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ABSTRACT 

This paper describes how ari thmetic expressions are evaluated in 

NAPSS .  A brief discussion is included covering the types of expressions 

permi t ted and where the dist inct ive operands arise.  First ,  the flow through 

the ari thmetic expression evaluator is given for arithmetic expressions 

which do not involve recursion ,  function evaluation or polyalgorithm cal ls.  

The handl ing of each of these three operations is then described separately .  
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INTRODUCTION 

The Numerical Analysis Problem Solving System (NAPSS) project has been 

undertaken at Purdue Universi ty to design an interactive system for solving 

numerical problems [1],  The system is designed to accept input in a language 

[2] which is closely akin to normal mathemat ical notat ion .  It permi ts the 

user to manipulate directly quant i t ies other than scalars: e .g . ,  array ,  

functions and array of funct ions.  Polyalgorithms '[3] are included to 

implement the basic mathemat ical procedures.  This significant ly reduces 

the amount of analysis required to solve a wide variety of problems using 

the system .  

This paper is primari ly concerned wi th the problem of how ari thmetic 

expressions,  involving the various operands and operators permi t ted in the 

language,  are evaluated .  

TYPES OF EXPRESSIONS 

Rather than present a detailed descript ion of the NAPSS language [4],  we 

describe a sampl ing of the allowable construct ions.  

The ari thmet ic expression in NAPSS permi ts the direct manipulation of 

numeric scalars,  vectors and arrays,  symbol ic and tabular funct ions,  and 

variables which denote symbol ic expressions.  The user need not worry about 

the type or mode of the operands; rather,  all that need concern him is whether 

or not the ari thmetic expression is mathematical ly correct .  

The input language,  whi le l inear,  attempts to resemble normal mathematical 

notat ion .  For this purpose several special characters have been included .  

For example: I for integrat ion ,  | |  for absolute value ,  and
 1

 for different ial 

and transposi t ion .  But to permi t the use of standard 
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terminals and aid the goal of machine independence for the system ,  the 

number of characters in the NAPSS language is limited to 63 .  This re-

quires that some of the operators appearing in mathematics be functions 

in NAPSS .  For example: 3f(x,y)/ay[ is writ ten as DER(F(X,Y)/(y) 
y-j 

|x«-2,y«-3) in NAPSS .  

Implied mul t ipl icat ion may be used in ari thmetic expressions in 

NAPSS where no ambiguity arises.  Ambigui t ies stem from the fact that 

variable names may be more than one character in length .  Blanks are signi-

ficant in NAPSS to allow for implied mul t ipl icat ion .  

Examples: 

2A ,  A2+C and A B+C 

mean 

2*A ,  A2+C and A*B+C respect ively .  

There are several methods for constructing vectors and arrays in 

ari thmet ic expressions: 

i) (1,-3,2,6,-10) 

i i) (1,2, . . . ,20) 

i i i) (1 FOR 20 TIMES) 

iv) (2+1+3 FOR If 1 TO N BY 3) 

v) ([0:5],1 TO 6) 

vi) ([1,1:11],  3.5 to 4.5 BY .1) 

vi i) (3.5 TO 4.5 BY .1) '  

vi i i) ([-1:3 ,4],  (1 FOR 4 TIMES),  (-2,-1.75 

(-10 ,-20 ,-30 ,-40)) 
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The first five examples are vectors,  which are considered to be 

column vectors in NAPSS .  The lower bounds of the index of first four vectors 

is 1 by defaul t .  The index of the fifth vector has a lower bound of 0 gpd 

an upper bound of 5 .  Vectors six and seven are both row vectors and they 

are ident ical .  The eighth example is a square array with the first index 

ranging from -1 to 3 and the second from 1 to 4 .  The resul t ing array is 

1 

- 2 

3 

- 1 0 

1 

-1.75 

4 

1 

-1.50 

5 

-30 

1 

-1.25 

6 

-40 

From a numerical array a single element ,  a row ,  a column or any arbitrary 

contiguous subarray may be extracted .  If A is a two-dimensional array wi th 

the first subscript ranging from -3 to 3 and the second from 0 to 3 ,  then 

A[0 ,*] denotes the Oth row of A ,  and A[-l :2 , l] denotes the column vector 

consisting of the 3rd through 6th elements of the 1st row of A .  

