0.5 and 1.5% initial 

solution of alginate from which the beads were fabricated) were consumed as a preload, 

followed 20 minutes later by the 13C-labelled paste mixture. Paste alone was used as the 

control.   

The same thick paste presented different emptying rates depending on the preload. A 

comparatively fast emptying rate was observed when the paste was consumed alone [T 

(Lag) = 0.87 ± 0.08 h, T1/2 = 1.72 ± 0.10 h], whereas the slowest digesting starch 

microsphere (1.5% alginate) microspheres preload [T (Lag) = 1.64 ± 0.14 h, T1/2 = 2.82 ±
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 0.20 h] resulted in the slowest paste emptying rate as measured by the lag phase and the 

half emptying time parameters of the gastric emptying test (P < 0.05). Slowly digestible 

carbohydrate fabricated microspheres cause a slower gastric emptying rate and this may 

exist in slowly digestible carbohydrate-containing foods, and this property potentially 

could be incorporated into ingredient form. Slow gastric emptying has some potential 

benefits of controlling nutrient delivery rate after ingestion of a meal, moderating glucose 

response, and perhaps affecting appetitive response.
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3.2 Introduction 

The rate at which nutrients are digested and absorbed in the small intestine is at 

least somewhat dependent on food emptying rate from the stomach. Gastric emptying 

also plays a role in postprandial glucose response. Though not consistent in the literature, 

it has been shown to be directly proportional to satiety and hunger (Bergmann et al., 

1992), and is controlled by certain gut hormones [glucagon-like peptide 1 (GLP-1), 

peptide YY (PYY), and cholecystokinin (CKK)] related to appetite. Regulation of gastric 

emptying rate by macronutrients is known as the ileal brake mechanism which retards 

stomach emptying rate and overall gut motility through the release of gut hormones. 

Therefore, dietary factors that regulate gastric emptying of ingested food is of interest, 

since their understanding may help in controlling overall food intake.  

The role of macronutrients on small intestine gastric functions (secretions and 

emptying) has been studied in the past using intubation and perfusion techniques. The 

digestion products of the different macronutrients perfused in the ileum of the small 

intestine have been shown to have regulatory effect on gastric function by slowing gastric 

emptying rate (Miller et al., 1981; Apiroz et al., 1985; Layer et al., 1990; Siegle et al., 

1990). The intestinal phase is a major regulator of the movement of chyme to the 

duodenum (gastric emptying) to make nutrient digestion and absorption more efficient. 

Siegle et al. (1990) showed that when isoenergetic amounts of lipid (oleate), protein 

(amino acid), and carbohydrates (glucose) were perfused, glucose exerted the most potent 

effect in slowing small intestine motility. The effect of starch and its digestion products 

have been studied further and it has been shown that their moderating effect on gastric 

emptying is more potent when they are perfused in the ileum. Accordingly, the perfusion 

of carbohydrate solution (75% rice starch + 25% glucose) showed a reduction in gastric 

emptying of a homogenized mixed meal (60% carbohydrate, 20% protein, 20% fat) and 

this effect was more pronounced when an amylase inhibitor was added (Jain et al., 1989). 

The inhibition of intestinal α-amylase in humans showed a reduction in gastric emptying 

time of rice starch and an 85% decrease in peak rise of postprandial plasma glucose 

(Layer et al., 1986).   
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Slowly digested and absorbed carbohydrates have been shown to reduce the rise 

of postprandial glucose response (Jenkins et al., 1978) as well as influence the gastric 

emptying rate of foods. From our group, Venkatachalam et al. (2009) showed that when 

starch is entrapped in an alginate matrix in the form of microspheres, it exerts slowly 

digesting properties that lower glycemic and insulinemic response. Lower glycemic 

responses are directly associated with slow gastric emptying rates (Torsdottir et al., 1984; 

Mourot 1988), as well as higher satiating properties (Santangelo et al., 1998; Marciani et 

al., 2001). Thus, the consumption of slowly digestible carbohydrates within a meal or as a 

preload may help to regulate the gastric emptying rate of ingested foods resulting in 

controlled postprandial glucose response and energy delivery to the body. Such an 

approach has the potential of helping to prevent and manage chronic diseases related to 

metabolic syndrome (i.e. diabetes, cardiovascular disease, and obesity).    

The present study was designed to show how our fabricated microsphere-based 

slowly digestible carbohydrates affect gastric emptying rate. We hypothesized that slowly 

digestible microspheres given as a preload delay gastric emptying.   

3.3 Subjects and Methods 

This study protocol was approved by the Purdue University Institutional Review 

Board (IRB). 

3.3.1 Preliminary study 

A preliminary study was done to study the effect of the timing between ingestion 

of the preload and the 13C-labelled test meal on gastric emptying parameters (lag phase and 

half emptying time). The alginate (0.5%) based starch entrapped microsphere (SDS1 

preload) was tested at 10, 20, 30 minutes, and 1 hour before the 13C-labelled test meal. 

Polycose® as source of rapidly digested starch, and absorbed glucose, (polycose preload) 

was tested at 20 minutes. The 13C-labelled paste alone was used as the control. The 

preliminary study was conducted using the test meal and procedure described below in the 

respective sections.     
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3.3.2 Subject eligibility 

Eligibility criteria were:  males or females aged 20 – 50 years, normal body mass 

index (18 kg/m2 ≤ BMI ≤ 25 kg/m2), not under any medication, no history of any 

gastrointestinal disease or surgery, and no diabetes. A written consent form with IRB 

approval was obtained from each subject before his or her participation in the study.  

3.3.3  Test meals 

The test meal consisted of a non-nutritive viscous paste made up of sodium 

alginate (8 g, FMC Biopolymer Manugel GHB MGLGHB) and agar (4 g, Now Foods, 

Bloomingdale, IL 60108, USA). A 6% solution made with these two carbohydrates and 

200 mL of distilled water was cooked for 10 minutes. After that, 100 mg of 13C-octanoic 

acid (Sigma-Aldrich, St. Louis, MO, USA) was mixed into each subject’s weighed test 

meal portion (151.6 ± 1.1 g) as a tracer and the paste was cooled at room temperature. A 

preload material with different degrees of glucose release, as shown in Table 1, was given 

20 minutes before consumption of the labelled paste. A solution of Polycose® (Abbott 

Nutrition, Abbott Laboratories, Columbus, Ohio, USA) (Polycose preload), as a source of 

rapidly absorbed glucose, was prepared by mixing 25 g of powder in 200 mL of purified 

water. Two slow digesting, cooked, and washed alginate-based waxy starch-entrapped 

microspheres (SDS1 preload and SDS2 preload) with different starch digestion rates were 

used as sources of slowly absorbed glucose. The difference between SDS1 preload and 

SDS2 preload was the amount of the alginate forming the matrix around the starch (SDS1 

preload and SDS2 preload were processed with 0.5 and 1.5% alginate solutions). The 

processed, dried microspheres were cooked in water prior to using for 5 (SDS1 preload) 

and 20 minutes (SDS2 preload) in a pressure cooker (Nesco Digital Cooker, model PC6 – 

25, The Metal Ware Corporation Two Rivers, WI) in order to gelatinize the starch. After 

cooking, the microspheres were washed several times with distilled water to remove any 

free surface starch. The total starch content of the microspheres, after powdering with a 

ball mill, was determined using the Megazyme Total Starch kit (Megazyme International 

Ireland Ltd, Wicklow, Ireland). SDS1 preload and SDS2 preload material amount was 25 

g starch (dry weight basis).    
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The microspheres were subject to microbiological testing for Escherichia coli 

count, and total Coliforms and Salmonella (Covance Laboratories, Battle Creek, MI).  

3.3.4 Design  

Each subject was tested for four treatments (Polycose, 2 microspheres, control) on 

four different days, each separated by a washout period (Table 3.1, Figure 3.1). For the 

microspheres, subjects ingested the preload and 20 minutes later they consumed the 13C-

labelled paste. The same was done for the rapidly absorbed glucose Polycose treatment. 

The order of these conditions was randomly assigned.  

3.3.5 Procedure  

Gastric emptying was assessed using the 13C-octanoic acid breath test technique 

(Ghoos et al., 1993; Choi et al., 1997; Clegg et al., 2010). Subjects visited on four 

occasions, with a 7 day washout period. On each day, subjects were asked to come to the 

Food Science Department at 8:00 AM andwere provided the same test meal and preload. 

They were asked to refrain the day before from physical activity, alcohol, and natural 13C 

enriched food products such as corn-based products and cane sugar. They were instructed 

to fast overnight between 10:00 PM to 8:00 AM (~ 10 hours) prior to the test.  

Upon arrival, the preload with 100 ml water was given to subjects whom were 

instructed to consume it within 10 minutes. Twenty minutes later the test meal (13C-

labelled paste) was given with 100 ml of water and eaten within 10 minutes. Breath 

samples were taken in duplicate before the preload (used as a baseline value) and during 

4 h after consuming the test meal (the 13C-labelled paste mixture) in 15 min intervals. 

Breath samples were analyzed using a 13C breath analyzer (POCone, Otsuka Co., Japan), 

an infrared spectrophotometer that determines the ratio of 13CO2 to 12CO2 (Schadewaldt 

et al., 1997; Braden et al., 1999; Sanaka et al., 2007).   

 

Calculation of gastric emptying parameters  

The breath analyzer provides data in terms of the change in the 13CO2 DOB (delta over 

baseline, ‰), where the 13CO2/
12CO2 ratio of a sample gas is compared to the 

corresponding ratio of a reference gas (i.e. baseline value). Using this value, CO2 

production, percent dose 13C recovery per hour (PDR), and cumulative percentage dose 
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recovery over time (CPDR) were calculated (Ghoos et al., 1993; Braden et al., 2007; 

Haycock et al., 1978). CO2 production was assumed to be 300 mmol / (m2 body surface 

area x hour), with body surface area calculated using the formula developed by Haycock 

et al. (1978).  After calculating PDR and CPDR values from the obtained data set, these 

functions were modeled using the following equations to discern parameters related to the 

gastric emptying.  

y = 𝑎𝑡𝑏𝑐−𝑐𝑡  where y = percentage dose recovery per hour, t = time in hours, a, b, 

and c = constants.  

y = 𝑚(1 − 𝑒−𝑘𝑡)𝛽  where y = cumulative percentage dose recovery over time, t = 

time in hours, m, k, and β = constants and m = total cumulative dose recovery 

when time is infinite.  

Modeling of data was achieved by nonlinear regression using SAS statistical analysis 

software (v.9.2, SAS Institute Inc., Cary, NC) and was confirmed using a Macro program 

in Excel (Microsoft Corp., Redmond, WA).  Gastric emptying parameters were then 

calculated using the following formulas:  

Lag phase (i.e. time required for the 13CO2 excretion rate to attend its maximal 

level) (Sanaka et al., 2010).  

T (Lag) =  (𝑙𝑛𝛽)/𝑘    

Half emptying time (i.e. time necessary for half of the 13C dose to be metabolized) 

(Sanaka et al., 2010). 

(T1/2) = (−
1

𝑘
) × ln⁡(1 − 2

−
1

𝛽)  

 Statistical analyses  

Multiple comparisons of lag phase, half-emptying times, and values across treatments 

were performed using a randomized complete block design (RCBD) with post-hoc Tukey 

tests to form statistical groupings (α=0.05). 

3.4 Results  

3.4.1 Preliminary study 

In a preliminary study, two healthy volunteers (2 women) were used with a mean 

± SD age of 32.0 ± 11.3, weight of 54.4 ± 12.0 kg, height of 142.5 ± 24.8 cm. Table 3.2 
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shows the mean values of gastric emptying parameters [lag phase, T (Lag) and half-

emptying time, T1/2] of the different time points tested. Figure 3.2 represents T (Lag) and 

T1/2 of the different time points tested. Paste alone [T (Lag) = 0.87 ± 0.02 h, T1/2 = 1.37 ± 

0.08 h], and the paste given 20 minutes after preload 1 [T (Lag) = 1.01 ± 0.04 h, T1/2 = 

1.46 ± 0.09 h], followed by the paste given 1 hour after preload 2 [T (Lag) = 1.10 ± 0.03 

h, T1/2 = 1.73 ± 0.006 h] had the fastest emptying rate compare to paste given 10, 20, and 

30 minutes after preload 2. Ten minutes [T (Lag) = 1.53 ± 0.61 h, T1/2 = 2.49 ± 1.22 h], 

20 minutes [T (Lag) = 1.52 ± 0.009 h, T1/2 = 2.42 ± 0.10 h], and 30 minutes [T (Lag) = 

1.42 ± 0.53 h, T1/2 = 2.48 ± 1.09 h] after preload 2 presented slow gastric emptying rate. 

These preliminary results showed that 10, 20, and 30 minutes between the Preload 2 and 

the test meal exerted a greater effect on reducing gastric emptying of the ingested food. In 

the subsequent study, 20 minutes was chosen as the time between the preload and the test 

meal.     

3.4.2 Subject characteristics  

The 10 healthy volunteers (5 men and 5 women) were aged between 24 – 33 years 

old (28 ± 5.77 mean ± SD) with a mean (± SD) body mass indices (BMI) of 22.32 ± 1.86 

kg/m2. Their heights and weights were, respectively, 169.76 ± 13.71 cm, and 65.17 ± 13.87 

kg.  

3.4.3 Gastric emptying  

Figure 3.3 shows the mean rate of recovery of 13C in breath after ingestion of the 

13C-labelled octanoic acid infused test meal. The paste alone was characterized by a rapid 

increase in the 13C recovery followed by a quick decrease in recovery after 75 minutes. 

