
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1969

Evaluation of NAPSS Expression Involving Polyalgorithms, Evaluation of NAPSS Expression Involving Polyalgorithms,

Functions, Recursion, and Untyped Variables Functions, Recursion, and Untyped Variables

Lawrence R. Symes

Report Number:
69-033

Symes, Lawrence R., "Evaluation of NAPSS Expression Involving Polyalgorithms, Functions, Recursion,
and Untyped Variables" (1969). Department of Computer Science Technical Reports. Paper 258.
https://docs.lib.purdue.edu/cstech/258

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

EVALUATION OF NAPSS EXPRESSIONS INVOLVING
POLYALGORITHMS , FUNCTIONS , RECURSION ,

AND UNTYPED VARIABLES

Lawrence R . Symes

February 1969
CSD TR 33

Evaluat ion of NAPSS Expressions Involving Polyalgorithins, Funct ions, 415
Recursion , and Untyped Variables

ABSTRACT

This paper describes how ari thmetic expressions are evaluated in

NAPSS . A brief discussion is included covering the types of expressions

permi t ted and where the dist inct ive operands arise. First , the flow through

the ari thmetic expression evaluator is given for arithmetic expressions

which do not involve recursion , function evaluation or polyalgorithm cal ls.

The handl ing of each of these three operations is then described separately .

Evaluation of NAPSS Expressions Involving Polyalgorithins, Functions, 416
Recursion, and Untyped Variables

INTRODUCTION

The Numerical Analysis Problem Solving System (NAPSS) project has been

undertaken at Purdue Universi ty to design an interactive system for solving

numerical problems [1], The system is designed to accept input in a language

[2] which is closely akin to normal mathemat ical notat ion . It permi ts the

user to manipulate directly quant i t ies other than scalars: e .g . , array ,

functions and array of funct ions. Polyalgorithms '[3] are included to

implement the basic mathemat ical procedures. This significant ly reduces

the amount of analysis required to solve a wide variety of problems using

the system .

This paper is primari ly concerned wi th the problem of how ari thmetic

expressions, involving the various operands and operators permi t ted in the

language, are evaluated .

TYPES OF EXPRESSIONS

Rather than present a detailed descript ion of the NAPSS language [4], we

describe a sampl ing of the allowable construct ions.

The ari thmet ic expression in NAPSS permi ts the direct manipulation of

numeric scalars, vectors and arrays, symbol ic and tabular funct ions, and

variables which denote symbol ic expressions. The user need not worry about

the type or mode of the operands; rather, all that need concern him is whether

or not the ari thmetic expression is mathematical ly correct .

The input language, whi le l inear, attempts to resemble normal mathematical

notat ion . For this purpose several special characters have been included .

For example: I for integrat ion , | | for absolute value , and
 1

 for different ial

and transposi t ion . But to permi t the use of standard

Evaluation of NAPSS Expressions Involving Polyalgorithins, Functions, 2
Recursion, and Untyped Variables

terminals and aid the goal of machine independence for the system , the

number of characters in the NAPSS language is limited to 63 . This re-

quires that some of the operators appearing in mathematics be functions

in NAPSS . For example: 3f(x,y)/ay[is writ ten as DER(F(X,Y)/(y)
y-j

|x«-2,y«-3) in NAPSS .

Implied mul t ipl icat ion may be used in ari thmetic expressions in

NAPSS where no ambiguity arises. Ambigui t ies stem from the fact that

variable names may be more than one character in length . Blanks are signi-

ficant in NAPSS to allow for implied mul t ipl icat ion .

Examples:

2A , A2+C and A B+C

mean

2*A , A2+C and A*B+C respect ively .

