
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1980

Effort Minimization Based on Hierarchical Modularization Effort Minimization Based on Hierarchical Modularization

S. D. Conte

Report Number:
80-347

Conte, S. D., "Effort Minimization Based on Hierarchical Modularization" (1980). Department of Computer
Science Technical Reports. Paper 277.
https://docs.lib.purdue.edu/cstech/277

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

EFfORT mNHUZATION BASED ON HIERARCHICAL MODUL1\RIZATION

S. D. CONTE

Computer Sciences Department
Purdue University

West Lafayette, IN 47907

CSD-TR 347

Effort Minimization Based on Hierarchical Modularization

Preliminary Report

1. Hierarchical Modularization of Large Softl....are Systems

S.D. Conte

The principle of modulariz.ing large programming projects is nOlI' I'/idely

accepted by software managers. Experience indicates that proper modulariza-

tion leads to fewer errors and better understandibility. However, ~here

have been few quantitative estimates of the benefits of modularization. The

theory of soft\....are science can be used to produce metrics which lead to both

effort minimization and to error reduction.

For very large programs Lattanzi [lJ and others have suggested that a

four level hierarchical modularization seems to be reasonable. Lattanzi has

suggested the following levels for programs of the size indicated.

Size Software
Level Name (Source Lines) Science Length ItModules

a Program 1l0K - 225K 300 600K 1
1 Subprogram 3000 5000 8000 13000 M
2 Module 300 500 800 1300 ML
3 Segment 30 SO 80 - 150 MLS

As the Column ItModules indicates, each of the M subprograms ,...-ill be

divided into L modules and each of the L modules into S segments.

Turner [2J has also emphasized the importance of structured modulariza-

tion. He points out that if modules are limited to bet'.... een 50 and 200 lines

of executable code, as is commonly advocated, then a large program will

contain very many modules and the '....ay in which these modules are structured

will have a significant inpact on the reliability of the resulting code as

well as on the effort required to \....rite this code. Turner advocates I....hat

he calls a pure tree structure hierarchical modularizatiol1 in'hich a given

lower level module may be called only by a single module on ~he next higher level.

Cross-sharing of modules bet'... een trees is not alloNed. In this paper I.... e

shall essentially be concerned only I.... ith pure tree structured modularization

pic tured graphically belOl.... :

3

lIt· Basic Assumptions and the Software Science Effort

Software science [3J introduces the basic matries n
I

, the number

of unique operators and Tl 2 , the number of unique operands. The length

N of a program P is defined to be

II/here N1 is the total occurances of operators 10 P and N
Z

is the total

occurances of operands in P. In our model \oJC shall asswne that we are

given or can estimate the length N of the program P. If the estimate of

the size of a program 15 given in lines of code (LOC) , then it lS easy

to convert the size into the software science length by the formula

N=k-LQC

where the conversion factor k depends on the language being used. for

Fortran, for example, k - 6.6.

In the hierarchically modularized tree of Figure 1, we will have in

all MLS segments at level 3. \~e assume, for simplicity, that all segments

aTe of the same lengt:h N. Hence we must have

(1) MLSN = N

Software science defines the effort required to l~rite a program of

length N as

Effort =
Volume
Level

where volume and level are defined in [3]. If ,,'e asswne that n
l

= n
Z

= -}:n

and Nz = N/Z, then the effort equation can be simplified to

Effort = 2.!,; N log T]

4

where T1 may be computed from the equation

N = T] log 11/2

If we have a segment of length N, the effort required to write

a program of that length under the assumptions made above is

(2.)
with

(2b)

-2e = -t N log n

N = n log rl/2

Since there are in all MLS segments the effort required to \.Jrite all these

segments will then be

(3) E = ~fLSe

5

III. The Interfacing Model

The effort required to write a program consisting of MLS segments

must also include the effort required to assure proper interfacing of

these segments and modules. As ,,,e increase the number of modules or

segments we increase the overhead required for proper interfacing. This

interfacing arises because various I/O parameters ,,,ill be common to several,

or perhaps, all modules at the same level.

