Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

3-1-1993

APARALLEL IMPLEMENTATION OF
BACKPROPAGATION NEURAL NETWORK
ON MASPAR MP-1

Faramarz Valafar
Purdue University School of Electrical Engineering

Okan K. Ersoy
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Valafar, Faramarz and Ersoy, Okan K., "A PARALLEL IMPLEMENTATION OF BACKPROPAGATION NEURAL NETWORK
ON MASPAR MP-1" (1993). ECE Technical Reports. Paper 223.
http://docs.lib.purdue.edu/ecetr/223

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages

A PARALLEL IMPLEMENTATION OF
BACKPROPAGATION NEURAL
NETWORK ON MASPAR MP-1

FARAMARZ VALAFAR
OKkAN K. Ersoy

TR-EE 93-14
MARCH 1993

S
2 3A<7 PURDUE UNIVERSITY
¥ WEST LAFAYETTE, INDIANA 47907-1285

e &,
f%’., 2. SCHOOL OF ELECTRICAL ENGINEERING

c)

A PARALLEL IMPLEMENTATION OF BACKPROPAGATION NEURAL

NETWORK ON MASPAR MP-1*

Faramarz Valafar
Okan K. Ersoy

School of Electrical Engineering
Purdue University
W. Lafayette, IN 47906

* ThePurdue University MASPAR MP-1 research issupported in pan by NSF Parallel Infrastructure Grant #CDA-9015696.

ABSTRACT

One of the mgjor issuesin using artificial neural networksis reducing the training and the
testing times. Parallel processing is the most efficient approach for this purpose.

In this paper, we explore the parallel implementation of the backpropagation agorithm
with and without hidden layers [4][5] on MasPar MP-1. This implementation is based
on the SIMD architecture, and uses a backpropagation model which is more exact
theoretically than the serial backpropagation model. This results in a smoother
convergence to the solution. Most importantly, the processing time is reduced both
theoretically and experimentally by the order of 3000, due to architectural and data
paralelism of the backpropagation algorithm. This alows large-scale smulation of
neural networksin near real-time.

1. INTRODUCTION

-

Parallel processing is the most efficient approach to speed-up processing of algorithms
whose calculations are, at least in part, independent from each other and can be
performed simultaneously. A common form of paralelism is SIMD (Single Instruction
Multiple Data) paralelism in which the same ingtruction is issued to al active
processors. This instruction is then executed on al the processors simultaneously [1],

The MasPar MP-1 is a massively parallel computer which supports SIMD paralelism.
The MP-1 has 16K Processing Elements (PEs) which can perform 16384 operations
simultaneously. While dl the processors work on the same operation, each PE uses its
owndatal[l], [2].

Parallel processing of neural network algorithmsis an important research issue since
neural networks are large networks in practice, and they are used in applications which
are often supposed to be real-time. One of the most commonly used neura network
algorithmsis backpropagation[4], [5].

Since the operations per neuron on each layer of neurons are independent of each other,
the backpropagation algorithm can be implemented in the SIMD architecture. Thereis
another type of parallelism called dara parallelism in the backpropagation algorithm,
which isdiscussed in Section 3.

The paper consists of six sections. Section 2 discusses the architectureof MP-1 in some
detail as well as some software issues. Section 3 discusses the serial backpropagation
algorithm, the parallel verson of the backpropagation agorithm referred to as the
SIMD-BP, and its implementation on MasPar MP-1. Section 4 discussesan investigation
of the speed-up factor of the SIMD-BP agorithm as compared to the seria
backpropagation implementation, the actual speed-up achieved by MP-1, and other
related issues. Section 5 covers the SIMD delta rule algorithm, which correspondsto the
SIMD-BP agorithm without hidden layers. Section 6 isconclusions.

2. INTRODUCTIONT O MASPAR MP-1

Massively parallel computers commonly use more than 1024 processors to obtain
computational speed unachievable by conventiona computers. The MasPar MP-1
system is scalable from 1024 to 16384 processors and its peak performance scales
linearly with the number of processors. A 16K processor system delivers 30,000 MIPS
peak performance where a representative instruction is a 32-bit integer add. In terms of
peak floating point performance, the 16K processor system delivers 1,500 MFLOPS in
the single precision (32-bit) made and 650 MFLOPS in the double precision (64-
bit)mode, in terms of the average of add and multiply times.

