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ABSTRACT

This paper discusses various aspects of the smocthing and
estimation of derivatives of equispaced data. The background for
least squares polynomial smoothing is summarized. The various
alternatives for programs in a computing center's library are
discussed and a particular alternative is selected as most suitable.
An algorithm named SHMOOTH is given (in Fortran) which implements
this alternative., SMOOTH estimates the smoothed value of the data
or its first or second derivative based on specified polynomial
degree and number of points to enter the smoothing., The paper con-
cludes with a discussion of methods suitable to compute large
arrays of smoothing weights., There are 3 appendices which contain,
respectively, explicit formulas associated with Gram polynomials,
explicit formulas for the smoothing weights and tables of initial

segments of arrays for computing large tables of smoothing weights.



SMOOTHING AND ESTIMATING DERIVATIVES OF EQUISPACED DATA

1. MATHEMATICAL BACKGROUND

An algorithm for estimating the values and derivatives of equispaced,
tabulated functions is presented. Let {(xj, yj)} j=-n, -ntl,..., n
be the data with h = xj+1 - xj' The algorithm is based on least squares
polynomial approximation and computes smoothing weight coefficients to
apply to the data.

We consider the GRAM (or Tchebycheff) polynomials {Pm’n(x]} of degree
m. These polynomials are orthogonal

n

P ()P (i) =0 ' n# k
j=Zn m,n k,n

and are given explicitly by

m k+m .
P () L7 (mek)!(n+j}! (2n-k)!
AT k0 (k)2 (mk) | (n#-K) [ (2n) ¢

Let Qm n(j) be the best least squares approximation of yj by a
»

polynomial of degree m on the 2p+l points i =0, + 1,...,+ n. We have

m
Qa = L BP0

n n
where a, = [J_Z-n YiP,n (D178, and S = 1 {Pk’n(j)lz-

j=-n

Therefore, we have the smoothed estimate of the data

n
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and, in particular, we have the smoothed value for Y o3 given by
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The smoothing weights are denoted by

PLUN. ? Pk,n(i) Pk,n(oJ
n,io 2, S

k,n

Smoothed estimates for the first and second derivatives are found

by differentiating Qm n(j) and evaluating it for j = 0. Therefore,
»

dy n m P, (i) P! _(0)
_....o_. - ’ _]_' - 1 kjn k.n
& Vo VMa @ =5 1 1 5 y; #nd
is-n k=o k,n
ay a om P _(1)P" (0)
° _ Y"""l n o (0) = 1 Z z k,n k,n
2 2 Qm,n 2 . b S 1
dx h h =-n k=0 k,n
The weights here are denotes, respectively, by B: i amd C: i See
3 3
. m m m _
Appendix II for An,i' Bn,i’ and C i form=1, 3, 5.

2. ALTERNATIVES FOR APPLICATIONS AND COMPUTING WEIGHTS

A computing center's library should contain a routine which will,
when given the arrays X and Y, compute the smoothed values for Yos yc'),

and yg. The major consideration for such a routine is to obtain the weights

m m m
., B ., and C ..
n,j’ m,j’ n,)
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One possible method is to calculate, for any m and n, Pm,n[j} for
any j and to evaluate its derivatives at zero fron explicit formulae.
This method has the advantages that any requested weights can be
calculated and the routine is relatively short., However, the computa-
tion time would be rather large.

At the other end of the spectrum, one can limit m,n and the maximum
order of the derivative; and calculate and store the necessary weights
on some auxiliary storage device. The advantage here is, of course,
speed. However, it is disadvantageous to restrict m,n and the order of
the derivative, although these might not be, in practice, great
restrictions. The major disadvantage is the number of constants which
must be stored., If the maximum m is S, maximum n is SO (i.e. 10l points),
and only Yo» yé and yg are allowed, then, taking into account the facts
har 21 2 2K g2 gl (2s 2hed gy g g,
and the symmetry and anti-symmetry of these constants about j = 0, it
requires some 10,579 constants. This can be reduced further by observing
that Arij is independent of j and that By =B =B = 0. This
gives 92,154 constonts md involves some additional logic. This is a
large block of storage for such a rcutine, but not overwhelmingly large
if one wants the highest possible speed.