Software science defines the potential volume of a program as

v* '" (2 + T] *) log (2 + n *)
2 2

\"here T]Z* is the number of conceptually unique operands required for that

problem. If we are given N and the programming language, then the formulas

of Software Science permit us to determine Tl
Z
* uniquely.

Our model for the effort required to interface properly is as follows.

Let Tl 2* be the number of conceptually unique operands in program P. At

6

level 1> we assume that all of these unique operands l... i11 appear in each of

the M subprograms. Let vI = Il Z*, represent these operands. lVe nOl" assume

that the unit effort required to assure proper interfacing is proportional

to the effort required to '...rite a program with a vocabulary of length VI"

From software science this effort 15

('J

\\Ie must no\>! be sure that each variable appears correctly in each of the !II

subprograms.

the subtotal

(5J

Since there are M(M-l)j2 paths correcting these M subprograms,

interface effort at level 1 is given by

At level 2 each of the M subprograms \.,.Ul contain L modules. We assume

that these L modules must interface ld th each other (but not Illi th modules in

any other subprograms).

Let v1 = k 1 Tl 2* be the number of I/O variables required for interfacing.

Generally \....e would expect 0 < k2 < 1. Then as argued above the unit inter­

face effort at level 2 is

(5) '2 = l N 2 log v11 2 ..,.

and the subtotal effort required at level 2 for interfacing the modules in the

subprogram ,.... ill be

(6) "2 .1/2 L(L-IJI Z

At level 3, \.'e define

and as above arrivet at

(7) '3
I 2 log N3 log• '4 N3

v_, • v, v ~ /?, ., ., ,

"3 • 1/2 S(5-I)L,

7

for the subtotal effort for the S segments within one module.

The factors k. in the formulas,

(8)

should satisfy

a < k. < 1,-

and should decrease with i. One possible choice might be

(9) k. =~i-l (i =, 1,2,3)

but in general, the choice must be based on experimental evidence. Note

that if the ki are chosen according to (9), then 1
3

< 1
2

< II'

Notice that the unit interface effort at any level is independent of

the number of subdivisions in that level.

The overhead model is summarized in Table 1.

Table 1

Overhead Effort

Level

o
1

Z

3

Unit Overhead Subtotal Effort

0 0

II 1/2 M(M-l)I1

12 1/2 L(L-l)IZ

1
3

1/2 5(5-1)1
3

Total Effort

o
E1 = 1/2 ~l(~I-l)Il

E2 " 1/2 ML(I-I) 1
Z

E3 " 1/2 HLS(S-I)1
3

The total effort E required to write all /-ILS segments and to properly

interface them will then be

(10)

8

IV. The Optimization Problem

I\le note that E is a function of M,L,S and N. However since

MLSN = N

one of these is no~ independent. Hence E is a function of 3 independent

variables. The optimum choice of these independent variables (assumed to

be M,L,S) must satisfy the equations

o

(11)
aE

0=
aL

aE
0=as

Qualitatively \~e can

of the variables M,L,S,N;

see what happens by considering restricted choices

For example if we fix the length of each segment

N and also take M fixed, then I.,.e l."i11 have a tradeoff between Land S, since

LS = N/FfM. The first 2 terms of eN) > namely MLSe and E
1

will be fixed under

these conditions but as L increases, S must decrease. An optimum value

must therefore exist for each fixed M and N.