There are several methods for constructing vectors and arrays in

ari thmet ic expressions:

i) (1,-3,2,6,-10)

i i) (1,2, . . . ,20)

i i i) (1 FOR 20 TIMES)

iv) (2+1+3 FOR If 1 TO N BY 3)

v) ([0:5],1 TO 6)

vi) ([1,1:11], 3.5 to 4.5 BY .1)

vi i) (3.5 TO 4.5 BY .1) '

vi i i) ([-1:3 ,4], (1 FOR 4 TIMES), (-2,-1.75

(-10 ,-20 ,-30 ,-40))

Evaluation of NAPSS Expressions Involving Polyalgorithins, Functions, 3
Recursion, and Untyped Variables

The first five examples are vectors, which are considered to be

column vectors in NAPSS . The lower bounds of the index of first four vectors

is 1 by defaul t . The index of the fifth vector has a lower bound of 0 gpd

an upper bound of 5 . Vectors six and seven are both row vectors and they

are ident ical . The eighth example is a square array with the first index

ranging from -1 to 3 and the second from 1 to 4 . The resul t ing array is

1

- 2

3

- 1 0

1

-1.75

4

1

-1.50

5

-30

1

-1.25

6

-40

From a numerical array a single element , a row , a column or any arbitrary

contiguous subarray may be extracted . If A is a two-dimensional array wi th

the first subscript ranging from -3 to 3 and the second from 0 to 3 , then

A[0 ,*] denotes the Oth row of A , and A[-l :2 , l] denotes the column vector

consisting of the 3rd through 6th elements of the 1st row of A .

Ari thmet ic expressions which yield array results may be subscripted

in the same fashion as variables. For example, (A*B+E) [I,J] and

(A+2)[11:12,*] are both valid expressions.

NAPSS also permi ts arrays of functions to be manipulated an element

at a t ime: 2f ' (3.5)[1.3] is the NAPSS equivalence of 2f^
3
(3 . 5) .

Several examples of arithmetic expressions and assignment statements

appear below .

i) A -«-(B+C) | D-E |

i i) T = S+V+2

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 4
Recursion, and Untyped Variables

i i i) F(x) * . * ; x« : +rB x + c

iv) G(X) = A X+2 + B X + C

v5 X +X-F(X)/F ' (X)

vi) W /L(X ,Y) , (X<-0 TO 1)

vi i) . DOTPRODUCT(X) = X ' X

vi i i) H(X) «-X+2,(X=>0)«- -(Xt2) , (X<0)

ix) T(X) «-X-l,(X>l) -X+1 ,(X<-D-t-o

The left arrow operator (•*•) indicates that the ari thmet ic expression

on the right is to be evaluated and its value is to be assigned to the

variable on the left , simi lar to what FORTRAN = signifies. The equals

sign (=) has the more usual mathemat ical meaning . Statement two establ ishes

that a future occurrence of T is equivalent to the expression S + V t2 .

Values are only subst i tuted for the variables in the expression to the

left of the = when a value is needed for the variable on the left . Tims

if the values of S or V should change between the defini t ion of T and the

use of T this is reflected in the value of T . Variables defined to the

left of an = are referred to as equals variables and variables defined

to the left of an are called left arrow variables , or simply variables .

The difference between statements three and four is simi lar to

the difference between statements one and two . In the defini t ion of F

the variables A , B , and C have their current values substi tuted for

them whi le in the defini t ion of G they do no t . Values are only subst i tuted

for A , B and C when a value of the funct ion G is needed . Functions defined

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 5
Recursion, and Untyped Variables

to the left of an = sign are called equals functions and functions defined

to the left of an •*• are called left arrow funct ions.

In statement six the integral of L(X,Y) is computed for X on the

interval (0,1). Since Y is not a variable of integration its current

value is used .

Statement seven defines DOTPRODUCT to be a function which computes

the dot product of a vector and i l lustrates that arguments to function

may be array . Functions also may yield arrays on evaluat ion .

Statements eight and nine i l lustrate that functions may be defined

to have different values on different domains. If there is no domain

specified wi th the last defini t ion of the funct ion , this defini t ion is

used when the point of evaluation does not lie any of the expl icit ly

stated domains.

BASIC CONSTRUCTION OF THE INTERPRETER

NAPSS source text is transformed by a compi ler into an internal

code consisting of twenty bi t integers. This scheme has the advantage

of removing some of the burden from the interpreter, and for statements

which are repeatedly executed the decoding is performed only once.