Ari thmet ic expressions which yield array results may be subscripted 

in the same fashion as variables.  For example,  (A*B+E) [I,J] and 

(A+2)[11:12,*] are both valid expressions.  

NAPSS also permi ts arrays of functions to be manipulated an element 

at a t ime: 2f ' (3.5)[1.3] is the NAPSS equivalence of 2f^
3
(3 . 5) .  

Several examples of arithmetic expressions and assignment statements 

appear below .  

i) A -«-(B+C) |  D-E |  

i i) T = S+V+2 
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i i i) F(x) * . * ; x« : +rB x + c 

iv) G(X) = A X+2 + B X + C 

v5 X +X-F(X)/F ' (X) 

vi) W /L(X ,Y) ,  (X<-0 TO 1) 

vi i) .  DOTPRODUCT(X) = X ' X 

vi i i) H(X) «-X+2,(X=>0)«- -(Xt2) ,  (X<0) 

ix) T(X) «-X-l,(X>l) -X+1 ,(X<-D-t-o 

The left arrow operator (•*•) indicates that the ari thmet ic expression 

on the right is to be evaluated and its value is to be assigned to the 

variable on the left ,  simi lar to what FORTRAN  = signifies.  The equals 

sign (=) has the more usual mathemat ical meaning .  Statement two establ ishes 

that a future occurrence of T is equivalent to the expression S + V t2 .  

Values are only subst i tuted for the variables in the expression to the 

left of the = when a value is needed for the variable on the left .  Tims 

if the values of S or V should change between the defini t ion of T and the 

use of T this is reflected in the value of T .  Variables defined to the 

left of an = are referred to as equals variables and variables defined 

to the left of an are called left arrow variables ,  or simply variables .  

The difference between statements three and four is simi lar to 

the difference between statements one and two .  In the defini t ion of F 

the variables A ,  B ,  and C have their current values substi tuted for 

them whi le in the defini t ion of G they do no t .  Values are only subst i tuted 

for A ,  B and C when a value of the funct ion G is needed .  Functions defined 
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to the left of an = sign are called equals functions and functions defined 

to the left of an •*• are called left arrow funct ions.  

In statement six the integral of L(X,Y) is computed for X on the 

interval (0,1).  Since Y is not a variable of integration its current 

value is used .  

Statement seven defines DOTPRODUCT to be a function which computes 

the dot product of a vector and i l lustrates that arguments to function 

may be array .  Functions also may yield arrays on evaluat ion .  

Statements eight and nine i l lustrate that functions may be defined 

to have different values on different domains.  If there is no domain 

specified wi th the last defini t ion of the funct ion ,  this defini t ion is 

used when the point of evaluation does not lie any of the expl icit ly 

stated domains.  

BASIC CONSTRUCTION OF THE INTERPRETER 

NAPSS source text is transformed by a compi ler into an internal 

code consisting of twenty bi t integers.  This scheme has the advantage 

of removing some of the burden from the interpreter,  and for statements 

which are repeatedly executed the decoding is performed only once.  

The internal text generated for arithmetic expressions is a form 

of three address code.  All operators,  temporary variables and pointers 

are negative integers and all user variables are posit ive integers.  This 

is done so that user variables may easily be detected by a simple scan 

of the text .  
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During compi lation a name control block is created for each user 

variable.  At this time the name control block is used as a name table 

entry .  It contains the name of the variable and some basic attributes 

as to how it appeared in the program .  

The name control block is used during execut ion to hold values,  

pointers to values ,  and defini t ive attribute information for the variable.  

When a name control block denotes a numeric scalar the actual value of 

the variable is stored in the name control block i tself.  If the name 

control block denotes something other than a numeric scalar,  it contains 

a pointer to where the values are stored and information such as bounds ,  

number of dimensions,  and number of arguments.  

There is a fixed set of name control blocks used for storing 

temporary results during the evaluation of arithmetic expressions.  They 

contain the same fields as a user variable name control block except for 

a name field .  These are referred to as temporary name control blocks .  

The memory that a NAPSS program has is made up of a few pages 

of real memory which reside in core and a larger number of pages of 

virtual memory which reside in secondary storage and are brought in and 

out of real memory .  