These methods represent two extremes. The firxst has a large capability
and small storage requirements, but is slow. The sccond has a limited,
though practical,capability and large storage requirements, but is fast,
We present an algorithm which makes a compromisec on the time-storage-

capability relationship; that is, using some explicit formulae, setting a

practical restriction on m and computing smoothed values only for yo,yé and y:.
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Note in Appendix II, that the numerators of the weights are poly-
nomials in n and j, while the denominators are polynomials in n; there-
fore, the denominators are calculated separately. The numerators are

denotoed by Wh j° The procedure is to generate integers wn i form the
3

s
sum an'j yj, and divide by the integral denominator and the appropriate
pover of h. Note, further, that n is fixed for cach entry into the
routine and thus the wn,j are polynomials in j, j = 0, *1, *2,...,4n.
This suggests the method of differences to evaluate wn,j' This method is
more efficient for evaluating polynomials at a large number of equispaced
points; whereas nested evaluation is morc efficient for a smaller number
of evaluations.

To make this quantitative, let Pn (3) be a polynomial of degree n, to
be evaluated at k equispaced points, Let the unit of work be an addition,
and assume one multiplication is equivalent to u additions (p 1is thus
a machine characteristic). Then nested evaluation requires nk(u+l)
additions., Evaluation by differcnces requires (n+l) starting values, the
construction of a difference table, and final evaluations. If the (n+l)
starting values are obtained from nested evaluation, then for k>n+l,
n{n+1) (u+1/2)+nk additions are necessary, The difference table method
is more efficient when (k-n-1) is greater than (n+1)/2u.

The difference table method can be improved be representing Pn(j) in
a point-value form; i.e. by the vector (Pn(O), Pn(l),..., Pn(n)). Using
this approach, nk-n(n+1)/2 additions are necessary. Hence, this method

is always more efficient than the nested form when the values of Pn(j)

are required, at least, at each j =0, 1, ...,n.



One may use another method of representing the polynomial Pn(j),

the "forward difference diagonal" form with step h; i.e. by the vector
n n-1
(8 Pa(0), 8277 P (0), ..., &P (0}, P_(0)),

where A;Pn(x) is the i-th forward difference of Pn(xJ with step-size h,
This representation climinates the construction of thie difference table,
Pn(D) is given and successive values of Pn(j) are obtainec by a "rippled"
(using intermediate sums as summands) addition process,

Similarly, one may use the backward difference diagonal representation

with step h; i.e.
n n-1
(thn(O), I Pn(o), vaay thn[OJ, Pn(O))

where VﬁPn(x) is the i-th backward difference of Pn(x) with step-size h.
With this form each successive Pn(jJ is obtained with n additions. In

the calculation of the next value, the diagonal is updated so that it is
the backward difference diagonal for the next x. Thus, the vector defining
the polynomial is always changing except for the first element which,of
course,is the constant differcnce. The advantages of this form are
storage, only a one-dimensional array of n+l elements ic needed, and easc

of coding.

x4+2x3+5x2+6x+1, the backward difference

Consider the example Pa(x)

diagonal at 0 with step 1 is B = (24, -24, 12, 2, 1). Now P4(0] = B(5) = 1,

then the simple string (2 simplc DO loop in Fortran),
B(1)+B(2) ~ B(2)+B(3) ~ B(3)+B(4) = B(4)+B(5) > B(S),

updates the diagonal and the vector B is now the backward difference

diagonal of P4(x) at 1. B is now (24, 0, 12, 14, 15), thus P4(1)=B(5) = 15.



3. REMARKS ON THE ALGORITHM ''SMOOTH"

The input paramcter list, Y, X, INIT, NDERV, NDEG, NPTS, LENGTH,
for the function subprogram S#0OOTH is described in the initial comment
cards. le use the usual convention that the zero-th derivative is the
function value. The limits and checks on the arguments are also

described in the comment cards.

Now, if NDERV = ¢ and NDEG = 0 or 1, then A% . = Al . = 1/(2n+1);
n,j n,}
hemce, W_ . = 1, Lf NDERV = 1 and NDEG = 1 or 2, then B> . = B> _ =
D,J n’J n'lJ
= 33/ (m{n+1)(2n+1)); hence W = 3j. And if NDERV = 1 with NDEG = 0,

n,j
or, if NDERV = 2 with NDEG

0 or 1, then SHOOTH jis set to zero.

