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Granular activated 
carbon particles 
(GW 32×60) 

Particle diameter: 250 – 500 μm
9
Bulk density: 520 kg/m3 
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Granular activated carbon 
particles 
• Large surface area 

• Remarkable sorption characteristics 

• Large low frequency sound absorption
9

Fig. 1 in Venegas et al. (2016) 4 
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Granular activated carbon 
particles 
• Large surface area 

• Remarkable sorption characteristics 

• Large low frequency sound absorption
9

Fig. 1 in Venegas et al. (2016) 

Acoustical properties of GW 
32×60 were measured with 
a vertical standing wave A
tube: 

Mic 1 

B 
Mic 2 

GW 32×60 4 



  
     

 

Level-dependent behavior – GW 32×60 
- Stacks of activated carbon are known to be poro-elastic (Mo et al., 2021)
,

103 dB 
109 dB 
115 dB 

5 

With increasing input level: 
• The absorption peaks are more damped and shift to a lower frequency. 
• Solid phase appears to soften as sound level increases. (Mo et al., 2021) 

- Particle stack shows peak due to resonance of solid phase 
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Level-dependent behavior – glass bubbles 
- Stacks of low density, small diameter particles also appear to “soften” as incident
,
sound pressure level increases
,

Diameter: 45 μm 
Density: 230 kg/m3 

Diameter: 60 μm 
Density: 130 kg/m3 

Diameter: 65 μm 
Density: 80 kg/m3 

Fig. 4 in Tsuruha et al. 
"Effect of acoustically-
induced elastic 
softening on sound 
absorption coefficient 
of hollow glass beads 
with inner closed 
cavities." The Journal of 
the Acoustical Society 
of America150, no. 2 
(2021): 841-850. 
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Previous models for particle level-dependent behavior
@
Velocity-dependent modulus
,
[Glass bubbles]
,

1 
=𝐸/𝐸! 1 + 𝜐/𝜐o  

Fig. 6 in Tsuruha et al. (2021) 7 



 

  

Previous models for particle level-dependent behavior 
Velocity-dependent modulus Strain-dependent modulus & damping 
[Glass bubbles] [Clayey sand] 

1 1
𝐺/𝐺o" =𝐸/𝐸! = 

1 + 𝜐/𝜐o  1 + 𝑏 𝛾 

Fig. 6 in Tsuruha et al. (2021)
6 Fig. 12 in Wang & Kuwano (1999)
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Test setup
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Test setup 
Speaker 

30 mm carbon particles 4 pre-generated input signals 

Mic 1 & 2 

Amplifier 
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Sample holder 
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Test setup 

Computer 

Amplifier DAQ 

Speaker Impedance 
Tube 

Speaker 

Amplifier 

30 mm carbon particles 4 pre-generated input signals 

Record mic 1 & 2 time history 

Mic 1 & 2 

Sample holder 

Measurement at 
Mic 1 & 2 
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Pre-generated input signals
@
•	 4 signals, each with 15 levels in steps 

of 1 dB. 
•	 In total 4 x 15 = 60 measurements 

Signal 1: 500 – 1000 Hz 
Signal 2: 500 – 2000 Hz 
Signal 3: 500 – 4000 Hz 
Signal 4: 500 – 8000 Hz 
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Experimental results 
•	 Absorption coefficients against SPL, integrated RMS velocity, integrated RMS 

displacement 
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  Integrated RMS pressure, velocity, displacement
@

𝐴 

Mic 1
6

𝐵 
Mic 2
6

12 



  

   

Integrated RMS pressure, velocity, displacement
@

Measurements at Mic 1 & 2
,

𝐴 

Mic 1
6

𝐵 
Mic 2
6
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Integrated RMS pressure, velocity, displacement
@

Measurements at Mic 1 & 2
,

Complex amplitudes of forward and backward propagating 
waves: 𝐴(𝑓), 𝐵(𝑓) 

𝐴 

Mic 1 

𝐵 
Mic 2 
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Integrated RMS pressure, velocity, displacement
@

Measurements at Mic 1 & 2
,

Complex amplitudes of forward and backward propagating 
waves: 𝐴(𝑓), 𝐵(𝑓) 

𝐴 

RMS pressure, velocity, displacement at the front surface 
, , ,of the material: 𝑃+(𝑓) .-/, 𝜐+(𝑓) .-/, 𝑢+(𝑓) .-/Mic 1 

𝐵 
Mic 2 
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Integrated RMS pressure, velocity, displacement
@

Measurements at Mic 1 & 2
,

𝐴 

Mic 1 

𝐵 
Mic 2 

Complex amplitudes of forward and backward propagating 
waves: 𝐴(𝑓), 𝐵(𝑓) 

RMS pressure, velocity, displacement at the front surface
,
, , ,of the material: 𝑃+(𝑓) .-/, 𝜐+(𝑓) .-/, 𝑢+(𝑓) .-/

