Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1969

Evaluation of NAPSS Expression Involving Polyalgorithms,
Functions, Recursion, and Untyped Variables

Lawrence R. Symes

Report Number:
69-033

Symes, Lawrence R., "Evaluation of NAPSS Expression Involving Polyalgorithms, Functions, Recursion,
and Untyped Variables" (1969). Department of Computer Science Technical Reports. Paper 258.
https://docs.lib.purdue.edu/cstech/258

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

EVALUATION OF NAPSS EXPRESSIONS INVOLVING
POLYALGORITHMS, FUNCTIONS, RECURSION,
AND UNTYPED VARIABLES

Lawrence R. Symes

February 1969
CSO TR 33

Evaluation of WAPSS Expressions Involving Polyalgorithms, Functions,
Recursion, and Untyped Variables

ABSTRACT

This paper describes how arithmetic expressions are evaluated in
NAPSS. A brief discussion is included covering the types of expressions
permitted and where the distinctive operands arise. First, the flow through
the arithmetic expression evaluator is given for arithmetic expressions
which do not involve recursion, function evaluation or polyalgorithm calls,

The handling of each of these three operations is then described separately.

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functionms,
Recursion, and Untyped Variables

INTRODUCTION

The Numerical Analysis Problem Solving System (NAPSS) project has been
undertaken at Purdue University to desigm an interactive system for solving
numerical problems [1]. The system is designed to accept input in a language
{2] which is closely akin to normal mathematical notation. It permits the
user to manipulate directly quantities other than scalars: e.g., array,
functions and array of functions. Polyalgorithms 3] are included to
implement the basic mathematical procedures. This significantly reduces
the amount of analysis required to solve a wide variety of problems using
the system,

This paper is primarily concerned with the problem of how arithmetic
expressions, involving the various operands and operators permitted in the

lapguage, are evaluated.

TYPES OF EXPRESSIONS

Rather than present a detailed description of the NAPSS languaze [4], we
describe a sampling of the allowable constructions.

The arithmetic expression in NAPSS permits the direct manipulation of
numexic scalars, vectors and arrays, symbolic¢ and tabular functions, and
variables which denote symbolic expressions. The user need not worry about
the type or mode of the operands; rather, all that need concern him is whether
or not the arithmetic expression is mathematically correct.

The input language, while linear, attempts to resemble normal mathematical
notation. For this purpose several special characters have been included.

For example: S for integration, || for absolute value, and ' for differential

and transposition. But to permit the use of standard

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 2
Recursion, and Untyped Variables

terminals and aid the goal of machine independence for the system, the
number of characters in the NAPSS language is limited to 63. This re-
quires that some of the operators appearing in wathematics be functions
in MAPSS. For example: 3f(x,y)/ay| ;:; is written as DER(F(X,Y)}/(y)
| x¢2,y+3) in HAPSS.
Implied multiplication may be used in arithmetic expressions in
NAPSS where no ambipuity arises. Ambiguities stem from the fact that
variable names may be more than one character in length. Blanks are signi-
ficant in WAPSS to allow for implied multiplication.
Examples:
2A, A2+C and A B+(C
mean
2*A, A2+C and A*B+C respectively.
" There are several methods for constructing vectors and arrays in
arithmetic expressions:
1) (1,-3,2,6,-10)
ii) (1,2,...,20)
iii) (1 FOR 20 TIMES)
iv) (2+I43 FOR I+ 1 TO N BY 3)
v} ([0:5],1 TO 6)
vi) ([1,1:11], 3.5 to 4.5 BY .1)
vii) (3.5 TO 4.5 BY .1) '
viii) ([-1:3,4], (1 FOR 4 TIMES), (-2;71.75,...,-1.25), (3 TO 6),

(-10,-20,-30,-40))

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 3
Recursion, and Untyped Variables

The first five examples are vectors, which are considered to be
column vectors in NAPSS. The lower bounds of the index of first four vectors
is 1 by default. The index of the fifth vector has a lower bound of 0 apd
an upper bound of 5. Vectors six and seven are both row vectors and they
are identical, The eighth example is a square array with the first index

ranging from -1 to 3 and the second from 1 to 4, The resulting array is

a1 1 1 1]
.2 -1.75 -1.50 -1.25
3 4 5 6
_-10 -20 -30 -40

From a numerical array a single element, a row, 2 column or any arbitrary
contiguous subarray may be extracted. If A is a two-dimensional array with
the first subscript ranging from -3 to 3 and the second from 0 to 3, then
Af0,*] denotes the Oth row of A, and A[-1:2,1] denotes the column vector
consisting of the 3rd through 6th elements of the 1lst row of A.