In the remaining cases, the Nh j are polynomials in j, and the
H

coefficients are polynomials in n {we call these the n~polys of j).

Because of symmetry the wn j are only penerated for j =0, 1, ..., n and
7

the appropriate sign attached for negative j. The parameters NDERV and
NDEG point to an implicit triangular array of weights, whose columns are
indexed by n (corresponding to NPTS) and whose rows are indexed by j
(corresponding to the (INIT+j)-th ordinate). Therefore, NPTS specifies

the particular column of this array; i.e, for j = 0, 1,...,NPTS.

“NpTs, 5

Smooth places no restriction on NPTS.
Let m be the greatest integer in (k+1)/2 where'k is the degree of

Wn j as a polynomial in j. The procedure in SHOOTH is to evaluate
]

w . for j = 0,1,...,m, storing them as B(k-m+j+1) = 1

., then
n,) n,)J

reflecting the appropriate values into B(l),..., B(k-m). Thus the
B-vector is now a point-value form of wn 5 After using these m weights,
)

the B~-vector is manipulated so as to become the backward difference

diagonal at j = m with step 1. Now SMOOTH continually updates the B-vector,



7.

using the W_ 5= B(k+1) in the sum ) W 5 (T(INIT+3)+SIGI*Y (INIT~j}) ,
3 u >
j

wvhere SIGH = +1 as appropriate.

In order to evaluate the initial wn,j we use nested evaluation.

The n-peolys arc evaluated separately and combined with the powers of j.
Note that all the n-polys are also polynomials in n(n+l),

We note that for large n, the wn’j and the denominators are very
large integers. Thus the use of integer arithmetic is limited by machine
word length. SMOOTH, as presented, uses floating point, single precision
arithmetic. If exact values for these coefficients are desired, we can
scale down the Wn’j's and their denominators by canceling a common factor,

and/or using double precision arithmetic. The following common factors

of the numerators and denominators exist:

A s A7 . : 2%.3.5 = 60

n,J n,J

B> . : 2.3.5= 30 B> . : 29.3%.5.7 = 15120
II}JJ n,J

¢ .. 2.3.5=130 & . : 2%.3%.5.7 = 3780
n, j .

4, THE COMPUTATION OF TABLES OF SMOOTING WEIGHTS

SMOOTH is designed to calculate and use one specific set of weights.
To obtain a routine to produce tables of these weights the starting
values, wn,o’ ey Wn’m (m is the greatest integer in (k+1}/2 where Kk
is the degree of wn’j as a polynomial in j), for ecach columm are most
efficiently generated by difference methods. For each pair (NDERV, NDEG),NDEG=3,5,

one would use the point-value forms (WN Iﬂl j) for
Ty

!
37 een, g,

j = 0) l; LELRLRY | m’ IVhere:
(1) N = NOEG+1 ' . minimum NPTS for NDEG,

2



(2) ‘t = L+N where L is the degree of wn j as a polynomial
b4
in n, and
(3) 1n as above

and the point-value form for the denominator, in lieu of using any
explicit formulae, This gives the initial segments of the first (L+1)
columns. Each column can be completed as in SMOOTH. To obtain the
initial segments for additional columns, the m+l vectors, above, should
be manipulated so that they are backward difference diagonals at n=M,
and then updated for cach columm,

Two other methods for table generation are obtained by replacing
the point-value forms, for the wn,j noted above, by either the forward
or the backward difference diagonals at j = o. The use of these diag-
onals facilitates program coding. Appendix III contains all the point-
value, forward difference diagonal, and backward difference diagonal
vectors for the cases allowed in SHOOQTH. Note that the common factors have
been canceled.