Integrate over frequency: 
,, 𝑑𝑓 → 𝑆𝑃𝐿 • 𝑃+ .-/ .-/ 
,,• 𝜐+ .-/ = ∫ 

= ∫ 𝑃+ 𝑓

𝜐+ 𝑓 𝑑𝑓.-/ 

= ∫ 𝑢+ 𝑓 
,, 𝑑𝑓• 𝑢+ .-/ .-/ 12 



          

Absorption coefficient against SPL and integrated RMS velocity
@
- Peak behavior does not scale with sound pressure level or integrated RMS velocity 

Sound pressure level Integrated RMS velocity 
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Signal 1: 500 – 1000 Hz 
Signal 2: 500 – 2000 Hz 
Signal 3: 500 – 4000 Hz 
Signal 4: 500 – 8000 Hz 
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Absorption coefficients against integrated RMS displacement
@
- All the peaks collapse to one single line when plotting against integrated RMS 
displacement at surface of particle stack, independent of signal bandwidth 
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Signal 1: 500 – 1000 Hz 
Signal 2: 500 – 2000 Hz 
Signal 3: 500 – 4000 Hz 
Signal 4: 500 – 8000 Hz 
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RMS displacement 
- The effect becomes significant when RMS displacement at the surface of the stack is a 
small fraction of the particle diameter. 

1000
Signal 1: 500 – 1000 Hz 
Signal 2: 500 – 2000 Hz 500 
Signal 3: 500 – 4000 Hz 
Signal 4: 500 – 8000 Hz 200 

100 

50 

20
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GW 32×60 particle diameter 
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SPL - dB 15
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Conclusions
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Conclusion
@

• For relatively low-density particle stacks: as the input sound level goes up, the 
resonance peaks : 1. shift to a lower frequency (i.e., modulus softening); 2. grow
broader (i.e., increasing damping) 

• The effect becomes significant when the RMS displacement at the surface of the
stack is a small fraction of the particle diameter 

• The modulus softening and the increasing damping can be characterized by the 
integrated RMS displacement (which can be related to strain) at the carbon particle
stack surface 

17 
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𝑥 = − 𝑠 + 𝑙 𝑥 = −𝑙 
RMS pressure, velocity, and displacement Mic 1 Mic 2 

𝑥 = 0 

ASound pressure at sample surface, mic 1 and mic 2: B
9
@ 𝑥 = 0 [Sample surface]
9

𝑃� = 𝐴 + 𝐵
 
@ 𝑥 = − 𝑠 + 𝑙 [Mic 1]
9 𝑃� = 𝐴 + 𝐵 

𝑃 = 𝐴𝑒*+(.!,) + 𝐵𝑒"*+(.!,) 
𝑗 %

#%&'"#!,$ %#%& '"( $ %"%& '"( "%"%&' = + 𝑗 #!, 𝑃@ 𝑥 = −𝑙 [Mic 2] ! ,&* (, ! ,&* (,
# − $𝑃 = 𝐴𝑒*+, + 𝐵𝑒"*+, 𝜐� = 
/' /' 

-$ 
𝑗 %

#%&'"#!,$ %#%& '"( $ %"%& '"( "%"%&' = − 𝑗 #!, 𝑃! ,&* (, ! ,&* (, 

Solve for 𝐴(𝑓), 𝐵(𝑓) 𝑢� = 
0 
*1 

$ %#%& '"( $ %"%& '"( "%"%&' = -$⋅'. 
𝑗 %

#%&'"#!, − 𝑗 #!, 𝑃! ,&* (, ! ,&* (, 
$ (#%& '"( = 𝑗 (
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+
$ ("%& '"( "("%&'
" ! 
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#%&'"#!,$ %#%& '"( $ %"%& '"( "%"%&' !𝐵 = 𝑗 &!(

"%& '"( "& ("%&' = 𝑗 %!, = + 𝑗 #!, 𝑃 +),
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! ,&* (, ! ,&* (, 
!

.)- +. .)- +. 
𝑃 𝑃 +),

𝑗 %
#%&'"#!,$ %#%& '"( $ %"%& '"( "%"%&' ! = − 𝑗 #!,𝜐 +), -$ ! 

𝑃 +),
! 

! ,&* (, ! ,&* (, 
! 

𝑗 %
#%&'"#!,$ %#%& '"( $ %"%& '"( "%"%&' ! = − 𝑗 #!,𝑢 +), -$ !.! 𝑃 +),

! 21! ,&* (, ! ,&* (, 



  
      

 
 

Absorption coefficients against integrated RMS displacement
@
- All the peaks collapse to one single line when plotting against RMS displacement at 

surface of particle stack, independent of signal bandwidth.
,

Modulus softening 
Increasing level Increasing damping 

Signal 1: 500 – 1000 Hz
 
Signal 2: 500 – 2000 Hz
 
Signal 3: 500 – 4000 Hz
 
Signal 4: 500 – 8000 Hz
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     PSD of the pressure at the front surface of the material 
(calculated based on the highest-level segment in each signal) 
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