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ABSTRACT 

A strong connection is established between the 
structural and the looking back techniques for 
manipulating the relative complexity of computable 
functions and exploring the nature of subrecursive 
reducibilities. Looking back serves as a basis for a 
simple and general structural result which can be used 
to derive many fundamental properties of subrecursive 
degrees and complexity classes. For example, as has 
been shown by Landweber, Lipton, and Robertson, there 
is a minimal pair of polynomial time degrees below any 
nonzero computable degree. 

In addition, the structural method is used to 
settle a problem concerning the enumeration properties 
of classes of computable functions. NP-P cannot be 
effectively presented by domain (i.e. by r.e. indices). 
However, it can be effectively presented by ̂  indices. 
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This note is a preliminary report of continuing 
research. Its purpose is limited but timely 
dissemination to interested experts, and it should be 
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Introduction and Preliminaries 

Recent work by Landweber, Lipton, and Robertson [Univ. Wise. 

CSTR#342] has shown how to take a highly structural approach to 

manipulating the relative complexity of computable sets. 

Previous work of this type has used diagonal constructions 

employing a looking back technique to keep complexities under 

control. The structural approach is an attractive alternative, 

and in some situations it is perhaps preferable to looking back. 

The looking back method (sometimes somewhat inappropriately 

called "delayed diagonalization") has been introduced 

independently in the past decade by several authors, including 

the second author of this note. 

This note has three purposes: The first is to show an 

intimate connection between the structural approach and the 

looking back method; the structural approach can be viewed as 
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"precomputing" the information which looking back would find "on 

line". The second is to give a conceptually simpler and 

technically stronger proof of the central structural result in 

Landweber et £l. The third is to settle an open problem 

concerning the recursive presentation of NP-P posed by Landweber 

et al. 

The methods and results in this note are extremely general, 

and they will be presented in a suitably general context. In the 

interests of brevity and of not obscuring our main points, little 

or no space will be devoted to carefully explaining this general 

context. Instead, for those readers with doubts or who simply 

prefer to navigate in a more specific and concrete environment, 

we shall provide parenthetical pointers to such an environment 

[in this manner] . 

We consider computable functions over the natural numbers, 

N. If f is a function from N into N then f{n} stands for the 

restriction of f to the domain {0,...,n}; warning, this 

nonstandard notation will come back to haunt youl [Functions 

used in contexts such as reducibilities in which the reader may 

customarily encounter sets (i.e. characteristic functions) will 

be denoted in upper case. We shall use c to denote the generic 

integer constant] . 

We assume the reader is familiar with the basics of 

computability and complexity theory, and has at least glanced at 

Landweber et _al. Our model of computation is any programming 

system (general or subrecursive) and accompanying computational 
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complexity measure which together satisfy some simple 

"manipulation" conditions (e.g. "succinct composition"). Only 

the most important of these manipulation conditions will be made 

explicit. [Turing machines and Turing machine time are a 

suitable concrete example]. 

Structure and Looking Back 

In this section we establish the connection between the 

looking back method and the structural approach to 

diagonalization results in complexity theory. For any computable 

A, we use looking back to "precompute" an honest witness function 

which bounds how far we have to go in order to have witnesses 

that A is not computed by short, cheap programs. Combining this 

witness function with functions bounding some simple operations 

on programs, we get a conceptually simpler and technically 

tighter proof of a basic result of Landweber, Lipton, and 

Robertson: 

For every computable A$P there is a total recursive 

function such that for all B, if A is polynomial 

time reducible to B then no polynomial time algorithm 

can compute infinitely many intft size segments of B. 

We assume we are given a recursively enumerable list {i} of 

total programs, and we let P^ denote the total function computed 

by program i. P will stand for the set {P^}, and further 

properties of P will be specified below. [E.g. let P. be the set 
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accepted by the i-th "clocked" polynomial time Turing machine]. 

Let small be any unbounded, honest function; for convenience 

we also assume small is nondecreasing. [E.g. small(x)=logIxI]. 

For any computable A we define a looking back for witnesses 

function as follows: 

lbwA(x) = SPEND UP TO small(x) COST FINDING 

max j Vi£j 3 w < x ( Pi(w)4:A(w) ). 

This definition assumes that our programming system has some 

reasonable "conservation" faci1i ty allowing a program to 1imi t 

its use of resources; also, it actually depends on some specific 

program for A, a fact which we have deliberately suppressed in 

our notation. If A is not in P then lbwA will be unbounded, and 

in any case it is nondecreasing and very "cheaply" computable. 

Intuitively, the lbw functions capture the essence of the looking 

back diagonalization technique. 