The paste consumed after Polycose preload had maximum recovery at 1 hour after 

ingestion followed by a somewhat slow decrease in recovery in comparison to paste 

alone. When SDS1 preload was given, the 13C-labelled test meal presented a moderate 

increase of the 13C recovery followed by a decrease after one and half hours compared to 

paste alone and preload 1. However, when SDS2 preload was given, the labelled test 

meal was characterized by a slow increase of recovery which peaked at 1.75 hours 

followed by a slow decrease after 2 hours in comparison to other treatments. Figure 3.4 

displays the cumulative percentage dose of 13CO2 recovered curves after ingestion of the 
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labelled test meal with octanoic acid. Table 3.3 shows the mean values of the gastric 

emptying parameters [lag phase, T (Lag) and half-emptying time, T1/2] of the different 

treatments. Figure 3.5 shows the T (Lag) and T1/2 of the different treatments. Paste alone 

[T (Lag) = 0.87 ± 0.08 h, T1/2 = 1.72 ± 0.10 h] had a fast emptying rate compared to the 

labelled paste with SDS1 and SDS2 preloads, but did not differ significantly in T1/2 from 

the paste with the Polycose preload. Polycose preload + paste [T (Lag) = 1.30 ± 0.08 h, 

T1/2 = 2.02 ± 0.11 h] did not differ significantly from the paste with SDS1preload, but had 

an emptying time faster than the paste with SDS2 preload. SDS1 preload [T (Lag) = 1.44 

± 0.05 h, T1/2 = 2.29 ± 0.05 h], and SDS2 preload (1.5% alginate microspheres) [T (Lag) 

= 1.64 ± 0.14 h, T1/2 = 2.82 ± 0.20 h] had similar T (Lag), but their T1/2 were significantly 

different from each other. SDS2 preload had the highest T1/2.    

3.5 Discussion  

Gastric emptying rate is influenced by post-gastric feedback (intestinal feedback) 

and gastric contribution (gastric distension), especially when a preload is given. 

However, it is unclear whether the gastric or post-gastric phase has a more predominant 

effect. A study using liquid preloads containing fat given 20 minutes before a test meal, 

suggest that stimulation of intestinal receptors delays emptying rate of the solid meal 

(Cunningham et al., 1989), whereas another study suggests that the volume of the preload 

remaining in the stomach is also a contributor to a slower emptying rate (Collins et al., 

1991). However, the timing between the preload and test meal itself is not the only factor 

to consider, as some have also not reported slower emptying when a solid meal is fed 20 

minutes after a soup preload (Spiegel et al., 1994).  According to the explanation in the 

last two studies, in our study one might expect that slower gastric emptying will be seen 

when the preload (microspheres) is given 10 minutes before the test meal, since a high 

amount of preload might still be in the stomach when the test meal is ingested. However, 

at 20 and 30 minutes before the test meal, when more of the preload is assumed to have 

emptied from the stomach, there were similar slow emptying rates of the test meal to 10 

minutes. Slow gastric emptying at these time points is speculated to be due to glucose 

release triggering the ileal brake mechanism, rather than the gastric distension caused by 

the preload.            
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In the preliminary study, similar emptying rates were seen when the paste was 

consumed 10, 20, and 30 minutes after the SDS1 preload (microspheres). A significant 

difference was seen between the gastric emptying parameters of the paste alone (control) 

and the paste with the SDS1 preload at these time intervals. Past 30 minutes, the half-

emptying time and lag phase began to decrease and were more closely related to the 

behavior seen when the paste was consumed alone. We used this as an indication that the 

starch microsphere preload may have already been digested into glucose and absorbed, 

and thus by the time the labeled paste was consumed, there was not enough stimuli to see 

a delay in gastric emptying rate. Twenty minutes was chosen as the timing between the 

preload consumption and the 13C-labelled paste as being an average point between 20 and 

20 minutes. This timing was also used by Cunningham et al. (1989) and Spiegel et al. 

(1994). Levels of GLP-1 and PYY, gut hormones that regulate gastric emptying, have 

also been shown to rise and peak within 20 minutes after meal consumption (Kim et al., 

2005).     

Previous studies showed that ileal infusion of glucose (Siegle et al., 1990), 

glucose and hydrolyzed starch (Lin et al., 1992), and a mixture of starch and maltose 

(Layer et al., 1990; Layer et al., 1995) retarded gastric emptying, decreased small 

intestine motility, and increased GLP-1 levels. The presence of nutrients in the distal 

small intestine triggers the secretion of gut hormones into the blood which in turn are 

involved in the ileal brake mechanism (Konturek et al., 2004; Leibowitz et al., 2004; 

Murphy and Bloom 2006). In this study, the preloads were given in order to stimulate the 

ileal brake mechanism through distal glucose release. The alginate coated starch 

microspheres were designed to have different glucose release rates and to test the effect 

of the location of nutrient delivery on gastric emptying through a dietary approach, rather 

than an infusion method.  

The results of this study show that the same non-nutritive thick paste presented 

different emptying rates depending on the type of preload. A fast emptying rate was 

observed when the paste was consumed alone and with the rapidly absorbed glucose 

(Polycose) preload, whereas the SDS1 and SDS2 microsphere preloads, both with slowly 

digestible starch, presented slower emptying rates of the paste as measured by the lag 
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phase and the half emptying time parameters of the gastric emptying test. The SDS2 

microspheres emptied the paste at the slowest rate. These results suggest that slowly 

digestible carbohydrates delivering glucose more distally into the small intestine have a 

moderating effect on gastric emptying rate by eliciting the ileal brake mechanism. 

We considered also the potential role of the physical form of the microspheres on 

gastric emptying rate, as form, size, and density of particles or particular food structures 

have been shown to influence gastric emptying rate. Nondigestible shapes such as a ring 

(3.6 cm of diameter) and a tetrahedron (2 cm each leg) were shown to be retained in 

beagle dogs for 24 hours (Cargill et al., 1988); though Fix et al. (1993) failed to show the 

same effect in humans or even larger dogs. When nondigestible particles with different 

size and density were ingested in different viscous solutions, it was only in the low 

viscosity fluid that particles segregated out with the small particles, with density similar 

to the meal, leaving the stomach with the first portion of the meal (Sirois et al., 1990). On 

the other hand, at higher viscosity, almost all particles emptied independently from their 

size and density. Furthermore, here too the smallest particles emptied when their density 

was close to that of the meal; but for the intermediate viscosity fluid, a fixed particle size 

with different densities showed different emptying rate. Podczeck et al. (2007) found that 

nondigestible dense tablets remain longer in the stomach than light ones; moreover, 

independent from density, the gastric emptying time of a 6.6 mm diameter tablet was 

longer than 12.0 mm diameter tablet. They explained that the small diameter tablet may 

stick to the folds of the empty stomach, whereas the larger ones on the surface of the 

folds. Tablet size (3-7 mm diameter) was not found to influence gastric emptying rate or 

small intestine transit in fed volunteers (Khosla et al., 1989), and in the same group 

showed that a nondigestible tablet has to be larger than the hole of the resting pylorus in 

order to be retained in the stomach longer. Important to our study, Kosha and David 

(1990) found only particles with 13 mm diameter and greater stay longer in the stomach. 

Microsphere size in the current study was about 300-800 µm in diameter. Taken together, 

and relevant to our study, small size particles with similar density to the meal will empty 

with the meal. We expect the microspheres used in this study may be emptied from the 

stomach at the same time with the non-nutritive paste.          
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Our findings show that when glucose is delivered distally in the small intestine, it 

slows gastric emptying rate of an ingested food assessed using a 13C-octanoic acid breath 

test. This supports the idea that slowly digestible carbohydrates cause slow gastric 

emptying rate properties that may have beneficial effect of control of nutrient delivery 

including extending energy delivery, and to moderate the glycemic response profile.
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Table 3.1 Preloads of varying glucose release rates fed to human subjects for gastric 

emptying rate measurements  

 

 

  

 

 

 

 

 

  

Preload # Preload Function 

- None Paste control 

1 Polycose© solution Rapid glucose release 

2 0.5%  alginate-coated 

starch microspheres 

Slower glucose release 

3 1.5% alginate-coated 

starch microspheres 

Slowest glucose release 
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Table 3.2 Gastric emptying parameters for the preliminary study  

Preload  - Glucose  0.5% SM  0.5% SM  0.5% SM  0.5% SM  

Test meal 

serving time  

Paste 

alone 
20 min 10 min 20 min 30 min 1 hour 

Lag phase, 

hours 

0.87 ± 

0.02 

1.01 ± 

0.04 
1.53 ± 0.61 

1.52 ± 

0.009 

1.42 ± 

0.53 
1.10 ± 0.03 

Half emptying 

time, hours 

1.37 ± 

0.08 

1.46 ± 

0.09 
2.49 ± 1.22 2.42 ± 0.10 

2.48 ± 

1.09 

1.73 ± 

0.006 

Values are means (± SD) of lag phase and half emptying time of the different test meals (n 

= 2).  Glucose and 0.5% SM (0.5% alginate coated starch microspheres) are the preloads. 

10, 20, 30 minutes and 1 hour are the different timing tested. 
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Table 3.3 Gastric emptying parameters  

 

 Paste alone  Preload 1   Preload 2    Preload 3  

Lag phase, 

T(Lag), hours  

0.87 ± 0.08 1.30 ± 0.08 1.44 ± 0.05 1.64 ± 0.14 

Half emptying 

time, T1/2, hours  

1.72 ± 0.10 2.02 ± 0.11 2.29 ± 0.05 2.82 ± 0.20  

Values are means (± SEM) of lag phase and half emptying time of the different test meals 

(n = 10).  
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Figure 3.1 Design for assessing gastric emptying rates of human subjects using starch-

entrapped microspheres and alginate paste.  
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Figure 3.2 Gastric emptying parameters. 

Mean of lag phase (gray bars) and half emptying time (black bars) of the different timing 

tested (n=2). Glucose and 0.5% SM (0.5% alginate coated starch microspheres) are the 

preloads. 10, 20, 30 minutes and 1 hour are the different timing tested. 
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Figure 3.3 Curves of 13CO2 excretion in breath (%dose/h) after ingestion of the different 

test meals. 

Values are mean of excretion measured in 10 subjects. 
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Figure 3.4 Curves of the cumulative breath 13CO2 excretion over time after ingestion of 

the different test meals. 

Values are mean of excretion measured in 10 subjects. 
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Figure 3.5 Gastric emptying parameters. 

Mean (± SEM) of lag phase (gray bars) and half emptying time (black bars) of the 

different test meals. Comparisons are based on complete randomized block design 

(RCBD) with post-hoc Tukey’s multiple comparison test (α = 0.05). Different letters 

indicate statistically significance differences between treatments.
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CHAPTER 4. ASSESSMENT OF STARCH DIGESTION IN MODERATELY 

MALNOURISHED MALIAN TODDLERS AND IDENTIFICATION OF BETTER 

ENERGY PROVIDING STAPLE FOODS 

4.1 Abstract  

Starches are a dominant source of dietary energy in complimentary feeding of 

growing toddlers. Glucose is the only carbohydrate oxidized by the brain, and in toddlers, 

40% of the glucose needed for brain metabolism comes from the diet with the remainder 

produced by endogenous gluconeogenesis from amino acids, lactate, glycerol, and fatty 

acids. After weaning, dietary glucose is generated primarily from starch which is the 

main component of most complimentary foods. Young infants lack secreted α-amylase 

until weaning and after this period malnourished toddlers have been shown to continue to 

have reduced α-amylase activity. We hypothesized that malnourished (stunted) weaned 

toddlers have impaired ability to digest starch due to developmental and/or nutritional 

pancreatic α-amylase insufficiency which impedes normal growth when fed with the 

sorghum porridges used at home. A new, non-invasive modified 13C-breath test (BT) was 

used to assess α-amylase activity, the ability to digest sorghum starch, and to evaluate the 

gastric emptying of sorghum porridge in healthy (n=16) and moderately stunted toddlers 

(n=32) from 18 – 30 months of age in Bamako, Mali. Four different 13C-labelled 

substrates (uniformly labeled algal starch, uniformly labeled algal limit dextrins, partially 

enriched sorghum, and uniformly labeled octanoic acid) were fed on separate days. Serial 

breath samples (every 15 min for 3 hours) were collected and analyzed using a 13CO2 

infrared spectrophotometer. We found that α-amylase insufficiency was present in both 

Malian healthy and stunted toddlers. However, children with α-amylase insufficiency 

digested, absorbed, and oxidized the released glucose from normal sorghum porridge as 

well, and in some cases even better than, as the healthy group; indicating that the α-

glucosidases compensate for the α-amylase insufficiency, and particularly well in the
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 stunted group. A thicker porridge and its α-amylase thinned counterpart were still 

digested well by the stunted group. There was no difference in the gastric emptying rate 

parameters between the healthy and stunted groups. We conclude that:  1. α-amylase 

sufficiency can be tested by a non-invasive breath test method using 13C-starch substrate, 

2. the digestion of sorghum porridge starch to glucose was unrelated to α-amylase 

sufficiency, 3. sorghum porridge, even in a thick form, is a starch-containing 

complimentary food that is well digested because of sufficient α-glucosidase activities in 

Malian weaned children, 4. the stunting of Malian children was unrelated to sorghum 

feeding and starch digestion to glucose because these children digested the sorghum 

porridge to glucose as well as the healthy group. This work suggests that thick energy 

dense porridges supply digestible carbohydrates to stunted children, and suggest that they 

could be used in supplemental feeding programs. 
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4.2 Introduction 

 Digestible carbohydrates, which are mainly from starchy foods, are the main 

source of dietary energy in growing children after weaning; the period when non-breast 

milk food is introduced to the child until the stoppage of breastfeeding. Weaning foods in 

Sahelian West Africa are cereal-based and starch is their major component. Glucose is 

needed for a developing weaned child, not only as the principal dietary energy source, but 

also for brain development. Glucose is the only energy molecule utilized by the brain, 

and in children, 40% of the glucose needed for brain development comes from the diet 

(Chugani, 1998; McCall, 2004). After weaning, glucose mainly originates from starch in 

complementary foods. There are different types of enzymes which are responsible for the 

digestion of starch. They are salivary α-amylase, pancreatic α-amylase, and the brush 

border or mucosal α-glucosidases (Dewit et al., 1990). There also is α-amylase in breast 

milk, which may help children digest starch from weaning foods (Lindberg and Skude, 

1982; Dewitt et al., 1990).  Salivary α-amylase is present in the early stage of gestation 

(by 20 weeks) and is present, but with low activity, at birth. After birth, its activity 

increases to reach a high level by the third month (McClean and Weaver, 1993; Christian 

et al., 1999).  Pancreatic α-amylase, the more important of the two α-amylases for starch 

digestion, is not detectable during the gestation period and its activity starts to increase 

after 1 month after birth, reaching a high level after 24 months of age (weaning age) 

(McClean and Weaver, 1993; Christian et al., 1999). The brush border α-glucosidases are 

present in infants and they have full activity at birth (Auricchio et al., 1965; Raul et al., 

1986).   