The internal text generated for arithmetic expressions is a form

of three address code. All operators, temporary variables and pointers

are negative integers and all user variables are posit ive integers. This

is done so that user variables may easily be detected by a simple scan

of the text .

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 6
Recursion, and Untyped Variables

During compi lation a name control block is created for each user

variable. At this time the name control block is used as a name table

entry . It contains the name of the variable and some basic attributes

as to how it appeared in the program .

The name control block is used during execut ion to hold values,

pointers to values , and defini t ive attribute information for the variable.

When a name control block denotes a numeric scalar the actual value of

the variable is stored in the name control block i tself. If the name

control block denotes something other than a numeric scalar, it contains

a pointer to where the values are stored and information such as bounds ,

number of dimensions, and number of arguments.

There is a fixed set of name control blocks used for storing

temporary results during the evaluation of arithmetic expressions. They

contain the same fields as a user variable name control block except for

a name field . These are referred to as temporary name control blocks .

The memory that a NAPSS program has is made up of a few pages

of real memory which reside in core and a larger number of pages of

virtual memory which reside in secondary storage and are brought in and

out of real memory .

As the number of user variables increases the name table size is

dynamically increased by obtaining a page at a t ime from real memory .

When a page is removed from real memory for the name table this page is

not returned to real memory unt i l the system is re-ini t ial ized .

Evaluation of NAPSS Expressions Involving Polyalgorithins, Functions, 7
Recursion, and Untyped Variables

The NAPSS system is wri t ten almost ent irely in machine-independent

FORTRAN . The few machine dependent operations are restricted to 'black-

box ' type modules coded in assembly language. This aids the goal of

machine independence for the system .

Due to equipment and associated software available the current

version of NAPSS does not operate in a time sharing environment . But the

implementat ion techniques do not preclude such an extension .

NORMAL ARITHMETIC EXPRESSIONS WITH NON RECURSIVE OPERANDS

The flow of control in the ari thmetic expression evaluator for

expressions which do not involve recursive variables, function evaluations

or calls on polyalgorithms is given in Figure 1 .

update pointer to
next operator

Figure 1 . Flow of Control in Arithmetic Expression Evaluator

Evaluation of NAPSS Expressions Involving Polyalgorithins, Functions, 8
Recursion, and Untyped Variables

The operators are tested for in a fixed order so that the ones

most frequent ly occurring are tested first .

The attribute or type of an operand must be determined at execution

time because attributes are not associated wi th variables during compila-

t ion . They are associated during execut ion time and may dynamically

change during the execut ion of the program .

If NAPSS had required that all attributes be either always declared

or always contextually defined instead of allowing the user to declare

some attributes and have the rest associated contextual ly , the attribute

field of a name control block could have contained a simple attribute

number . However, because of the mixture permi t ted the attribute field

contains a set of flags from which an at tribute number is decoded .

At the same t ime that the attribute of a variable is determined ,

necessary pointers are obtained from the name control block so that the

variable may be used as an operand .

When the attributes of the operands have been determined the attribute

of the resul t is obtained by a table look up , using the attributes of

the operands and the operator as indices.

To el iminate the work necessary to bbtain the attribute of an operand

a look ahead scheme is used where possible . If the result of an operation

is an operand of the next operator then the attribute of that operand is

flagged as being known . This scheme even though only local is qui te useful ,

for frequently the result of the previous operation is an operand of the

next operator.

Evaluation of NAPSS Expressions Involving Polyalgorithins, Functions, 9
Recursion, and Untyped Variables

There are three types of numeric scalars in NAPSS: real single

precision , real double precision , and complex single precision . Integers

are stored internally as real numbers. When an integer is needed , such

as for a subscript , the system converts the real number to the nearest

integer.

With only three types of numeric scalars the number of addi t ion

routines needed to permi t all possible combinations of operands is 3
2

.

If a fourth data type, double precision complex , were added the number

of rout ines needed would be 4
 2

 or an increase of 77 percent . For this

reason double precision complex numbers are not now provided in NAPSS .