The MP-1 has a Single Instruction Multiple Data (SIMD) architecture that smplifies the
highly replicated processors by eliminating their instruction logic and instruction
memory. The processorsin aSIMD system are called Processing Elements (PE’s).

The unique characteristics of the MP-1 architecture are the combination of a scalable
architecture in terms of the number of Processing Elements (PE’s), system memory, and
system communication bandwidth; "RISC-like" instruction set design that leverages
optimizing compiler technology; and an architectural design amenable to a VLS
implementation.

Figure 1 shows a block diagram of the MasPar system with five mgjor subsystems. The
following describes each of the major components:

The Array Control Unit (ACU): The ACU is a 14 MIPS scalar processor with a
RISC-style instruction set. It fetches and decodes MP-1 instructions, computes addresses
and scalar data values, issues control signals to the PE array, and monitors the status of
the PE array. Most of the scalar ACU instructions execute in one 70 nsec clock. The
ACU occupies one printed circuit board.

The ACU performs two primary functions. either PE array control or independent
program execution. The ACU controls the PE array by broadcasting al PE instructions.
Independent program execution is possible since it is a full control processor capable of

independent program execution.

The ACU is a custom designed processor with the following major architectural
characteristics:
— Separate instruction and data spaces

— 32-hit, two address, load/store, simple instruction set

— 4 Gigabyte, virtual, instruction address space, using 4K bytes per page.

The ACU has a microcoded implementation of its RISC-like instruction set due to the
additional control requirementsof the PE array. PE instructions typically require more
than one clock cycle including floating point instructions which are well suited to a
microcodeimplementation.

Processor Array: The MP-1 processor array (Figure 2) is configurable from 1 to 16
identical processor boards. Each processor board has 1024 PE's and associated memory
arranged as 64 PE clusters (PEC’s) of 16 PE's per cluster. The processors are
interconnected via the X-Net neighborhood mesh and the global multistage crossbar
router network. A processor board dissipates less than 50 watts; a full 16K PE array and
ACU dissipate less than 1,000 wetts.

A PE cluster (Figure 3) is composed of 16 PE's and 16 processor memories (PMEM).
The PE's are logically arranged as a 4 by 4 array for the X-Net two-dimensional mesh
interconnection. Each PE has a large interna register file shown in the figure as PREG.
Load and store instructions move data between PRES and PMEM. The ACU broadcasts
instructions and data to al PE clusters and the PE's all conmbute to an inclusive-OR
reduction tree received by the ACU. The 16 PE's in acluster share an access port to the
multistage crossbar router.

The MP-1 processor chip is a full custom design that contains 32 identical PE's (2 PE
clusters) implemented in two-level metal 1.6p CMOS and packaged in a 164 pin plastic
quad flat pack. The die is 11.6 mm by 9.5 mm, and has 450,000 transistors. A
conservative 70 nsec clock cycle yieldslow power and robust timing margins.

Processor memory, PMEM, is implemented with 1Mbit DRAM’s that are arranged in the
cluster so that each PE has 16 Kbytes of data memory. A processor board has 16 Mbytes
of memory, and a 16 board system has 256 Mbytesof memory. The MP-1 instruction set
supports 32 bitsof PE number and 32 bits of memory addressing per PE.

The MP-1 processor element (PE) design is different than that of a conventiona
processor because a PE is mostly data path logic and has no instruction fetch or decode
logic. Like present RISC processors, each PE has a large on-chip register set (PREG)
and all computations operate on the registers. Load and store instructions move data
between the external memory (PMEM) and the register set. The register architecture
substantially improves performance by reducing the need to reference external memory.
The compilers optimize register usage to minimize load/store traffic.

Each PE has 40 32-bit registers available to the programmer and an additional 8 32-bit
registersthat are used internally to implement the MP-1 instruction set. With 32 PE's per
die, the resulting 48 Khits of register occupy about 30% of the die area, but represent
75% of the transistor count. Placing the registerson-chip yields an aggregate PE/PREG
bandwidth of 117 gigabytes per second with 16K PE's. The registers are bit and byte
addressable.