The weaning process, with the introduction of non-milk foods, influences the 

development and the quantity of pancreatic α-amylase secreted. For example, the 

consumption of a carbohydrate-rich diet increased α-amylase activity in rats (Snook et 

al., 1971). Zoppi et al., (1972) showed that addition of starch or protein to the milk of 

preterm children resulted in increased secretion of α-amylase, and trypsin and lipase in 

their duodenal aspirates.   

Since the 1950’s, it has been known that malnutrition causes insufficiency of 

pancreatic enzyme production, including α-amylase that digests starch (Thompson and 
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Trowell, 1952). Watson et al. (1977) showed suppressed α-amylase activity in tears, 

saliva, and serum of marginally and severe malnourished Colombian children. α-Amylase 

activity was more diminished in older toddlers with severe malnutrition. Later studies 

provided additional evidence of α-amylase insufficiency in children with moderate 

malnutrition. Pancreatic function insufficiency was found which included markedly lower 

amylase activity in duodenal aspirations of Abidjan children with kwashiorkor (73.9 

U/ml) compared to healthy control African children (186.9 U/ml) and French children 

(263.5 U/ml); and in Dakar children both clinically malnourished and control (moderately 

malnourished) patients showed low amylase activity of 50.2 and 109.7 U/ml, respectively 

(Sauniere et al., 1988). In a portion of the children with kwashiorkor in Abidjan, the 

alteration of the pancreatic function disappeared after refeeding (Sauniere et al., 1986).  

The low luminal pancreatic α-amylase concentration in young children resulted in 

high amount of resistant starch which may have contributed to diarrhea through high 

osmotic load (Christian et al., 1999; Teitelbaum et al., 2003). 

An extension of the above studies is that marginally and severe malnourished 

children with low pancreatic function may have starch digestion problems which interfere 

with their development and proper growth. Bandsma et al. (2011) reported altered 

glucose absorption in severely malnourished children. The malnourished state most often 

occurs during the period when solid food (weaning food) is introduced into a children’s 

diet, usually occurring after 6 months of breastfeeding (Weaver, 1994).  

In developing countries, these weaning foods are generally local cereal-based 

gruels that are in essence thinned porridges. An inherent problem with these foods is that 

they are relatively low in flour content and are thus deficient in energy and nutrients. 

Various approaches have been used to increase energy density to achieve the same thin 

porridge consistency with higher energy content; such as addition of malted grain flour or 

through fermentation, both of which introduce amylases to break down the large starch 

molecules that create viscous flow (Weaver et al., 1995; Tou et al., 2007a, b). For 

example, addition of oil (Hellstrom et al., 1981), and increase in flour amount with use of 

malt or commercial α-amylase to reduce the viscosity of the bulky foods by increasing 

the energy density (Weaver et al., 1995; Moursi et al., 2002; Onyango et al., 2004) have 
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been used. Songre-Ouattara et al. (2009, 2010) used fermentation with amylolytic lactic 

acid bacteria to improve porridge energy density for children using African local pearl 

millet mixed with groundnut or soybean. However, findings from different studies gave 

different results regarding how the increase of the energy density and/or lowering the 

viscosity of the weaning foods affected overall energy intake.  For example, Weaver et al. 

(1995) showed that partial digestion of a weaning food using amylase-rich flour 

(decreasing the viscosity) resulted in an increase in digestion and absorption. On the other 

hand, other studies showed that the total daily energy intake from an amylase-treated 

thick energy-dense porridge was not significantly different from the non-treated one 

(Stephenson et al., 1994; Moursi et al., 2002).   

Non-invasive breath tests have been used to assess the effect of diet on different 

processes and metabolic pathways in different organs such as the pancreas, the small 

intestine; as well the emptying rate of the stomach (Hiele et al., 1995; Weaver et al., 

1995; Pelton et al., 2004; Parra et al., 2006; Robayo-Torres et al., 2009; Van Den 

Driessche et al., 1999). The principle of this method is based on the fact that after 

ingestion of a 13C-labelled substrate, 13C will appear in the breath after metabolism and 

oxidation of the substrate. It has been used for starch digestion assessment, as was 

demonstrated by Dewit et al. (1992) and Amarri et al. (1998) who showed impaired 

starch digestion using a 13C breath test technique in children 25-48 months and 4-15 

years, respectively, with cystic fibrosis. In the case of gastric emptying assessment, the 

rate limiting step of the presence of 13C in the breath is the passage of the substrate from 

the stomach to the duodenum.  The breath test can also be used as an indicator of starch 

digestion and absorption of glucose. The principle is based on 13C-rich starch being 

hydrolyzed to glucose which is then transported to the liver and its oxidation leads to the 

presence of 13CO2 in the breath. This is measured and provides information on the 

digestion of the starch. The rate limiting step this time is starch hydrolysis by the 

different enzymes.  

Different invasive techniques have been used to measure exocrine pancreatic 

functions, including pancreatic α-amylase activity. Those techniques, such as duodenal 

aspirations (Sauniere et al., 1986; Sauniere et al., 1988), serum, urine, and tears collection 
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(Ceska et al., 1969; Watson et al., 1977) can be difficult to perform, expensive, and 

require a specialized medical operator and facilities. In this study, through work with Dr. 

Buford Nichols, Baylor College of Medicine, a novel non-invasive 13C breath test method 

was used to assess the pancreatic α-amylase insufficiency in healthy and malnourished 

stunted infants in Mali.        

The purpose of this study was:  1) to assess and compare the pancreatic α-amylase 

activity among stunted and healthy children between 18 – 30 months using a novel non-

invasive 13C-breath test technique, 2) to evaluate and compare the digestibility of 

common and modified starch-based sorghum porridges in stunted and healthy children, 

and 3) to evaluate the gastric emptying rate of sorghum porridge in stunted and healthy 

children. Simple, safe, and noninvasive 13C-breath test methods were used to diagnose α-

amylase insufficiency and to determine the relative efficiency of starch digestibility. 

4.3 Subjects/Materials and methods 

This study design was developed and the study was conducted in collaboration with 

Dr. Buford Nichols, USDA Children’s Nutrition Research Center, Baylor College of 

Medicine and Dr. Atossa Rahmanifar, nutrition consultant. At the study site, Centre 

Hospitalier et Universitaire Gabriel Toure in Bamako, Mali, collaborators were Drs. 

Toumani Sidibe, Mariam Sylla, and Hawa Diall. All field work in Bamako was 

performed by Fatimata Cisse with assistance of Dr. Hawa Diall . Funding was provided 

by the Bill and Melinda Gates Foundation.  

4.3.1 Subject eligibility  

A written consent form was obtained from the parents or caretakers for the 

participation of their child to the study, which was approved by the National Ethical 

Committee for Health and Life Sciences in Mali and the Institutional Review Board of 

Purdue University. Demographic characteristics were collected from parents including 

mother’s age, education level, and occupation. Eighty children were screened for their 

eligibility based on whether they were weaned or not, and the birth date on their issued 

Malian health card. Fifty-five children, between 18 to 30 months (at the recruitment 

time), were selected and recruited from the above eighty based on their availability for 

the duration of the study and whose parents had signed an informed consent. Their 
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weight and height were measured and used to determine their Z-score. Seven children 

had to be withdrawn from the study, because were not able to perform the breath test. 

Thus, sixteen healthy (control group) and thirty-two stunted moderately malnourished 

(treatment group) children participated and completed the study. They were aged 18 – 30 

months (25 ± 3.24 mean ± SD) with a mean (± SD) height of 82 ± 4.32 cm, and weight of 

10.14 ± 1.1 Kg. The entry criteria for the treatment group were stunted weaned children 

in the age range 18 – 30 months with height-for-age Z-score (HAZ) below -2.0 (HAZ<-

2.0). The entry criteria for the control group were healthy weaned children in the same 

age range as the stunted group. Children were excluded who were younger than 18 

months and older than 30 months, wasted with weight-for-height Z-scores lower than -2.0 

[wasting refers to a short-term response to insufficient intake and when the weight for 

height Z-score is lower than -2 the child can be moderately (-2 > Z-score ≥ -3) or 

severely (Z-score < -3) wasted], acutely ill, under any medication, presented any 

gastrointestinal, cardiovascular or respiratory disorders, and had any other medical 

problem (health issue) rather than their malnutrition status.  

4.3.2 Materials  

A Malian sorghum variety with double usage (high grain quality and feed value) 

“DARREL KEN” was selected for making the different porridges. This variety was 

derived from the crossing of an improved Guinea-type variety (N’Tenimissa) and a local 

Guinea type variety (Seguetana) for grain quality and yield. 13C-labelled algal starch 

(UL-algal starch-13C) was purchased from Isotec, Inc. (Sigma-Aldrich, Miamisburg, 

OH) and UL-algal limit dextrins (LDx) was made in our laboratory by hydrolyzing 13C 

algal starch with α-amylase for 120 minutes to produce 13C α-limit dextrins (with 

assistance by Dr. A. Lin). 13C greenhouse-enriched brown sorghum (CSC3XR28 – F1 

hybrid) (Awika et al., 2003) was obtained from collaborator Dr. M. A. Grusak at the 

USDA-ARS Children’s Nutrition Research Center (Baylor College of Medicine, 

Houston, TX). Labelled sorghum flour was obtained by decorticating and milling the 

enriched sorghum grains. Briefly, the grains were decorticated to remove the bran layers 

using a tangential abrasive dehulling device (TADD) (model 4E-110/230, Venables 

Machine Works LTD, Saskatoon, Canada) for 3 minutes. Decorticated grains were 
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collected using a sample collector attached to a vacuum and milled using a coffee grinder 

with a Chamber Maid Cleaning System (Mr. COFFEE, model IDS75/IDS76/IDS77, 

Boca Raton, FL). Total starch and tannin contents of the labelled sorghum were 

determined using the Megazyme Total Starch Assay kit (Megazyme, Bray, Co. Wicklow, 

Ireland) and the vanillin test (vanillin and vanillin/HCL tannin determination) procedure 

described by Earp et al., (1981). A food-grade thermostable α-amylase was obtained 

(Food Enzymes, Dupont™ Genencor® Science). 13C-octanoic acid was purchased from 

Sigma-Aldrich (St. Louis, MO).      

4.3.3 Test meals  

A cursory survey was conducted to inventory the different types and composition 

of the weaning foods generally given to children in Bamako (Mali).  Sorghum flour was 

chosen to prepare the porridges, because sorghum is one of the most important staple 

cereal crops in Mali and was found to be typically used to prepare weaning porridge. All 

porridges were prepared at the time of each day’s test based on typical preparation 

method of the weaning food in Mali. Briefly a slurry was made of the flour and 1/3 of the 

water amount (200 mL), and added to the remaining 2/3 boiling water. Lemon juice was 

added for taste, and the mixture was cooked for 6 minutes. As 13C was used as a tracer in 

the studies, background 13C was kept to a minimum. For this reason, sugar from beet, as a 

C3 low 13C plant, was used instead  of cane sugar, as cane is a C4 plant higher in 

endogenous 13C (Schoeller et al., 1980). Porridges were fed at around 37 ºC. Preliminary 

testing on four children and two nurses was to determine the appropriate sweetness level 

and to determine the amount of porridge that can be consumed by the targeted age range 

children (18 – 30 months). An objective was that the whole amount of labelled substrate 

was consumed by each child in each test period. The composition of the porridges is 

given in Table 4.1. 