Arithmetic expressions which yield array results may be subscripted
in the same fashion as variables. For example, (A*B+E) [I,J] and
(A+2) [I1:12,*] are both valid expressions.

NAPSS also permits arrays of functions to be manipulated an element
at a time: 2£'(3.5)([1.3] is the NAPSS equivalence of Zfi.3(3.5).

Several examples of arithmetic expressions and assignment statements
appear below.

i) A «(B+C)|D-E|

ii) T = S+V42

Evaluation of NAPSS Expressions Involving ﬁolyalgbrithms, Functions, 4
Recursion, and Untyped Variables
iii) F(X) # R X$2.+B X.+ C
iv) G(X) =AXt2+B X+ C
vy X «X-F(X}/F'(X)
vi) W<« JL(X,Y), (X«<0 TO 1)
vii). DOTPRODUCT(X) = X'X
viii) H(X) «X42, (X=>0)}+« -{X+2),(X<0)
ix) T(X) «X-1,(X>1) +X+1,(X<~-1)}+0
The left arrow operator («) indicates that the arithmetic expression
on the right is to be evaluated and its value is to be assigned to the
variable on the left, similar to what FORTRAN's = signifies. The equals
sign (=) has the more usual mathematical meaning. Statement two establishes
that a future occurrence of T is equivalent to the expression S + V42,
Values are only substituted for the variables in the expression to the
left of the = when a value is needed for the variable on the left. Thus
if the values of S or V should change between the definition of T and the
use of T this is reflected in the value of T, Variables defined to the
left of an = are referred to as equals variables and variables defined

to the left of an « are called left arrow variables, or simply variables.

The difference between statements three and four is similar to
the difference between Statements one and two. In the definition of F
the variables A, B, and C have their current values substituted for
them while in the definition of G they do not. Values are only substituted

for A, B and C when a value of the function G is needed. Functions defined

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, §
Recursion, and Untyped Variables

to the left of an = sign are called equals functions and functions defined
to the left of an <« are called left arrow functions.

In statement six the integral of L(X,Y) is computed for X on the
interval (0,1). Since Y is not a variable of integration its current
value is used.

Statement seven defines DOTPRODUCT to be a function which computes
the dot product of a vector and illustrates that arguments to function
may be array. Functions also may yield arrays on evaluation.

Statements eight and nine illustrate that functions may be defined
to have different values on different domains. If there is no.domain
specified with the last definition of the function, this definition is
used when the point of evaluation does not lie any of the explicitly

stated domains.

BASIC CONSTRUCTION OF THE INTERPRETER

NAPSS source text is transformed by a compiler into an internal
code consisting of twenty bit integers. This scheme has the advantage
of removing scme of the burden from the interpreter, and for statements
which are repeatedly executed the decoding is performed only once.

The internal text generated for arithmetic expressions is a form
of three address code. All operators, temporary variables and pointers
are negative integers and all user variables are positive integers. This
is done so that user variables may easily be detected by a simple scan

of the text.

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 6
Recursion, and Untyped Variables

During compilation a name control block is created for each user
variable. At this time the name control block is used as a name table
entry. It centains the name of the variable and some basic attributes
as to how it appeared in the program.

The name control block is used during execution to hold values,
pointers to values, and definitive attribute Information for the variable.
When a2 name control block denotes a numeric scalar the actual value of
the variable is stored in the name control block itself. If the name
control block denotes something other than a numeric scalar, it contains
a pointer to where the vaiues are stored and information such as bounds,
number of dimensions, and number of arguments.

There is a fixed set of name control blocks used for storing
temporary results during the evaluation of arithmetic expressions. They
contain the same fields as a user variable name control block except for
a name field. These are referred to as temporary name control blocks.

The memory that a NAPSS program has is made up of 2z few pages
of real memory which reside in core and a larger number of pages of
virtual memory which reside in secondary storage and are brought in and
out of real memory.

As the number of user variables increases the name table size is
dynamically increased by obtaining a page at a time from real memory.
then a page is removed from real memory for the name table this page is

net returned to real memory until the system is re-initialized.

