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Challenge

ASA Spring 2023

• Advanced Noise Control Materials[1]

➢What’s important about a noise control material?

➢ Safety

➢ Cost

➢ Weight

➢ Volume

➢ Recyclability

➢ …

➢ …

➢ Acoustical Performance

3
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Structural vibration

Airborne noise

Porous layer

Near-field 
damping

Treated stiff panel

Sound 
absorption

Structure-induced noise

• Objectives: modeling, predicting and optimizing the near-field damping performance 

of conventional sound absorbing materials (fiber, foam, etc.), so that a properly-designed 

porous layer can achieve both structural damping and sound absorption at the same time

→ save weight and cost

• Near-field damping: dissipating power 

through viscous interaction between the 

porous medium and the evanescent 

acoustical near-field of the panel associated 

with sub-critical panel motion[2–9]

4

Objective: Multifunctionality
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• In the subcritical frequency range – structural wavelengths smaller than acoustical wavelength

5

What is “Near-Field Damping” (NFD)?

panel

near-field

fkt kt

in-plane oscillatory 

fluid motion

• Exponential decay with vertical position                   , at critical frequency 𝒆
− 𝒌𝒕

𝟐−𝒌𝟐 𝒌𝒕 = 𝒌

• Near-field depth increase as frequency approaches critical

f

porous layer

• Place porous layer in near-field – viscous interaction with in-plane fluid motion dissipates energy 

and so damps panel motion



Porous Media
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Fiber[10] Foam[11]

Microscopic geometry Macroscopic (bulk) properties[13]

Acoustical properties Damping properties

Acoustic pressure

Acoustic particle velocity

Acoustic impedance

Reduction of the panel’s vibration

Power dissipation within the porous layer

Layered system energy loss factor

Fiber / strut / particle / pore size

Solid material density, etc.

Parameters

Performance

Building Connection (Modeling for Design)

Particle[12]

6

-Thickness

-Flow resistivity

-Porosity

-Tortuosity

-Viscous characteristic length

-Thermal characteristic length

-Bulk density

-Young’s modulus

-Poisson’s ratio

-Loss factor (mechanical)
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Near-Field Damping (NFD) by Porous Media

• Modeling Targets: Porous Media[12]

ASA Spring 2023

Limp porous layer Poro-elastic layer

Line force
Infinitely-extended 

(Unconstrained) 
panel

Line force

Partially-
constrained 

panel
Discontinuity 
(Constraint)

Discontinuity 
(Constraint)

Periodically-constrained 
(fuselage-like) panel

Convective pressureIdentical 
Discontinuities
(Constraints)

• Modeling Targets: Vibrating Structures under Excitations

Negligible bulk 

elasticity of frame
Non-negligible bulk 

elasticity of frame

Line force

An arbitrarily-shaped (floor pan-like) panel*

Aircraft fuselage[5]

Vehicle floor pan[14]
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-Thickness

-Flow resistivity

-Porosity

-Tortuosity

-Viscous characteristic length

-Thermal characteristic length

-Bulk density

-Young’s modulus

-Poisson’s ratio

-Loss factor (mechanical)

* Numerical simulation based on commercial software may be involved as complexity of structure increases



General Approach

• Analytical modeling to build the connection

ASA Spring 2023

Damping Properties based on Panel’s Spatial & Frequency Domain Response

Near-Field Damping 
(NFD) Model

Acoustical 
Model

Acoustical 
Properties

Porous Layer 
Bulk Properties

➢ Acoustical Model + NFD provides an bulk-damping model to predict the damping 

performance for porous media regardless of their microstructures

• NFD: acoustical-damping relations including Euler-Bernoulli beam theory, 

wavenumber-space Fourier transform[22] and power analysis[23]

• Acoustical Model (bulk-acoustical relations): including Johnson-Champoux-Allard 

(JCA) model[15], Biot theory[15–20] and B.C.s implementation [18,21]