4.3.4 Procedure  

4.3.4.1 Study design  

The study was done in Bamako, Mali at the Nutrition Center of the Centre 

Hospitalier et Universitaire Gabriel Toure. Children enrollment was done over a 6 
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months of period, and their time of participating was dependent on their availability. A 

maximum of four children were tested at one time. Upon enrollment, children were 

scheduled for the following Monday for six consecutive days of testing, or any a future 

week suitable for the mothers or caretakers. Children were tested on each day in the 

presence of one of the parents or a caretaker, if the parent was not available. The 

porridges were prepared as indicated in Table 4.1 and the child was monitored to 

consume all the amount prepared. The recruited children and their parent or caretaker 

were instructed to come to the Center on the test days with the child beginning the test 

after at least 3 hours of fasting. The test meal was given orally within a time limit of 15 

minutes and breath samples were collected in breath bags before (two breath samples at 

basal condition – 1.5 L each, aluminum lined) (Cambridge Isotope Laboratories, INC 

Andover, MA) and after test meal ingestion every 15 minutes for 3 hours. The breath 

collection consisted of blowing into a small breath bag (300 mL, aluminum lined QCH-

1524) (Cambridge Isotope Laboratories, INC Andover, MA). The collected breath 

samples for each child and at each time point were analyzed for the presence of 13C in the 

expired CO2 using a non-dispersive infrared spectrophotometer (POCone, Ostuka Co, 

Japan) (Robayo-Torres et al 2009). The measured 13C enrichment (DOB delta over 

baseline) in the expired CO2 is the difference of the CO2 abundance of a measured breath 

sample from the reference 13CO2 abundance (the baseline breath sample). Appropriate 

age matched toys were available for play during the testing period. All recruited children 

were successfully tested for all the treatments and at all-time points; there were no 

missing data points. Since the length of each test day was 3 hours, and to avoid the 

children getting hungry, a sweetened rice porridge was served midway into the test period 

(11/2 hours after the test meal was ingested). Rice was chosen for this porridge, since it is 

a C3 crop low in 13C (Schoeller et al., 1980); beet sugar was used as a sweetener.    

4.3.4.2 Determination of the prevalence of pancreatic α-amylase deficiency 

4.3.4.2.1 Principle and method  

The method, proposed by B. Nichols, used to assess pancreatic α-amylase 

insufficiency in this study is a novel non-invasive 13C-breath test technique which uses a 
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starch substrate fully enriched with a non-radioactive 13C stable isotope. The method 

requires the use of 13C-labelled algal starch and 13C-labelled LDx and involves the 

measurement of the ratio of 13C isotopes present in breath CO2 after ingestion of meal 

containing the above substrates on two separate days (Day 1 and Day 2).  The principle is 

that LDx, which is already predigested by α-amylase, by-passes pancreatic α-amylase 

digestion and goes directly to the mucosal α-glucosidases for digestion to glucose; while 

the algal starch must be digested by pancreatic α-amylase prior to glucogenesis. Thus, the 

test is a measure of sufficiency of pancreatic α-amylase to digest starch. Expired 13CO2 in 

the breath which is the end-product of the oxidative metabolism is collected and its 13C 

enrichment measured. 

4.3.4.2.2 Procedure  

To test for α-amylase insufficiency, sorghum porridge was prepared with 16 g of 

sorghum flour mixed with one of two different 13C labelled substrates (25 mg of UL-algal 

starch and 25 mg of UL-algal LDx), and were fed on two separate days respectively (Day 

1 and Day 2). The ability to digest the starch was assessed according to the procedure 

outlined in the study design section of Christian et al. (2002).  

4.3.4.3 Evaluation of the digestibility of starchy foods 

Three different sorghum porridges with a portion (500 mg) of 13C greenhouse-

enriched sorghum flour were fed in three separate days: common sorghum porridge (Day 

3), shear modified and thickened sorghum porridge (Day 4), and α-amylase pre-treated 

Day 4 modified sorghum porridge (Day 5).  

4.3.4.3.1 Common sorghum porridge (Day 3)  

To test for the starch digestibility of a common Malian weaning food in healthy 

and malnourished stunted children, sorghum porridge was prepared as described above 

(Sec. 4.3.3) with 16 g of sorghum flour mixed with 500 mg of 13C greenhouse-enriched 

sorghum flour and was fed on Day 3.  
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4.3.4.3.2 Shear modified and thickened sorghum porridge (Day 4) and the same 

porridge pre-treated with α-amylase (Day 5) 

For Days 4 and 5, porridges were prepared with 20 g of sorghum flour plus 10 g of 

waxy corn starch (almost double of the dry matter (flour) quantity used in Day 3), mixed 

with 500 mg of 13C greenhouse-enriched sorghum flour, and shear was applied to the 

cooked porridge for 3 minutes. This created a thicker porridge for Day 4 treatment. For 

Day 5, the porridge was pre-treated with food-grade thermostable α-amylase (Food 

Enzymes, Dupont™ Genencor® Science) before consumption. The aim was to compare 

the digestibility of a shear modified thicker sorghum porridge before and after α-amylase 

pretreatment in healthy and malnourished stunted children. The children were tested with 

the same breath testing procedure as described above. 

4.3.4.4 Determination of the viscosity of the porridges in Days 3, 4, and 5 

Viscosity is one of the most important flow properties related to the quality of thin 

porridges, and is defined as a liquid substance’s resistance to flow [shear stress 

(force/area) over shear rate (velocity/distance)]. Viscosity of the porridge samples was 

determined by a flow curve measurement method using a dynamic mechanical rheometer 

(AR-G2 Rheometer, TA Instruments, New Castle, DE). A cone-plate assembly was used 

to assess the viscosity of the porridge samples using steady shear measurement with 

controlled stress. After warming the instrument, a small portion of porridge sample was 

loaded onto the plate and the viscosity was determined up to a shear rate of 300/s at 37ºC. 

The experiment was carried out at constant stress and the same stress was used for all 

samples. Analyses were performed in duplicate.      

4.3.4.5 Evaluation of the gastric emptying rate of the modified thick sorghum porridge 

(Day4)  

In this case, the same 13C breath test was used, but the 13C source was octanoic 

acid (UL-octanoic acid), instead of the 13C-labeled sorghum starch (Veereman-Wauters et 

al 1996; Van Den Driessche et al., 1999). The 13-labelled octanoic acid was mixed with 

the modified sorghum porridge used on Day 4. The procedure used is described in detail 

in Chapter 2. 
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Calculation 

The raw data collected from the 13C spectrophotometer analysis of the breath bags 

does not imply the actual CO2 production from each individual. Age, gender, weight, and 

height are parameters that influence CO2 production. For example, adults produce more 

CO2 than children; likewise males typically produce more than females. Therefore, 

normalization of the raw data was necessary to avoid bias in the estimation of the 

enrichment level of the breath 13CO2 by the internally produced CO2. CO2 production was 

estimated by using the method adopted by Klein et al. (1999). The obtained adjusted 

13CO2 breath enrichment values represent an indication of the degree of digestion of the 

different substrates. The higher the values signifies that more substrate has been digested.  

The adjusted 13CO2 breath enrichments for all time points (from 0 to 180 min) were 

summed for each child and for each substrate. Healthy control subjects were used to 

define the horizontal (Y-axis) and the vertical (X-axis) lower reference levels (LL) 

defined as mean – 1SD for each substrate. This concept is used in the medical field as a 

basis to interpret the results for the treatment groups. Therefore, the lower reference level 

from the healthy group was used to compare the children’s ability to digest the different 

13C enriched substrates on the different testing days, thus in indicating their degree of 

starchy food digestion.  

Calculations used to determine pancreatic amylase sufficiency were performed as 

follows. The sum of the 13CO2 breath enrichment of 13C-limit dextrin (Day 2) was 

divided by the sum of 13CO2 breath enrichments of the 13C-algal starch (Day 1), and this 

ratio was termed “α-amylase sufficiency” [α-amylase sufficiency (D2/D1) =  13C-limit 

dextrin /  13C-algal starch]. A histogram implies that when D2/D1 is lower than 1, then 

full pancreatic maturity has occurred. The amylase sufficiency ratio was used to classify 

the children based on their pancreatic maturity:  

 Sufficient -amylase amplification (ratio < 1.0, thus full pancreatic maturity has 

occurred) 

 Moderate -amylase insufficiency (ratio is between 1 to 2) 

 Severe -amylase insufficiency (ratio > 2) 

Statistical analysis 
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Comparisons of lag phase, half-emptying times and values across foods were 

analyzed by one-way repeated-measure ANOVA with post-hoc Tukey tests used to form 

statistical groupings (α=0.05). For each comparison made, P < 0.05 was considered 

significant.  

4.4 Results  

4.4.1 Pre-test questionnaire on weaning food practices 

Thirty women were interviewed on weaning practices in Bamako, Mali. The 

results showed that all were providing weaning food to their child or children in the form 

of porridge made from local cereal crops (sorghum, millet, maize, rice), plus sometimes 

wheat and soy bean. Eleven women were providing only one type of weaning food 

[porridge made with sorghum or millet or composite flour (millet, sorghum, maize, rice, 

soy bean, pea)], five mothers were feeding their children with 2 types of weaning foods 

(the porridge plus a soup made with fish or meat), and 14 were giving multiple types of 

weaning foods such as porridge, soup, and/or fruit juice, egg, and vegetable puree. These 

weaning foods were given in different frequencies; eight women were serving their 

children these foods once a day, seven were providing them twice a day. Seven mothers 

fed their children 3 times/day, whereas the rest of the women fed their children it was 

more than 4 times/day. Among the children (18 girls and 12 boys); four were under than 

12 months, 16 were between 12 – 18 months, and 10 more between 18 – 30 months. 

Fifteen children were breastfed and the rest had been weaned. 

4.4.2 Household demographic characteristics  

Table 4.2 shows the demographic characteristics of the children’s mothers. There 

were 46 interviewed mothers and 98% of them were married. The mean age of the 

mothers was about 28 years and none of them had a university education level. Thirty-

seven percent of the mothers had attended school and only 13% were still in school. 

Overall, 63% were illiterate and 74% were housewives.  

4.4.3 Subject characteristics  

Table 4.3 reports the anthropometric characteristics of the recruited children. The 

16 healthy children (healthy group:  8 boys and 8 girls) were of a mean age of 25 ± 3.4 
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months a mean height of 86.2 cm, and a mean weight of 11.1 kg. The 32 stunted, 

moderately malnourished children (treatment group, 12 boys and 20 girls), who finished 

the study, were of a mean age of 25 months, a mean height of 79.9 cm in height, and a 

mean weight of 9.6 kg . There was a significant statistical difference in height and weight 

between the healthy stunted groups at (P < 0.001). The healthy group had a significantly 

greater height and weight than the stunted group. As a whole, the children had a mean 

age of 25.0 months, a mean height of 82.0 cm, and a mean weight of 10.1 kg. The 

individual characteristics of the children in the study are given in Table 4.4.   

4.4.4 Pancreatic α-amylase insufficiency 

4.4.4.1 Healthy group  

The 13CO2 breath enrichment values which indicate the digestion rate of the 13C-

labelled algal starch in Day1 and 13C-labelled LDx in Day 2 for the individuals in the 

healthy group are shown in Figure 4.1 and 4.2, respectively. Figure 4.2 shows that the 

13C-labelled LDx (predigested algal starch) was well digested by all children compared to 

the undigested algal starch (Figure 4.1), with the exception of children #22, 23, and 39. 

This is illustrated better in Figure 4.3 which reveals that the mean-derived digestion rate 

profile of Day 2 is significantly greater than the rate profile of Day1 (p-value=0.0045). 

The mean 13CO2 enrichment level for Day 2 peaked at 105 minutes (151.6‰), while the 

one for Day 1 reached its highest digestion point at 120 minutes (101.6‰), 

4.4.4.2 Stunted group  

The 13C-labelled algal starch (Day 1) and the 13C-labelled LDx (Day 2) digestion 

rate profiles for the individuals in the stunted group are presented in Figures 4.4 and 4.5, 

respectively. These figures show that the stunted group follows the same trend as the 

healthy group for both days, although this group had a somewhat higher number of 

children with low digestion rates for Day 2. As in the healthy group, the average 13C 

enrichment level for Day 1 in the stunted group peaked at 120 minutes (106.2‰) and Day 

2 at 105 minutes (137.9‰) (Figure 4.6). Overall, in both groups the porridge in Day 2, 

containing the 13C-labelled LDx was digested better than in Day 1, where there was the 
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undigested algal starch and indicates that pancreatic α-amylase was insufficient to reduce 

it adequately to LDx for rapid α-glucosidase digestion to glucose. 

In both groups (healthy and stunted), individual children sometimes digested the 

two substrates quite differently and sometimes unexpectedly (13C-labelled algal starch 

and predigested 13C-labelled algal starch), with examples illustrated in Figures 4.7, 4.8, 

4.9, 4.10, and 4.11. Figure 4.7 shows a low algal starch digestion rate (Day 1) and high 

LDx digestion rate (Day 2) in a healthy child (#25), therefore indicating insufficient 

pancreatic α-amylase. Contrarily, child #39 (also healthy) was able to digest the algal 

starch, but not the predigested algal starch (Figure 4.8). Figure 4.9 displays the digestion 

rate profile of a healthy child (#23) who was not able to digest either of the labelled 

substrates (algal starch and predigested algal starch). Figures 4.10 & 4.11 show two 

stunted children (#18 & 16) with different digestion profiles as we saw in the healthy 

group. Figure 4.10 shows a stunted child having low algal starch digestion (Day 1), but 

high LDx digestion rate (Day 2). On the other hand, Figure 4.11 displays the digestion 

profiles of a stunted child who was not able to digest either of the substrates on both days. 

In the following figures, presentations are made both including these children and 

considering them as outliers. 