For scalar arithmetic NAPSS does not use 3
2

 routines for each of

the basic binary operators but rather only 3 . This is achieved by con-

vert ing one of the operands to match the attribute of the other. The

scalar operands are pleeed in a work area before the operations are

performed . The conversion is performed during transfer to the work area

by zeroing a word when necessary .

For array ari thmetic the number of routines needed to perform the

various operations cannot be reduced to the samecextent as for scalar

ari thmet ic. This is because of the t ime needed to convert one operand to

match the other and the increase in memory required to hold the operands.

The number of routines needed to perform the binary array operations

is 3 for mul t ipl ication and 2x3 for addition and subtract ion. The number

of routines needed to perform addi t ion and subtraction is reduced more

than for mul t ipl ication by taking into account the similarity between

data types.

Evaluation of NAPSS Expressions Involving Polyalgorithins, Functions, 10
Recursion, and Untyped Variables

Arrays are stored peTmament ly in a random file and aTe brought into

memory only when needed . The empty records in this file are chained to-

gether so that when a record is requested and the file is full the user

can be asked to free a variable holding an array to allow his program to

cont inue.

Actual array ari thmetic is performed in an area called the work ' pool

The work pool is a dynamic contiguous area of memory . It obtains its

space from real memory . When an array operation is to be performed enough

space is assigned to the work pool to hold the operands and resul t ing

arrays. The required space is obtained by removing pages from real memory

When a page of real memory is assigned to the work pool it is removed

from real memory unt i l it is explicitly returned .

The resul t of the array operation is not immediately put out in

the random file with the other arrays, Rather the work pool remains

intact wi th the operands and the result i£ft iii i t . 'When tha. n^xt

array operation occurs the work pool is checked to see if it is empty; if

not , the operands are compared with what is currently in the work pool .

If the resul t of the previous array operation is an operand of the present

array operation then the resul t array need only be writ ten out into the

array file if it is an operand of a future operat ion .

The work pool is completely emptied at the end of each statement .

Therefore, the process of opt imizing the manipulation of arrays is only

performed local ly . The reason for this is that the work pool is used

to manipulate other data types in addition to arrays.

Evaluation of NAPSS Expressions Involving Polyalgorithins, Functions, 11
Recursion, and Untyped Variables

When performing array arithmetic the system checks to see if the

operands are conformal . The values of the index bounds of the operands

do not affect the operations if the number of elements in the correspond-

ing dimensions agree. For example, it is i l legal to mul t iply two row

vectors or to add a row vector and a column vector. The system does not

at tempt to determine what the user intended in these si tuat ions. Rather

it gives an erroT message, and asks the user to clarify the meaning of

the statement .

The index bounds of a resul t array take their values from the

bounds of the operand arrays. There is one except ion to this. . VJhen

two arrays are added or subtracted and their index bounds are not ident ical ,

the lower bounds of the resul t array are set to one.

If the resul t of an array operation is a one element array it is

not treated as an array by the system , but is stored as a scalar.

A temporary variable may be assigned several values during the

evaluation of an arithmetic expression . This would pose no problem if

all the resul ts were scalars.for scalar values are stored in the name

control block for the variable. However, the name control blocks for

other data types only contain pointers to where the values are stored .

This causes the problem of when to free the storage used to hold temporary

resul ts. Storage can be returned to the system periodical ly using a

garbage collection scheme, or storage can be returned immediately , at

the point it is no longer referenced .

Storage is freed by the NAPSS interpreter immediately after a new

value is assigned to the temporary variable , thereby permi t t ing an operation

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 12
Recursion, and Untyped Variables

to have the same temporary variable as an operand and as a resul t . This

scheme has two main advantages. First , the type of storage to be freed

is known at this point ; second , the time required to free storage is

uniformly consumed . This is of importance since the system is intended

for use in an on-line incrementally executing mode .

The arithmetic expression evaluator is called from various places

in the interpreter and not just to evaluate arithmetic expression appearing

to the right of assignment statements. For this reason and to facilitate

recursion the resul t of an evaluation is associated wi th a fixed temporary

name control block . The results of every arithmetic expression evaluation

may be obtained from this temporary name control block by whatever portion

of the interpreter requested the evaluat ion .