8



General Approach

• Analytical modeling to build the connection

ASA Spring 2023

Damping Properties based on Panel’s Spatial & Frequency Domain Response

Near-Field Damping 
(NFD) Model

Acoustical 
Properties

Porous Layer 
Bulk Properties

Porous Layer 
Microstructure Micro-Bulk 

Relations

Optimization

Optimized 
Microstructure

➢ Acoustical Model + NFD + Micro-bulk relations provides an micro-damping model to 

maximize fibrous media’s damping performance by optimizing their microstructures

• Micro-bulk relations: for porous media made of fibers[24]

➢ Fibrous layered damper design concept is summarized based on the parametric study and 

optimization process by using Acoustical Model + NFD + Micro-bulk relations

9

Acoustical 
Model
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(1) JCA 
model

Acoustical 
properties

Porous 
media bulk 
properties

Effective 
density 

and bulk 
modulus

(2) Biot 
theory

Complex 
wavenumbers (3) B.C.s 

implementation

Acoustical Modeling – B.C.s Implementation

• Acoustical Model (bulk-acoustical relations): including Johnson-Champoux-

Allard (JCA) model[15], Biot theory[15–20] and B.C.s implementation [18,21]

focus here

Satisfactory solutions of pressure 

(stress) and displacement wave(s) 

propagating within porous media in 

terms of complex wavenumber(s)

Acoustical properties: 

Reflection coefficient (R)

Transmission Coefficient (T)
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• Literature Review

➢ Classic models from Mason 1927[27] (origin of transfer matrix, used for acoustic filters)

➢ Transfer matrices: [2x2] (fluid-like layers, e.g., limp porous)[21], [4x4] (elastic solids)[28–31], [6x6] (poro-elastic)*[32]

Modeling of Multilayered Acoustical Systems

Lauriks et al.[33]

(1992) 

Brouard et al.[34]

(1995)*

Bolton et al.[18]

(1996)**

Dazel et al.[35]

(2013)

Proposed TMM 

in this study

Song et al. [46]

(2023)

Explicit 

expression 

Implicit expression Explicit 

expression 

Implicit 

expression

Implicit 

expression 

Implicit 

expression

By matrix order 

reduction

By B.C.s global 

assembly

By B.C.s global 

assembly

By recursive 

matrix operator

By matrix order 

reduction

By layer merge 

operation

* Further summarized in Allard and Atalla’s book[16] (2009)

** Also referred to as the classic Arbitrary Coefficient Method (ACM)

elastic solid layer [4x4]

stiff panels [2x2]

air gap [2x2]

poro-elastic layer [6x6]

limp porous layer [2x2]

• Challenge: how to couple layers 

with different dimensions?
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Combination of Acoustical Models 

with the NFD Model

• TMM / ACM + NFD – based on a harmonic line force-driven, unconstrained panel

Governing Equation (GE) at 𝑧 = 0

𝑫
𝝏𝟒𝒘𝒕 𝒙, 𝒕

𝝏𝒙𝟒
+𝒎𝒔

𝝏𝟐𝒘𝒕 𝒙, 𝒕

𝝏𝒕𝟐
= −𝒑𝟏 𝒙, 𝒕 + 𝒇 𝒙, 𝒕

Governing Equation Fourier Transform (GEFT)

𝑫𝒌𝒙
𝟒 −𝝎𝟐𝒎𝒔 𝒘𝒕 𝒌𝒙, 𝝎 = −𝒑𝟏 𝒌𝒙, 𝝎 + 𝑭

Panel mechanical impedance: 𝒁𝒎 = −𝒊 𝑫/𝝎 𝒌𝒙
𝟒 −𝝎𝒎𝒔

stiff panel
𝑥

𝑧

𝑓 𝑥, 𝑡 = 𝐹𝑒+𝑖𝜔𝑡𝛿 𝑥

Acoustic pressure, 𝒑𝟏, and 

normal velocity, 𝒗𝒛𝟏, at 𝑧 = 0

Acoustic pressure, 𝒑𝟐, and 

normal velocity, 𝒗𝒛𝟐, at 𝑧 = 𝑑

𝑤𝑡(𝑥, 𝑡)