It is seen in Figures 4.12 and 4.13 that both healthy and stunted groups digested 

the 13C-labelled algal starch and the 13C-labelled LDx (predigested 13C-labelled algal) 

similarly as seen in 13C breath enrichment profiles (p-value=0.26 for both groups). This is 

supported by the plot of the sum of 13C breath enrichments for Day 1 vs. Day 2 for all 

children in Figure 4.14 which shows that most, whether healthy or stunted, are clustered 

above the horizontal line (87.5%) and to the right of the vertical line (89.6%). Children 

that are below the horizontal line (12.5%) have a poor starch digestion rate, as well as the 

ones that are on the left side of the vertical line (10%). The latter have either a mucosal α-

glucosidase problem or any other associated digestion or absorption problems, because 

were not able to digest further an already predigested algal starch. The histograms in 

Figure 4.15 displays the distribution of the children (healthy on the left and stunted on 

the right) based on their pancreatic α-amylase amplification (insufficiency) ratio which is 

an indicator for their pancreatic α-amylase maturity. When this ratio is lower than 1 that 
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means pancreatic α-amylase maturity occurs, therefore it is sufficient; whereas when the 

ratio is greater than 1, pancreatic α-amylase is insufficient. Most of the children were 

between 1 and 2 (moderate α-amylase insufficiency); and relatively few of them were 

amylase sufficient (around 20 % for each group). The plot of the α-amylase amplification 

ratio (D2/D1) by age in all children shows that α-amylase insufficiency is seen in all 

tested age groups and is somewhat more pronounced after 20 months (Figure 4.16). The 

results in Figure 4.16 show that most subjects in the study, whether stunted or healthy, 

have α-amylase insufficiency as estimated by α-amylase amplification (D2/D1) [their α-

amylase amplification ratio is higher than 1( > 1.0)]. Thus, at 18 – 30 months, α-amylase 

insufficiency was common in both the healthy and stunted children studied in Bamako, 

Mali. The α-amylase amplification (D2/D1) ratios are given in Tables 4.5 and 4.6 for 

healthy and malnourished stunted groups. 

4.4.5 Measurement of the digestibility of starchy foods 

4.4.5.1 Digestion of the common sorghum porridge in Day 3 

Figures 4.17 and 4.18 show the 13CO2 breath enrichment levels for the healthy 

and the stunted groups, respectively, after ingestion of the  common sorghum porridge 

(Day 3), demonstrating their digestion rate profiles of the porridge. Healthy and 

malnourished stunted children digested the common sorghum porridge at the same rate 

(p-value=0.16) (Figure 4.19). The plot of the 13CO2 breath enrichment in Day 3 vs Day 1 

reveals that most of the children who digested the algal starch (right hand of the vertical 

line) were able to digest  the common  sorghum porridge, with the exception of few 

children (~ 10 % - children below the horizontal line) (Figure 4.20). Figures 4.21, 4.22, 

and 4.23 show the relationship between digestion rate of the common sorghum porridge 

(Day 3) and the amylase insufficiency ratio for healthy and malnourished stunted 

children. The results show that almost all of the children (79.2 %) digested the starch in 

the common sorghum porridge (above the horizontal lower reference limit for the healthy 

group), even though nearly all were pancreatic α-amylase insufficient (amylase 

insufficiency > 1, right hand of the vertical line). In Figure 4.22, child # 39 was excluded 

and, in Figure 4.23, two children (#39 and #3) were excluded; both were considered 
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possibly as outliers. Child #39 was considered to be excluded, because as a healthy child 

it was able to digest the algal starch (Figure 4.8), but not able to digest the 13C-labelled 

LDx (predigested algal starch) as well as the common sorghum porridge and similarly 

child #3 was considered to be another outlier.  

4.4.5.2 Digestion of the shear modified thickened sorghum porridge in Day 4 

The digestion rate profiles of the shear modified thickened sorghum porridge 

(Day 4) for the healthy and malnourished stunted groups showed approximately the same 

trends and values. For the healthy group (Figure 4.24), three subjects (#1, 2, and 4) had a 

high porridge digestion rate compared to the other children; with a similar finding in the 

malnourished stunted group (Figure 4.25) for subject #3.  When compared, the digestion 

of the shear modified thickened sorghum porridge for the healthy and malnourished 

stunted groups were essentially the same (Figure 4.26). Figure 4.27 shows how shear 

modified thickened sorghum porridge digestion of Day 4 is related to the algal starch 

digestion of Day 1. The general correlative relationship indicates that children digested 

both the algal starch and the shear modified thickened sorghum porridge similarly. 

Figure 4.28 elucidates the relationship between the test subject’s developmental 

pancreatic α-amylase insufficiency and the shear modified thickened sorghum porridge 

digestion of Day 4. In both healthy and malnourished stunted groups, it is seen that 

almost all children (89.6 %) digested the shear modified thickened sorghum porridge 

starch despite their moderate amylase insufficiency. The correlation between the two 

parameters was not strong (R2 = 0.0595 and 0.216 for healthy and malnourished stunted, 

respectively). However, when outliers (children #1, 2, 4, and 39) were excluded from the 

healthy group, as well as child #3 from the malnourished stunted group, a difference in 

the trends for stunted versus healthy children is noted (Figures 4.29 and 4.30).  In normal 

children, increase in degree of α-amylase insufficiency correlated to lower shear modified 

thickened sorghum porridge starch digestion (R2 = 0.52); however, in malnourished 

stunted children, there was no correlation between α-amylase insufficiency and starch 

digestion (R2 = 0.00008).  
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4.4.5.3 Digestion of the α-amylase pre-treated shear modified thinned sorghum porridge 

of Day 5 

Figures 4.31 and 4.32 depict the individual subject digestion profiles for the α-amylase 

pre-treated shear modified thinned sorghum porridge of the healthy and malnourished 

stunted groups given in Day 5. Overall, the Malian children in the study digested well the 

α-amylase pre-treated shear modified thinned sorghum porridge. Moreover, both groups 

digested the porridge similarly (Figure 4.33). Figure 4.34 shows that the digestion of the 

α-amylase pre-treated shear modified thinned sorghum porridge in Day 5 is positively 

related to the algal starch digestion in Day 1. Figures 4.35, 4.36, and 4.37 show the 

relationship between the α-amylase pre-treated shear modified thinned sorghum porridge 

digestion and pancreatic -amylase insufficiency in children. In Figure 4.35, which 

includes healthy and malnourished stunted children, it is seen that almost all of subjects 

digested the α-amylase pre-treated shear modified thinned sorghum porridge in Day 5. 

There was no relationship between α-amylase insufficiency and the α-amylase pre-treated 

shear modified thinned sorghum porridge starch digestion in either group (healthy – R2 = 

0.0013, stunted – R2 = 2E-06), even when outlier subjects #1, 2 (healthy) and 3 (stunted) 

were excluded (Figure 4.36).  When subject #39 is excluded, a similar trend is observed 

between digestion of α-amylase insufficiency and α-amylase pre-treated shear modified 

thinned sorghum porridge (Figure 4.37), to that shown in Figure 4.30 for the untreated 

shear modified thickened sorghum porridge. There was no relationship in stunted 

children between pancreatic α-amylase insufficiency and α-amylase pre-treated shear 

modified thinned sorghum porridge digestion (R2 = 0.0013).  

4.4.5.4 Comparison of digestion results for the untreated and α-amylase pre-treated 

shear modified sorghum-based porridges 

Despite the subject group (healthy or malnourished stunted), similar digestion 

responses were found among the children consuming the untreated and α-amylase pre-

treated shear modified sorghum-based porridges. Figures 4.38 and 4.39 show the 

averaged digestion profiles of the two sorghum porridges consumed in Days 4 and 5 in 

the healthy and stunted groups. In both charts, the untreated and the α-amylase pre-

treated porridges in Days 4 and 5 were digested almost at the same rate by the two 
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healthy and malnourished stunted groups. This is seen in Figures 4.40, 4.41, and 4.42 

which illustrate the distribution of the 13CO2 breath enrichment peaks for the untreated 

and the α-amylase pre-treated porridges in healthy, malnourished stunted, and in the 

whole group, respectively (without the outliers #1, 2, 4, 3, 19).  

4.4.5.5 Viscosity of the different porridges of Days 3, 4, and 5 

Figure 4.43 shows the viscosity of the common sorghum porridge in day 3. 

Figure 4.48 represents the viscosity of the untreated and α-amylase pre-treated shear 

modified porridges consumed by the children in Days 4, and 5. The viscosity of the 

untreated shear modified sorghum porridge in Days 4 was greater than that of the α-

amylase pre-treated one in Day 5 (Table 4.7) As shear rate increased, the viscosity of the 

untreated shear modified sorghum porridge of Day 4 became significantly higher than 

that of the  α-amylase pre-treated shear modified sorghum porridge of Day 5.      

4.4.6 Gastric emptying rate of the modified sorghum porridge  

Figures 4.45 and 4.46 show the 13C-breath enrichment recovery levels after 

emptying of the 13C-labelled octanoic acid thick modified sorghum porridge of Day 6 

(same porridge as used on Day 4) by the healthy and malnourished stunted groups. In 

both groups, breath enrichment levels peaked early (15 – 30 min) and decreased over 

time. Average 13C-labelled breath enrichment levels for healthy and malnourished stunted 

children groups are shown in Figure 4.47. The two groups appeared to empty the 

porridge in a very similar manner with gastric emptying evaluation parameters showing 

no difference in rate between healthy and malnourished stunted children (Figure 4.48). 

Similar gastric emptying rates were based on parameters that characterize gastric 

emptying rate (lag phase, and half-emptying time).  

4.5 Discussion 

4.5.1 Pancreatic α-amylase insufficiency assessment using a novel 13C breath test 

Malnutrition in children under 5 years is a persistent public health problem in the 

developing world with a broad range of implications such as increased risk of death, 

immune function impairment, increased infectious diseases, loss of appetite, and exocrine 

pancreatic insufficiency (Black et al., 2013; Rytter et al., 2014). Stunting (low height for 
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age), which is the result of chronic undernourishment based in low caloric intake, affects 

not only a child’s physical but also developmental growth, particularly during the first 2 

years of life (Shrimpton et al., 2000; Victoria et al., 2010). One of the aims of this study 

was to assess developmental pancreatic insufficiency in weaned healthy and stunted 

moderately malnourished children using an innovative non-invasive breath test designed 

by one of our investigators (B. Nichols).  

Duodenal aspirations have been used to assess pancreatic function including α-

amylase insufficiency in healthy and malnourished children (Thompson and Trowell, 

1952; Sauniere et al., 1986 and 1988). This method is invasive, needs specialized medical 

staff and appropriate facility, is expensive, and is -somewhat limited as it represents only 

one time point (α-amylase secretion from the pancreas varies over time relative to food 

ingested and other factors). Serum, urine, and tears collections used by Ceska et al. 

(1969) and Watson et al. (1977) are less invasive than the previous method, but involve 

blood drawing and need special facilities and specialized medical staff.  

In our study, a novel innovative non-invasive breath test technique was used to 

assess and compare the developmental pancreatic insufficiency in healthy and stunted 

children. Based on a simple principle, this method does not need a special facility or 

medical staff (though one was used in the present study); and it is safe, simple, user-

friendly, and inexpensive. The test can be performed in the home, in a non-medical 

setting, and non-medical personnel can be easily trained to conduct the test.   

Here, it was demonstrated that using this novel breath test method, pancreatic α-

amylase insufficiency could be measured in healthy and malnourished stunted children. 

However, in order to validate these results and to be able to compare insufficiency our 

study groups (Malian healthy and stunted children), a US healthy control group is needed 

and this has not been done in this study.  

In this study, the non-invasive 13C breath test technique has been used not only to 

assess pancreatic α-amylase insufficiency, but also for starch digestion and gastric 

emptying rate in healthy and stunted children using different 13C labeled substrates (13C-

labeled sorghum flour starch, 13C-labeled octanoic acid). 13C breath test method was used 

previously to assess starch digestion in healthy children (Weaver et al., 1995) and 
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children with cystic fibrosis (Dewit et al., 1992), as well as gastric emptying rate in 

breast-fed and formula-fed (Van Den Driessche et al., 1999) and in preterm (Veereman-

Wauters et al. 1996) infants. 

4.5.2 Pancreatic α-amylase insufficiency and porridge starch digestion  

The findings of this study demonstrate that pancreatic α-amylase insufficiency is 

present in the majority of weaned healthy and malnourished stunted children in Bamako, 

Mali. α-Amylase insufficiency previously was shown in a kwashiorkor population, using 

duodenal aspirates (Thompson and Trowell, 1952), and in undernourished Colombian 

children using serum, tears, and urine (Watson et al. 1977). In this thesis study, in both 

healthy and malnourished stunted groups, comparatively low 13C-labelled algal starch 

digestion was observed to the predigested 13C-labelled algal limit dextrin (LDx), 

indicating some degree of α-amylase insufficiency. Most of the children had an α-

amylase insufficiency ratio greater than 1 indicating α-amylase insufficiency. Exocrine 

pancreatic function of malnourished children in West Africa (Dakar, Senegal and 

Abidjan, Cote d’Ivoire) was assessed duodenal aspirates (Sauniere et al., 1986; Sauniere 

et al., 1988). Perhaps in agreement with our findings, they found that even normal 

(healthy) African children had decreased pancreatic secretion with lower activity 

compared to normal, healthy French children. In our study, even though the 

anthropometric characteristics (height and weight) of the healthy group were significantly 

better than the stunted group, they all were almost α-amylase insufficient (81%). The 

high proportion of subjects with low pancreatic α-amylase insufficiency may be 

explained by factors such as pre-birth nutritional status of the mothers (Martin-Gronert et 

al., 2006; Abu-Saad et al., 2010), and chronic consumption of a protein deficient diet 

(Dahri et al., 1991) which result in low synthesis of α-amylase (Watson et al., 1977).  

