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INTRODUCTION

Human activity is altering the biodiversity of 
our planet, which may in turn alter ecosystem 
processes and have an economic impact on society 
(Chapin et al., 2000; Costanza et al., 1997). It is 
becoming increasingly important to understand and 
quantify biodiversity in a robust and timely manner 
(Balmford, Crane, Dobson, Green, & Mace, 2005). 
Traditional biodiversity measurements require 
many resources, specialist time, and may disturb 
existing landscapes (Cranston & Hillman, 1992; 
Wilkie, Mertl, & Traniello, 2007). Therefore, rapid 
biodiversity assessment with noninvasive methods 
and low operational costs may be preferable.

When studying biodiversity, ecological processes 
exhibit various forms of spatial heterogeneity. In 
particular, organisms in an ecosystem tend to exhibit 
patchy or gradient spatial structure (Legendre & 
Fortin, 1989). Animal communities are spatially 
structured at many scales and comprise a community 
composition. These community compositions can 
be compared, as well, by assessing spatial variation. 
These structures allow researchers to understand 
trends and the infl uence of ecological processes in 
a geographic region over time. One aim of spatial 
analysis is to discriminate between these sources of 
variation. Many times, events such as disturbances, 
may infl uence the structure of a community 
(Borcard, Gillet, & Legendre, 2011).

Ecologists are concerned with how anthropogen-
ic disturbances affect biological richness and the 
soundscape of an environment (Pijanowski, Farina, 
Gage, Dumyahn, & Krause, 2011). A soundscape 
is defi ned as the composition of sounds in an eco-
system (Pijanowski et al., 2011b). Soundscape 
ecology is a new fi eld that is interested in assessing 
relationships between biodiversity and the sound-
scape. (Pijanowski et al., 2011a). Important tools 
for assessing such relationship are acoustic indices, 
which are implemented to measure ecologically 
meaningful information in a sound recording (Sueur, 
Farina, Gasc, Pieretti, & Pavoine, 2014). Research 
into the relationship of acoustic diversity and bio-
diversity have used acoustic indices to successfully 
quantify biodiversity (Gasc et al., 2013a; Obrist et 
al., 2010; Sueur, Pavoine, Hamerlynck, & Duvail, 
2008a; Towsey, Wimmer, Williamson, & Roe, 2014). 
Ecological indices that are responsive to biodiversity 
should be responsive to the spatial gradients, as-
suming that species exhibiting spatial heterogeneity 
are vocalizing. Landscapes support varied animal 
community diversity due to geographic location and 
habitat, with some landscapes having a higher level 
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of sound diversity (Diwakar & Balakrishnan, 2007; 
Riede, 1993). Borneo is home to the one of the most 
biodiverse rainforests in the world with a highly 
active and acoustically rich soundscape (Pekin, Jung, 
Villanueva-Rivera, Pijanowski, & Ahumada, 2012). 
Researchers believe that species in undisturbed 
regions of this rainforest have stabilized into local 
spatial niches while species in disturbed regions 
may have abandoned their natural niches (Schmidt, 
Romer, & Riede, 2013). This phenomenon may be 
due to ecological niche differentiation and acous-
tic competition, whereby communication space is 
partitioned among species (Pijanowski et al., 2011b; 
Schmidt, Römer, & Riede, 2013). Spatial analysis 
may provide evidence for differentiation between 
undisturbed and disturbed regions. 
 