The optimization equations (ll) can be expanded to obtain

'E MLS ~~ +
aE1 ,E aE3LSc 2

0aM = + --+ + -- =aM aM a~f

aE1 aE aE3(IZ) aE MSe MLS ~~ +
Z

0aT= + + +aL aL aL

aE ,E aEz aE3MLc MLS ~S
1

0as= + + -- + as + as-as

ae _
a-M-

log e

n log e n/2

9

-2 1
-3

log eN
M

e - 4 ~l
n log e n/ 2

-2 1
-3

log eae N
aT = e -

L 4 L
log n/2n e

ae -2 1
-3

logN e= e -as S 4 S
log ,,/20 e

and hence (12) becomes:

aE
aM = LSe -2LSe ML5 'N3

log e_ _ _ -'0"'----"--_
4 ~1

11 log en/2
+ 1/2 (2'.1-1)1

1
+ LIZ L(L-1)12 + 1/2 I.S(S-1)13 = 0

aE
MSe -2MSe

MLS 'N3
log c

1/2 >.I(2L-1) 1
Z

+ 1/2 M5(S-1) 1
3

0aT= 41. + =nlog en/

aE
MLc -2MLe -

ML5 N"3 log c
1/2 MI.(2S-1)1

3
0-= + =as 4S -

log en/20

Simplifying

aE
-=aM -LSc - -t 1/2 (2M-I)I l + 1/2 L(I.-l)Tz + 1/2 L5(S-1)1

3
= 0

aE
-MSe

_MSN3
1/'2 M(2L-1)[2 1/2 MS) S-l) 1

3
0aT= -4- y + + =

(13)

aE
-MLe

_MLN3
1/2 ivlL(2S-1)1

3 0as= -4- y + =

where

(J 4) y = _l":o",g.....,e,--_

11 log en"t2

10

Finally

-3 (2M-I) I, (I.-I)
(S-I)I

3
a) 'E N

1
2

+ 0-0 - - y + + =
'~I 4 2LS 2S 2

'E
-3 (2L-l) ' 2

(S-I)1
3

(IS) b)
N

0ar= -0 - -y + + =
4 2S 2

c) 'E N3 (2S-1) 1
3

0as= -0 - 4 Y + =
2

V. Solving the Optimization Equations

The equations (lS) can be solved by a secant-type iteration. The

procedure is as follows:

+
We are given Nand nZ .

Pick 2 starting values for N, say N. l' N. (e.g. N. 1"= 100 N. =llQl
1- 1 1- 1

+
Compute II' 12, 13 (these depend on Nand nZ but not N)

Step 1.

Step 2.

Step 3.

Step 4. compute

e(N
i
), y(N

i
), e(N

i
_

1
), y (N

i
_

1
)

Step 5. Solve the System (15) in the order

(ISe) for 5
i

, (iSh) for L
i

, (lSa) for M
i

and also for i-I.

Step 6. We now can evaluate

f(M
i

, L
i

, 5
i

, N
i

) = M
i

L
i

5
i

N
i

-N

L. 1 S. 1 N. 1 -N
1- 1- 1-

Step 7. Update N using

Step 8. Evaluate £(Ni+1J

11

Step 9. If]Ni + 1 - Nil < E, Stop

Else

If If(N. III < 0>+
Stop

Else return to step 4
(Choices of £ = .1, 0 = 1)

VI. Other Overhead Models

From 55 an alternative formula for the effort ~s

(16) E

If \qC have M subprograms, at level I, then '''0 must make log M mental

comparisons of the interface variables for one subprogram and hence M log M

comparisons in all. The effort, hONover, to interface all variables will be

greater than M log M. Inspired by (16) we can hypothesize that the total

effort for interfacing is given by

3E = (M log M)
1

At level 2 we similarly hypothesize that the effort for interfacing in this

one subprogram is (L log L)3 and since there are M subprograms the subtotal

effort at level 2 is

3
E2 = 'I(L log L)

At level 3 by a similar argument we arrive at (8 log 8)3 for the effort

within one module and for all of the ML modules \<le get

E
3

'" ML (8 log 5)3

The total effort then is

(17) E ~1LSe + E + E + E1 2 "3

12

The value of M, L, S which give a minimum for (17) most now satisfy

aE
ClM =

aE
as = 0

Written out and using Equations (13) I~e get

aE
-LSe LS'N

3
y

aM = - -4~

aE -3
-t-ISe

MSN yar- - -4~

aE
-MLe MLN3

y
as= -

4

2 3 3
+ 3(M log M) (log M+log e) + (L log L) + L(S log S) := 0

+ 3M(L log L)2 log eL + M(S log 5)3 := 0

2
+ 3ML(S log S) log eS := a

(18)