Each PE provides floating point operations on 32 and 64 bit IEEE or VAX format

operands and integer operations on 1, 8, 16, 32, and 64 bit operands. The PE floating
point/integer hardware has a 64-bit MANTISSA unit, a 16-bit EXPONENT unit, a 4-bit
ALU, a 1-bit LOGIC unit, and a FLAGS unit; these units perform floating point, integer,
and boolean operations. The floating point/integer unit uses more than haf of the PS
silicon area but provides substantially better performance than the bit-serial designs used
in earlier massively paralel systems.

Most data movement within occurs on the internal PE 4-bit NIBBLE BUS and the BIT
BUS (Figure 4). During a 32-bit or 64-bit floating point or integer instruction, the ACU
microcode engine steps the PE's through a series of operations on successive 4-bit
nibbles to generate the full precision result. Because the MP-1 instruction set focuseson
conventional operand sizes of 8, 16, 32, and 64 hits, MasPar can implement subsequent
PE's with smaller or larger ALU widths without changing the programmers instruction
model. The internal 4-bit nature of the PE is not visible to the programmer, but does
make the PE flexible enough to accommodate different front-end workstation data
formats. The PE hardware supports both little-endian and big-endian format integers,
VAX floating point F, D, and G formats, and |EEE single and double precision floating
point formats.

UNIX Subsystem (USS): An important aspect of the system is the use of an existing
computer system (specifically a VAX station 3520 ULTRIX ™ workstation) that follows
existing industry standards (e.g. X windows, TCPIP, etc.). The USS provides a
complete, network and graphic based, software environment in which all the MasPar
tools and utilities (e.g. compilers) execute. Part of the application executes as a
conventional workstation application; most of the "operating system" functions are
provided by the workstation's UNIX software.

Communication Mechanism: The following sections describes the five major
communications mechanisms.

1. USSto ACU: Three different types of interactions occur between USS and the
ACU which use three different hardware support. All are based on a standard bus
interface (VME). Thefollowing describes each mechanism:

I. Queues. Hardware queues are provided which alows USS process to
quickly interact with the process running on the ACU. The programming
model is similar to UNIX pipes but with hardware assist.

II. Shared memory: The shared memory mechanism overlaps ACU memory
addresses with USS memory addresses. This provides a straitforward
mechanism for processes to share common data structures like file control
block etc.

III. DMA: A DMA mechanism is provided that permits fast bulk data transfers
without using programmed 1/O.

2. ACU to PE array: Two basic capabilities are required for data movement
between ACU and PE array: data distribution, DIST, array consensus detection
which usesagloba OR, GOR.

I

PE array: XNet XNet communications provide al PE's with direct
connection to its eight nearest neighbors. Processors on the physical edge of
the array have toroidal wrapped edge connections{1][2].

Three basic instruction types are provided to use the nearest neighbor
connections[1][3]:

a XNET: The XNET instruction moves an operand from source to

destination a specified distancein al active PE's. Theinstruction time
is proportional to the distance times the operand size since all
communicationis done using single wire connections.

XNETP: The XNETP instruction is pipelined so that a collection of
PE's move an operand from source to destination over a specified
distance. However the pattern of active and inactive PE's is very
important since active PE's transmit data and inactive PE's act as
pipeline stages. The instruction time is proportiona to distance plus
the operand size due to its pipelined nature.

XNETC: The XNETC ingtruction is pipelined and is very similar to
XNETP instruction except that a copy of the operand isleft inal PE's
acting as a pipeline stage. Again the instruction time is proportional to
the distance plus the operand size.

PE array: Global Router The globa router is a circuit switched style
network organized as a three stage hierarchy of crossbar switches. This
mechanism providesdirect point to point bidirectional communications. The

network diameter is 1_16 the number of PE's which requires a minimum of

16 communication cycles to do a permutation with al PE's. The basic
instruction primitives are [1][3]:

e 0o oo

ropen: open aconnection to adestination PE
rsend: move datafrom the originator PE to the destination PE
rfetch: move datafrom the destination PE to the originator PE

rclose: terminate the communication

III. PE array to I/O subsystem: Since the global router provides high
performance random PE to PE communication, the global router is also used
to provide a high performance communication mechanism into the I/O
subsystem. The interface is achieved by connecting the last stage of the
global router to an 1/O device, the YO RAM. The programming model is
identical to the model for using the global router.