From lbwA we define its inverse witness function as follows 

witA(j) = min x ( lbwft(x) j ) . 

For A not in P, wit is well defined and honest; thus the range n 
of wit A is a very easy set to recognize. Intuitively, witft 
"precomputes" easy to find bounds on the size of initial segments 

of A which can be computed by short, cheap programs. This 

connection between the looking back method and the structural 

approach can be summarized in the following property: 

(1) Vi<j 3 w ( w < witA(j) & Pi(w)#A(w) ). 
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To extend the connection between the looking back method and 

the structural approach further we need some simple properties of 

the class P. We need that P is "succinctly" closed under finite 

variants; that is, patching in finite tables works roughly as one 

would expect. 

Specifically, let i be any program in the list [i} and let t 

be any function from {0,...,x} into {0,...,b(x)}. That is, t is 

a "table" of outputs <b(x) on inputs <x and b is a function 

bounding the "width" of the table in terms of its "length". (In 

the context of arbitrary functions, it is convenient to assume 

that b majorizes {P^}). We assume there is some program j in the 

list {i} such that j agrees with t up to x and agrees with i 

thereafter; that is, Pj{x}=t{x} and for y>x, Pj(y)=P^(y). Such a 

j can generally be found effectively from i and t, but we require 

only that we be able to bound its "size" effectively. Thus, 

given b we let t̂ a and tab be honest monotone functions such that 

for any i, j, and t as above 

j < ta(i,x) and ( max i < x ta(i,x) ) <_ tab(x). 

2 X C X 

[For Turing machines and b(x)=2 , tab(x) can be of the form 2 ; 

for b(x)=l (i.e. for tables corresponding to sets), tab(x) can be 

of the form 2 C X] . 

Using the function tab to patch in tables for A up to x, we 

have proved the following extension of property (1): 
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Theorem I.: Let P and tab be as specified above. For 

any computable A£p, the following holds for all x: 

(2) Vi<x 2Jw ( x < w _< wit ©tab(x) & P.(w)*A(w) ). "* ~ A 1 

Property (2) expresses the fact that wit «tab precomputes easy to A 
f ind bounds on the size of segments of A beg inning at x which can 

be computed by short, quick programs. In the terminology of 

Landweber, Lipton, and Robertson, A cannot be wit^otab interval 

easy. 

Theorem 1 supplies sufficient structural information to 

begin proving nice results. As an example, we shall use it to 

reprove the following from Landweber, Lipton, and Robertson: 

Theorem 2: [Landweber et a_l ] Let A be a set decidable 

in exponential but not polynomial time. There is a 

minimal pair of polynomial time degrees below A. 

Proof: (Note: the assumption that A is in EXPTIME is 

purely for convenience). Since this is essentially the same 

proof as given by Landweber et al , we shall be very sketchy. 

Define the function big. as follows: 

2 X bigA(x) = max { witA«tab(x), 2 }. 

Define the sets D and E as follows: 

D = { x | 3 n ( big A
{ 4 n ) (0) < x < big A 

(4n+l) (0) ) }; 

E = { x I 3 n ( b i g A
( 4 n + 2 ) (0)< x < big A 

(4n+3) 
(0) ) }• 
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If we let B=DflA and C=EAA then, as we shall see, B and C form the 

required minimal pair. 

Since bigA is honest, D and E are certainly in p. Thus B 

and C are each polynomial time reducible to A. Neither B nor C 

is in P by property (2) above and the definition of kigA; 

property (2) has ensured that segments of B and C mimic A long 

enough to look back and see additional diagonalizations against 

P. Suppose that F is a set which is polynomial time reducible to 

both B and C. It follows that F is in P by the same argument of 

Ladner's [JACM, 1/75] as used by Landweber et al , which exploits 

the double exponential gaps between the end of one section of B 

and the beginning of the next section of C. ^ 

We now extend the connection between looking back and 

structure yet further by considering reducibilities. Let 

{ P^[] } be a recursively enumerable list of general recursive 

operators (i.e. "transducers"), and assume that exam is an 

honest, monotone function which bounds {P^ [] } ' s "examination" of 

arguments as follows: for all B and for all i<x, B{exam(x)} 

completely determines P-[B]{x}. (This assumption of the 

existence of exam puts some restrictions on {P^[]} when applied 

to unbounded functions). [E.g. can be given by the i-th 

polynomial time oracle Turing machine, in which case exam(x)=2x]. 

We also assume that P and {P^[]} are related by a succinct 

composition property. Let com be an honest, monotone function 

such that for all i and j there is a k with P, [P. ] =PLr and 1 1 K 

k<com(i,j). [For Turing machine time, com(i,j) can be of the 
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form c*i*j]. 