a) aE -3
3 2 (L log L) 3 (S log S)3

= -e - N Y
+ LS (M log ") log eM + + = 0"I 4 LS S

aE -3 2
(S log S)3

b) N y 3 (L log L) log eL
0-e - + - + =aL -4-~ S S

aE -3
2c) = -e N y

+ 3(S log S) log cS 0as -4-

Equations (18) combined with

feN) = MLSN -N = 0

can be solved as before to obtain the minimum values of ~1J L, Sand N.

13

VII. Some Numerical Results

Table I contains some numerical results for the one, two and three

level models with different level factors based on the overhead model of

Seeton III. The values of MJL,S and N for which a minimum effort is

attained are almost never integers since we assume in the model that they

are continuous variables. However, in the table we have rounded off

M,L,S to the nearest integer and then obtained N using MLSN = N and the

corresponding effort using (10).

The results in the table are interpreted as follollls. If we look at

the...Fi-rs-t. case corresponding to a program of size N = 10 J 000 and if we

desire one level of modularization then the minimum effort will be achieved

by dividing the program into 13 modules of average size N = 769. With 2

levels of modularization minimum effort will be achieved if we divide the

program into 5 subprograms at level I and 8 modules at level 2. This ''lill

give a total of 40 modules each of length N = 250. With 3 levels of modu-

1arization the minimum will be achieved for ~I = 2, L = 5, S = 9 or a total

of 90 segments each of length N = 111. Note that the minimum effort decreases

as the level increases. The results in the rOIl' labeled 3' were obtained by

changing the level factor k3 from 1/4 to 1/3. The effect of increasing k
3

~s to increase the unit effort at level 3 and thus to decrease the number S

of segments at level 3. In general, increasing k
3

will also increase the

value of N and of E at the minimum.

The results seem to indicate that 3 level modulaTization is always

best s~nce E is al\'lays least at that level. TheTe may be good management

Teasons to reject 3 level modularization, at least for smaller programs,

since the number of segments at level 3 may be too large. In the case

N = 10,000 we would need 90 segments of length N = Ill. Good management practice

14

Table I

Summary of Results for one, two, three level Models

Level Factors: k1=1. k2~> k3~ or for Level 3'

N Levels N M L S E*lO-6 N N " L S E*lO-6

10K 1 769 13 20.5 2K 222 9 .963
2 250 5 8 6.1 63 4 8 .299
3 111 2 5 9 2.1 18 2 5 11 .095
3' 93 3 6 6 2.7 33 2 5 6 .123

20K 1 1250 16 74.1 4K 364 11 3.64
2 370 6 9 21.4 125 4 8 1. 10
3 123 3 6 9 7.4 40 2 5 10 .353
3' 185 3 6 6 9.5 67 2 5 6 .484

30K 1 1667 18 156.5 6K 500 12 7.85
2 476 7 9 44.3 150 5 8 2.37
3 185 3 6 9 15.3 60 2 5 10 .769
3' 278 3 6 6 20.0 100 2 5 6 1. 08

40K 1 2105 19 265.4 8K 615 13 13.5
2 571 7 10 74.1 200 5 8 4.03
3 247 3 6 9 25.6 80 2 5 10 1. 34
3' 278 4 6 6 32.8 III 2 6 6 1.80

50K 1 2500 20 399.2
2 714 7 10 110.0
3 309 3 6 9 38.7
3' 298 4 7 6 48.8

lOOK 1 4000 25 1409.4
2 1111 9 10 373.3
3 397 4 7 9 130.2
3' 595 4 7 6 166.7

200K 1 6667 30 4936.4
2 1818 10 11 1255.2
3 571 5 7 10 440.4
3' 714 5 8 7 548.4

15

suggests that an average module sue should be 50-80 higher language

level source statements which corresponds roughly to 300 < N < SOD.