Array I/O system: Refemng back to Figure 1, the O subsystem uses the
following key components: the global router connection into the PE array (over 1

—sGe—E), alarge I/O RAM buffer (up to 256 MB), and a high speed (230 I;ATE) data

communication channel between peripheral devices, a busfor device control (not
for data movement). Using output as an example, the model for using the 1/O
subsystem follows these steps:

a Deviceisopened by the USS (all 1/0 devices are UNIX controlled)
b. The ACU movesdatainto the /O RAM through the global router.

c. Either the USS or an I/O processor (I0P) schedules data movement from the
I/0 RAM to the device (e.g. Disk); data through the MPIOC and control on
the VME bus.

d. The USSisnotified when the transaction is compl ete.

Note that al transactions from the I/O Ram to external I/O systems can occur
asynchronously from PE array actions. Thisisakey attribute since data can move

into the /O RAM at speeds over 1 %% then move at 1/O device speeds, typically

in the tens of megabytes per second or less, without affecting the performance of
the PE array. These hardware mechanisms can support either typical synchronous
UNIX I/O or newer (and faster) asynchronous software models.

3. THE SERIAL AND THE SIMD-BP ALGORITHMS

The paralel version of the backpropagation agorithm (referred to as the SIMD-BP) is
designed for MasPar MP-1 with 16K PE’s. Our design included backpropagation
networks with one and no hidden layer. Without any hidden layer, the algorithm is the
same as the delta rule [4] with output layer nonlinearities, and is further discussed in
Section 5. Figure 5 shows the training procedures of the serid verson of the
backpropagation algorithm (BP) and its SIMD version (SIMD-BP).

To better describe the SIMD-BP training algorithm, we discuss the algorithm with the
example of the 10-class Colorado problem, which involves classifying each input pattern
into one of ten possible classes. The data set consistsof 1188 patternsof length seven for
training and 831 patternsfor testing. Figure 6 shows the PE array of MP-1in a 128x128
grid array asit was arranged for this problem.

Thefirst step is to modify the backpropagation algorithm so that it can be implemented in
a SIMD fashion. In standard backpropagation, an input pattern is presented to the
network. Based on that pattern, the network computes an output pattern. The output
pattern is compared to a desired pattern and an error vector is computed. The error is
backpropagated through the network; based on the amount of error passing through each
connection, the weights are changed. After that, the next pattern is presented to the
network and this procedure is repeated for the new pattern. In SIMD version of this
algorithm, the weights are not changed after each pattern. The weight changes are
stored; after the completion of a sweep, they are added together and only then the
weightsare updated, based on the total weight change computed.

Thefollowing is the derivation of the backpropagation agorithm to clarify the difference
between the SIMD-BP version and the sequential version.

Let us assume a network with N output neurons in a problem with P training patterns.
The total squared error defined for one training sweep is defined as

1 P N ’
=—PZ Z (af - oh) 1

Where 4% is the desired output value for the n' output neuron for the p** training
pattern, and the o, stands for the actual output of the n'" neuron for the p”* training
pattern.

Below we first discuss the weight changes between the hidden and the output layers.
Then, we describe the weight changes between the input and the hidden layer. The

results can be easily generalized to more than one hidden layer. When there is no hidden

-10-

layer, the first discussionisvalid. Then, the hidden layer is the same as the input layer.

Using the chain rule we can find the rate of change of E with respect to w;;, the weight
connecting the j* hidden neuron to the i** output neuron, as

0E _ QE _ 00f
= X . (2)
aw,‘ j a(){’ aw,' j

where

oE 1 P 2
=-— Y (d? -of)".

We assume a sigmoidal activation function in the form
1

)
Z):Jw +q

where M is the number of hldden neurons, and x# is the j** input to the output neuron, in
other words, the output of the j** hidden neuron. We get

1+e

[o]

do¥ P U™
L= ME » =xPof(1 - of). s)

awij - [i"f“’u - 6,»]]
1te v |

Using Egs. (3) and (6)in Eq. (2) gives

P
a?f }; xPoP(1 = 0P)(df — of). ©
i -

Therefore, using the gradient descent algorithm, the weight change for w;;
p P
Awjj === xfof (1 - of)(d] - of).)
P
p=1

where p isasmall constant called the step size.