Currently, the efficacy of ecological indices for 
assessing ecological spatial autocorrelation has not 
yet been tested, yet one goal of soundscape ecology 
is to quantify spatiotemporal patterns of soundscapes 
(Pijanowski et al., 2011b). In this study, we applied 
the tools of soundscape ecology in a novel way:  
(1) Which acoustic indices are more responsive 
to spatial structure? and (2) How does the level of 
spatial autocorrelation vary between an undisturbed 
and a disturbed region of a paleotropical rainforest? 
Borneo is home to the oldest and most biodiverse 
rainforests in the world. This rainforest has a highly 
active and acoustically rich soundscape (Pekin et al., 
2012). Species in undisturbed regions of the rainfor-
est have stabilized into local spatial niches (Schmidt 
& Balakrishnan, 2015), while species in disturbed 
regions may have abandoned their natural niches. 
Vocalizing species partition frequency space to avoid 
competition (Pijanowski et al., 2011b; Schmidt et al., 
2013). We therefore hypothesize that in the undis-
turbed, old growth region of the rainforest, species 
will exhibit well-defined acoustic niches, whereas 
in the disturbed region these acoustic niches may 
change or no longer exists. Here we mean disturbed 
to mean that the study site had recently been exposed 
to logging and undisturbed to mean that the site was 
old growth forest devoid of human activity. We con-
jectured that the level of spatial autocorrelation will 
be higher in an undisturbed region.

MATERIALS AND METHODS
Study Sites

The study was conducted at two sites near Kuala 
Belalong Field Studies Center in Brunei on the island 
of Borneo in Southeast Asia. The old growth forests 
in the three-acre study plot are 300 million years 
old with over 70 species of frogs and toads and 32 
cicada species. Samples were collected as sound 

recordings using SM2+ acoustic recording units with 
a sample rate of 44,100 Hz, stereo. This recording 
interval provided 48 recording times that could be 
studied independently. Sound recordings (n = 8,450) 
were collected from an undisturbed transect (T2) at 
13 spatially unique sites from February 13 to March 
7, 2014. Sounds recordings (n = 4,950) were also 
collected from a disturbed transect (T3) at 13 spa-
tially unique sites from March 3 to March 15, 2014. 
At each site, 10-minute recordings were taken every 
30 minutes. Note, the sample sizes for T2 and T3 
differ, and a confounding variable may be a change 
in soundscape dynamics due to yearly seasonality. 
However, T3 recording were taken after T2 recording 
in the same season. T2 and T3 recorders shared iden-
tical spatial arrangements. The spacing was designed 
to optimize redundancy across multiple distance lags.

Index Calculation and Preliminary Analysis

Alpha Acoustic Indices (ACI, ADI, AEI, Bioac, H, 
Hf, Ht, M, and NDSI) and beta acoustic indices (Dt, 
Dcf, Df, dw, KLD, KLD1, KLD2, KSD, KSF, LS, 
and SS) were calculated on the first 60 seconds of all 
T2 and T3 recordings using the R package seewave 
(Sueur, Aubin, & Simonis, 2008). See Table 1 for 
index acronyms. 
 
Preliminary analysis of variance (ANOVA) tests  
indicate that the Bioac index varies significantly 
between the T2 and T3 site (p < 2e-16) and vary 
significantly at 46 of 48 recording times (Bonferroni 
corrected p < 0.00104). Notice, ANOVA assumptions 
are violated by temporal correlation, although re-
gressing the Bioac index produces normal residuals. 
For each index, index distribution depended on tran-
sect for at least one recording time (Kruskal-Wallis 
nonparametric rank sum test, Bonferroni corrected  
p < 0.00104). This provided a reference when  
analyzing alpha and beta indices using statistical 
tests. Moran’s I was used to compute the spatial  
autocorrelation of each alpha index for both  
aggregate time and individual time points. Mantel 
tests were used to assess correlation between spatial 
distance and soundscape difference via beta indices.