Finally, we note that SMOOTH may be used to compute tables of
smoothing weights with its range of allowable arguments, One inserts
write statements at the appropriate points (indicated by comment cards)
and runs SMOOTH through the range of desired values of NDERV, NDEG and
NPTS. This approach is much less efficient in computation time {and

restricts the range of NDERV and NDEG), but it requires a trivial

nodification of SMOOTH.
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STeP=5I4: CALCULATION
H==1
IF{LeNOoT I LEGD]) HEX(1)
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6 FURMATI4OH DewIVATIVE KewlbSTEw AT neGaATIVELY INuveXeEb PUIaT)
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L=1
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UNDERIVED S UOTALRG

Y IF{(NDvewiT,1) GO TO 11
LEGREE O VR 1
SHOUTH=Y(INIT)
VO 10 K=1,NPTS
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RETURNM
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Zv KEY=3
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DO 25 =75l
K=m-1
DO £5 J=_.5K

25 pidi=ul{J+1)=LuJ)

GENERATE AND SPILL &0 vl IGrTS INTO SUm

Mml=L+1

DO 27 K=[,1»nNPTS

LO 26 J=I"sM
26 BlJI=blJ)+B(J-1)
TO OuTAalid TI'E REST OF TAz wiisJd) AxKAYs PrInT o0ia} AeEREs
27 SrtOOTH=9n00TH+L () ¥ (Y {INIT+K)I+SIGo#Y (In]IT=-K) ]
veNOM INCLUNeS STeP=3l1Zc ALJUSTiHehT
20 SMOUTH=SO0TH/DCNGHM

RETURN

END



APPENDIX I: GRAM POLYNOMIALS, DERIVATIVES AND SPECIAL VALUES

"A. THE GRAM POLYNOMIALS

Po () =1
Pyal) =}
sz—n(n+l)

P, 00) = GnD

3 2 )
.y _ 537-(3n"+3n-1)]
P2.00) ° SE-D -1

Py = 35525 (6n%+6n-5)32 + 3n(n2-1) (n+2)
4,n"7 = Zn(n-1) (2n-1) (2n-3)

b () < 531°-35(2n%2n-3)3% (15n+30n° 350" -50n+12) §
5,n%) Zn(n-1) m-2) (2n-1) (2n-3)

B. THE DERIVED POLYNOMIALS

0

o
-
~
«.
~
]

L) = i
; .y _  0)
P22 = 5D

2 2
' .y _ 15i7-(3n"+3n-1)
P32 * T@m-Do-D

Pt (3) = 10j (1452 - (6n°+6n-5))
4,n%3 2n(n-1) (2n-1) (2n-3)

b () 3157 %- 105 (2n+2n-3) 1%+ (150 %+ 30n3- 35n%-50n+12)
5,nt? 2n(n-1) (0-2) (2n-1) (2n-3)
C. THE SECOND DERIVATIVES

" 3 -
Py () =0

! 3 -
Plal) =0
P () = —=S

2,n J n(2n-1)

303

P3n0) = s @D

P () = 420j2-10(6n2+6n-5)
4,n'1? = 2n(n-1) (2n-1) (2n-3)

P 4) 112603 °-210 (2n%+2n-3) j
5,0'3) T Zn(n-1) (n-2) (2n-1) (2n-3)




D. SPECIAL VALUES

Pk,n{oj = 0, for k odd
po,n(D) =1
.ol
Pz,n(OJ © T Zn-1
_ 3(n+1) (n+2)
Pan® = G- no3)
P'k’n(O) = 0, for k even
1
] = 2
P 1,n(0) n
p! ) = - 31'12"'31'1-1
3,n n{n-1}(2n-1)
P’ (0) = 15114“'3011;3:;:55112—5011'*12
5,n 2n(n-1) (n-2) (2n-1) (2n-3)
1" = -
P k,n(o) 0, for k=0 and k odd
_ 6
P"2,n(0) T n(en-1)
2
o - 5(6n“+6n-5)
P ©) n{n-1)(2n-1) (2n-3)

E. THE SUi OF THE SQUARES

2n+]

(n+1) (2n+1)

3n

_ (n*1) (2n+1) (2n+3)

5n(2n-1)

= (n+1) (n+2) (2n+1) (2n+3)

7n(n-1) (2n-1)
(n+1) (n+2) (2n+1) (2n+3) (2n+5)

9n(n-1)({2n-1) (2n-3)

(n+1) (n+2) (n+3) (2n+1) (2n+3) (2n+5)
1in{n-1) (n-2) (2n-1) (2n-3)




APPENDIX II: FORMULAE FOR THE WEIGHTS

z RANCLANG
S

k=0 k,n

B P (P (0)

!

k=0 Sk,n

g Pk,n(J)P"k,n(o)
kfo  “k,n

1
2n+l

3[(3n°+3n-1)-5§2]

(2n-1) (2n+1) (2n+3)

15[635%-35 (2n%+2n-3)3> + (150 +30n

NOTATION:

denotes the j-th weight for m-th degree
smoothing based on 2n+l points

denotes the j-th weight for the 1st
derivative by m-th degree smoothing based
on 2n+1 points.

denotes the j~th weight for the 2nd derivative
by m-th degree smoothing based on 2n+l1 points.