The name control block which receives the result of an arithmetic

expression evaluation is only used to pass the value along to whatever

portion of the interpreter invoked the arithmetic expression evaluator.

Thus, the storage associated wi th its previous value is not returned to

the system . If the storage associated wi th the resul t temporary name

control block is freed each time a new value is associated wi th i t , storage

would be returned which may now be associated wi th a user variable or

which has already been freed by some other portion of the interpreter.

EVALUATION ARITHMETIC EXPRESSION WITH RECURSIVE OPERANDS

The occurrence of an equals variable in an arithmetic expression

causes the arithmetic expression evaluator to recurse. The recursion

Evaluation of NAPSS Expressions Involving Polyalgorithins, Functions, 13
Recursion, and Untyped Variables

needed to evaluate equals variables is limited to one rout ine, the master

control ler. This rout ine is responsible for determining what the next

operator is , what the attributes of the operands are , and what rout ine is

to be invoked to perform the operat ion .

The routines which perform the various operations expect to receive

pointers to where the actual values of the operands may be obtained . This

causes the master controller to evaluate the expression associated with

the equals variable before calling the operator rout ine.

When recursion occurs the text for the current arithmetic expres-

sion is writ ten out onto a sequent ial file along with a group of

variables that must be saved for the interpreter and all the temporary

name control blocks except for the temporary name control block used

to hold the resul t of arithmetic expression evaluat ions. Al l of these

variables are equivalenced to one contiguous area so that they may be

manipulated as a uni t . A flag is set in the interpreter ' s recursive

variable area just before the push down of storage is performed . This

flag is used to return to the point in the master controller where

recursion occurred after the symbol ic variable ' s expression has been

evaluated .

Because of the manner in which storage associated wi th temporary

variables is freed , all temporary variables are set to undefined after

the push down area has been writ ten out . This allows them to be reused

during the evaluation of the new expression wi thout the danger of freeing

storage which was associated with the temporary variables at the previous

level . After the new expression is read into the area used to hold text

Evaluation of NAPSS Expressions Involving Polyalgorithins, Functions, 14
Recursion, and Untyped Variables

to be evaluated and the necessary pointers are adjusted , control is

transferred to the main entry point of the master control ler to begin

execut ion . This new expression may also contain symbol ic variables;

if so the process is repeated .

The compi ler does not check for symbol ic definitions which yield

non terminating defini t ions, This is the responsibility of the

ari thmetic expression evaluator during execut ion . The statement A = A+B

and the statements A = B+C , B = A+D both give this si tuat ion . The

interpreter could check for the occurrence of this when the assignment

statements are made or could keep a list of what variables have caused

recursion and check this before each recursion to eliminate the possibi l i ty

of infinite recursion . However, nei ther of these methods are used in

NAPSS because both require extensive checking be done for every symbol ic

assignment or every recursion and for the vast majority of cases this

is unnecessary . Instead a limit has been placed on the depth of recursion .

If the ari thmetic expression evaluator attempts to recurse past this

limit an error message is given the user indicating that the depth of

recursion is greater than can be handled by the system . It is also

suggested that the defini t ion of the symbol ic variable which caused the

ini t ial recursion is inconsistent .

The result of an expression associated wi th a symbol ic variable is

put in the temporary name control block that is used to receive the

results of all arithmetic expression evaluat ions. This name control block

is fixed in the compiler and the interpreter and is the only temporary

name control block which is not in the push down area.

Evaluation of NAPSS Expressions Involving Polyalgorithins, Functions, 15
Recursion, and Untyped Variables

Before the push down area can be restored and execution of the

original expression resumed , a pass must be made through the other temporary

name control blocks to free any storage that is associated wi th them .

If this were not done this storage would be lost to the system since

garbage collection is not used to retrieve unclaimed storage.