Evaluation of NAPSS Cxpressions Involving Polyalgorithms, Functions, 7
Recursion, and Untyped Variables

The NAPSS system is written almost entirely in machine-independent
FORTRAN. The few machine dependent operations are restricted to 'black-
box' type modules coded in assembly language. This aids the goal of
machine independence for the system.

Due to equipment and associated software available the current
version of NAPSS does not operate in a time sharing environment. But the

implementation techniques do not preciude such an extension.

NORMAL ARITHMETIC CXPRESSIONS WITH NON RECURSIVE OPERANDS

The flow of control in the arithmetic expression evaluator for
expressions which do not involve recursive variables, function evaluations

or calls on polyalgorithms is given in Figure 1.

K- -

determine
~ End of Statement rator type
N

NK‘—/

\b

obtain attributes
of operands

J

pexrform operation

Je
free storage used to
hold what was previously
in result name control
block

\ls

update pointer to
next operator

Figure 1. Flow of Control in Arithmetic Expression Cvaluator

Evaluation of NAPSS Expressions Inveolving Polyalgorithms, Functions, 8
Recursion, and Untyped Variables

The operators are tested for in a fixed order so that the ones
most frequently occurring are tested first.

The attribute or type of an operand must be determined at execution
time because attributes are not associated with variables during compila-
tion. They are associated during execution time and may dynamically
change during the execution of the program,

If NAPSS had required that all attributes be either always declared
or always contextually defined instead of allowing the user to declare
some attributes and have the rest associated contextually, the attribute
field of a name control block could have contained a simple attribute
number. However, because of the mixture permitted the attribute field
contains a set of flags from which an attribute number is decoded.

At the same time that the attribute of a variable is determined,
necessary pointars are obtained from the name control bhlock so that the
variable may be used as an operand.

When the attributes of the operands have been determined the attribute
of the result is obtained by a table look up, using the attributes of
the operands and the operator as indices.

To eliminate the work necessary to ¥btain the attribute of an operand
a look ahead scheme is uvsed where possible. If the result of an operation
is an operand of the next operator then the attribute of that operand is
flagged as being known. This scheme even though only local is quite useful,
for frequently the result of the previous operation is an operand of the

next operator.

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 9
Recursion, and Untyped Variables

There are three types of numeric scalars in NAPSS: real single
precision, real double precision, and complex single precision. Intepers
are stored internally as real numbers. When an integer is needed, such
as for a subscript, the system converts the real number to the nearest
integer.

With only three types of numeric scalars the number of addition
routines needed to permit all possible combinations of operands is 32,

If a fourth data type, double precision complex, were added the number
of routines needed would be 42 or an increase of 77 percent. For this
reason double precision complex numbers are not now provided in NAPSS.

For scalar arithmetic NAPSS does not use 32 routines for each of
the basic binary operators but rather only 3. This is achieved by con-
verting one of the operands to match the attribute of the other. The
scalar operands are placed in a work area before the operations are
performed. The conversion is performed during transfer to the work area
by zeroing a word when necessary.

For array arithmetic the number of routines needed to perform the
various operations cannot be reduced to the samerextent as for scalar
arithmetic. This is because of the time needed to convert one operand to
match the other and the increase in memory required to hold the operands.
The number of routines needed to perform the binary array operations
is 32 for multiplication and 2x3 for addition and subtraction. The number
of routines needed to perform addition and subtraction is reduced more
than for multiplication by taking into account the similarity between

data types.

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 10¢
Recursion, and Untyped Variables

Arrays are stored permamently in a random file and are brought into
memory only when needed. The empty records in this file are chained to-
gether so that when a record is requested and the file is full the user
can be asked to free a variable holding an array to allow his program to
continue.

Actual array arithmetic is performed in an area called the work’pool.
The work pool is a dynamic contiguous area of memory. It obtains its
space from real memory., When an array operation is to be performed enough
space is assigned to the work pool to hold the operands and resulting
arrays. The required space is obtained by removing pages from real memory.
lthen a page of real memory is assigned to the work pool it is removed
from real memory until it is explicitly returned.

The result of the array operation i1s not immediately put out in
the random file with the other arrays. Rather the work pool remains
intact with the operands and the result 1&ft in it. ‘“Yhen- the. next
array operation occurs the work pool is checked to see if it is empty; if
not, the operands are compared with what is currently in the work pool.