3_35n°_50n+12)]

Z(2n-3) (2n-1) (Zn+1) (2n+3) (2n+5)

33
n(n+1) (2n+1)

25[3n4+6n3-3n+1]j-35[3n2+3n—1]j3

n{n-1) (n+1) (n+2) (2n-1) (2n+1) (2n+3)

{693[15n*+30n3- 35n%-50n+121j°-35[4(3n2+3n-1) (2n2+11n+15) (2n>-7n+6)

q

+11(15n% 30n°-35n

2_son+12) (2n%+2n-3)15°

+[12(2n%+11n+25) (2n2+7n+6) (2n2-7n+6) (2n>-3n+1)+28 (3n2+3n-1)% (2n2-7n+6)

+11(15n*+30n°-35n

(2n°+11n+15)

2_50n+12)°15)

4n(n-2) (n-1) (n+1) (n+2) (n+3) (2n-3) (2n-1) (2n+1) (2n+3) (2n+5)



30[3j2-n(n+1)]
n(n+1) (2n-1) (Z2n+1) (Zn+3)

_ -15[105{6n°+6n-5)j *-3(196n*+392n>-196n%392n+245) j%+ (70n®+210n°-35n"

-420n3-350°+210n) )

2n{n-1) (n+1) n+2) (2n-3) (2n-1) (2n+1) (2n+3) (2n+5)




NESTED FORM FOR NUMERATORS

(3-n+9)*n - 3 - 15*j*3J

: [945+j+j-((1050n+1050)n~-1575)] 3« j+(((15n+30)n-35)n-50)n+12

3-3

[((-105n-105)n+35)+j*j+((75n+150) "n*n~75)n+25]* j

¢ {[[(((10395n+20790)n-24255)n-34650)n+8316] » j- j+ ( ( ({ (- 13230n-39690)n+33075)n+132300)n-37485)n-110250)n+26460] ]+ j

+((((C{(3675n+14700}n-7350)n-73500)n-13965)n+111720)n+26460)n-44100)n+10584 }°*j

: 0

: 90°3+)-(30n+30)n

f({-9450n-9450)n+7875) *j*)+(((8820n+17640)n-8820)n-17640)n+11025] *j*j+

((C(((-2050n~3150)n+525)n~6300)n+525)n-3150)n



SPECIAL FORMS FOR NUMERATORS, W ,..., W
n,o n,m

LET &= (n+1l)n

AL Ll
n,j
3 . o

Ah,o' 9-3

AS a3 -15 (i.e. {numerator of I )-15)
nrl- n,0 n,;o

A, o (2256-750)5 + 180
A% 2 A5 _10506+2520
n,1° “n,o”

5 5
A> i A L -42006+21420
n,2" n,l

1 .
B! ..

n,j* 3
B> : 0

n,o
B> . (756-180)5+60
n,l
BS . (1506-990)8+330
n,o

5 .
B of O

SET : Z1 = (48-39)6+90 22 = (158-50)6+12

@o= -T7708+1155 Z = -21(4206-140) 21 = Zl((3006-300)64-100)1'112222

THEN FOR j = 1, 2, 3

5 . .. .
B3 (((693JJ+”)22+Z)JJ+21)J



i =308

: C +90

N,0

((-10506+3675) §-3150) §

5

: Cn 0+(88206 -27090)6+18900

s

S

: Cn oF (352808-221760)6+170100

s



APPENDIX 1II. 1Initial Segments of Special Arrays for Computing Weights

by Differences

Values are given in the following tables so that complete tables of
welghts may be made by differences without any direct evaluation, Also
given are the factors which will appear in both numerator and denominator

of the formulae, These factors have been cancelled in these tables.

