Warmstarting the Constrained Optimal Filter Design Problem for Active Noise Control Systems in Conic Formulation

Yongjie Zhuang
Purdue University, zhuang32@purdue.edu

Zhuang Mo
Purdue University, mo26@purdue.edu

Yangfan Liu
Purdue University, liu278@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/herrick

https://docs.lib.purdue.edu/herrick/255

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Warmstarting the Constrained Optimal Filter Design Problem for Active Noise Control Systems in Conic Formulation

Yongjie Zhuang (Presenter)
Zhuang Mo
Yangfan Liu

Ray W. Herrick Laboratories,
Purdue University
Applications

For many practical active noise control applications:

• **Multichannel systems** : for large-size quiet zone.

• **Multiple constraints** : robust stability, enhancement, filter output power.
Background

One common approach for designing constrained multichannel controller: solve a constrained optimization problem

- Advantage: better noise control performance

- Challenge: significant computational effort (large channel number, filter order, number of the constraints)
Background

This work is a continuation of our previous work of convex & cone formulation:

• Zhuang and Liu, JASA 2021:

• Zhuang and Liu, InterNoise 2020:

• Zhuang and Liu, NoiseCon 2019:
Background

Control System Setup

Traditional Formulation

Convex Formulation

Cone Formulation

- Proposed previously
- Computational time: hours → seconds

Benefits of shorter computational time:
- Reducing time and cost during product design circle
- Make continuously design possible for time-varying environment.
Motivation

For proposed formulation, **warmstarting** strategies are difficult.

- **Cold start:**
 choosing initial guess **without** information of approximate location of optimal solution.
 e.g., use origin (0,0,...,0), or identity (1,1,...,1).

- **Warm start:**
 choosing initial guess **using** information of approximate location of optimal solution.
 e.g., the optimal solution of a similar but different environmental setup
Motivation

Why warmstarting strategies are important?

- **Commercial product design:**
 - Current product model may be a variation of previous models
 - Product differs from prototype by batch manufactural error

- **Time-varying applications:**
 - the optimal filter coefficients of previous environment condition can be used as the initial guess when the condition changes.
Review – Control diagram

- **Objective:** minimize the power of \vec{e}
- **Robust stability:** the feedback loop $W_x \hat{G}_{s_0}$
- **Output power:** Power of W_x or \vec{y}
- **Disturbance enhancement:** \vec{e} should not be amplified at certain frequency bands

If $\hat{G}_{s_0} = G_{s_0}$
Review – Convex and cone formulation

Convex formulation

Cost function: Quadratic function

Constraints:
- Enhancing Quadratic function
- Constraining total power of \(e\)

Filter response: Quadratic function
- The magnitude of frequency response

Stability: Max of eigenvalue
- Use Nyquist criterion

Robustness: Max of singular value
- \(M-\Delta\) structure and small gain theory

Cone formulation

Cost function: Linear

Constraints:
- Linear equalities or inequalities
- Second-order cones:
 \[\{ (y, \tilde{x}) \in \mathbb{R} \times \mathbb{R}^{n_i-1} : y \geq \|\tilde{x}\|_2 \} \]
- Positive semidefinite cones:
 \[\{ \text{vec}(X) \in \mathbb{R}^{n_i^2} : X \in \mathbb{R}^{n_i \times n_i} \text{ is positive semidefinite} \} \]
For cone programming algorithm, each iteration should:

- Inside the constraint boundaries
- Away from boundary as much as possible (follow the central path)

Use optimal point as new initial guess

Does not work!
Method – Warmstarting method

Use convex combination of cold start point and previous optimal point:
- Guarantees a usable initial guess (close enough to cold start)
- Very little extra computational effort for warm start point

Proposed by Anders Skajaa et al. in 2013
Method – Convert PSD cones to SOCs

Convex formulation

Cost function: Quadratic function

Constraints:

Enhancement: Quadratic function

Filter response: Quadratic function

The magnitude of frequency response

Stability: Max of eigenvalue

Use Nyquist criterion

Robustness: Max of singular value

$M - \Delta$ structure and small gain theory

• Need second-order cone (SOC) only

• The stability and robustness constraints can only be reformulated equivalently to positive semidefinite (PSD) cones

• Some relaxation must be done to convert them to second-order cones (SOCs)
Method – Convert PSD cones to SOCs

Stability: Max of eigenvalue
Use Nyquist criterion

Robustness: Max of singular value
$M - \Delta$ structure and small gain theory

Method 1: use max-norm properties:

$$\|M\|_{max} \leq \|M\|_2 \leq \sqrt{mn}\|M\|_2$$

PSD converts to SOCs:

$$\|W_x(f_k)\|_{max} \leq \frac{C(f_k)}{\sqrt{N_rN_s}\|\widehat{G}_{s0}(f_k)\|_2}$$

Method 2: use Frobenius norm properties:

$$\|M\|_2 \leq \|M\|_F$$

PSD converts to SOCs:

$$tr(\widehat{G}_{s0}(f_k)W_x^H(f_k)W_x(f_k)\widehat{G}_{s0}(f_k)) \leq C^2(f_k)$$

Open Loop Response

$$\|W_x(f_k)\widehat{G}_{s0}(f_k)\|_2 \leq C(f_k)$$
Result – Experimental setup

A multi-channel active noise control system on a wind channel
Result – Comparison of two methods

Method 1: use max-norm
Method 2: use Frobenius norm

- Converting constraints will sacrifice performance
- Method 2 has better performance (less conservative)
Result – Warmstarting performance

\[S_{xx}^{new} \leq S_{xx}(E_n + \alpha P_n) \]

Auto spectral density function of newly generated noise signal

\[E_n = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix} \]

Each element of \(P_n \) is generated by a standard Gaussian process

Measured auto spectral density function - known optimal filter coefficients

Perturbation ratio - represents the changes of environmental setup
Result – Warmstarting performance

- Perturbation ratio = 0.1%
- Perturbation ratio = 1.0%
- Perturbation ratio = 5.0%

Proposed Method 2

![Graph showing iterations ratio (warm/cold) vs warm ratio for Proposed Method 2]

Original Formulation

![Graph showing iterations ratio (warm/cold) vs warm ratio for Original Formulation]

Warm ratio: closer to 1, initial point closer to previous optimal solution
When warm ratio is higher than 0.999, it goes outside the constraints.
Conclusion

• Two methods of converting the positive semidefinite cones into second order cones are proposed.

• After using the proposed formulation method 2, the iteration number can be reduced up to 45% when using the warmstarting strategy.

• For a relatively wide range of problem perturbation ratio (from 0.1% to 5%), the warmstarting method is robust when choosing the same warm ratio parameter.
Thank you!