If the result of the previous array operation is an operand of the present
array operation then the result array need only be written out into the
array file if it is an operand of a future operation.

The work pool is completely emptied at the end of each statement.
Therefore, the process of optimizing the manipulation of arrays is only
performed locally. The reason for this is that the work pool is used

to manipulate other data types in addition to arrays.

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 11
Recursion, and Untyped Variables

When performing array arithmetic the system checks to see if the
operands are conformal. The values of the index bounds of the operands
do not affect the operations if the number of elements in the correspond-
ing dimensions agree. For example, it s illegal to multiply two row
vectors or to add 2 row vector and a column vector. The system does not
attempt to determine what the user intended in these situations. Rather
it gives an error message, and asks the user to clarify the meaning of
the statement.

The index bounds of a result array take their values from the
bounds of the operand arrays. There is one exception to this, ‘hen
two arrays are added or subtracted and their index bounds are not identical,
the lower bounds of the result array are set to one.

If the result of an array operation is a one element array it is
not treated as an array by the system, but is stored as a scalar,

A temporary variable may be assigned several values during the
evaluation of an arithmetic expression. This would pose no problem if
all the results were scalars.for scalar values are stored in the name
control bleck for the variable. However, the name control blocks for
other data types only contain pointers to where the values are stored.
This causes the problem of when to free the storage used to hold temporary
results, Storage can be returned to the system periodically using a
garbage collection scheme, or storage can be returned immediately, at

the point it is no longer referenced.

Storage is freed by the NAPSS interpreter immediately after a new

value is assigned to the temporary variable, thereby permitting an operation

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 12
Recursion, and Untyped Variables

to have the same temporary variable as an operand and as 2 result. This
scheme has two main advantages. First, the type of storage to be freed
is known at this point; second, the time required to free storage is
uniformly consumed. This is of importance since the system is intended
for use in an on-line incrementally executing mode.

The arithmetic expression evaluator is called from various places
in the interpreter and not just to evaluate arithmetic expression appearing
to the right of assignment statements. For this reason and to facilitate
recursion the result of an evaluation is associated with a fixed temporary
name control block. The results of every arithmetic expression evaluation
may be obtained from this temporary name control block by whatever portion
of the interpreter requested the evaluation.

The name control block which receives the result of an arithmetic
expression evaluation is only used to pass the value along to whatever
portion of the interpreter invoked the arithmetic expression evaluator.
Thus, the storage associated with its previous value is not returned to
the system. If the storage associated with the result temporary name
control block is freed each time a new value is associated with it, storage
would be returned which may now be associated with a user variable or

which has already been freed by some other portion of the interpreter.

EVALUATION ARITHMETIC EXPRESSION WITI! RECURSIVE OPERANDS

The occurrence of an equals variable in an arithmetic expression

causes the arithmetic expression evaluator to recurse. The recursion

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 13
Recursion, and Untyped Variables

needed to evaluate equals variables is limited to one routine, the master
controller. This routine is responsible for determining what the next
operator is, what the attributes of the operands are, and what routine is
to be invoked to perform the operation.

The routines which perform the various operations expect to receive
pointers to where the actual values of the operands may be obtained. This
causes the master controller to evaluate the expression associated with
the equals variable before calling the operator routine.

When recursion occurs the text for the current arithmetic expres-
sion is written out onto a sequential file along with a group of
variables that must be saved for the interpreter and all the temporary
name control blocks except for the temporary name control block used
to hold the result of arithmetic expression evaluations. All of these
variables are equivalenced to one contiguous area so that they may be
manipulated as a unit. A flag is set in the interpreter's recursive
variable area just before the push down of storage is performed, This
flag is used to return to the point in the master controller where
recursion occurred after the symbolic variable's expré3sion has been
evaluated.

Because of the manner in which storage associated with temporary
variables is freed, all temporary variables are set to undefined after
the push down area has been written out. This allows them to be reused
during the evaluation of the new expression without the danger of freeing
storage which was associated with the temporary variables at the previous

level. After the new expression is read into the area used to hold text

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 14
Recursion, and Untyped Vairables

to be evaluated and the necessary pointers are adjusted, control is
transferred to the main entry point of the master controller to begin
execution. This new expression may also contain symbolic variables;
if so the process is repeated.