Al l temporary name control blocks need not be checked during the

freeing process because the compiler assigns the temporary variables in

a linear fashion and reuses them as soon as their results are no longer

needed . Thus the interpreter need only scan them unt i l the first name

control block is encountered which is still marked as undefined .

After all the temporary variables are freed the push down area is

restored and the name control block containing.the resul t of the equals

variable expression is copied into a special temporary name control

block which is used only for the values of symbol ic variables. This

is done to permi t both operands of an operator to be symbol ic. The

special name control block is used after evaluation in place of the

symbol ic variable in the evaluation of the original arithmetic expression .

To avoid needless recursions to evaluate the same symbol ic variable ,

a local check is made to determine if any of the other operands of the

current operator are the same variable. If any of them are the special

name control block is substituted in the arithmetic expression for them

also .

There is a problem associated wi th the use of the work pool and

recursion . If there are any arrays in the wbrk pool

when a symbol ic variable is encountered, the work pool must be empt ied .

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 16
Recursion, and Untyped Variables

This saves the temporary resul t array which resides only in the work

pool in the random area fi le. Were this not done and the symbol ic

expression to be evaluated involved any array arithmetic this resul t

array would become associated wi th a temporary name control block on the

wrong level . Therefore just before recursion takes place the work pool

is empt ied and the resul t array is writ ten out into the array file and

associated wi th the proper temporary name control block .

If an error occurs whi le evaluating the expression for a symbol ic

variable the storage associated with the temporary variable name control

blocks on the difference levels must be freed . This is not necessary

if the arithmetic expression evaluator is at level zero when the error

occurs because in this case the normal freeing mechanism frees the

storage associated wi th temporary variable the next time the arithmetic

expression evaluation is cal led . However, when an error is detected

at a non zero level , the storage associated with-ill temporary variables

is freed a level at a time unt i l level zero is reached . Information

about what caused the error and at what level it occurred is saved before

the recursion levels are rol led back so that an error message can be

given the user by the portion of the interpreter which initially called

the ari thmetic expression evaluator.

There are three error messages levels avai lable. The level may be

changed dynamically by the user . 0n*iev6l one warning messages are

ignored and only the numbers associated wi th other error messages are

printed . On level two learning error message numbers are printed along with

the messages and numbers of other errors. Level three prints the messages

and numbers for all errors.

Evaluation of NAPSS Expressions Involving Polyalgorithins, Functions, 17
Recursion, and Untyped Variables

EVALUATION OF ARITHMETIC EXPRESSIONS INVOLVING SYMBOLIC FUNCTIONS

During compilation of the text of a symbol ic funct ion , references

to the first N temporary name control blocks are substituted for appear-

ances of the formal parameters of the funct ion. When a function is to

be evaluated the actual parameters are substituted for the formal parameters

by copying the name control blocks for the actual parameters into the

first N temporary name control blocks.

This can not be done directly for two reasons. First the function

evaluation may appear at any point in an arithmetic expression and therefore

some temporary values may already reside in the first N temporary name

control blocks; second one or more of the actual parameters may be

arithmetic expressions which have been evaluated and had their results

put in some of the temporary name control blocks.

These problems cause the ari thmetic expression evaluator to recurse

before the actual argument name control blocks are copied into the temporary

name control block and force the use of a temporary area to collect the

parameter name control blocks .

The appearance of an equals variable as an actual parameter is not

handled in the same fashion as other types of parameters. Its name control

block is not directly copied onto the corresponding temporary name control

block . If it were this would cause the ari thmetic expression evaluator

to recurse each time this parameter appears in the text for the funct ion.

Since the value of the equals variable cannot change during the evaluation

of the function this is avoided by having the arithmetic expression

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 18
Recursion, and Untyped Variables

evaluator recurse and evaluate the equal variable before its name control

block is copied into the corresponding temporary name control block .

Thus , the name control block for the resul t of evaluating the equals

variable is used in place of the name control block of the equal variable

i tself.

After all the name control blocks of the arguments are in the temporary

area used to collect them , the arithmetic expression evaluator recurses

and the actual parameter name control blocks are copied onto the first

N temporary name control blocks .