As the number of user variables increases the name table size is 

dynamically increased by obtaining a page at a t ime from real memory .  

When a page is removed from real memory for the name table this page is 

not returned to real memory unt i l the system is re-ini t ial ized .  
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The NAPSS system is wri t ten almost ent irely in machine-independent 

FORTRAN .  The few machine dependent operations are restricted to 'black-

box '  type modules coded in assembly language.  This aids the goal of 

machine independence for the system .  

Due to equipment and associated software available the current 

version of NAPSS does not operate in a time sharing environment .  But the 

implementat ion techniques do not preclude such an extension .  

NORMAL ARITHMETIC EXPRESSIONS WITH NON RECURSIVE OPERANDS 

The flow of control in the ari thmetic expression evaluator for 

expressions which do not involve recursive variables,  function evaluations 

or calls on polyalgorithms is given in Figure 1 .  

update pointer to 
next operator 

Figure 1 .  Flow of Control in Arithmetic Expression Evaluator 
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The operators are tested for in a fixed order so that the ones 

most frequent ly occurring are tested first .  

The attribute or type of an operand must be determined at execution 

time because attributes are not associated wi th variables during compila-

t ion .  They are associated during execut ion time and may dynamically 

change during the execut ion of the program .  

If NAPSS had required that all attributes be either always declared 

or always contextually defined instead of allowing the user to declare 

some attributes and have the rest associated contextual ly ,  the attribute 

field of a name control block could have contained a simple attribute 

number .  However,  because of the mixture permi t ted the attribute field 

contains a set of flags from which an at tribute number is decoded .  

At the same t ime that the attribute of a variable is determined ,  

necessary pointers are obtained from the name control block so that the 

variable may be used as an operand .  

When the attributes of the operands have been determined the attribute 

of the resul t is obtained by a table look up ,  using the attributes of 

the operands and the operator as indices.  

To el iminate the work necessary to bbtain the attribute of an operand 

a look ahead scheme is used where possible .  If the result of an operation 

is an operand of the next operator then the attribute of that operand is 

flagged as being known .  This scheme even though only local is qui te useful ,  

for frequently the result of the previous operation is an operand of the 

next operator.  
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There are three types of numeric scalars in NAPSS: real single 

precision ,  real double precision ,  and complex single precision .  Integers 

are stored internally as real numbers.  When an integer is needed ,  such 

as for a subscript ,  the system converts the real number to the nearest 

integer.  

With only three types of numeric scalars the number of addi t ion 

routines needed to permi t all possible combinations of operands is 3
2

.  

If a fourth data type,  double precision complex ,  were added the number 

of rout ines needed would be 4
 2

 or an increase of 77 percent .  For this 

reason double precision complex numbers are not now provided in NAPSS .  

For scalar arithmetic NAPSS does not use 3
2

 routines for each of 

the basic binary operators but rather only 3 .  This is achieved by con-

vert ing one of the operands to match the attribute of the other.  The 

scalar operands are pleeed in a work area before the operations are 

performed .  The conversion is performed during transfer to the work area 

by zeroing a word when necessary .  

For array ari thmetic the number of routines needed to perform the 

various operations cannot be reduced to the samecextent as for scalar 

ari thmet ic.  This is because of the t ime needed to convert one operand to 

match the other and the increase in memory required to hold the operands.  

The number of routines needed to perform the binary array operations 

is 3 for mul t ipl ication and 2x3 for addition and subtract ion.  The number 

of routines needed to perform addi t ion and subtraction is reduced more 

than for mul t ipl ication by taking into account the similarity between 

data types.  
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Arrays are stored peTmament ly in a random file and aTe brought into 

memory only when needed .  The empty records in this file are chained to-

gether so that when a record is requested and the file is full the user 

can be asked to free a variable holding an array to allow his program to 

cont inue.  

Actual array ari thmetic is performed in an area called the work ' pool 

The work pool is a dynamic contiguous area of memory .  It obtains its 

space from real memory .  When an array operation is to be performed enough 

space is assigned to the work pool to hold the operands and resul t ing 

arrays.  The required space is obtained by removing pages from real memory 

When a page of real memory is assigned to the work pool it is removed 

from real memory unt i l it is explicitly returned .  