Thus, it Il'Ould be reasonable to USe 3 level modularization for programs

of length N > 30,000, to use 2 level modularizatlon for programs of

length N between 6000 and 30,000. and to use one level modularization

for programs of length N < 8000.

In this model. the level factors k!, k
2

, k
3

playa critical role

since they determine the overhead effort at each level. We should be able

to determine reasonable values for these factors by comparing numerical

results achieved by the model against realistic data on implemented

projects. To some extent we might expect these factors to vary ,.,.ith the

type of program. A. command and control program, for example, might be

expected to have larger interfacing overhead, and hence larger level

factors, than a straight fOTl~ard application program

16

VIII. Experimental Validation of Model

We first examined a library of 32 Fortran programs (See Table 11)

ranging in size from 3345 lines of code to 55 lines of code, or in terms

of the softl"are science length from N=17609 to N=353. I~e counted the

number of subroutines M Nithin each program and equated these Nith the

number of modules assuming one level modularization. The mean program

size was N=S764. the mean module size ""as N=446 and the mean number of

modules was 13.

Applying the one level modularization model we found the optimum

value of the parameters M and N for a program of size N=S764 to be M=12.

N=480. It would appear that the natural division of the average size

program into subroutines is not too fur from optimal. In any case the

model seems to conform closely to this experimental evidence.

Additional evidence is of course needed to confirm the validity

of the model, and in particular the choices of the parameters k
l

, k
2

and

k3 •

A second test for this model is provided by F. Akiyama's data on

a large soft\~are project published in 1971. This large project, lhich

required a reported 100 man-months to complete, was broken down into 9

large modules. The nwnber of lines of assembly code fOT each module was

given as well as other data. SoftwaTe Science metrics, \.... erc, of course,

not reported but by making some rough approximations they could be de­

duced. Halstead in [2] obtains the following software science me'trics for

these modules:

17

Module N n E(millions)

I 8064 913 170
2 2658 356 IS
3 10906 1184 323
4 3348 432 28
5 4102 504 100
6 5026 609 66
7 1398 207 6
8 7584 855 59
9 6824 790 136

SUM 49910 903
Mean 5546

Our restricted one-level model can be applied to this program with

N=49,910 and N=5546 with M=9 and T]2*=1l2. We can compute II = 719,805

and e = 72.072 millions, and from these

E = Me + ~ MU·I-l) II = 674.56 million cmd_'s

Assuming a 40 hour week with 4 1/6 weeks per month and 18 dis-

criminations per second, there loJould be 10.8 million discriminations

per man-month. Thus

Man-months = E/10.8 ~ 63

Considering the rough nature of the approximations as well as the data,

this result when compared ,,,ith the reported charged 100 man-months of

effort for this project is actually quite good. This is especially so

when we recall that the softl"are science E assumes concentrated programming

effort \lIhereas the reported effort almost certainly does not.

From Table I Ille see that for a program of size N=50,OOO the optimum

choice of ~f Illouid be 20 Illith N=2500. The effort E Illouid then have been

reduced from 674 to 399.2 million emd's.

Table II
18

Fortran
Program No. LDe N Modules IT

I. 3345 17609 48 367
2. 685 3800 23 165
3. 2132 13442 49 274
4. 582 2831 14 202
5. 179 1156 1 1156
6. 192 1089 7 156
7. III 647 2 324
8. 131 1077 2 539
9. 2559 15530 22 706

10. 227 1457 5 291
II. 81 763 4 191
12. 84 424 3 141
13. 55 353 2 177
14. 190 1594 14 114
15. 458 2975 4 744
16. 752 4518 6 753
17. 2042 14344 31 463
18. 1372 15704 18 872
19. 2164 15954 72 222
20. 2883 15437 35 441
21. 386 2122 11 193
22. 189 1422 1 1422
23. 1133 8088 14 578
24. 42 358 1 358
25. 90 731 2 366
26. 994 5328 20 266
27. 676 4481 13 345
28. 1825 12464 37 337
29. 360 2678 4 669
30. 1978 14869 44 338
31. 115 613 4 153
32. 110 604 3 201