Before evaluation commences the function is checked to see if it

is a left arrow or equals funct ion. If it is a left arrow function then

all non parameter variables appearing in the function text had their

values fixed when the function assignment was made. To fix the value

of these variables a copy of each of their name control blocks and

associated storage was created when the function assignment was performed .

Thus to evaluate a left arrow function these local name control blocks

are brought into the name table area and pointers are adjusted so that

these variables are referenced whi le the function is being evaluated .

If the function to be evaluated is an equals function all non-

parameter variables appearing in the function text are not fixed when

the function assignment is made but assume their current value when the

function is evaluated . Thus no local name control blocks are associated

wi th equals funct ions.

The point at which the function is to be evaluated is checked to

see if the function is defined at this point . The check is performed by

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions, 19
Recursion, and Untyped Variables

evaluating the boolean expressions associated wi th the various defini t ions

of the funct ion . The boolean expressions are evaluated in the order the

user has stated them . When no boolean expression appears with a defini t ion

the function is assumed to have this definition everywhere or everywhere

else depending on whether or not other defini t ions with associated boolean

expressions precede i t .

After the resul t of a function evaluation is put in the temporary

name control block which receives the resul t of all ari thmetic expression

evaluat ions, the ari thmetic expression evaluator returns to the level

at which the function invocation occurred .

The process of returning to the level in the arithmetic expression

evaluator at which the function invocation occurred is simi lar to what

occurs when returning from the evaluation of an equals variable. The

only difference is the freeing of the temporary name control blocks

before the recursion area is restroed . All of the temporary name control

blocks may not be freed as they were after the evaluation of an equals

variable , because to evaluate a function the first N temporary name

control blocks were used to hold copies of the parameter name control blocks.

The copy of the actual name control block for the parameter is flagged

when it is put into the corresponding temporary name control block so

that when the temporary name control blocks are freed the ones used to

hold parameters wi l l not be freed . There is one temporary name control

block used to hold a type of parameter which is not flagged and must have

its associated storage freed . This is the temporary name control block

used to hold the value of a parameter which corresponds to an equals

Evaluation of NAPSS Expressions Involving Polyalgorithins, Functions, 20
Recursion, and Untyped Variables

variable. Since the equals variable is evaluated before the evaluation

of the function the only name control block point ing to the value of

the equals variable is the temporary name control block used as parameter.

If an error occurs during the evaluation of a function the arithmetic

expression evaluator saves information as to what caused the error and

at which level it occurred and returns to level zero as it does when an

error occurs during the evaluation of an equals variable.

EVALUATION OF ARITHMETIC EXPRESSIONS WITH POLYALGORITHM CALLS

A polyalgorithm is formed by grouping several numerical procedures

and a supervisor into a single procedure for solving a specific problem .

The polyalgorithm combines the various methods along with the strategy for

their selection and use into a single method which is relatively efficient

and very rel iable.

The appearance of either an integral or a derivative in an arithmetic

expression causes the ari thmetic expression evaluator to invoke a poly-

algorithm to perform the operat ion . Although the polyalgorithm contains its

own supervisor, it requires the arithmetic expression evaluator to evaluate

the function involved . Therefore the^process of evaluating an integral or

derivative of a function is recursive. It is also considerably more

complicated than evaluation of an equals variable or a funct ion . In the

later two cases only the master controller of the arithmetic expression

evaluator itself is involved , here the arithmetic expression evaluator

and a polyalgorithm are involved. In addi t ion , since the polyalgorithm may

require that

Evaluation of NAPSS Expressions Involving Polyalgorithins, Functions, 21
Recursion, and Untyped Variables

the value of the function involved be computed repeatedly , the normal

process of function evaluation which is i tself recursive cannot be used

in this case for pract ical reasons.

When a derivative or integral appears in an ari thmet ic expression

being evaluated all the arguments required by the polyalgori thm , such as

number of derivat ives, integral bounds , or point of different iat ion ,

are evaluated in the arithmetic expression evaluator before the poly-

algorithm is invoked . The values of these parameters are passed to

the polyalgorithm initially so that the arithmetic expression need only

be reentered from the polyalgorithm when necessary .

