Purdue University

Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

5-8-2023

Design and Optimization of Lightweight Porous Damping Treatments

Yutong Xue Beijing Wandong Medical Technology Co.,Ltd, xyt@alumni.purdue.edu

J Stuart Bolton *Purdue University*, bolton@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/herrick

Xue, Yutong and Bolton, J Stuart, "Design and Optimization of Lightweight Porous Damping Treatments" (2023). *Publications of the Ray W. Herrick Laboratories.* Paper 265. https://docs.lib.purdue.edu/herrick/265

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

1pCA3 Design and Optimization of Lightweight Porous Dampers

Yutong Xue¹ and J. Stuart Bolton²

¹ (Now at) WanDong Medical Institute, Midea Group ² Ray W. Herrick Laboratories, Purdue University

Presentation available at Herrick E-Pubs: <u>http://docs.lib.purdue.edu/herrick/</u>

PUBLICATIONS & PRESENTATIONS

- 1. Y. Xue and J. S. Bolton, "Structural vibration damping by the use of poro-elastic layers: a summary," Invited Technical Report of Inter-Noise, Chiba, Japan, August 2023.
- 2. Y. Xue and J. S. Bolton, "Design and optimization of lightweight porous dampers," Invited Technical Report of the 184th ASA Meeting, Chicago, IL, USA, May 2023.
- 3. Y. Xue, J. S. Bolton, T. Herdtle, S. Lee and R. W. Gerdes, "Structural damping by lightweight poro-elastic media," *J. Sound Vib.* **459**, 114866 (2019), https://doi.org/10.1016/j.jsv.2019.114866.
- Y. Xue, J. S. Bolton, T. Herdtle, S. Lee and R. W. Gerdes, "Structural damping by layers of fibrous media applied to a periodically-constrained vibrating panel," *J. Phys. Conf. Ser.* 1264, 012043 (2019), <u>https://iopscience.iop.org/article/10.1088/1742-6596/1264/1/012043</u> (journal paper) and <u>https://docs.lib.purdue.edu/herrick/204/</u> (presentation @ RASD 2019).
- Y. Xue, J. S. Bolton and T. Herdtle, "Design of lightweight fibrous vibration damping treatments to achieve optimal performance in realistic applications," SAE Technical Paper 2019-01-1524, <u>https://doi.org/10.4271/2019-01-1524</u> (journal paper) and <u>https://docs.lib.purdue.edu/herrick/199/</u> (presentation @ SAE-NVC 2019).
- 6. Y. Xue, J. S. Bolton and Y. Liu, "The acoustical coupling of poro-elastic media in a layered structure based on the transfer matrix method," *Proceedings of Inter-Noise 2019*, paper 1857, Madrid, Spain, https://docs.lib.purdue.edu/herrick/200/.
- 7. Y Xue, J. S. Bolton, T. Herdtle, S. Lee and R. W. Gerdes, "A comparison between glass fibers and polymeric fibers when serving as a structural damping medium for fuselage-like structures," *Proceedings of Inter-Noise*, paper 1478, Chicago, IL, August 2018, https://docs.lib.purdue.edu/herrick/179.
- 8. Y. Xue and J. S. Bolton, "Fibrous material microstructure design for optimal structural damping," *J. Acoust. Soc. Am.* **143**(3), 1715, *Proceedings of the 175th ASA Meeting*, Minneapolis, MN, May 2018, https://docs.lib.purdue.edu/herrick/176.
- 9. Y. Xue and J. S. Bolton, "Microstructure design of lightweight fibrous material acting as a layered damper for a vibrating stiff panel," *J. Acoust. Soc. Am.* **143**(6), 3254-3265 (2018), https://doi.org/10.1121/1.5038255.
- 10. Y. Xue, J. S. Bolton, R. W. Gerdes, S. Lee and T. Herdtle, "Prediction of airflow resistivity of fibrous acoustical media having two fiber components and a distribution of fiber radii," *Appl. Acoust.* **134**, 145-153 (2018), <u>https://doi.org/10.1121/1.5038255</u>.
- 11. Y. Xue and J. S. Bolton, "Fibrous material microstructure design for optimal damping performance, *Proceedings of the 5th Symposium on the Acoustics of Poro-Elastic Materials (SAPEM)*, Le Mans, France, December 2017, http://docs.lib.purdue.edu/herrick/168.
- 12. T. Herdtle, Y. Xue and J. S. Bolton, "Numerical modeling of the acoustics of low density fibrous media having a distribution of fiber sizes," *Proceeding of the 5th Symposium on the Acoustics of Poro-Elastic Materials (SAPEM)*, Le Mans, France, December 2017, <u>http://docs.lib.purdue.edu/herrick/167</u>.
- 13. Y. Xue, J. S. Bolton, R. W. Gerdes, S. Lee and T. Herdtle, "Prediction of airflow resistivity of fibrous acoustical media having double fiber components and a distribution of fiber radii," *Proceedings of Inter-Noise*, pages 5649-5657, Hong Kong, August 2017, <u>http://docs.lib.purdue.edu/herrick/165</u>.