Refeeding of a well-balanced diet has been shown to promote recovery from protein 

malnutrition and a restoring of the pancreatic enzyme secretion (Veghelyi et al., 1950), as 

well as the brush border enzymes (Rossi et al., 1986). 

Interestingly, the stunted children group in the study digested the sorghum-based 

porridges as well as the healthy group, and even appeared to digest the porridges, whether 

thick or thin, better when α-amylase insufficiency was more pronounced. It would appear 
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that the stunted group had enhanced activity of the mucosal -glucosidases and/or the 

glucose transporter SGLT-1 compared to the healthy group. Due to the importance of 

securing glucose from the diet for the body, particularly in stunted children, it seems 

plausible that there could be an up-regulation or enhanced processing of the α-

glucosidases/SGLT-1. In diabetics, where there is a similar condition of glucose-starving, 

it has been shown that there are higher enzyme and transporter levels (Tandon et al., 

1975; Olsen et al., 1985). The finding that stunted children digest well the starch from 

thick porridges may have a practical implication in that thick cereal-based porridges 

could be given in supplementary feeding programs, and furthermore that thickness could 

be optimized so that energy-density of the porridges would be sufficiently high for 

adequate energy intake within a meal.   

Starch is normally digested first by salivary and pancreatic α-amylases to small 

maltooligosaccharides (linear α-glucan oligomers and α-LDx), and then to glucose by the 

mucosal α-glucosidases. It is known that in children these small intestine brush border 

enzymes have comparable activity to that of adults very early at birth (Auricchio et al., 

1965; Raul et al., 1986); and they may help in starch digestion even if the other enzymes 

(salivary and pancreatic amylases) are insufficient. A previous work from our lab showed 

that one of the four α-glucosidases, commonly known as glucoamylase (or Ct-maltase-

glucoamylase, Ct-MGAM) has the ability to digest native molecular starch at a level 

approaching α-amylase (Lin et al., 2012; Lin et al., 2012). Dhital et al. (2013) and Lee et 

al. (2014) additionally showed that Ct-MGAM likely assists pancreatic α-amylase in 

early digestion of starch.  Thus, it seems reasonable that the mucosal α-glucosidases 

could compensate for lower pancreatic α-amylase activity in the stunted children to still 

efficiently digest starch. 

As mentioned, when children who had higher degree of α-amylase insufficiency 

consumed the thick porridges, the stunted children digested starch better than the healthy. 

There was no relationship between α-amylase insufficiency and sorghum porridge 

digestion (R2 = 0.00008), indicating that mucosal α-glucosidase activity remained the 

same as α-amylase insufficiency for individual children increased, whereas in healthy 

children who had higher α-amylase insufficiency there was lower starch digestion (R2 = 
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0.5218). This suggests that stunted children have higher mucosal α-glucosidase levels 

than normal children.  Thus, stunted children seem to be able to digest even comparably 

thick porridges independently from their developmental pancreatic α-amylase 

insufficiency.  

In a supportive way, Pinheiro et al. (2013) showed that rats born from protein 

restricted mothers presented up-regulated disaccharidases (lactase, sucrase, and maltase). 

This increase in enzyme activity could help in optimizing digestion and nutrient 

absorption to secure survival (Armitage et al., 2004).  

In 10% of the studied children (2 healthy and 3 stunted), there was poor digestion 

of the sorghum porridge in Day 3 (Figures 4.20 and 4.21, the children that are below the 

horizontal line). This was likely due to inherent metabolic problems related to 

malnutrition such as deficiency in mucosal α-glucosidases activities, failure in glucose 

transporters, and/or deficient in brain glucose oxidation, and/or environmentally induced 

enteric dysfunction (Keusch et al., 2013 and 2014). Bandsma et al (2011) showed altered 

glucose absorption in children with severe malnutrition.  

4.5.3 Thickened and thinned porridge starch digestion  

Pre-treatment of starch-based porridges with α-amylase for thinning or liquefying 

purpose of weaning foods has been done to increase energy density so that higher energy 

consumption can be achieved in malnourished children, and also because thinned 

porridges are considered to have improved digestibility Watson et al. (1995) and 

Gopaldas et al., (1992). Contrary to this conventional view, thinning (α-amylase pre-

treated porridge of Day 5), in the present study, did not show an improvement in starch 

digestion compare to the untreated thick porridge of Day 4 in the healthy or stunted 

children. The common and conventional view is that undernourished children better 

digest thin, rather than thick, food preparations; and a well-known approach is to treat 

thick, gelatinized starch-based pastes with an α-amylase (e.g., in malted grain) to reduce 

viscosity or liquefy preparations for both better digestion and to increase energy density. 

However, viscosity reduction with increased energy density has not always led to 

increased energy intake. Stephenson et al. (1994) reported that consumption of a semi-

solid high density porridge resulted in elevated daily energy intake, but addition of α-
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amylase to the same porridge did not add any supplementary energy intake. Owino et al. 

(2007) studied treated and non-treated fortified blends (maize, kidney bean, Bambara 

nuts and peanuts) prepared using extrusion cooking that were given to nine month old 

Zambian children. Results showed that both groups had the same improvements in 

percentage fat mass and hemoglobin concentration, and that there were no differences in 

their weight and height Z-scores. Moreover, the use of malted flour (amylase-rich flour) 

is associated with some drawbacks, such as long preparation time of the malted grains, 

safety problems (contamination with microorganisms as the result of unhygienic or 

unsanitary practice during preparation). Hence, the results are contradictory on the use of 

malt or industrial α-amylase-thinned porridges to increase energy intake or improve 

nutritional status of beneficiaries. On the other hand, bearing in mind that starch digestion 

of thick porridges when consumed by stunted children was good in the present study, a 

reconsideration of using energy-dense thick porridges in supplementary feeding programs 

of marginally malnourished children seems in order. Novel strategies should be 

considered that would produce high energy density thick porridges that are safe and 

nutritious and digestible. This could be an affordable alternative for populations in 

developing countries. Mixed local product formulations (cereals, legumes, and fruits) to 

meet energy, protein, and micronutrients requirements (Amuna et al., 2000), optimization 

of the energy density of the traditional cereal-based porridges, as well as ensuring high 

digestion rate could be developed. Fermentation additionally might be used to reduce the 

bacterial contamination of complementary foods and further improve nutritional quality 

(Mensah et al., 1990; Songre-Ouattara et al., 2009 & 2010).   

 Apart from the fortified and thinned high density energy complementary foods 

prepared locally, there are ready to use therapeutic foods supplied by feeding programs to 

help in the treatment of children with moderate and severe acute malnutrition. Plumpy-

nut™ is a well-known example. These therapeutic foods are lipid-based products with 

high energy density that do not require any cooking; and that have low moisture content 

making them less susceptible to bacterial contamination (Imdad et al., 2011). Of note, 

though, is that these therapeutic foods are lacking or do not contain starch (glucose) 

which is thought to be necessary for proper brain development in children, and is 
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important in other glucose dependent developmental pathways. Glucose ingestion has 

been shown to enhance memory performance (Smith et al., 2011; Smith and Scholey, 

2014). Gibson et al. (2013) showed high intake of saturated fat was associated with 

learning and memory deficits in women. Therefore, one might ask how a long term 

feeding of these therapeutic lipid-based foods affects overall health and developmental 

status of malnourished children. Additionally, these therapeutic foods may not be 

available to local populations and they are more costly than the locally made 

complementary foods (Hendricks, 2010).         

There was no significant difference in gastric emptying rate between healthy and 

stunted children (mean half emptying time was around 100 min in both groups). 

Relatively fast half emptying time may imply good starch digestion in both healthy and 

stunted children. This could well be related to the similar digestion rates found in both 

healthy and stunted groups. A comparison between our results and the previous published 

studies cannot be done because children’s age range and test meal composition are 

different. The 13C-labelled octanoic acid breath test was used by Van Den Driessche et al. 

(1999) to compare emptying rates in formula fed and breast fed newborns, and by 

Veereman-Wauters et al. (1996) to assess gastric emptying in preterm infants. The first 

study showed that gastric emptying is faster in breast-fed infants (half emptying time = 

47 min) than in formula fed ones (half emptying time = 65 min). The authors suggested 

that the fast emptying rate of human milk may be related to a quick transport or digestion 

of the gastric content. In the second study, the mean half emptying time of preterm 

infants was 57 min (17 to 100 min).             

4.6 Conclusions  

Our innovative noninvasive breath test technique using 13C-labelled algal starch 

and 13C-labelled pre-digested algal starch identified developmental α-amylase 

insufficiency in weaned healthy and stunted moderately malnourished children in Mali. 

This method is safe, simple, can be performed at home, the breath samples can be stored 

for more than a week and analyzed later, and it is relatively inexpensive. This method is 

concluded to be an appropriate technique to assess pancreatic α-amylase insufficiency in 

children. Our findings notably revealed that, despite their developmental pancreatic α-
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amylase insufficiency, healthy and stunted Malian children were able to adequately digest 

the different sorghum porridges tested. Moreover, α-amylase insufficiency was correlated 

to sorghum porridge digestion in the healthy group, meaning that children with greater α-

amylase insufficiency were less able to digest porridge starch, whereas even the more α-

amylase insufficient children in the stunted group were able to digest well the starch. This 

implies that weaned stunted children have higher mucosal α-glucosidase activity which 

allows them to digest the sorghum porridge independently from their developmental 

pancreatic α-amylase insufficiency.  

The untreated shear modified thickened sorghum porridge was digested as well as 

the α-amylase pre-treated thinned porridge by both healthy and stunted groups. This 

suggests that thick local porridges with an optimized energy density and maximum starch 

digestion may be as beneficial to stunted moderately malnourished children as a thinned 

α-amylase treated energy dense porridge, and would be easier to prepare and give in 

supplementary feeding programs.     

The knowledge generated from this study, and with further investigation, could 

form the basis of a change in supplementary feeding and nutrition education programs. It 

holds the promise of more simply, cheaply, and effective digestible and energy dense 

complementary food that could bring stunted, moderately malnourished children back to 

nutritional health.
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Table 4.1 Composition of porridges  

Designation 

Day 1 Day 2 Day 3 Day 4 Day 5  Day 6 

Normal 

porridge 

Normal 

porridge  

Normal 

porridge 

Modified 

porridge 

Modified 

thinned 

porridge  

Modified 

porridge 

Sorghum flour 

(g) 

16 16 16 20 20 20 

Water (mL) 200 200 200 200 200 200 

Beet sugar (g) 14 14 14 20 20 20 

Waxy corn 

starch (g) 

- - - 10 10 10 

13C substrate 

(mg)  

25 of 

AS1 

25 of 

LDx2 

500 of 

LSF3 

500 of 

LSF 

500 of 

LSF 

50 of OA4 

Mixing time in 

a blender (min) 

- - - 3 3 3 

α-amylase (µL)  - - - - 40 - 

1 AS – algal starch; 2 LDx – limit dextrins; 3 LSF – labelled sorghum flour; 4 OA – 

octanoic acid   
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Table 4.2 Household demographic characteristics  

 Healthy group 

(n = 15) 

Stunted group 

(n = 31) 

Overall 

(n = 46)  

Maternal age 26.7 ± 5.2 28.2 ± 5.1 27.7 ± 5.1 

Maternal marital 

status [n (%)] 

 

Married 14 (93) 31 (100) 45 (97.8) 

Single 1 (6.7) - 1 (2.17) 

Divorced - - - 

Widowed - - - 

Maternal education 

[n (%)]  

 

Illiterate 8 (53.3) 21 (67.7) 29 (63) 

Primary 4 (26.7) 7 (22.6) 11 (23.9) 

Secondary 1 (6.7) 2 (6.5) 3 (6.5) 

College 2 (13.3) 1 (3.23) 3 (6.5) 

University - - - 

Maternal occupation 

[n (%)]  

 

Salaried 2 (13.3) 4 (12.9) 6 (13) 

Self-employed - - - 

Housewife 10 (66.7) 24 (77.4) 34 (73.9) 

student 3 (20) 3 (9.7) 6 (13) 
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Table 4.3 Subjects’ characteristics  

 Healthy group Stunted group Overall  

Number  16 32 48 

Age, months 25 ± 3.4 24.3 ± 3.3 25 ± 3.2 

Weight, Kg 11.1 ± 0.9 9.6 ± 0.9 10.1 ± 1.1 

Height, Cm 86.2 ± 3.4 79.9 ± 2.9 82.0 ± 4.3 
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Table 4.4 Individual characteristics of all subjects  