TABLE I: 3RD DEGREE SMOOTHING

N2 3 4 5
0 17 35 59
AS |
1 12 30 54 n,j
S = demom 35 105 231 429
factors 3
even in j, degree 2
TABLE II: ShTH DEGREE SHMOOTHIN
N 3 4 5 6 7 8
0| 393 1253 3003 6093 11063
1| 225 945 2520 5400 10125 Aﬁ'j
2| -90 210 1260 3510 7500
S; , = demon 693 3003 9009 21879 46189 88179

factors 22° 3+5

even in j, degree 4



S

TABLE III: 1ST DERIVATIVE BY 3RD DEGREE SMCOTHING
T2 3 4 5 6 7 8 9
j
g] 0 0 0 0 0
BS
1156 290 882 2072 4160 n,j
2 |-7 335 1351 3621 7445
33 = denom 84 1260 8316 36036 120120 334152 813960 1790712
n——-——
’ factors 2.3.5
odd in j, degree 3
TABLE IV: 1ST DERIVATIVE BY 5TH DEGREE SMIQTHING
}Q 3 4 5 6 7 8 9 10 i1 12 13 14
0 0 0 0 0 0 0 0] 0 0 0 0 0
11485 20153 129528 564840 1926375 5531295 13972728 31954728 67481505
2 | -297 15883 158508 823338 3079725 §351573 24509058 57518308 123735843 Bi j
>
3 33 -9667 52458 603198 2930411 10157763 28816158 71227658 158937093

3,

n=denom 1980 60060 720720 5250060 27713400 116395280 411863760 1274815400
factors 24. 33. 5.7
odd in j, degree 5

3543239700 9013504500 21285039200 4720613G40C



TABLE V: 2ND DERIVATIVE BY 3RD DEGREE SHOOTHING
N 2 3 4 5 6 7
0| -6 12 -20 3
n,j
1] -3 -9 -17
5, , = denom 21 126 462 1,287 3,003 6,188
b4
factors 2-3-5
even in j, degree 2
TABLE VI: 2ND DERIVATIVE BY 5TH DEGREE SMOOTHING
N3 4 5 6 7 8 9 10 11 12
0 ~350 -1850 -6650  -18900 ~45780 -98700  -194700
1 .95 -1055  -4760  -15080  -38853 87115  -176440 c ;
2 335 755 35 -4855 -19751 54495  -124335
S. = denom 660 8,580 60,060 291,720 1,108,536 3,527,160 9,806,280 24,515,700 56,241,900 120,180,060

S5,n
factors 22.35.5.7

even in j, degree 4



Tables of Forward Differences Diagonals with Respect to n.
NOTE: These numbers are used right to left in the program description.

j| AT n=2
0y 17 18 Table la: 3rd Degree Smoothing

12 18
J AT n=3
0] 393 860 890 450 90
1| 225 720 855 450 90 Table 2a: Sth Depree Smoothing
2| -80 300 750 450 90

j AT n=2

0 0 0 0 0 0

1 56 234 358 240 60 Table 3a: 1lst Derivative by 3rd Degree Smoothing
2 -7 342 674 480 120

Table 4a: 1st Derivative by 5th Degree Smoothing

j AT n=3
0 0 ¢ 0 4] 0 0 0 0 0
111485 18668 90707 235230 © 365056 351820 207270 68600 9800
2| -287 16180 126445 395760 673592 680960 410760 137200 19600
3 33 -9700 71825 416790 871068 964740 606690 205800 29400
Table 5a: 2nd Derivative by 3rd Degree Smoothing
J AT n=2
0 ~6 -6 -2
1 -3 -0 -2
Table 6a: 2nd Derivative by Sth Degree Smoothing
] AT n=3
0 -35¢ -1500 -3300 -4150 -3030 -1200 -200
1 -95 -960 -2745 -3870 -2974 -1200 -200
2 335 420 -1140 -3030 -2806 -~1200 -200




Tables of Backward Difference Diagonals with Respect to n.