Presentations are available at Herrick E-Pubs: https://docs.lib.purdue.edu/herrick/

Challenge

- Advanced Noise Control Materials^[1]
 - > What's important about a noise control material?
 - Safety
 - Cost
 - > Weight
 - Volume
 - Recyclability
 - ≻ ...
 - ▶ ...
 - > Acoustical Performance

Objective: Multifunctionality

 Objectives: modeling, predicting and optimizing the near-field damping performance of conventional sound absorbing materials (fiber, foam, etc.), so that a properly-designed porous layer can achieve both structural damping and sound absorption at the same time
 > save weight and cost

What is "Near-Field Damping" (NFD)?

• In the subcritical frequency range – structural wavelengths smaller than acoustical wavelength

• Near-field depth increase as frequency approaches critical

 Place porous layer in near-field – viscous interaction with in-plane fluid motion dissipates energy and so damps panel motion

٠

Porous Media

strut

Particle^[12]

Fiber / strut / particle / pore size Solid material density, etc.

Microscopic geometry

Acoustical properties

Acoustic pressure Acoustic particle velocity Acoustic impedance

-Thickness

du

elastic

-Loss factor (mechanical)

Parameters

Performance

Macroscopic (bulk) properties^[13]

Building Connection (Modeling for Design)

Damping properties

Reduction of the panel's vibration Power dissipation within the porous layer Layered system energy loss factor

Near-Field Damping (NFD) by Porous Media

Modeling Targets: Porous Media^[12]

Modeling Targets: Vibrating Structures under Excitations

General Approach

Analytical modeling to build the connection

Damping Properties based on Panel's Spatial & Frequency Domain Response

- Acoustical Model (bulk-acoustical relations): including Johnson-Champoux-Allard (JCA) model^[15], Biot theory^[15–20] and B.C.s implementation ^[18,21]
- NFD: acoustical-damping relations including Euler-Bernoulli beam theory, wavenumber-space Fourier transform^[22] and power analysis^[23]
- Acoustical Model + NFD provides an bulk-damping model to predict the damping performance for porous media regardless of their microstructures

General Approach

Analytical modeling to build the connection

- Micro-bulk relations: for porous media made of fibers^[24]
- Acoustical Model + NFD + Micro-bulk relations provides an micro-damping model to maximize fibrous media's damping performance by optimizing their microstructures
- Fibrous layered damper design concept is summarized based on the parametric study and optimization process by using Acoustical Model + NFD + Micro-bulk relations

Acoustical Modeling – B.C.s Implementation

 Acoustical Model (bulk-acoustical relations): including Johnson-Champoux-Allard (JCA) model^[15], Biot theory^[15–20] and B.C.s implementation^[18,21]

focus here

Satisfactory solutions of pressure (stress) and displacement wave(s) propagating within porous media in terms of **complex wavenumber(s)**

Acoustical properties: Reflection coefficient (R) Transmission Coefficient (T)