Euler-Bernoulli beam theory

Input porous 

medium bulk 

properties (𝝈, 𝝆𝒃, 

𝝓, 𝜶∞, 𝑬, 𝝂, 𝜼) 

Complex wave 

numbers (𝒌𝒊, 𝒊 = 𝟏
for limp frame, 𝒊 = 𝟑

for elastic frame)

JCA &

Biot 

theory

Input 𝒅, 

𝑫, 𝑫𝒑

Power 

analysis

Acoustic impedance at 𝑧 = 0: 𝒁𝒂𝟏 =
𝒑𝟏

𝒗𝒛𝟏

Acoustic impedance at 𝑧 = 𝑑: 𝒁𝒂𝟐 =
𝒑𝟐

𝒗𝒛𝟐
=

𝝎𝝆𝒂𝒊𝒓

𝒌𝒛𝒂𝒊𝒓

TMM / ACM to 

solve for the 

acoustical properties

Wavenumber response of panel velocity

𝒗𝒕 = 𝒊𝝎𝒘𝒕 = 𝒗𝒛𝟏
= 𝑭/ 𝒁𝒂𝟏 𝒌𝒙,𝝎 + 𝒁𝒎 𝒌𝒙, 𝝎

IDFT for spatial response

𝒗𝒕 𝒎∆𝒙,𝝎

=
𝟏

𝑵𝒔∆𝒙
෍

𝒏=𝟎

𝑵𝒔−𝟏

𝒗𝒕 𝒏∆𝒌𝒙, 𝝎 𝒆
−𝒊𝟐𝝅𝒎𝒏

𝑵𝒔

Power input

𝑷𝐢𝐧 𝝎 =
𝟏

𝟐
𝐑𝐞 𝑭𝒗𝒕

∗ 𝒙 = 𝟎,𝝎

Power radiation into the porous layer

𝑷𝟏 𝝎 =
𝟏

𝟐
𝐑𝐞 න

−∞

∞

𝒑𝟏𝒗𝒛𝟏
∗ 𝒅𝒙

=
𝟏

𝟒𝝅
𝐑𝐞 න

−
𝜸𝒔
𝟐

𝜸𝒔
𝟐
𝒁𝒂𝟏 𝒗𝒛𝟏 𝒌𝒙, 𝝎

𝟐 𝒅𝒌𝒙

Power radiation into the air

𝑷𝟐 𝝎 =
𝟏

𝟐
𝐑𝐞 න

−∞

∞

𝒑𝟐𝒗𝒛𝟐
∗ 𝒅𝒙

=
𝟏

𝟒𝝅
𝐑𝐞 න

−
𝜸𝒔
𝟐

𝜸𝒔
𝟐
𝒁𝒂𝟐 𝒗𝒛𝟐 𝒌𝒙, 𝝎

𝟐 𝒅𝒌𝒙

Power dissipation in the porous layer

𝑷𝒅 𝝎 = 𝑷𝟏 − 𝑷𝟐

System equivalent damping loss factor

𝜼𝒆 =
𝑬𝐢𝐧
𝑬𝐭𝐨𝐭

=
𝑷𝐢𝐧 − 𝑷𝟐 /𝝎

𝐊𝐄 + 𝐏𝐄

Input 

𝑵𝒔, 𝜸𝒔
for 

IDFT

Acoustics 

Model

Line driving force

Porous medium: thickness (𝒅), AFR (𝝈), bulk 

density (𝝆𝒃), porosity (𝝓), tortuosity (𝜶∞), Young’s 

modulus (𝑬), Poisson’s ratio (𝝂), loss factor (𝜼)

Panel: basis weight (𝒎𝒔), flexural stiffness per unit 

width (𝑫), longitudinal stiffness per unit width (𝑫𝒑)