" 28122 184462 516 14268
Mean 5764 446

19

A third set of data for validation of the model was provided by a
large software house and is summarized in the table below:

Project

A

B

N

232K

589K

KLOC

45.4

116.6

"Modules

176

354

Avg. Mod. Size

1318

1666

254.1

419.0

lqe ran this data through the unrestricted 2-level and 3-level model
and selected the results which appeared to match most closely the reported
effort. The best results are given below:

Project

A

B

Model-Level

2

3

2549

1886

M

13

7

L

7

5

s

o
8

207

412

In these models we used k1 = I, k2 = 3/4, k
3

= 3/8 for the unit

interface effort calculation

The results show that for optimal effort Project A should be divided
into 91 modules of average length 2549 while Project B should be divided
into ~80 modules of average length 1886. In both cases the predicted ef­
fort T is quite close to the reported effort T. An important decision by
a model builder is to select the proper level. If we~used a 2-level
model for Project B for example the predicted effort T would have been
754 MM. It is evident that for very large projects a 3-level model is the
most appropriate. On the other ~and if we had used a 3-level model for
Project A, the predicted effort T would have been 150 MM, a much worse
result than the 2-level model gave. Some additional research is needed
to decide on which level is most appropriate for projects of various sizes.

20

IX. The Restricted Modularization Problem

There is considerable intuitive evidence to support the practice

that the average module or segment size should be restricted in length

to between 50 and 80 lines of source code. Modules of this size are just

within the irrunediate comprehension of the average programmer. Sullivan

[] has shOlm that programs of this size are more likely to be error free

than larger programs. Thus, both for reliability and ease of comprehension,

software managers may limit the size of modules to the range between SO and

80 LOC whether or not these correspond precisely to natural functional

modules.

Even if one decides to restrict the average module size to be within

a certain range, we must still decide on hall' many levels of modularization

to use and on the number of modules at each level. The model described

above can easily be modified to produce for a specified level the optimum

choice of subprograms, modules and segments.

In what follows lI'e assume that Nand N are given and that all the

other assumptions are maintained.

In the one level case since Nand N are given 1-1 is determined from the

equation

~1 N = N

Hence, no optimization is possible. The total effort is given by

E = Me + ~ M(M-l)I
l

In the two level case we have

(190) MLN = N

21

and we wish to find M and L which will minimize

(19b) E = MLe + ~ M(N-I)I l + ~ ML(L-I)I2

From (19a) L is determined once M has been found, hence E is essentially

a function of one variable, say ~1. Hence, the minimization equation is

(20)

NOli

dE =
dM

d(MLe)
dM + " (2~1-1) 11 + " L(L-l) 12 + " M(2L-l)

d(MLe) = 0
dM

since ~fLe is a constant if N is fixed, and

since

then

L = 1 N

M N

where we set c = N/N.

dL c
dM = M2

Substituting into (20) and simplifying loJC obtain the equation

(21)

22

Thus given c=N/N". 12 and II' we can solve (21) for M and then obtain

L from L=c/M. These values of M and L will minimize the effort.

Similarly \~e can consider the restricted 3 level minimization problem.

The equations which must be satisfied are

(22)
MLSN=N

E = MLSe + ~ M(M-I) II + ~ ML(L-I) 12 + ~ MLS(S-l) 1
3

There are essentially 2 independent variables, say M and L, since S 1S

determined from S = 1
ML

N

N

Ne therefore have 2 minimization equations to satisfy:

(23.) 2M-I
-2- II

L(L-1)
+

2

(23b)

where

aE = ~f(2L-I) c (c)
aL 2 12 + 2 - ML2 13 = 0

c=NjN

and where I~e have used the fact that MLSe is a constant.