The fundamental idea behind reducibilities is that they 

transfer (hypothetical) fast algorithms from one function to 

another. Using the function com we can strengthen property (2) 

and see that this idea also applies to short, quick aIgorithms 

for initial segments. Suppose A is computable and A=P^[B]; then 

for all x, 

(3) Yj<x 3 v ( x < v < exam«wit «com(i ,tab(x)) & P.(v)+B(v) ). — — — A ] 

In order to summarize this structural property we define the 

function int^ by 

intA(x) = examowitA( max-(x com(i, tab(x)) ). 

intA is an honest, monotone function, and we have proved our main 

result of this section: 

Theorem _3: Let P, tab, {P^[]}, exam, and com be as 

specified above. For any computable A£p, the following 

holds for all B and x: 

Vi ,j<x [ 3v ( x < v < int (x) & B(v) *p. (v) ) or 
(*) , A 11 

3 w ( w<exam »int (x) & A(w) +P, [B] (w) )]. A X 

Note that if A=P.[B] then the v's in (*) are very easy to find as 

well. In the terminology of Landweber, Lipton, and Robertson, 

property (*) expresses the fact that if A is reducible to B then 

B cannot be int interval easy. We point out that int is far A A 
smaller than the bound given by Landweber et al , and is also 
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stated in a far broader context. 

Enumeration and Looking Back 

In this section we present the answer to an open problem 

posed by Landweber, Lipton, and Robertson. First, we use a 

variation on the method of the previous section to show the 

following: 

If P+NP then there is no recursive presentation of NP-P 

by domain (i.e. by r.e. indices). 

Finally, we sketch a proof that NP-P can be recursively presented 

by A 2 indices. Thus the previous result is essentially the 

strongest possible. 

The first result is a consequence of the following: 

Theorem Let {A.} be a recursively presented list 

of infinite, recursively enumerable sets, let {P^} be a 

recursively presented list of recursive sets, and let B 

be a set not in {P^}. There is an easily recognized 

set C such that BrtC is in neither {P^} nor {A^}. 

Proof: The functions lbwA and witA in the previous section 

depended on having a total program for A. If A is an infinite 

r.e. set, we can still define a function fin which precomputes 

witnesses to A's being infinite as follows: 
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finft(x) = min y { IN small(y) COST WE CAN FIND 

z in A with x < z ^ y ) . 

If A is an infinite r.e. set then finA is an honest, monotone 

function. 

Let {Aj}, {P-}, and B be as stated in the Theorem, and let r 

be an honest, monotone function which majorizes each fin as 
i 

well as witDctab. Define the set C as follows: D — 

c = { x | 3 n ( r ( 2 n ) (0) < x < r ( 2 n + 1 ) (0) ) } . 

Since r is honest, C is certainly easily recognized [e.g., C is 

in P]. Since C contains all strings in infinitely many r-

segments and r majorizes witnotab, BflC is not in {P.}. Since C o 1 
has infinitely many r-gaps and r majorizes each finA , B/JC is not 

i 
in {A.} (for any set B). ^ 

The previous proof is a good example of a situation in which 

either the structural approach or the looking back method seem 

equally useful: intuitively, C is constructed by alternately 

looking back for witnesses to the fact that A^ is infinite or 

that B=)=P̂ , for successive values of i. 

The following answer to the open problem posed by Landweber 

et al is now immediate: 

Corollary J5: If P+NP then there is no recursive 

presentation of NP-P by domain (i.e. by r.e. indices). 

To conclude this note, we sketch a proof that Theorem 4 is 
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essentially as strong as possible. Theorem 4 rules out the 

enumeration of certain classes by indices. The next theorem 

shows that classes such as NP-P can be enumerated by /v̂  indices. 

Recall that the ^ functions are those functions which are 

recursive in the halting problem. Thus, a A j has the power 

to determine whether two total recursive functions are equal (by 

asking its oracle whether the search for an argument on which 

they differ will ever halt). 

Theorem 61 Let {P^} and tQ^} be recursively presented 

lists of total recursive functions such that 

is closed under finite variants. Then is 

recursively presentable by^A^ indices. 

Proof: If {Qi}-{Pi}=0 then the result is trivial; therefore, 

assume Q is in {Q^}—{Pi>. Define the ^ function D^ as follows: 

(x) = IF Vj^xtQ.+Pj) 

THEN Qi(X) 

ELSE Q(x). 

If Qi is not in {p.} then Di=Qj_/ otherwise, D- is a finite 

variant of Q. ^ 

As an immediate corollary, we get the following: 

Corollary 2 : NP-P is recursively presentable by 

indices. 
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