Modeling of Multilayered Acoustical Systems

• Literature Review

- Classic models from Mason 1927^[27] (origin of transfer matrix, used for acoustic filters)
- > Transfer matrices: [2x2] (fluid-like layers, e.g., limp porous)^[21], [4x4] (elastic solids)^[28–31], [6x6] (poro-elastic)*^[32]

			air gap [2x	(2]			
• Cha	allenge: how to co	uple layers	poro-elastic layer [6x6]				
with different dimensions?			limp porous layer [2x2]		stiff panels [2x2]		
		elastic solid layer [4x4]					
et al. ^[33]	Brouard et al. ^[34]	Bolton et al. ^[18]	Dazel et al. ^[35]	Propose	d TMM	Song et al. ^{[40}	6]

Lauriks et al. ^[33]	Brouard et al. ^[34]	Bolton et al. ^[18]	Dazel et al. ^[35]	Proposed TMM in this study	Song et al. ^[46]
(1992)	(1995)*	(1996)**	(2013)		(2023)
Explicit	Implicit expression	Explicit	Implicit	Implicit	Implicit
expression		expression	expression	expression	expression
By matrix order reduction	By B.C.s global assembly	By B.C.s global assembly	By recursive matrix operator	By matrix order reduction	By layer merge operation

* Further summarized in Allard and Atalla's book^[16] (2009) ** Also referred to as the classic Arbitrary Coefficient Method (ACM)

Combination of Acoustical Models with the NFD Model

• TMM / ACM + NFD – based on a harmonic line force-driven, unconstrained panel

Combination of Acoustical Models with the NFD Model

TMM / ACM + NFD – modeling of different target structures

NFD Modeling Key Point

• An example to show wavenumber $\leftarrow \rightarrow$ spatial domain Fourier transform

ASA Spring 2023

NFD Model Validation – COMSOL

• Velocity response spectrum at x = 0 of a partially-clamped, 1 mm aluminum panel

Damping Effectiveness: Limp Porous Layer

Damping Effectiveness: Limp vs. Elastic

Damping Effectiveness: Limp vs. Elastic

ASA Spring 2023

Damping Effectiveness: Limp vs. Elastic

Design concept: adding bulk stiffness to the porous layer and bonding it to the panel will create additional structural dissipation

Micro-Bulk Relations for Fibrous Media

- Airflow Resistivity (AFR) model is modified based on Tarnow's model^[24]
- It can be used for fibrous media with two fiber components and varying fiber radii (e.g., Thinsulate[™])

- > Step 1: C calculation based on ρ_b , X_1 , X_2 , ρ_1 , ρ_2
- > Step 2: b^2 calculation based on r_1 , r_2 , distribution parameters and C
- > Step 3: σ calculation base on C and b^2

Microstructure Design for Limp / Elastic Fibrous Damper

Optimal fiber radii for a partially-constrained structure

Design concept: larger fiber size is better at damping lower frequency vibration, elastic fibers need larger fiber size to achieve the optimal damping

Fuselage Structure Velocity Response Spectrum

- Observation at x = 0.11 m
- Vibration peaks below f_c were reduced by 5–15 dB by the fibrous layer

Porous/Fibrous Damper Design Guidelines

Based on Bulk Properties Parametric Study

- Fibrous dampers are more effective on thinner structures
- With limited space and the same microstructure, making the fibers from heavier solid material (e.g., glass) will improve the low frequency damping (left)
- With limited weight and the same microstructure, a thin layer of heavy (e.g., glass) fibers gives better low frequency damping, while a thick layer of light (e.g., polymeric) fibers gives better high frequency damping (middle)
- With limited space, limited weight and by changing microstructures, a layer of sparse, coarse heavy fibers is better at reducing low frequency vibration, while a layer of dense, fine light fibers is better at reducing high frequency vibration (right)

SUMMARY

- Significant levels of damping can be achieved by properly designed porous treatment
 → multi-functional (absorbing & damping) porous layer saves weight, space and cost
- Porous dampers are effective at reducing subsonic panel vibrations while absorbing the radiating sound from the panel in the supersonic region
- Analytical models that include the AFR, TMM and NFD provide a convenient toolbox for prediction and optimization of porous layer's near-field damping, and for designing the optimal macro/microstructure of the porous layer
- Parametric studies can be conducted by using this toolbox for optimization of porous layer's near-field damping (in terms of system damping loss factor), and for designing the optimal macro/microstructure of the porous layer
- Combined with finite element model, the design process can also be conducted on more realistic structures such as a floor pan-like structure