Solving (23b) for M we obtain

(24.)

and we can rewrite (23a) as

(24b) feLl

23

" (2M-I) II + L(L-l) 1
2

-

We can solve (24a) - (24b) by a secant type iteration as follows:

Let L. l' L. be 2 starting values; compute M. l' M. from (24a). Evaluate
J.- J. J.- 1

£(L.), £(L. 1) from (24b). Update L using
1 1-

L. - f(L.)
1 1

L. -L. 1
1 1-

f(L.)-f(L. 1)
1 1-

and iterate until convergence is achieved.

X. Numerical Results for the Restricted Minimization Problem

In Table III we show the optimum value of M, Land S for various

program sizes and for level 2 and level 3 modularization. We have not

rounded off these values to their nearest integer since that would change

the values for N. However, in our discussion we will round mentally to

the nearest integer.

To interpret the results we \~ill examine in detail the case N=50,OOO.

For N=250 and 2-1evel modularization I....e would need M=14 and L=14 for effort

minimization. As Nincreases, M and L both decrease gradually but still

in such a ,...ay that M and L are approximately equal. For the same case

3-level modularization and any value of N betNeen 250 and 400 it appears

that we should choose M=3, L=6, 5=9. Intuitively the 3-level model appears

more natural for the N=50,OOO case since it leads to a purer tree structure.

Indeed it appears that for N > 20,000 a 3-lcvel model is to be preferred.

Of course as M approaches 1 as it does for N < 10,000 it 1S apparent that

lI'e must use a 2-level model, or even for very small programs, a I-level model.

24

Table III

Restricted 2 and 3 Level Minimization Model (k,~" k2=:1:i~ k =!';l3

Level 2 Level 3

N N M L M L S

2K 250 1.68 4.78 .68 1. 87 6.27
300 1.51 4.42 .65 1.72 5.92
350 1.38 4.14 .63 1. 61 5.63
400 1. 28 3.90 .62 1.51 5.37

4K 250 2.63 6.08 .89 2.60 6.94
300 2.35 5.67 .83 2.41 6.63
350 2.14 5.34 .75 2.26 6.36
400 1.98 5.06 .76 2.14 6.13

8K 250 4.18 7.66 1.23 3.42 7.59
300 3.72 7.17 1.14 3.20 7.30
350 3.37 6.77 1.07 3.02 7.05
400 3.10 6.45 1.02 2.87 6.84

10K 250 4.85 8.24 1.38 3.71 7.80
300 4.32 7.72 1.28 3.48 7.51
350 3.92 7.30 1.19 3.29 7.27
400 3.60 6.95 1.13 3.13 7.06

20K 250 7.76 10.31 2.01 4.70 8.47
300 6.89 9.67 1.84 4.43 8.19
350 6.24 9.16 1. 71 4.20 7.96
400 5.72 8.74 1.60 4.02 7.75

SDK 250 14.47 13.82 3.38 6.28 9.43
300 12.83 12.99 3.07 5.93 9.15
350 11. 59 12.32 2.84 5.65 8.91
400 10.62 11. 77 2.65 5.42 8.71

lOOK 250 23.16 17.26 5.05 7.73 10.24
300 20.55 16.22 4.58 7.32 9.94
350 18.56 15.40 4.22 6.99 9.70
400 16.99 14.71 3.93 6.71 9.49

200K 250 37.13 21.54 7.59 9.48 11.12
300 32.90 20.26 6.87 8.98 10.81
350 29.71 19.24 6.31 8.58 10.55
400 27.00 18.00 5.87 8.25 10.33

References

1. Lattanzi, L.D., An Analysis of the Performance of a Softl-lare Develop­
Software Development Methodology, COMPSAC Proceedings, 1979.

2. Turner, J., The Structure of Modular Programs, CACM, May 1980, pp.
272-277 .

3. Halstead, M.H.. Elements of Soft\....are Science, Elsevier, North­
Holland, 1977.

	Effort Minimization Based on Hierarchical Modularization
	Report Number:
	

	tmp.1307986960.pdf.G4LGY