NOTE: These numbers are used right to left in the program description

0 17 12 6 Table 1b: 3rd Degree Smoothing

13 12 12

j AT n =3

0 393 330 260 180 950

1| 225 225 225 180 90 Table 2b: Sth Degree Smoothing

2 -90 -90 120 180 90

J AT n = 2

0 0 1] 0 0 0

1] 56 56 58 60 60 Table 3b: 1st Derivative by 3rd Degree Smoothing
2} -7 28 74 120 120 '

Table 4b: 1st Derivative by 5th Degree Smoothing

j ATn =3

0 i) 0 0 0 0 0 0 0 0
111485 1485 1485 1482 1476 1470 1470 0 9800
21-297 -297 -339 -456 -64B -B40 -840 0 19600
3| 33 -1353 -3061 -5274 -7992 -10710 -10710 0 29400

Table Sb: 2nd Derivative by 3rd Degree Smoothing

Table 6b: 2nd Derivative by Sth Degree Smoothing

j AT n = 3

0 -350 -320 -290 -260 ~230 -200 ~200
1 -95 -111 -127 -148 -174 ~-200 -200
2 335 336 302 188 -6 -200 -200




Complete Initial Difference Tables For The Weights, Displaying The Point-

Value, Forward Diagonal, and Backward Diagonal Forms At Minimum n.

-
[}
o

n,J

2.0
@1 35 59| point-value
8\ 24
6\ forward

j=1 12 30 54
12 18 24
6 6

backward

ALi=0 303 1253 3003 6093 11063
»J 330 860 1750 3090 4970
260 890 1340 1880
180 450 540
90 90

i=1 225 945 2520 5400 10125
225 720 1575 2880 4725
225 855 1305 1845
180 450 540
90 90

j=2 =90 210 1260 3510 7500
-90 300 1050 2250 3990
120 750 1200 1740
180 450 540
90 90

By . 3 =1 56 200 882 2072 4160
2J 56 234 592 1190 2088
58 358 598 898
60 240 300
60 60

j =2 -7 335 1351 3521 7445
28 342 1016 2170 3924
74 674 1154 1754
120 480 600
120 120



n,j j=1 1485 20153 129528 564840 1926375 5531295 13972728 31954728 67481505
1485 18668 109375 435312 1361535 3604920 8441433 17982000 35526777
1485 90707 325937 926223 2243385 4836513 9540567 17544777
1482 235230 600286 1317162 2593128 4704054 8004210
1476 365056 716876 1275966 2110926 3300156
1470 351820 559090 834960 1189230
1470 207270 275870 354270
0 68600 78400
9800 ©800
j=2 -297 15883 158508 823338 3079725 9351573 24509058 57508308 123735843
-297 16180 142625 664830 2256387 6271848 15157485 32999250 66227535
-339 126445 522205 1591557 4015461 8885637 17841765 33228285
-456 395760 1069352 2423904 4870176 8956128 15386520
-648 673592 1354552 2446272 4085952 6430392
-840 680960 1091720 1639680 2344440
-840 410760 547960 704760
0 137200 156800
19600 19600
j=3 33 -9667 52458 603198 2930411 10157763 28816158 71227658 158937093
-1353 -9700 62125 550740 2327213 7227352 18658385 42411500 87709435
-3061 71825 488615 1776473 4900139 11431043 23753105 45297935
-5274 416790 1287858 3123666 6530904 12322062 21544830
-7992 871068 1835808 3407238 5791158 9222768
-10710 964740 1571430 2383920 3431610
-10710 606690 812490 1047690
0 205800 235200
29400 29400



w

c . .3=0 -6 =12 -20
sJ -4 -6 -8
.2 -2
j=1 -3 -9 -17
-4 -6 -8
-2 -2
cﬁ . j=0 -350 -1850 -6650 -18900 -45780 -98700 -194700
»J 7 320 -1500 -4800 -12250 -26880 -52920 -96000
-290 -3300 -7450 -14630 -26040 -43080
-260 -4150  -7180 -11410 -17040
-230 -3030 -4230 ~5630
-200 -1200 -1400
-200 -200

j=1 -95 -1055 -4760 -15080 -38859 -87115 -176440
-111 -%60 -3705 -10320 -23779 -48256 -89325

-127 -2745 =-6615 -13459 -24477 -41069
-148 -3870 -6844 -11018 -16592
-174 -2974 <4174 -5574
=200 -1200 -1400
-200 -200

j=2 335 755 35 -4855 -19751 -54495 -124335
336 420 -720 -4890 -14896 -34744 -69840

302 -1140 -4170 -10006 -19848 -35096
188 -3030 -5B36 -9842 -15248
-6 -2806 -4006 -5406
-200 -1200 -1400
-200 -200
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