REFERENCES

- 1. J. S. Bolton, "Future trends in noise control technology," J. Acoust. Soc. Am. 144, 1754 (2018).
- 2. H.-Y. Lai and J. S. Bolton, "Structural damping by the use of fibrous blankets," *Proceedings of Noise-Con*, 403-408, 1998.
- 3. R. W. Gerdes, J. H. Alexander, J. S. Bolton, B. K. Gardner and H.-Y. Lai, "The use of poro-elastic finite elements to model the structural damping effect of fibrous acoustical treatments," *Proceedings of Noise-Con*, 409-414, 1998.
- 4. R. W. Gerdes, J. H. Alexander, J. S. Bolton, B. K. Gardner and H.-Y. Lai, "Numerical modeling of the damping effect of fibrous acoustical treatments," SAE Technical Paper, 2001-01-1462 (2001).
- 5. S. Nadeau, Y. Champoux and L. Mongeau, "Trim and floor influence on vibrational response of an aircraft fuselage model," J. Aircr. 36(3), 591-595 (1999).
- 6. A. Cummings, H. J. Rice and R. Wilson, "Radiation damping in plates, induced by porous media," J. Sound Vib. 221, 143-167 (1999).
- 7. D. Tomlinson, R. J. M. Craik and R. Wilson, "Acoustic radiation from a plate into a porous medium," J. Sound Vib. 273, 33-49 (2004).
- 8. N. N. Kim, S. Lee, J. S. Bolton, S. Hollands and T. Yoo, "Structural damping by the use of fibrous materials," SAE Technical Paper, 2015-01-2239 (2015).
- 9. C. Bruer and J. S. Bolton, "Vibro-acoustic damping of extended vibrating systems," Proceedings of AIAA Aeroacoustics Conference, AIAA-87-2661, 7 pages, 1987.
- 10. Y. Yang and Z. Chen, "A model for calculating the airflow resistivity of glass fiber felt," Appl. Acoust. 91, 6-11 (2015).
- 11. O. Doutres, N. Atalla and K. Dong. A semi-phenomenological model to predict the acoustic behavior of fully and partially reticulated polyurethane foams," J. Appl. Phys. 113, 054901 (2013).
- 12. https://www.buyactivatedcharcoal.com/what_is_activated_charcoal
- 13. J. S. Bolton, "Porous materials for sound absorption and transmission control," Proceedings of Inter-Noise, paper 2084, 20 pages, Rio de Janeiro, Brazil, August 2005.
- 14. https://www.classicindustries.com/product/14392.html
- 15. J.-F. Allard, Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials, Elsevier, New York, New York, 1st edition, 1993.
- 16. J.-F. Allard and N. Atalla, Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials, Wiley, United Kingdom, 2nd edition, 2009.
- 17. M. A. Biot, "Theory of propagation of elastic waves in a fluid-saturated porous solid," J. Acoust. Soc. Am. 28(2), 168-191 (1956).
- 18. J. S. Bolton, N. M. Shiau and Y. J. Kang, "Sound transmission through multi-panel structures lined with elastic porous materials," J. Sound Vib. 191(3), 317-347 (1996).
- 19. H.-Y. Lai, "Modeling of acoustical properties of limp fibrous materials," *Purdue University*, Ph.D. Thesis, 1997.
- 20. R. Panneton, "Comments on the limp frame equivalent fluid model porous media," J. Acoust. Soc. Am. 122, EL217-222 (2007).
- 21. H.-Y. Lai, S. Katragadda, J. S. Bolton and J. H. Alexander, "Layered fibrous treatments for a sound absorption and sound transmission," SAE Technical Paper, 972064 (1997).
- 22. T. J. Wahl and J. S. Bolton, "The use of the discrete Fourier transform to calculate the spatial and temporal response of line-driven, layer-wise homogeneous acoustically loaded panels," *J. Acoust. Soc. Am.* **92**(4), 1473-1488 (1992).
- 23. B. C. Bloss and M. D. Rao, "Estimation of frequency-averaged loss factors by the power injection and the impulse response decay methods," J. Acoust. Soc. Am. 117(1), 240-249 (2005).