Compute Mean Spectrum 
 
For each recording, spectrograms (Hanning window 
length = 512 samples) were generated from the first 
minute of each file. The mean sound power for each 
frequency bin was calculated to produce a mean 
spectrum vector. The mean spectrum vectors were 
grouped by recording time and transect and averaged 
across frequency bins. This produced a plot, the 
mean mean spectrum that depicts an average day in 
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relationships (Legendre & Fortin, 1989; Legendre 
& Legendre, 1998). The test calculates correlation 
between two distance matrices and then permutes 
the columns to create a bootstrap distribution which 
can then be used to generate a test statistic. The 
test statistic can be used to accept or reject the null 
hypothesis of no element-wise correlation between 
the matrices. We calculated beta indices on T2 and 
T3. Beta indices are a class of acoustic indices that 
attempt to quantify an ecological difference between 
two recordings. For a given time, the ijth entry in the 
beta index matrix corresponds to the average beta 
index comparing the recording from sensor i with the 
recording from sensor j. The ijth entry of the distance 
matrix simply corresponds to the euclidean distance 
between the sensor i and sensor j.

RESULTS

A Moran’s I value was calculated for each index in 
T2 and T3 using 13 unique spatial points for each 
recording time. We computed 95% bootstrap confi-
dence intervals of the mean Moran’s I value for each 
acoustic index (see Figure 2). For each individual 
Moran’s I value, an approximate 95% confidence 
interval was generated under the null hypothesis of 
no spatial autocorrelation (see Figure 3). The distri-
butions were slightly skewed due to Moran’s I being 
averaged across different sampling times. Overall, 
there were four types of responses from the 95% 
bootstrap test. The first type included acoustic indi-
ces ACI, ADI, and AEI. This group did not reveal 
significant discrimination in spatial autocorrelation 
between sites. The second type included Ht and M, 
whose confidence intervals were close to zero. The 
third type included Bioac, H, and Hf, all similarly 
anomalous as confidence intervals appear to reveal 
significant spatial autocorrelation. In this group, T3 
has higher spatial autocorrelation values, contrary 
to expected. The fourth type included NDSI and 
showed the average Moran’s I value was significantly 
above zero for both sites, with the T2 interval much 

the soundscape of the two sites (see Figure 1). The 
T2 and T3 mean mean spectrum plots allow for a 
preliminary comparison of a daily cycle of the sound-
scapes at these sites.

Spatial Analysis

Moran’s I was used to compute the spatial autocor-
relation of each alpha index for both aggregate time 
and individual time points. Moran’s I is a widely 
used assessment of spatial autocorrelation in ecol-
ogy (Legendre & Fortin, 1989). Spatial correlation 
measures how observations in space have similar 
(positive correlation) or dissimilar values (negative 
correlation) compared to randomly selected pairs. 
A process or pattern that varies across an area is 
spatially heterogeneous. The magnitude and extent of 
spatial correlation can be tested with a Moran’s I test 
(Borcard, Gillet, & Legendre, 2011). We computed 
the distance matrix using inverse square weights for 
the spatial in calculating Moran’s I. This weighting 
system was chosen because sound propagation is 
modeled by the inverse square law and is commonly 
used in ecological studies.
 
Mantel tests were used to assess correlation between 
spatial distance and soundscape difference via beta 
indices. The Mantel test is a statistical test often 
used in ecology to assess species environment 

ACI Acoustic Complexity Index

ADI Acoustic Diversity Index

AEI Acoustic Evenness Index

Bioac Bioacoustic Index

H Composite Entropy

Hf Spectral Entropy

Ht Amplitude Envelope Entropy

M Median of Amplitude Envelope

NDSI Normalized Difference  
Soundscape Index

Dt Temporal Dissimilarity

Dcf Cumulative Dissimilarity

Df Spectral Dissimilarity

Dw Difference Between Waves

KLD1, KLD2, KLD Kullback Leiber Divergence 
(AB, BA, and symmetric)

KSD, KSF Kolmogorov Smirnov Distance

LS Log Spectral Distance

SS Spectral Similarity

Table 1. Acronyms for acoustic indices.