The resul t of the array operation is not immediately put out in 

the random file with the other arrays,  Rather the work pool remains 

intact wi th the operands and the result i£ft iii i t .  'When tha.  n^xt 

array operation occurs the work pool is checked to see if it is empty; if 

not ,  the operands are compared with what is currently in the work pool .  

If the resul t of the previous array operation is an operand of the present 

array operation then the resul t array need only be writ ten out into the 

array file if it is an operand of a future operat ion .  

The work pool is completely emptied at the end of each statement .  

Therefore,  the process of opt imizing the manipulation of arrays is only 

performed local ly .  The reason for this is that the work pool is used 

to manipulate other data types in addition to arrays.  
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When performing array arithmetic the system checks to see if the 

operands are conformal .  The values of the index bounds of the operands 

do not affect the operations if the number of elements in the correspond-

ing dimensions agree.  For example,  it is i l legal to mul t iply two row 

vectors or to add a row vector and a column vector.  The system does not 

at tempt to determine what the user intended in these si tuat ions.  Rather 

it gives an erroT message,  and asks the user to clarify the meaning of 

the statement .  

The index bounds of a resul t array take their values from the 

bounds of the operand arrays.  There is one except ion to this. .  VJhen 

two arrays are added or subtracted and their index bounds are not ident ical ,  

the lower bounds of the resul t array are set to one.  

If the resul t of an array operation is a one element array it is 

not treated as an array by the system ,  but is stored as a scalar.  

A temporary variable may be assigned several values during the 

evaluation of an arithmetic expression .  This would pose no problem if 

all the resul ts were scalars.for scalar values are stored in the name 

control block for the variable.  However,  the name control blocks for 

other data types only contain pointers to where the values are stored .  

This causes the problem of when to free the storage used to hold temporary 

resul ts.  Storage can be returned to the system periodical ly using a 

garbage collection scheme,  or storage can be returned immediately ,  at 

the point it is no longer referenced .  

Storage is freed by the NAPSS interpreter immediately after a new 

value is assigned to the temporary variable ,  thereby permi t t ing an operation 
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to have the same temporary variable as an operand and as a resul t .  This 

scheme has two main advantages.  First ,  the type of storage to be freed 

is known at this point ; second ,  the time required to free storage is 

uniformly consumed .  This is of importance since the system is intended 

for use in an on-line incrementally executing mode .  

The arithmetic expression evaluator is called from various places 

in the interpreter and not just to evaluate arithmetic expression appearing 

to the right of assignment statements.  For this reason and to facilitate 

recursion the resul t of an evaluation is associated wi th a fixed temporary 

name control block .  The results of every arithmetic expression evaluation 

may be obtained from this temporary name control block by whatever portion 

of the interpreter requested the evaluat ion .  

The name control block which receives the result of an arithmetic 

expression evaluation is only used to pass the value along to whatever 

portion of the interpreter invoked the arithmetic expression evaluator.  

Thus,  the storage associated wi th its previous value is not returned to 

the system .  If the storage associated wi th the resul t temporary name 

control block is freed each time a new value is associated wi th i t ,  storage 

would be returned which may now be associated wi th a user variable or 

which has already been freed by some other portion of the interpreter.  

EVALUATION ARITHMETIC EXPRESSION WITH RECURSIVE OPERANDS 

The occurrence of an equals variable in an arithmetic expression 

causes the arithmetic expression evaluator to recurse.  The recursion 
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needed to evaluate equals variables is limited to one rout ine,  the master 

control ler.  This rout ine is responsible for determining what the next 

operator is ,  what the attributes of the operands are ,  and what rout ine is 

to be invoked to perform the operat ion .  

The routines which perform the various operations expect to receive 

pointers to where the actual values of the operands may be obtained .  This 

causes the master controller to evaluate the expression associated with 

the equals variable before calling the operator rout ine.  

When recursion occurs the text for the current arithmetic expres-

sion is writ ten out onto a sequent ial file along with a group of 

variables that must be saved for the interpreter and all the temporary 

name control blocks except for the temporary name control block used 

to hold the resul t of arithmetic expression evaluat ions.  Al l of these 

variables are equivalenced to one contiguous area so that they may be 

manipulated as a uni t .  A flag is set in the interpreter ' s recursive 

variable area just before the push down of storage is performed .  This 

flag is used to return to the point in the master controller where 

recursion occurred after the symbol ic variable ' s expression has been 

evaluated .  