Subject 

number  

Gender DOB1 Age, 

months 

Height, 

Cm 

Weight, 

Kg 

HAZ2 WHZ3 

1 G4 2/6/2011 26 84 10 < 0 < -1.5 

2 B5 1/4/2011 27 88 12.2 < 1 < 0 

3 B 1/18/2011 27 83 9.3 < -2 < -1.5 

4 B 4/28/2011 24 84 9.9 < 0 < -1.5 

5 G 12/8/2010 28 84.5 10.8 < -2 < 0 

6 G 9/11/2010 30 90 11.4 < 0 < -1.5 

8 G 3/29/2011 26 81 9.5 < -2 < -1.5 

9 B 4/27/2011 25 82 10 < -2 < 0 

10 G 5/11/2011 24 78 9.2 <-2 < -1 

11 M 1/5/2011 24 88 11.3 < 0 <-1 

13 G 5/23/2011 24 83 10.9 < 1 < 0 

14 B 3/31/2011 26 86.5 12 < 0 > 0 

15 G 8/17/2011 21 76 8.7 < -2 < -1 

16 G 8/31/2011 21 75 8.6 < -2 < -1 

17 B 12/2/2010 29 90 11 < -1 < -1.5 

18 G 11/27/10 30 82 10.3 < -2 < 0 

19 G 6/21/2011 25 81 9.4 < -2 < -1 

20 B 6/20/2011 24 80 9.8 < -2 < 0 

22 G 12/30/10 30 85 11.3 < -1 0 

23 G 9/6/2011 21 86.5 11.9 < -1 0 

24 B 1/13/2011 29 95 12.7 < 1 < 1 

25 B 4/22/2011 26 85.5 10.4 < -1 > 1 

26 G 8/1/2011 22 82 10 < 0 <  0 

27 G 7/3/2011 23 79.5 9 < -2 < -1.5 

28 G 12/25/10 30 82.5 9.7 < -2 < -1 

29 B 6/6/2011 25 81 9.8 < -2 < 0 

30 G 1/22/2011 29 84 9.5 < -2 -1.5 

31 B 1/1/2011 30 85 10.9 -2 0 

32 G 10/4/2011 21 85 10.2 < 0 < -1 

33 G 8/12/2011 23 77 7.9 < -2 -2 

34 B 5/10/2011 26 82 9.3 < -2 < -1.5 

35 G 8/30/2011 23 79 10.2 -2 > 0 

37 B 1/11/2011 30 83.5 9.3 < -2 -2 

38 G 2/28/2011 29 79.5 8.8 < -3 < -1.5 

39 B 10/31/11 21 81.5 11.8 < -1 > 0 

42 B 8/11/2011 24 82 10.5 < -2 < 0 
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Table 4.4 

43 G 11/15/11 21 77 10.3 < 2 > 0 

44 G 12/24/11 19 74 9.1 -3 < 0 

45 B 19/03/11 28 82 11.4 < -2 > 0 

46 G 11/3/2011 20 85 10.7 < 1 < 0 

47 B 2/11/2011 18 76.5 8.8 < -2 < -1 

48 G 8/20/2011 24 79 8.5 < -2 -2 

49 G 8/16/2011 24 77.5 9.9 < -2 >0 

51 B 10/6/2011 22 79 9.1 < -2 <-1 

52 G 6/10/2011 26 82.5 10.5 < -2 < 0 

53 G 8/22/2011 24 78 10 < -2 >0 

54 B 7/5/2011 26 80 11.3 -3 >0 

55 G 5/22/2011 25 74 9.3 < -3 >0 
1 DOB – date of birth; 2 HAZ – height for age z-score; 3 WHZ – weight for height z-

score; 4 G – Girl; 5 B – Boy. Black color – healthy group; Blue color – stunted group 
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Table 4.5 Amylase amplification ration for the healthy group  

HEALTHY GROUP 

Subject 

number 

Age Amylase 

amplification 

ratio  

2 27 1.58 

4 24 1.85 

11 24 1.20 

14 26 2.16 

17 29 1.62 

24 29 1.35 

25 26 1.39 

39 21 0.33 

1 26 1.95 

6 30 1.53 

13 24 0.87 

22 30 3.17 

23 21 0.71 

26 22 1.27 

32 21 1.24 

46 20 2.17 

 

 

 

 

 

  

 Sufficient -amylase amplification (ratio < 1.0, thus full 

pancreatic maturity has occurred) 

 

 Moderate -amylase insufficiency (ratio is between 1 to 2) 

 

 Severe -amylase insufficiency (ratio > 2) 
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Table 4.6 Amylase amplification ratio for stunted group  

STUNTED GROUP 

Subject 

number 

Age Amylase 

amplification 

ratio  

3 27 4.62 

9 25 1.72 

20 24 1.54 

29 25 1.77 

31 30 1.33 

34 26 1.27 

37 30 0.82 

42 24 0.88 

45 28 1.01 

47 18 1.26 

51 22 1.42 

54 26 1.14 

5 28 1.27 

8 26 0.96 

10 24 1.65 

15 21 1.96 

16 21 0.65 

18 30 2.04 

19 25 1.72 

27 23 0.84 

28 30 1.14 

30 29 1.51 

33 23 1.38 

35 23 1.18 

38 29 0.91 

43 21 1.37 

44 19 1.30 

48 24 2.78 

49 24 1.43 

52 26 1.05 

53 24 3.27 

55 25 1.01 
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Table 4.7 Viscosity of the untreated and α-amylase pre-treated shear modified sorghum 

porridges in Days 4 and 5 

Shear rate, 1/s Viscosity, Pa.s 

Porridge D4 Porridge D5 

0.10 226.13 152.68 

0.16 161.07 96.22 

0.25 110.79 61.34 

0.40 76.83 41.48 

0.63 54.24 27.80 

1.00 38.35 18.20 

1.58 27.68 11.90 

2.51 20.19 7.91 

3.98 14.56 4.57 

6.31 10.58 2.67 

10.00 7.73 1.56 

15.85 5.70 0.82 

25.12 4.26 0.38 

39.81 3.19 0.21 

63.10 2.48 0.11 

100.00 2.07 0.06 

158.49 1.81 0.04 

251.19 1.55 0.03 

300.00 1.44 0.03 

Porridge D4 = untreated shear modified sorghum porridge in Day 4 

Porridge D5 = α-amylase pre-treated shear modified sorghum porridge in Day 5 
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Figure 4.1 Adjusted breath 13CO2 levels after digestion of 13C-labelled algal starch in day 

1 in 16 healthy children 

 

 

Figure 4.2 Adjusted breath 13CO2 levels after digestion of pre-digested 13C-labelled algal 

starch (LDx) in day 2 in 16 healthy children.  
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Figure 4.3 Plots of adjusted breath 13CO2 levels after digestion of the 13C-labelled algal 

starch (day 1) and the pre-digested 13C-labelled algal starch (LDx) (day 2) in 16 healthy 

children. Values are average of the adjusted breath 13CO2 levels. 
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Figure 4.4 Adjusted breath 13CO2 levels after digestion of 13C-labelled algal starch in day 

1 in 32 stunted children. 

 

Figure 4.5 Adjusted breath 13CO2 levels after digestion of pre-digested 13C-labelled algal 

starch (LDx) in day 2 in 32 stunted children.  
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Figure 4.6 Plots of adjusted breath 13CO2 levels after digestion of the 13C-labelled algal 

starch (day 1) and the pre-digested 13C-labelled algal starch (LDx) (day 2) in 32 stunted 

children. The values are average of the adjusted breath 13CO2 levels.   
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Figure 4.7 Plots of the adjusted breath 13CO2 levels after digestion of the 13C-labelled 

algal starch (day 1) and the pre-digested 13C-labelled algal starch (LDx) (day 2) in 

healthy child #25. 

 

Figure 4.8 Plots of the adjusted breath 13CO2 levels after digestion of the 13C-labelled 

algal starch (day 1) and the pre-digested 13C-labelled algal starch (LDx) (day 2) in 

healthy child #39.  
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Figure 4.9 Plots of the adjusted breath 13CO2 levels after digestion of the 13C-labelled 

algal starch (day 1) and the pre-digested 13C-labelled algal starch (LDx) (day 2) in 

healthy child #23. 

 

Figure 4.10 Plots the adjusted breath 13CO2 levels after digestion of the 13C-labelled algal 

starch (day 1) and the pre-digested 13C-labelled algal starch (LDx) (day 2) in stunted 

child #18.  
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Figure 4.11 Plots of the adjusted breath 13CO2 levels after digestion of the 13C-labelled 

algal starch (day 1) and the pre-digested 13C-labelled algal starch (LDx) (day 2) in stunted 

child #16.  
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Figure 4.12 Average of adjusted breath 13CO2 levels after digestion of 13C-labelled algal 

starch in day 1 in 48 children (16 healthy – red line and 32 stunted – blue line)   

 

 

Figure 4.13 Average of adjusted breath 13CO2 enrichment levels after digestion of pre-

digested 13C-labelled algal starch (LDx) in day 2 in 48 children (16 healthy – red line and 

32 stunted – blue line)   
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Figure 4.14 Plot of the sums of the adjusted breath 13CO2 levels after digestion of pre-

digested 13C-labelled algal starch (LDx) and 13C-labelled algal starch in 48 children (16 

healthy – red triangles and 32 stunted – blue dots). 

Values above the dotted horizontal line digested the 13C-labelled algal starch; values right 

of the dotted vertical line digested well the pre-digested 13C-labelled algal starch (LDx). 

The healthy group was used to define the lower reference levels defined as mean – one 

standard deviation. The dotted lines represent the lower reference lines. 
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Figure 4.15 Histogram of amylase amplification (D2/D1 > 1 indicates amylase 

insufficiency) 
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Figure 4.16 Plot of amylase insufficiency vs. age for all children. Values above the dotted 

horizontal line are α-amylase insufficient. 
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Figure 4.17 Plot of the adjusted breath 13CO2 levels after digestion of 13C-labelled 

sorghum starch in the common sorghum porridge in day 3 in 16 healthy children. 

 

Figure 4.18 Plot of the adjusted breath 13CO2 levels after digestion of 13C-labelled 

sorghum starch in the common sorghum porridge in day 3 in 32 stunted children. 
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Figure 4.19 Plots of the average adjusted breath 13CO2 levels after digestion of 13C-

labelled sorghum starch in common sorghum porridge in day 3 in 48 children (16 healthy 

– red line and 32 stunted – blue line).   
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Figure 4.20 Plot of ∑ adjusted breath 13CO2 of the 13C-labelled algal starch in Day 1 vs. 

∑adjusted breath 13CO2 of the common porridge in Day 3 for all children. Values are the 

sum of the adjusted breath 13CO2 levels per infant for Day 1 & 3. 

Values above the dotted horizontal line digested the starch from the common porridge; 

values right of the dotted vertical line indicate digestion of the algal starch. The healthy 

group was used to define the lower reference levels defined as mean – one standard 

deviation. The dotted lines represent the lower reference lines. 
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Figure 4.21 Plot of amylase insufficiency (D2/D1) vs. ∑ adjusted breath 13CO2 of the 

common porridge in Day 3 for all children. Values are the sum of the adjusted breath 

13CO2 levels per infant for Day 3. 

Values above the dotted horizontal line digested the starch from the porridge; values right 

of the dotted vertical line indicate pancreatic α-amylase insufficiency. The healthy group 

was used to define the lower reference levels defined as mean – one standard deviation. 

The dotted lines represent the lower reference lines.    
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Figure 4.22 Plot of amylase insufficiency (D2/D1) vs. ∑ adjusted breath 13CO2 levels of 

the common porridge in Day 3 for all children without subject #39. Values are the sum of 

the adjusted breath 13CO2 levels per infant for Day 3. 

Values above the dotted horizontal line digested the starch from the porridge; values right 

of the dotted vertical line indicate pancreatic α-amylase insufficiency. The healthy group 

was used to define the lower reference levels defined as mean – one standard deviation. 

The dotted lines represent the lower reference lines. 
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Figure 4.23 Plot of amylase insufficiency (D2/D1) vs. ∑ adjusted breath 13CO2 levels of 

the common porridge in Day 3 for all children without subjects #39 and 3. Values are the 

sum of the adjusted breath 13CO2 levels per infant for Day 3.  

 Values above the dotted horizontal line digested the starch from the porridge; values 

right of the dotted vertical line indicate pancreatic α-amylase insufficiency. The healthy 

group was used to define the lower reference levels defined as mean – one standard 

deviation. The dotted lines represent the lower reference lines.      
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Figure 4.24 Plot of the adjusted breath 13CO2 levels after digestion of 13C-labelled 

sorghum starch in the untreated shear modified sorghum porridge in day 4 in 16 healthy 

children.  

 

 

Figure 4.25 : Plot of the adjusted breath 13CO2 levels after digestion of 13C-labelled 

sorghum starch in the untreated shear modified sorghum porridge in day 4 in 32 stunted 

children.  
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Figure 4.26 Plot of the average adjusted breath 13CO2 after digestion of 13C-labelled 

sorghum starch in the untreated shear modified sorghum porridge in day 4 in 48 children 

(16 healthy – red line and 32 stunted – blue line). 
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Figure 4.27 Plot of ∑ adjusted breath 13CO2 levels of the 13C-labelled algal starch in Day 

1 vs. ∑13C breath enrichments of the untreated shear modified sorghum porridge in Day 

4 for all children. 

Values are the sum of the adjusted breath 13CO2 levels per infant for Day 1 & 4. Values 

above the dotted horizontal line digested the starch from the untreated shear modified 

porridge; values right of the dotted vertical line indicate digestion of the algal starch. The 

healthy group was used to define the lower reference levels defined as mean – one 

standard deviation. The dotted lines represent the lower reference lines.      
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Figure 4.28 : Plot of amylase insufficiency (D2/D1) vs. ∑ adjusted breath 13CO2 levels of 

the untreated shear modified sorghum porridge in Day 4 for all children. 