REFERENCES

- 24. V. Tarnow, "Airflow resistivity of models of fibrous material," J. Acoust. Soc. Am. 100(6), 3706-3713 (1996).
- 25. R. Venegas and O. Umnova, "Influence of sorption on sound propagation in granular activated carbon," J. Acoust. Soc. Am. 140, 755-766 (2016).
- 26. R. Venegas, "Microstructure influence on acoustical properties of multiscale porous materials," University of Salford, Ph.D. Thesis, 2011.
- 27. W. P. Mason, "A study of the regular combination of acoustic elements, with applications to recurrent acoustic filters, tapered acoustic filters, and horns," *Bell System Technical Journal* **6**, 258-294 (1927).
- 28. W. T. Thompson, "Transmission of elastic waves through a stratified solid medium," J. Appl. Phys. 21, 89-93 (1950).
- 29. L. M. Brekhovskikh, Waves in Layered Media, Academic Press, New York, NY, 1960, pp. 55-60.
- 30. D. L. Folds and C. D. Loggins, "Transmission and reflection of ultrasonic waves in layered media," J. Acoust. Soc. Am. 62, 1102-1109 (1977).
- 31. K. P. Scharnhorst, "Properties of acoustic and electromagnetic transmission coefficients and transfer matrices of multilayered plates," J. Acoust. Soc. Am. 74, 1883-1886 (1983).
- 32. J.-F. Allard, C. Depollier, P. Rebillard, W. Lauriks and A. Cops, "Inhomogeneous Biot waves in layers media," J. Appl. Phys. 66, 2278-2284 (1989).
- 33. W. Lauriks, P. Mees and J.-F. Allard, "The acoustic transmission through layered systems," J. Sound Vib. 15(1), 125-132 (1992).
- 34. B. Brouard, D. Lafarge and J.-F. Allard, "A general method of modeling sound propagation in layered media," J. Sound Vib. 183(1), 129-142 (1995).
- 35. O. Dazel, J.-P. Groby, B. Brouard and C. Potel, "A stable method to model the acoustic response of multilayered structures," J. Appl. Phys. 113, 083506 (2013).
- 36. J. S. Bolton, "Normal incidence absorption properties of single layers of elastic porous materials," J. Acoust. Soc. Am.-Proceedings of 110th ASA Meeting, Nashville, TN, 78(S1), S60, 1985.
- 37. F.R.S. Lord Rayleigh D.C.L., "On waves propagated along the plane surface of an elastic solid," Proceedings of the London Mathematical Society, S1-17(1), 4-11, 1885.
- 38. D. Woods, "On the use of mechanical and acoustical excitations for selective heat generation in polymer-bonded energetic materials," Purdue University, Ph.D. Thesis, (2016).
- 39. Y. J. Kang, "Studies of sound absorption by and transmission through layers of elastic noise control foams: finite element modeling and effects of anisotropy," *Purdue University*, Ph.D. Thesis, 1994.
- 40. J.-W. Kim, "Sound transmission through lined, composite panel structures: transversely isotropic poro-elastic model," Purdue University, Ph.D. Thesis, 2005.
- 41. D.-Y. Maa, "Theory and design of microperforated panel sound-absorbing constructions," Scientia Sinica, 18(1), 55-71 (1975).
- 42. D.-Y. Maa, "Microperforated-panel wideband absorbers," NCEJ, 29(3), 77-84 (1987).
- 43. D.-Y. Maa, "Potential of microperforated panel absorber," J. Acoust. Soc. Am. 104(5), 2861-2866 (1998).
- 44. T. Yoo, J. S. Bolton, D. F. Slama, and J. H. Alexander, "Absorption of finite-sized microperforated panels with finite flexural stiffness at normal incidence," *Proceedings of Noise-Con*, 1102-1113, 2008.
- 45. D. J. Mead and K. K. Pujara, "Space-harmonic analysis of periodically supported beams: response to convected random loading," J. Sound Vib. 14(4), 525-541 (1971).
- 46. G. Song, Z. Mo and J. S. Bolton, "A transfer-matrix-based approach to predicting acoustic properties of a layered system in a general, efficient, and stable way," SAE Technical Paper 23NVC-0113, (2023).