Because of the manner in which storage associated wi th temporary 

variables is freed ,  all temporary variables are set to undefined after 

the push down area has been writ ten out .  This allows them to be reused 

during the evaluation of the new expression wi thout the danger of freeing 

storage which was associated with the temporary variables at the previous 

level .  After the new expression is read into the area used to hold text 
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to be evaluated and the necessary pointers are adjusted ,  control is 

transferred to the main entry point of the master control ler to begin 

execut ion .  This new expression may also contain symbol ic variables; 

if so the process is repeated .  

The compi ler does not check for symbol ic definitions which yield 

non terminating defini t ions,  This is the responsibility of the 

ari thmetic expression evaluator during execut ion .  The statement A = A+B 

and the statements A = B+C ,  B = A+D both give this si tuat ion .  The 

interpreter could check for the occurrence of this when the assignment 

statements are made or could keep a list of what variables have caused 

recursion and check this before each recursion to eliminate the possibi l i ty 

of infinite recursion .  However,  nei ther of these methods are used in 

NAPSS because both require extensive checking be done for every symbol ic 

assignment or every recursion and for the vast majority of cases this 

is unnecessary .  Instead a limit has been placed on the depth of recursion .  

If the ari thmetic expression evaluator attempts to recurse past this 

limit an error message is given the user indicating that the depth of 

recursion is greater than can be handled by the system .  It is also 

suggested that the defini t ion of the symbol ic variable which caused the 

ini t ial recursion is inconsistent .  

The result of an expression associated wi th a symbol ic variable is 

put in the temporary name control block that is used to receive the 

results of all arithmetic expression evaluat ions.  This name control block 

is fixed in the compiler and the interpreter and is the only temporary 

name control block which is not in the push down area.  
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Before the push down area can be restored and execution of the 

original expression resumed ,  a pass must be made through the other temporary 

name control blocks to free any storage that is associated wi th them .  

If this were not done this storage would be lost to the system since 

garbage collection is not used to retrieve unclaimed storage.  

Al l temporary name control blocks need not be checked during the 

freeing process because the compiler assigns the temporary variables in 

a linear fashion and reuses them as soon as their results are no longer 

needed .  Thus the interpreter need only scan them unt i l the first name 

control block is encountered which is still marked as undefined .  

After all the temporary variables are freed the push down area is 

restored and the name control block containing.the resul t of the equals 

variable expression is copied into a special temporary name control 

block which is used only for the values of symbol ic variables.  This 

is done to permi t both operands of an operator to be symbol ic.  The 

special name control block is used after evaluation in place of the 

symbol ic variable in the evaluation of the original arithmetic expression .  

To avoid needless recursions to evaluate the same symbol ic variable ,  

a local check is made to determine if any of the other operands of the 

current operator are the same variable.  If any of them are the special 

name control block is substituted in the arithmetic expression for them 

also .  

There is a problem associated wi th the use of the work pool and 

recursion .  If there are any arrays in the wbrk pool 

when a symbol ic variable is encountered,  the work pool must be empt ied .  
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This saves the temporary resul t array which resides only in the work 

pool in the random area fi le.  Were this not done and the symbol ic 

expression to be evaluated involved any array arithmetic this resul t 

array would become associated wi th a temporary name control block on the 

wrong level .  Therefore just before recursion takes place the work pool 

is empt ied and the resul t array is writ ten out into the array file and 

associated wi th the proper temporary name control block .  

If an error occurs whi le evaluating the expression for a symbol ic 

variable the storage associated with the temporary variable name control 

blocks on the difference levels must be freed .  This is not necessary 

if the arithmetic expression evaluator is at level zero when the error 

occurs because in this case the normal freeing mechanism frees the 

storage associated wi th temporary variable the next time the arithmetic 

expression evaluation is cal led .  However,  when an error is detected 

at a non zero level ,  the storage associated with-ill temporary variables 

is freed a level at a time unt i l level zero is reached .  Information 

about what caused the error and at what level it occurred is saved before 

the recursion levels are rol led back so that an error message can be 

given the user by the portion of the interpreter which initially called 

the ari thmetic expression evaluator.  