The compiler does not check for symbolic definitions which yield
non terminating definitions, This is the responsibility of the
arithmetic expression evaluator during execution. The statement A = A+B
and the statements A = B+C, B = A+D both give this situation. The
interpreter could check for the occurrence of this when the assignment
statements are made or could keep a list of what variables have caused
recursion and check this before each recursion to eliminate the possibility
of infinite recursion. Ilowever, neither of these methods are used in
NAPSS because both require extensive checking be done for every symbolic
assignment or every recursion and for the vast majority of cases this
is unnecessary. Instead a limit has been placed on the depth of recursion.
If the arithmetic expression evaluator attempts to recurse past this
limit an error message is given the user indicating that the depth of
recursion is pgreater than can be handled by the system. It is also
suggested that the definition of the symbolic variable which caused the
initial recursion is inconsistent.

The result of an expression associated with a symbolic variable is
put in the temporary name control block that is used to receive the
results of all arithmetic expression evaluations. This name control block
is fixed in the compiler and the interpreter and is the only temporary

name control block which is not in the push down area.

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 15
Recursion, and Untyped Variables

Before the push down area can be restored and execution of the
original expressicn resumed, a pass must be made through the other temporary
name control blocks to free any storage that is associated with them.

If this were not done this storage would be lost to the system since
garbage collection is not used to retrieve unclaimed storage.

All temporary mname control blocks need not be checked during the
freeing process because the compiler assigns the temporary variables in
a linear fashion and reuses them as soon as their results are no longer
needed. Thus the interpreter need only scan them until the first name
control block is encountered which is still marked as undefined.

After all the temporary variables are freed the push down area is
restored and the name control block containinptheresult of the equals
variable expression is copied into a special temporary name control
block which is used only for the values of symbolic variables. This
is done to permit both operands of an operator to be symbolic. The
special name control block is used after evaluation in place of the
symbolic variable in the evaluation of the original arithmetic expression.

To avoid needless recursions to evaluate the same symbolic variable,
a local check is made to determine if any of the other operands of the
current operator are the same variable. If any of them are the special
name control block is substituted in the arithmetic expression for them
also,

There is a problem associated with the use of the work pool and
recursion. If therxe are any arrays in the work pool

when a symbolic variable is encountered, the work pool must be emptied.

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 16
Recursion, and Untyped Variables

This saves the temporary result array which resides only in the work
pool in the random area file. Were this not done and the symbolic
exXpression to be evaluated involved any array arithmetic¢ this result
array would become associated with a temporary name control block on the
wrong level. Therefore just before recursion takes place the work pool
is emptied and the result array is written out into the array file and
associated with the proper temporary name control block,

If an error occurs while evaluating the expression for a symbolic
variable the storage associated with the temporary variable name control
blocks on the difference levels must be freed. This is not necessary
if the arithmetic expression evaluator is at level zero when the error
occurs because in this case the normal freeing mechanism frees the
storage associated with temporary variable the next time the arithmetic
expression evaluation is called. However, when an error is detected
at a non zero level, the storage associated with-all temporary variables
is freed a2 level at a time until level zero is reached. Information
about what caused the error and at what level it occurred is saved before
the recursion levels are rolled back so that an error message can be
given the user by the portion of the interpreter which initially called
the arithmetic expression evaluator.

There are three error messages levels available. The level may be
changed dynamically by the user. On:ileval one warning messapes are
ignoxred and only the numbers associated with other error messages are
printed. On level two warning error message numbers are printed along with
the messages and numbers of other errors. Level three prints the messages

and numbexs for all exrrors.

Evaluation of NAPSS Expressions Invelving Polyalgorithms, Functions, 17
Recursion, and Untyped Variables

EVALUATION OF ARITHMETIC EXPRESSIONS INVOLVING SY:BOLIC FUNCTIONS

During compilation of the text of a symbolic function, references
to the first M temporary name control blocks are substituted for appear-
ances of the formal parameters of the function. l'hen a function is to
be evaluated the actual parameters are substituted for the formal parameters
by copying the name control blocks for the actual parameters into the
first N temporary name control blocks.

This can not be done directly for two reasons. First the function
evalvation may appear at any point in an arithmetic expressipn and therefore
some temporary values way already reside in the first ! temporary name
control blocks; second one or more of the actual parameters may be
arithﬁetic expressions which have been evaluated and had their results
put in some of the temporary name control blocks.