Values are the sum of the adjusted breath 13CO2 levels per infant for Day 4. Values above the 

dotted horizontal line digested the starch from the porridge; values right of the dotted vertical line 

indicate pancreatic α-amylase insufficiency. The healthy group was used to define the lower 

reference levels defined as mean – one standard deviation. The dotted lines represent the lower 

reference lines.      
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Figure 4.29 Plot of amylase insufficiency (D2/D1) vs. ∑ adjusted breath 13CO2 levels of 

the untreated shear modified sorghum porridge in Day 4 for all children except subjects # 

1, 2, 3, 4. 

Values are the sum of the adjusted breath 13CO2 levels per infant for Day 4. Values above the 

dotted horizontal line digested the starch from the porridge; values right of the dotted vertical line 

indicate pancreatic α-amylase insufficiency. The healthy group was used to define the lower 

reference levels defined as mean – one standard deviation. The dotted lines represent the lower 

reference lines.      
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Figure 4.30 Plot of amylase insufficiency (D2/D1) vs. ∑ adjusted breath 13CO2 levels of 

the untreated shear modified sorghum porridge in Day 4 for all children except subjects # 

1, 2, 3, 4, 39. 

Values are the sum of the adjusted breath 13CO2 levels per infant for Day 4. Values above 

the dotted horizontal line digested the starch from the porridge; values right of the dotted 

vertical line indicate pancreatic α-amylase insufficiency. The healthy group was used to 

define the lower reference levels defined as mean – one standard deviation. The dotted 

lines represent the lower reference lines.     
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Figure 4.31 Plot of the adjusted breath 13CO2 levels after digestion of 13C-labelled 

sorghum starch in the α-amylase pre-treated shear modified sorghum porridge in day 5 in 

16 healthy children. 

 

 

Figure 4.32 Plot of the adjusted breath 13CO2 levels after digestion of 13C-labelled 

sorghum starch in the α-amylase pre-treated shear modified sorghum porridge in day 5 in 

32 stunted children.   
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Figure 4.33 Plot of the average adjusted breath 13CO2 levels after digestion of 13C-

labelled sorghum starch in the α-amylase pre-treated shear modified sorghum porridge in 

day 5 in 48 children (16 healthy – red line and 32 stunted – blue line). 
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Figure 4.34 Plot of ∑ adjusted breath 13CO2 levels of the 13C-labelled algal starch in Day 

1 vs. ∑13CO2 breath enrichments of the α-amylase pre-treated shear modified porridge in 

Day 5 for all children. 

Values are the sum of the adjusted breath 13CO2 levels per infant for Day 1 & 5. Values 

above the dotted horizontal line digested the starch from the α-amylase pre-treated shear 

modified porridge; values right of the dotted vertical line indicate digestion of the algal 

starch. The healthy group was used to define the lower reference levels defined as mean – 

one standard deviation. The dotted lines represent the lower reference lines. 
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Figure 4.35 Plot of amylase insufficiency (D2/D1) vs. ∑ adjusted breath 13CO2 levels of 

the α-amylase pre-treated shear modified porridge in Day 5 for all children. 

Values are the sum of the adjusted breath 13CO2 levels per infant for Day 5. Values above 

the dotted horizontal line digested the starch from the porridge; values right of the dotted 

vertical line indicate pancreatic α-amylase insufficiency. The healthy group was used to 

define the lower reference levels defined as mean – one standard deviation. The dotted 

lines represent the lower reference lines. 
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Figure 4.36 Plot of amylase insufficiency (D2/D1) vs. ∑ adjusted breath 13CO2 levels of 

the α-amylase pre-treated shear modified porridge in Day 5 for all children except 

subjects # 1, 2, 3. 

Values are the sum of the adjusted breath 13CO2 levels per infant for Day 5. Values above 

the dotted horizontal line digested the starch from the porridge; values right of the dotted 

vertical line indicate pancreatic α-amylase insufficiency. The healthy group was used to 

define the lower reference levels defined as mean – one standard deviation. The dotted 

lines represent the lower reference lines. 
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Figure 4.37 Plot of amylase insufficiency (D2/D1) vs. ∑ adjusted breath 13CO2 levels of 

the α-amylase pre-treated shear modified porridge in Day 5 for all children except 

subjects # 1, 2, 3 & 39. 

Values are the sum of the adjusted breath 13CO2 levels per infant for Day 5. Values above 

the dotted horizontal line digested the starch from the porridge; values right of the dotted 

vertical line indicate pancreatic α-amylase insufficiency. The healthy group was used to 

define the lower reference levels defined as mean – one standard deviation. The dotted 

lines represent the lower reference lines.      
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Figure 4.38 Plots of the average adjusted breath 13CO2 levels after digestion of the13 C 

labelled sorghum starch in the untreated shear modified sorghum porridge (thick) in day 

4, and the α-amylase pre-treated shear modified sorghum porridge (thin) in day 5 in 16 

healthy children. 

 

Figure 4.39 Plots of the average adjusted breath 13CO2 levels after digestion of the 13C-

labelled sorghum starch in the untreated shear modified sorghum porridge (thick) in Day 

4, and the α-amylase pre-treated shear modified sorghum porridge (thin) in Day 5 in 32 

stunted children.  
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Figure 4.40 Distribution of the adjusted breath 13CO2 peaks after ingestion of the 

untreated shear modified sorghum porridge in D4, and the α-amylase pretreated shear 

modified sorghum porridge in D5 in the healthy group (y-axis, indicator of starch 

digestibility, higher values indicate higher digestibility). 

Porridge in day 4 = Untreated shear modified sorghum porridge in day 4 n = 14. Porridge 

in day 5 = α-amylase pretreated shear modified sorghum porridge in day 5 n = 12. 
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Figure 4.41 Distribution of the adjusted breath 13CO2 peaks after ingestion of the 

untreated shear modified sorghum porridge in D4, and the α-amylase pretreated shear 

modified sorghum porridge in D5 in the stunted group (y-axis, indicator of starch 

digestibility, higher values indicate higher digestibility). 

Porridge in day 4 = Untreated shear modified sorghum porridge in day 4 n = 30. Porridge 

in day 5 = α-amylase pretreated shear modified sorghum porridge in day 5 n = 30. 
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Figure 4.42 Distribution of the adjusted breath 13CO2 peaks after ingestion of the 

untreated shear modified sorghum porridge in D4, and the α-amylase pretreated shear 

modified sorghum porridge in D5 in all children (y-axis, indicator of starch digestibility, 

higher values indicate higher digestibility). 

Porridge in day 4 = Untreated shear modified sorghum porridge in day 4 n = 43. Porridge 

in day 5 = α-amylase pretreated shear modified sorghum porridge in day 5 n = 44. 
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Figure 4.43 Steady shear measurement of the common porridge in Day 3. 
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Figure 4.44 Steady shear measurement of the untreated shear modified sorghum porridge 

in Day 4 (porridge D4), and the α-amylase pretreated shear modified sorghum porridge in 

Day 5 (porridge D5).   
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Figure 4.45 Plot of the breath 13CO2 levels after emptying of the untreated shear modified 

sorghum porridge in day 6 in 16 healthy children.  
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Figure 4.46 Plot of the breath 13CO2 levels after emptying of the untreated shear modified 

sorghum porridge in day 6 in 32 stunted children. 

  

-10

-5

0

5

10

15

20

25

30

35

40

0 15 30 45 60 75 90 105 120 135 150 165 180

B
re

at
h
 1

3
C

O
2

 (
‰

)

Time (min)

3 5 8 9 10 15 16 18 19 20 27

28 29 30 31 33 34 35 37 38 42 43

44 45 47 48 49 51 52 53 54 55



182 

 

1
8
2
 

 

Figure 4.47 Plot of the average breath 13CO2 levels after emptying of the untreated shear 

modified sorghum porridge in day 6 in 48 children (16 healthy – red line and 32 stunted – 

blue line).   
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Figure 4.48 Gastric emptying parameters. Mean (± SDV) of lag phase and half emptying 

time of the untreated shear modified sorghum porridge for healthy (red bars) and stunted 

(blue bars). 

0

0.5

1

1.5

2

Half-Emptying Time Lag Phase

T
im

e 
(h

o
u

rs
)

Adjusted Dataset (w/o outliers)

Healthy

Stunted



184 

 

1
8
4
 

CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

The present dissertation has described studies on gastric emptying rate of African 

starchy foods, the effect of distal glucose release on the emptying rate of a non-nutritive 

paste, and the issue of starch digestion in marginally malnourished stunted children in 

Mali. Three variation of a non-invasive 13C breath test technique have been used for all of 

the studies, in healthy volunteers and stunted children. The first study revealed an 

emptying rate difference between traditional West African starchy foods (sorghum thick 

porridge, millet thick porridge, and millet couscous) and the non-traditional “modern” 

foods (rice, boiled potatoes, and pasta) that are mostly consumed in the urban areas. The 

African starchy foods were found to have almost double the gastric emptying time 

compared to the non-traditional ones. The reduced rate of stomach emptying implies that 

these African starchy foods may provide sustained energy to the body which can be used 

to enhance their image in urban areas, promote their consumption, and increase their 

demand; thus to provide better market access for local smallholder farmers.  

The second study investigated the effect of pre-ingestion of slowly digestible 

starch- entrapped microspheres on the emptying rate of a non-nutritive paste. The gastric 

emptying rate parameters (lag phase and half emptying rate) were evaluated and the 

results showed that slowly digestible carbohydrate fabricated microspheres led to a 

slower gastric emptying rate. This finding gives support to the idea that dietary 

carbohydrates with distal glucose release can modulate gastric emptying, and that this 

property may either exist in certain slowly digestible carbohydrate-containing foods or 

could be made into ingredients which in processed foods would have this effect.   

The final study investigated first of all pancreatic α-amylase insufficiency in 

healthy and marginally malnourished stunted Malian children using new non-invasive 

modified 13C breath test technique. Common and modified starch-based sorghum
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 porridges (thick and thinned) were prepared and their digestibility was assessed. 

Furthermore, the gastric emptying rate of the modified sorghum porridge was evaluated. 

This study revealed that pancreatic α-amylase insufficiency is present in the majority of 

weaned healthy and marginally malnourished stunted children in Mali. The healthy group 

presented anthropometric Z-scores (height and weight) significantly better than the 

stunted group, but still the children were pancreatic α-amylase insufficient. The 

malnourished stunted group digested the sorghum-based porridges as well as the healthy 

group. Impressively, children in the malnourished stunted group digested the porridges, 

whether thick or thin, better than the healthy group when α-amylase insufficiency was 

more pronounced. Accordingly, there was no correlative relationship between pancreatic 

α-amylase insufficiency and sorghum porridge digestion in malnourished stunted 

children, while there was one in the healthy group consuming the modified sorghum 

porridge. This implies that the malnourished stunted group have enhanced activity of the 

mucosal -glucosidases and/or the glucose transporter SGLT-1 compared to the healthy 

group with higher α-amylase insufficiency that in essence takes over some the duty of 

digesting and absorbing glucose from the starch. Shear modified thickened sorghum 

porridge was found to be digested as well as the α-amylase pre-treated thinned porridge 

by both healthy and stunted groups. The finding that stunted children digest well the 

starch from thick porridges may have a practical implication in that thick cereal-based 

porridges could be given in supplementary feeding programs, if children could consume 

adequate amount. Furthermore, thickness could be optimized so that energy-density of 

the porridges would be sufficiently high for adequate energy intake within a meal. In 

10% of the studied children, poor digestion of common sorghum porridge was observed, 

which likely was due to inherent metabolic problems related to malnutrition such as 

deficiency in mucosal α-glucosidase activity or environmentally induced enteric 

dysfunction. The knowledge generated from this study holds the promise of identifying 

or developing simple, cheap, and effective foods with good digestibility and energy 

density that could aid in bringing stunted, moderately malnourished children back to 

nutritional health.  
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Simple, safe, and noninvasive 13C-breath test methods were used to assess gastric 

emptying, to diagnose pancreatic α-amylase insufficiency, and to determine the relative 

efficiency of starch digestibility. The use of the method to diagnose pancreatic α-amylase 

insufficiency is novel and innovative, and, particularly with a healthy child comparison 

group, could be an appropriate technique to assess pancreatic α-amylase insufficiency in 

children. 

In considering the slow emptying rate of African starchy foods and the slowly 

digestible fabricated starch entrapped microspheres, further investigations are needed 

related to understanding the mechanism involved. Such study would link distal dietary 

glucose release and triggering of the feedback control systems to modulate gastric 

emptying rate and create sustained energy to the body. Studies are needed to evaluate, on 

the food side, where the carbohydrate digestion and glucose release has to be deposited, 

and how much is necessary to trigger the desired physiological response. Regarding the 

use of the starch entrapped microspheres as a preload for triggering the ileal brake 

mechanism, research has to continue with the aim of finding foods or designing 

ingredients that will exhibit the same slow digesting properties.  

With regard to the study on pancreatic α-amylase insufficiency, it would be valuable and 

pertinent to study a US healthy control group, which could be used as a benchmark for 

our Malian children. On the porridge side, further investigations are needed to how thick 

porridges can be used to improve the nutritional status of marginally or more severely 

malnourished children. Porridge thickness needs to be optimized for high energy density 

and maximum starch digestion properties, evaluated for the amount of porridge necessary 

for one feeding time, the frequency needed to meet the energy density requirements for 

children, and tolerability and acceptability for the children. In order to evaluate their 

nutritional impact, the optimized porridges should be tested in a feeding study, and 

recovery and growth outcomes measured.      
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