There are three error messages levels avai lable.  The level may be 

changed dynamically by the user .  0n*iev6l one warning messages are 

ignored and only the numbers associated wi th other error messages are 

printed .  On level two learning error message numbers are printed along with 

the messages and numbers of other errors.  Level three prints the messages 

and numbers for all errors.  
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EVALUATION OF ARITHMETIC EXPRESSIONS INVOLVING SYMBOLIC FUNCTIONS 

During compilation of the text of a symbol ic funct ion ,  references 

to the first N temporary name control blocks are substituted for appear-

ances of the formal parameters of the funct ion.  When a function is to 

be evaluated the actual parameters are substituted for the formal parameters 

by copying the name control blocks for the actual parameters into the 

first N temporary name control blocks.  

This can not be done directly for two reasons.  First the function 

evaluation may appear at any point in an arithmetic expression and therefore 

some temporary values may already reside in the first N temporary name 

control blocks; second one or more of the actual parameters may be 

arithmetic expressions which have been evaluated and had their results 

put in some of the temporary name control blocks.  

These problems cause the ari thmetic expression evaluator to recurse 

before the actual argument name control blocks are copied into the temporary 

name control block and force the use of a temporary area to collect the 

parameter name control blocks .  

The appearance of an equals variable as an actual parameter is not 

handled in the same fashion as other types of parameters.  Its name control 

block is not directly copied onto the corresponding temporary name control 

block .  If it were this would cause the ari thmetic expression evaluator 

to recurse each time this parameter appears in the text for the funct ion.  

Since the value of the equals variable cannot change during the evaluation 

of the function this is avoided by having the arithmetic expression 
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evaluator recurse and evaluate the equal variable before its name control 

block is copied into the corresponding temporary name control block .  

Thus ,  the name control block for the resul t of evaluating the equals 

variable is used in place of the name control block of the equal variable 

i tself.  

After all the name control blocks of the arguments are in the temporary 

area used to collect them ,  the arithmetic expression evaluator recurses 

and the actual parameter name control blocks are copied onto the first 

N temporary name control blocks .  

Before evaluation commences the function is checked to see if it 

is a left arrow or equals funct ion.  If it is a left arrow function then 

all non parameter variables appearing in the function text had their 

values fixed when the function assignment was made.  To fix the value 

of these variables a copy of each of their name control blocks and 

associated storage was created when the function assignment was performed .  

Thus to evaluate a left arrow function these local name control blocks 

are brought into the name table area and pointers are adjusted so that 

these variables are referenced whi le the function is being evaluated .  

If the function to be evaluated is an equals function all non-

parameter variables appearing in the function text are not fixed when 

the function assignment is made but assume their current value when the 

function is evaluated .  Thus no local name control blocks are associated 

wi th equals funct ions.  

The point at which the function is to be evaluated is checked to 

see if the function is defined at this point .  The check is performed by 
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evaluating the boolean expressions associated wi th the various defini t ions 

of the funct ion .  The boolean expressions are evaluated in the order the 

user has stated them .  When no boolean expression appears with a defini t ion 

the function is assumed to have this definition everywhere or everywhere 

else depending on whether or not other defini t ions with associated boolean 

expressions precede i t .  

After the resul t of a function evaluation is put in the temporary 

name control block which receives the resul t of all ari thmetic expression 

evaluat ions,  the ari thmetic expression evaluator returns to the level 

at which the function invocation occurred .  

The process of returning to the level in the arithmetic expression 

evaluator at which the function invocation occurred is simi lar to what 

occurs when returning from the evaluation of an equals variable.  The 

only difference is the freeing of the temporary name control blocks 

before the recursion area is restroed .  All of the temporary name control 

blocks may not be freed as they were after the evaluation of an equals 

variable ,  because to evaluate a function the first N temporary name 

control blocks were used to hold copies of the parameter name control blocks.  

The copy of the actual name control block for the parameter is flagged 

when it is put into the corresponding temporary name control block so 

that when the temporary name control blocks are freed the ones used to 

hold parameters wi l l not be freed .  There is one temporary name control 

block used to hold a type of parameter which is not flagged and must have 

its associated storage freed .  This is the temporary name control block 

used to hold the value of a parameter which corresponds to an equals 
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variable.  Since the equals variable is evaluated before the evaluation 

of the function the only name control block point ing to the value of 

the equals variable is the temporary name control block used as parameter.  

