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Triple porosity model
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Diagram of the scales of a triple porosity sorptive material
from Venegas, R., & Umnova, 0. (2016)

Such material shows excellent low frequency
absorption due to its sorption process inside the
pores, which brings this material into our
interest to further study its properties.

macropore — interstice

Scanning electron microscope (SEM) photo of

mesopore — Ccon necti ng activated charcoal, Mydriatic, 2013. From
. . ] https://commons.wikimedia.org/wiki/File:Activa
micropores and interstice ted_Charcoal.jpg
micropore — only connected
with mesopores, not directly

connected to the interstice

Ty, Tm, Tn denote the particle radius, mesopore radius, and
micropore radius.

®bp, Om, Pn, and ¢y, denote the porosity on intergranular
scale, mesoscale, microscale, and the overall porosity. The
relation between the porosities on different scales is,

bep = Pp + (1 — ¢p) [P + (1 — D) ]


https://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File:Activated_Charcoal.jpg

Poro-elastic model

* Three waves are propagating in the porous material:
Compressional wave in frame
Compressional wave in fluid phase
Shear wave in frame

* The poroelastic model was built based on the stable

approach, proposed by Dazel, Groby, Brouard, and
Potel in 2013.

* By comparing the absorption coefficient obtained from
the transfer matrix approach and the stabilized
approach, one can find perfect matching at low
frequencies, before the transfer matrix approach
begins to diverge.
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Poro-elastic model

GAC model - rigid b - Langmuir constant
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Particle swarm optimization

All parameters are fitted with constrained particle swarm algorithm, which is realized by a package available at
https://github.com/sdnchen/psomatlab or
https://www.mathworks.com/matlabcentral/fileexchange/25986-constrained-particle-swarm-optimization

The frequency range corresponding Medium tube (9 = 83.5 mm) results | 2 o omalltube (d =29 mm) results
to resonance peak is given higher - % log %
weight to capture the feature better. '/ : -5 / 8
The weighting plot for medium tube g 1 106 2 £ 1 1062
tests and small tube tests are given §’ loa c_% § 104 (_%
at right side. 05l T 05 3
02 5 10.2 5

. LY, (65 T I T \ B
Target function is the weighted mean 10 100 1000 3200 10 100 1000 6400
of square error between fitted and frequency [Hz] frequency [Hz]

: L min fx)=wl(a —a,)?/N
measured absorption coefficient. X m
S. t. Xip <X< Xub

Nonlinear constrain is given on the Pib < Pc (1 —¢p — (1- ¢p)(¢m +(1- ¢m)¢n)) < Pub
porosities, so the predicted bulk where N denotes the number of measured data points, w denotes the
density is in 5% range of measured  weighting vector applied, X denotes the poro-elastic model parameters,
value for most cases. X = (E, v, 1, gbp, bOm> D s T T b, DC), a and a,,, denote predicted

and measured absorption coefficient. ;


https://github.com/sdnchen/psomatlab
https://www.mathworks.com/matlabcentral/fileexchange/25986-constrained-particle-swarm-optimization

Fitting Results
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Fitting Results
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Conclusions

The poro-elastic model can predict the behavior of the particle stack at high frequencies,
where rigid model generates similar results.

The poro-elastic model can capture the resonance peak,
at the frequency where the stack thickness corresponds to a quarter wavelength of structural wave.

In some cases, a second peak in absorption coefficient is also predicted by the poro-elastic model,
at the frequency where the stack thickness corresponds to three quarter wavelengths of structural wave.

The fitting results from poro-elastic model gives reasonable bulk density prediction,
in these two cases, this prediction is constrained in +5% range of measured value.

The absorption coefficient is significantly benefited from the micropores,
which is consistent with the conclusion drew from the rigid model.
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