These problems cause the arithmetic expression evaluator to recurse
before the actual argument name contrel blocks are copied into the temporary
name control block and force the use of 2 temporary area to collect the
parameter name control blocks.

The appearance of an equals variable as an actual parameter is not
handled in the same fashion as other types of parameters. Its name control
block is not directly copied onto the corresponding temporary name control
block. If it were this would cause the arithmetic expression evaluator |
to recurse each time this parameter appears in the text for the function.
Since the value of the equals variable cannot change during the evaluation

of the function this is avoided by having the arithmetic expression R

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 18
Recursion, and Untyped Variables

evaluator recurse and evaluate the equal variable before its name control
block is c¢opied into the corresponding temporary name control block.
Thus, the name control block for the result of evaluating the equals
variable is used in place of the name control block of the equal variable
itself.

After all the name control blocks of the arguments are in the temporary
area used to collect them, the arithmetic expression evaluator recurses
and the actual parameter name control blocks are copied onto the first
N temporary name control blocks.

Before evaluation commences the function is checked to see if it
is a left arrow or equals function. If it is a left arxow function then
all non parameter variables appearing in the function text had their
values fixed when the function assigﬁment was made. To fix the value
of these variables 2 copy of each of their name control blocks and
associated storage was created when the function assignment was performed.
Thus to evaluate a left arrow function these local name control blocks
are brought into the name table area and pointers are adjusted so that
these variables are referenced while the function is being evaluated.

If the function to be evaluated is an equals function all non-
parameter variables appearing in the function text are not fixed when
the function assignment is made but assume their current value when the
function is evaluated. Thus no local name control blocks are associated
with equals functions.

The point at which the function is to be evaluated is checked to

see if the function is defined at this point. The check is performed by

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 19
Recursion, and Untyped Variables

evaluating the boolean expressions associated with the various definitions
of the function. The boolean expressions are evaluated in the order the
user has stated them., !Ythen no boolean expression appears with a definition
the function is assumed to have this definition everywhere or everywhere
else depending on whether or not other definitions with associated boolean
expressions precede it.

After the result of a function evaluation is put in the temporary
name control block which receives the result of all arithmetic expression
evaluations, the arithmetic expression evaluator réturns to the level
at which the function invocation occurred.

The process of returning to the level in the arithmetic expression
evaluator at which the function invocation occurred is similar to what
occurs when returning from the evaluaticn of an equals variable. The
only difference is the freeing of the temporary name control blocks
before the recursion area is restroed., All of the temporary name control
blocks may not be freed as they were after the evaluation of an equals
variable, because to evaluate a function the first N temporary name
control blocks were used to hold copies of the parameter name control blocks.

The copy of the actual name control block for the parameter is flagged
when it is put into the corresponding temporary name control block so
that when the temporary name control blocks are freed the ones used to
hold parameters will not be freed. There is one temporary name control
block used to hold a type of parameter which is not flagged and must have
its associated storage freed. This is the temporary name control block

used to hold the value of a parameter which corresponds to an equals

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 20
Recursion, and Untyped Variables '

variable. Since the equals variable is evaluated before the evaluation

of the function the only name control block pointing to the value of

the equals variable is the temporary name control block used as parameter.
If an error occurs during the evaluation of a function the arithmetic

expression evaluator saves information as to what caused the error and

at wvhich level it occurred and returns to level zero as it does when an

erroxr occurs during the evaluation of an equals variable,

»

EVALUATION OF ARITHMETIC EXPRGSSIONS WITH POLYALGORITH:t CALLS

A polyalgorithm is formed by grouping several numerical procedures
and a supervisor into a single procedure for solving a specific problem.
The polyalgorithm combines the various methods along with the strategy for
their selection and use into a single method which is relatively efficient
and very reliable,

The appearance of either an integral or a derivative in an arithmetic
expression causes the arithmetic expression evaluator to invoke a poly-
algorithm to perform the operation. Although the polyalgorithm contains its
own supervisor, it requires the arithmetic expression evaluator to evaluate
the function invelved. Therefore the:process of evaluating an integral or
derivative of a function is recursive. It is also considerably more
complicated than evaluation of an equals variable or a function. 1In the
later two cases only the master controller of the arithmetic expression
evaluator itself is involved, here the arithmetic expression evaluator
and a polyalgorithm are involved. In addition, since the polyalporithm may

require that

Evaluation of NAPSS Expressions Involving Polyalgorithma, Functions, 21
Recursion, and Untyped Variables

the value of the function involved be computed repeatedly, the normal
process of function evaluation which is itself recursive cannot be used
in this case for practical reasons.