Damping 

performance 

evaluation

Parameters 

input

Air half-space
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Combination of Acoustical Models 

with the NFD Model

Porous layer

Air half-space

Line force

Unconstrained 
panel

x

z

𝑥 = 0

Porous layer

Air half-space

𝑥 = 0Partially-
constrained 

panel Discontinuity
(ml, Jl)

x

z

Line force Discontinuity
(ml, Jl)

Fuselage-like panel

Porous layer Frames modeled as evenly-spaced, identical discontinuities (ml, kl, Jl, sl)

Boundary layer excitation modeled as convective pressure wave

x
Air half-space

Governing Equation: unconstrained panel

𝐷
𝜕4𝑤𝑡 𝑥, 𝑡

𝜕𝑥4
+𝑚𝑠

𝜕2𝑤𝑡 𝑥, 𝑡

𝜕𝑡2
= −𝒑𝟏 𝒙, 𝒕 + 𝐹𝑒+𝑖𝜔𝑡𝛿 𝑥

Governing Equation: adding two identical constraints

𝐷
𝜕4𝑤𝑡 𝑥, 𝑡

𝜕𝑥4
+𝑚𝑠

𝜕2𝑤𝑡 𝑥, 𝑡

𝜕𝑡2

= −𝒑𝟏 𝒙, 𝒕 + 𝐹𝑒+𝑖𝜔𝑡𝛿 𝑥 +෍

𝑗=1

2

𝐹𝑙,𝑗𝛿 𝑥 − 𝑥𝑙,𝑗 +෍

𝑗=1

2

𝑀𝑙,𝑗𝛿
′ 𝑥 − 𝑥𝑙,𝑗

Governing Equation: adding periodic identical constraints

𝐷
𝜕4𝑤𝑡 𝑥, 𝑡

𝜕𝑥4
+𝑚𝑠

𝜕2𝑤𝑡 𝑥, 𝑡

𝜕𝑡2
= −𝒑𝟏 𝒙, 𝒕 + 𝐹𝑒+𝑖𝜔𝑡𝑒−𝑖𝑘𝑣𝑥 +෍

𝑗=1

𝑁𝑙

𝐹𝑙,𝑗𝛿 𝑥 − 𝑥𝑙,𝑗 +෍

𝑗=1

𝑁𝑙

𝑀𝑙,𝑗𝛿
′ 𝑥 − 𝑥𝑙,𝑗

• TMM / ACM + NFD – modeling of different target structures

Line force

Line force

Reaction forces due to discontinuities

Convective pressure

Reaction forces due to discontinuities



NFD Modeling Key Point
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• An example to show wavenumber → spatial domain Fourier transform

Air half-space

Line force

x

z
𝑥 = 0

𝑧 = 0 Unconstrained 3 mm aluminum panel

𝛾𝑠
2

−
𝛾𝑠
2

At certain 

frequency

𝑓𝑐

fc

14



• Velocity response spectrum at 𝒙 = 𝟎 of a partially-clamped, 1 mm aluminum panel

➢ NFD model 

➢ COMSOL FEM

➢ Comparison

NFD Model Validation – COMSOL

ASA Spring 2023

Air half-space

Line force

x

z

𝑥 = 0
𝑧 = 0

Assign large ml and Jl

to clamp the panel

Air half-space

Line force

x

𝑥 = 0
𝑧 = 0

Fixed Fixed

z

15

Limp porous layer

Air half-space
𝑧 = 𝑑

Line force

x

z

𝑥 = 0
𝑧 = 0

Assign large ml and Jl

to clamp the panel

Limp porous layer

Air half-space
𝑧 = 𝑑

Line force

x

𝑥 = 0
𝑧 = 0

Fixed Fixed

z

Poro-elastic layer
bonded

Air half-space
𝑧 = 𝑑

Line force

x

z

𝑥 = 0
𝑧 = 0

Assign large ml

and Jl to clamp 
the panel

Poro-elastic layer
bonded

Air half-space
𝑧 = 𝑑

Line force

x

𝑥 = 0
𝑧 = 0

Fixed Fixed

z
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Damping Effectiveness: Limp Porous Layer 