Figure 1. Mean mean spectrum plots of T2 and T3. Y 
axis units are frequency in kHz. X axis units are standard 
American military time.
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these indices never detected any spatial correlation. 
Df, the KLD beta indices, and LS Mantel tests have a 
high reject rate for both T2 and T3, implying spatial 
correlation for most recording times in these sites. 
Dcf, dw, and KSD offer the most discrepancy in reject 
rate between T2 and T3.

DISCUSSION AND CONCLUSION

Firstly, preliminary results via ANOVA, nonparamet-
ric distribution comparison, and visual inspection of 
mean mean spectra indicate that the soundscapes of 
T2 and T3 were different (see Figure 1). The restruc-
turing of different frequency bins and time in the 
mean mean spectrum indicate a difference in species 
composition between the two sites. Based on our 
hypothesis, we should, therefore, expect the spatial 
structure of the soundscapes to differ as well.
 
Of all the alpha indices tested using Moran’s I, NDSI 
was most responsive to spatial autocorrelation. NDSI 
is a compositional index that calculates the spectral 
amplitude ratio between frequency bands. In Borneo, 
where niche composition can vary on a small scale, 
NDSI should be expected to deliver this result. NDSI 
may be adaptable to measuring spatial autocorrela-
tion in different environments because frequency 
bins can be adjusted to ecologically relevant bins 
for that ecosystem. The results suggest that acoustic 
indices sensitive to spatial autocorrelation should 
utilize a frequency bin ratio. A distance matrix of 

higher than T3. This indicates that there was signifi-
cant spatial autocorrelation of NDSI at both sites, but 
to a much higher extent at T2. As seen in Figure 3, 
there is a relatively large percentage of the NDSI val-
ues for T2 that lie outside of the confidence intervals 
while other indices there are relatively more values 
within the confidence intervals. This confirms the 
aggregate results depicted in Figure 2 but on a finer 
level. Comparing with the T3, a relatively higher 
proportion of points fall in the confidence intervals 
further confirming the prior results.  
 
For each beta index, a Mantel test was performed 
using the 78 (13 choose 2) unique pairs of recorders. 
For each site, index and recording time beta index 
matrices were averaged across every sampled day. 
This produced a Mantel test statistic and significance 
level (permutations = 9999, alpha = 0.05), under the 
null hypothesis of no spatial correlation, for each 
site, index, and recording time combination. After a 
Bonferroni multiplicity correction, the null hypoth-
esis rejection rate across different recording times 
was calculated. We will from now on refer to these 
as the average beta index Mantel test results, which 
are summarized in Table 2. We can see that for every 
index. The T3 rejection rate was less than or equal to 
the T2 rejection rate. This implies that for any beta 
index, there were equal to or fewer recording times 
that showed significant autocorrelation. We see that 
Dt and SS have a 0 reject rate for both transects, 
implying that average beta index Mantel tests for 

Figure 2. Bootstrap 95% confidence intervals for mean 
Moran’s I for each index at T2 and T3.

Figure 3. Approximate 95% confidence intervals for 
Moran’s I of NDSI, Bioac, and ACI for every recording 
time for T2 and T3.

Table 2. Rejection rates for Bonferroni corrected (alpha = 0.05) Mantel test for each recording time. We see that for all beta 
indices, the rejection rate in T3 is lower than or equal to the reject rate T2.

index Dcf Df Dt dw KLD KLD1 KLD2 KSD LS SS

T2 Reject Rate 0.7708 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.9792 1.0000 0.0000

T3 Reject Rate 0.3542 0.9792 0.0000 0.7083 0.9583 0.9583 0.9375 0.4792 0.9583 0.0000

Spatial Soundscape Ecology
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all possible spectral amplitude ratios could be used 
as a multivariate index, compounded to produce 
a univariate index. Currently there is not a widely 
accepted multivariate soundscape index, but such in-
dices could be useful input for classification methods 
such as artificial neural networks and support vector 
machines. The Moran’s I bioacoustic values for T3 
stand out in Figure 3 as they show a clear daily trend 
in spatial autocorrelation, whereas the T2 values do 
not. There could be several reasons for this. First, 
there might also be a daily trend for T2 that was ob-
fuscated by a larger sample size. Secondly, of all the 
indices, bioacoustic seemed to be the most responsive 
to daily seasonality in this set of recordings.
 