Before the polyalgorithm is called the arithmetic expression

evaluator recurses as it does when evaluating a funct ion. The text of

the function involved in the operation is placed in the appropriate place

in the interpreter for evaluat ion . Al l parameters necessary for evalua

tion are also set up except for filling in the temporary name control block

which corresponds to the variable of differentiation or integration. ^vl

Thus when the polyalgorithm needs to evaluate the function all that remains

to be done is supply the value of this point .

When the polyalgorithm is called from the arithmetic expression

evaluator and a value of the function involved is needed the arithmetic

expression evaluator must be returned to , or must be called from the poly-

algori thm . If the polyalgorithm calls the arithmetic expression evaluator,

the address where the arithmetic expression evaluator was initially called

from would be destroyed . If the polyalgorithm returns to the arithmetic

expression evaluator, this would create problems in the organization of

Evaluation of NAPSS Expressions Involving Polyalgorithins, Functions, 22
Recursion, and Untyped Variables

the polyalgori thm . For if the point at which the function =:"y
 :

Hasf ' be evaluated is several rout ines removed from the original call

on the polyalgori thm , all of these calls would have to be retraced for

each evaluation of the funct ion , or the polyalgorithm would have to be

reorganized .

To avoid both of these problems direct transfers are used to

transfer control between the arithmetic expression evaluator and the

polyalgori thm after the polyalgori thm is initially entered . This method

of transferring between routines is accomplished by the use of assigned

go to statements in each of the rout ines.

When the polyalgori thm completes its work it returns to the arith-

met ic expression evaluator normal ly . The arithmetic expression evaluator

then restores itself to the level at which the integral of derivative

occurred . The process of freeing storage associated wi th temporary name

control blocks and the popping up the recursive area is simi lar to what

is done after the evaluation of a funct ion.

If an error occurs which causes the polyalgorithm to terminate

evaluat ion , it returns to the arithmetic expression evaluator as if

the evaluation was successful but wi th an error flag set . The arithmetic

expression evaluator returns to level zero as is done when an error occur

during an equals variable or a funct ion. The actual message is issued

by the routine which initially called the arithmetic expression evaluator.

Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions,
Recursion, and Untyped Variables

ACKNOWLEDGEMENT

The work was supported in part by NSF Contract GP-05850 .

Evaluation of NAPSS Expressions Involving Polyalgorithins, Functions, 24
Recursion, and Untyped Variables

REFERENCES

1 . Rice , J . R . , and Rosen , S . , NAPSS - A Numerical Analysis .Problem Solving

System , Proc. ACM Nat l , Conf . 21st , Los Angeles, 1966, ACM Publ . P-66 ,

p . 51 (1966),

2 . Symes, L . R . , and Roman , R . V . , Structure of a Language for a Numerical

Analysis Problem Solving System , "Interactive Systems for Experimental

Appl ied"Mathematics" (M, Klerer and J . Reinfelds eds.). Academic Press,

New York , 1968 , p . 67 .

3 . Rice, J . R . , On The Construction of Polyalgorithms for Automatic

Numerical Analysis, "Interactive Systems for Experimental Appl ied

Mathematics" (M. Klerer and J . Reinfelds eds.) Academic Press, New

York , 1968 , p . 301.

4 . Symes, L . R . , and Roman , R .V . , Syntact ic and Semant ic Descript ion of

the Numerical Analysis Programming Language (NAPSS). Purdue Univ .

Technical Rept . , CSD TR 11 , (1967).

5 . Roman , R . V . , and Symes, L . R . , Implementation Considerations in a

Numerical Analysis Problem Solving System , "Interactive Systems for

Experimental Appl ied Mathematics" (M. Klerer and J . Reinfelds eds.)

Academic Press, New York , 1968 , p . 400 .

	Evaluation of NAPSS Expression Involving Polyalgorithms, Functions, Recursion, and Untyped Variables
	Report Number:
	

	tmp.1307986960.pdf.OChNJ