If an error occurs during the evaluation of a function the arithmetic 

expression evaluator saves information as to what caused the error and 

at which level it occurred and returns to level zero as it does when an 

error occurs during the evaluation of an equals variable.  

EVALUATION OF ARITHMETIC EXPRESSIONS WITH POLYALGORITHM CALLS 

A polyalgorithm is formed by grouping several numerical procedures 

and a supervisor into a single procedure for solving a specific problem .  

The polyalgorithm combines the various methods along with the strategy for 

their selection and use into a single method which is relatively efficient 

and very rel iable.  

The appearance of either an integral or a derivative in an arithmetic 

expression causes the ari thmetic expression evaluator to invoke a poly-

algorithm to perform the operat ion .  Although the polyalgorithm contains its 

own supervisor,  it requires the arithmetic expression evaluator to evaluate 

the function involved .  Therefore the^process of evaluating an integral or 

derivative of a function is recursive.  It is also considerably more 

complicated than evaluation of an equals variable or a funct ion .  In the 

later two cases only the master controller of the arithmetic expression 

evaluator itself is involved ,  here the arithmetic expression evaluator 

and a polyalgorithm are involved.  In addi t ion ,  since the polyalgorithm may 

require that 
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the value of the function involved be computed repeatedly ,  the normal 

process of function evaluation which is i tself recursive cannot be used 

in this case for pract ical reasons.  

When a derivative or integral appears in an ari thmet ic expression 

being evaluated all the arguments required by the polyalgori thm ,  such as 

number of derivat ives,  integral bounds ,  or point of different iat ion ,  

are evaluated in the arithmetic expression evaluator before the poly-

algorithm is invoked .  The values of these parameters are passed to 

the polyalgorithm initially so that the arithmetic expression need only 

be reentered from the polyalgorithm when necessary .  

Before the polyalgorithm is called the arithmetic expression 

evaluator recurses as it does when evaluating a funct ion.  The text of 

the function involved in the operation is placed in the appropriate place 

in the interpreter for evaluat ion .  Al l parameters necessary for evalua 

tion are also set up except for filling in the temporary name control block 

which corresponds to the variable of differentiation or integration.  ^vl 

Thus when the polyalgorithm needs to evaluate the function all that remains 

to be done is supply the value of this point .  

When the polyalgorithm is called from the arithmetic expression 

evaluator and a value of the function involved is needed the arithmetic 

expression evaluator must be returned to ,  or must be called from the poly-

algori thm .  If the polyalgorithm calls the arithmetic expression evaluator,  

the address where the arithmetic expression evaluator was initially called 

from would be destroyed .  If the polyalgorithm returns to the arithmetic 

expression evaluator,  this would create problems in the organization of 
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the polyalgori thm .  For if the point at which the function =:"y
 : 

Hasf ' be evaluated is several rout ines removed from the original call 

on the polyalgori thm ,  all of these calls would have to be retraced for 

each evaluation of the funct ion ,  or the polyalgorithm would have to be 

reorganized .  

To avoid both of these problems direct transfers are used to 

transfer control between the arithmetic expression evaluator and the 

polyalgori thm after the polyalgori thm is initially entered .  This method 

of transferring between routines is accomplished by the use of assigned 

go to statements in each of the rout ines.  

When the polyalgori thm completes its work it returns to the arith-

met ic expression evaluator normal ly .  The arithmetic expression evaluator 

then restores itself to the level at which the integral of derivative 

occurred .  The process of freeing storage associated wi th temporary name 

control blocks and the popping up the recursive area is simi lar to what 

is done after the evaluation of a funct ion.  

If an error occurs which causes the polyalgorithm to terminate 

evaluat ion ,  it returns to the arithmetic expression evaluator as if 

the evaluation was successful but wi th an error flag set .  The arithmetic 

expression evaluator returns to level zero as is done when an error occur 

during an equals variable or a funct ion.  The actual message is issued 

by the routine which initially called the arithmetic expression evaluator.  
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