The results in Table 2 agree with our hypothesis  
of more spatial autocorrelation in T2. Indeed, a  
disturbance regime induced changes in species 
composition, biodiversity, and spatial structure, 
which was reflected in the spatial structure of the 
soundscape. To understand which beta indices are 
more responsive to spatial structure, we should 
consider how these indices are calculated. Dt, 
which indicated no spatial structure whatsoever, is 
a measure of amplitude envelope dissimilarity. The 
amplitude envelopes could be easily skewed by one 
nearby acoustic source. For example, in Borneo alone, 
cicada may fly close to the microphone for part of the 
recording. SS is calculated using only minimum and 
maximum values of a mean spectrum, which leaves 
out compositional information from the remaining 
frequency bands. The KLD family of beta indices 
calculates the Kullback-Leibler divergence between 
two frequency spectra. Df calculates dissimilarity 
between frequency spectrum, and LS calculates log 
spectral differences. As they are spectral dissimilarity 
measures, KLD, KLD1, KLD2, Df, and LS all show 
a similar result: that there were only a few times in 
which T3 was not spatially autocorrelated. Looking 
at our mean mean spectra, this makes sense. The 
composition was different in a relatively small 
proportion of frequency bins, although it differed 
between T2 and T3 at almost all times of day. 
Spectral dissimilarity measures are effective for 
measuring spatial structure. They may be even more 
effective in environments where vocalizing species 
occupy larger bandwidths. Dw incorporates both 
spectral and temporal differencing measures, while 
Dcf calculates cumulative spectral dissimilarity. These 
two indices detect spatial structure, but not are as 
saturated as the spectral dissimilarity beta indices. 
Therefore, these indices could be used to robustly test 
spatial structure in other paleotropical soundscapes. 
 
The common theme between alpha indices and beta 
indices that detect spatial structure seems to be  

spectral composition. Soundscape ecologists have 
been using the frequency spectrum to estimate 
biodiversity (Pijanowski et al., 2011b). They should 
continue to do so, as these results indicate that indi-
ces based on spectral composition respond best to 
changes in soundscape spatial structure brought upon 
by changes in biodiversity. 
 
Index calculations similar to the above could run 
at different index defaults (this may vary for each 
environment). The method could also be improved by 
using different values for the spatial weight matrix. 
Work is being done to model acoustic propagation in 
several different environments (Graupe, 2017), which 
may provide insight into how weighting values may 
differ for other environments.
 
There are other methods that could be used to 
determine spatial structure in a multiple recording 
environment, such as sound-source localization. 
This could be used to approximate spatial positions 
of sound sources. This idea was entertained for 
the Borneo data;however, several challenges arise. 
Firstly, source localization in a noisy environment 
is difficult to assess. In an acoustic environment as 
rich as Borneo, separating one signal from hundreds 
of different vocalizing species is difficult, which 
becomes apparent when examining cross-correlation 
and autocorrelation functions of audio files.
 
We might benefit from an even more controlled 
study. One approach is a lab-controlled soundscape 
where actual spatial autocorrelation of sound sources 
are known. Another approach would be able to use 
simulation methods to generate soundscapes along a 
controlled spatial autocorrelation gradient. A prom-
ising method for generating realistic soundscapes is 
cellular automata, which is already used in ecology 
to generate spatial datasets (Wolfram, 2002; Baltzer, 
Braun, & Köhler, 1998).
 
This study was done in a paleotropical rainforest. 
Other indices may perform better in other environ-
ments. Soundscape data is inherently time series 
data. In the future, it may be beneficial to assess 
future studies with spatiotemporal models.
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