Yhen a derivative or integral appears in an arithmetic expression
being evaluated all the arguments Tequired by the polyalgorithm, such as
number of derivatives, integral bounds, or point of differentiation,
are evaluated in the arithmetic expression evaluator before the poly-
algorithm is invoked. The values of these parameters are passed to
the polyalgorithm initially so that the arithmetic expression need only
be reentered from the polyalgorithm when necessary.

Before the polyalgorithm is called the arithmetic expression
evaluator recurses as it does when evaluating a function. The text of
the function involved in the operation is placed in the appropriate place
in the interpreter for evaluation. All parameters necessary for evalua-
tion are also set up except for filling in the temporary name control block
which corresponds to the variable of differentiation or integration. +..:
Thus when the polyalgorithm needs to evaluate the function all that remains
to be done is supply the value of this point.

When the polyalgorithm is called from the arithmetic expression
evaluator and a value of the function involved is needed the arithmetic
expression evaluatoxr must be returned to, or must be called from the poly-
algorithm. If the polyalgorithm calls the arithmetic expression evaluator,
the address where the arithmetic expression evaluator was initially called
from would be destroyed. If the polyalgorithm returns to the arithmetic

expression evaluator, this would create problems in the organization of

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 22
Recursion, and Untyped Variables

the polyalgorithm. For if the point at which the function o’

st be evaluZtwd - is several routines removed from the original call
on the polyalgorithm, all of these calls would have to be retraced for
each evaluation of the function, or the polyalgorithm would have to be
reorganized.

To avoid both of these problems direct transfers arc used to
transfer control between the arithmetic expression evaluator and the
polyalgorithm after the polyalgorithm is initially entered. This method
of transferring between routines is accomplished by the use of assigned
go to statements in each of the routines.

When the polyalgorithm completes its work it returns to the arith-
metic expression evaluator normally. The arithmetic expression evaluator
then restores itself to the level at which the integral of derivative
occurred. The process of freeing storage associated with temporary name
control blocks and the popping up the recursive area is similar to what
is done after the evaluation of a function.

If an error occurs which causss the polyalgorithm to terminate
evaluation, it returns to the arithmetic expression evaluator as if
the evaluation was successful but with an error flag set. The arithmetic
expression evaluator returns to level zero as is done when an error occur

during an equals variable or a function. The actual message is issued

by the routine which initially called the arithretic expression evaluator.

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions,
Recursion, and Untyped Variables

ACKNOWLEDGEMENT

The work was supported in part by NSF Contract GP-05850.

23

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 24
Recursion, and Untyped Variables

REFERENCES

1. Rice, J. R., and Rosen, S., NAPSS - A Numerical Analysis .Problem Solving
System, Proc. ACM Natl, Conf. 21st, Los Angeles, 1966, ACH Publ. P-66,
p. 51 (1966).

2. Symes, L. R., and Roman, R. V., Structure of a Language for a Numerical
Analysis Problem Solving System, “Interactive Systems for Experimental
Applied Mathematics” (*, Klerer and J. Reinfelds eds.). Academic Press,
New York, 1968, p. 67.

3. Rice, J. R., On The Construction of Polyalgorithms for Automatic
Numerical Analysis, "Interactive Systems for Experimental Applied
Mathematics'' (M. Klerer and J. Reinfelds eds.) Academic Press, New
York, 1968, p. 301.

4, Symes, L. R., and Roman, R.V., Syntactic and Semantic Description of
the Numerical Analysis Programming Language (MAPSS). Purdue Univ.
Technical Rept., CSD TR 11, (1967).

5. Roman, R, V,, and Symes, L. R., Implementation Considerations in a
Numerical Analysis Problem Solving System, "Interactive Systems for
Experimental Applied Mathematics'® (M. Klerer and J. Reinfelds eds.)
Academic Press, New York, 1968, p. 400.

	Evaluation of NAPSS Expression Involving Polyalgorithms, Functions, Recursion, and Untyped Variables
	Report Number:
	

	tmp.1307986960.pdf.OChNJ