• Velocity level differences at 𝒙 = 𝟏𝟎 m 

➢ Difference between two cases for an aluminum panel

➢ Significant attenuation in sub-critical frequency region

➢ Higher critical frequency and stronger attenuation result 

from decreasing panel thickness

𝑥 = 0

Limp porous layer
Air half-space

vs.𝑥 = 0

Air half-space

Line force
Line force

16

1.5 mm thick panel3 mm thick panel6 mm thick panel

fc fc fc

Limp porous layer 

bulk properties:
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Damping Effectiveness: Limp vs. Elastic

• Power dissipation analysis

17

Limp porous layer 

bulk properties:
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• Power dissipation analysis

18

Damping Effectiveness: Limp vs. Elastic

Limp porous layer 

bulk properties:

Poro-elastic layer 

bulk properties:
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• Power dissipation analysis

➢ Design concept: adding bulk stiffness to the porous layer and 

bonding it to the panel will create additional structural dissipation

19

Damping Effectiveness: Limp vs. Elastic



Micro-Bulk Relations for Fibrous Media

• Airflow Resistivity (AFR) model is modified based on Tarnow’s model[24]

• It can be used for fibrous media with two fiber components and varying fiber radii (e.g., ThinsulateTM)

ASA Spring 2023

20



• Optimal fiber radii for a partially-constrained structure

Microstructure Design for 

Limp / Elastic Fibrous Damper

➢ Design concept: larger fiber size is better at damping lower frequency vibration, 

elastic fibers need larger fiber size to achieve the optimal damping

ASA Spring 2023

21

[m
] 

  
 



Ma=0.8 Ma=1.2

• Observation at x = 0.11 m

• Vibration peaks below fc were reduced 

by 5–15 dB by the fibrous layerConstraint

(ml, kl, Jl, sl)

Constraint

(ml, kl, Jl, sl)

x

z

Convective 

pressure

3 mm Al 

Panel

Fibers: 3 cm, 20000 Rayls/m, 10 kg/m3

𝑥 = −0.5 𝑥 = 0.5𝑥 = 1.1

Air half-space

ASA Spring 2023

Fuselage Structure Velocity Response Spectrum

22

Observation Observation



Porous/Fibrous Damper Design Guidelines

❖ Based on Bulk Properties Parametric Study

➢ Fibrous dampers are more effective on thinner structures

➢ With limited space and the same microstructure, making the fibers from heavier solid material 

(e.g., glass) will improve the low frequency damping (left)

➢ With limited weight and the same microstructure, a thin layer of heavy (e.g., glass) fibers gives 

better low frequency damping, while a thick layer of light (e.g., polymeric) fibers gives better 

high frequency damping (middle)

➢ With limited space, limited weight and by changing microstructures, a layer of sparse, coarse 

heavy fibers is better at reducing low frequency vibration, while a layer of dense, fine light 

fibers is better at reducing high frequency vibration (right)

ASA Spring 2023
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SUMMARY

ASA Spring 2023

• Significant levels of damping can be achieved by properly designed porous treatment 

→ multi-functional (absorbing & damping) porous layer saves weight, space and cost

• Porous dampers are effective at reducing subsonic panel vibrations while absorbing

the radiating sound from the panel in the supersonic region

• Analytical models that include the AFR, TMM and NFD provide a convenient toolbox for 

prediction and optimization of porous layer’s near-field damping, and for designing the 

optimal macro/microstructure of the porous layer

• Parametric studies can be conducted by using this toolbox for optimization of porous 

layer’s near-field damping (in terms of system damping loss factor), and for designing 

the optimal macro/microstructure of the porous layer

• Combined with finite element model, the design process can also be conducted on 

more realistic structures such as a floor pan-like structure
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