For the weights connecting the input layer to the hidden layer, the derivation is dightly

-11 -

more complicated. Let us assume that v is the weight connecting the k** input neuron
to the j** hidden neuron. Then, we have

2

E- ! EN(dP py2 = | £ dn - Ml
== n—0n) = 5 Pw,; + 6,
2Pp=ln=l 21"}7=1’l J }

®)

M=

! 1+e Ll

where x# is the output of the i hidden neuron for the p* training pattern and is given
by

1
xf = — J .)

— | X, +6;

k=1

1+e

whereK is the number of input neurons (ie. the length of the input pattern), and if is the
k' bit* of thep training pattern. Using the chain rule again, we get

ox?
o _ 9E 01 o
ank axﬁ’ avjk
Using
oo
_ }-wu-+6,,
OE _1 PN e -1 2 ¥
R A) r= 5 3 3 wyoh(l = oR)dh — of),
P P M P J
3x, p=1ln=1 _[Z/"wn'+en} p=1n=1
Loe 77
and
axt
sv—jk— =l§(’x7(l —xf), (11)
we get

th
* Inbjy apy representation of the input pattem, the K™ bit hasa valueof 1 or 0, whereasin continuos number representation, this input is
the component on the analog input pattern vector.

-12-

oE 17 P xP P d p PY(AP — oP
v =—‘lekxj(l _xj)zwnjon(l —0on)(dy — 0oh). (12)
j p=1 n=1
The weight change for steepest descent is
p P N
Avj = » Y RxH (1= xP) ¥ wyioh(1 = oh)(dh — oh). (13)
p=1 n=1

In other words, the network has to calculate the weight changes due to al the training
patterns, add them up and update the weights based on the total weight change
accumulated over the entire sweep. In practice, however, the weight update is performed
after each training pattern in the serial implementation. In other words, using (7) and
(13), the weight changes are computed as

Bwij = phof (1 = of)f - of). “4)
and
‘ N
Avji = PifxB(1 = x8) 3 wnioh(1 = 0B)(d5 ~ of). (9
n=1

It can be shown that if the step size p is sufficiently small, the weight update can be
performed after each pattern and reach a minimum of the error function E after a series
of very small steps. While this approach is proven to work, its speed is not only slow,
but the minimum that it reaches might also be a different minimum than the minimum
the exact algorithm would have found. Figure 7 shows the descent steps taken to move
to the minimum of a paraboloid by the exact algorithm and the approximate version.

The SIMD-BP, however, uses the exact method, mainly because it allows data
parallelism. Each network computes a weight change vector for al the weights in the
network, based on the training pattern it is given. After the sweep is complete, these
weight change vectors are added together using a very fast MP-1 library routine called
reduceAdd. Then, the weight vectors on all the networks are updated based on the
weight change vector. Thisvector is sent to all PEs of MP-1 using the XNET structure.

The use of the exact algorithm results in data parallelism, and most of the speed-up
achieved is due to this type of parallelism. It is also theoretically more accurate. Thus
there are two different types of parallelism exploited in the SIMD-BP asfollows:

e Architectural Parallelism: This paralelism is simply due to the parallel nature of
the architecture of the multistage network. The computations performed in the
neurons of each stage can be performed all at the same time. Since there are no
connections between the neurons of the same stage, no communication overhead is

-13-

necessary*.

Figure 6 shows the architectural parallelism for the Colorado data set. Each network
issimulated by 100 PEs, which is the size of the hidden layer of the backpropagation
network. The total network for the 10-class Colorado set consisted of 7 input neurons,
100 hidden neurons, and 10 output neurons.

e Data Paralldism: As discussed above, most of the speed-up is due to data
parallelism. Since the weight changes do not occur until after the sweep is over,
there is no more data dependency between the operations performed for different
patterns in the sweep. Consequently, these computations can al be donein paralél.
Therefore we can now simulate more than one network at the same time. They all
have the same initia random weights and ideally one input pattern to learn. These
input patterns, however, are different from one network to another. Each network
calculates weight changes for its weights based on the input pattern and the desired
output pattern it is assigned to. This is done for al the networks a the same time.
After this step, the weight changes are accumulated from al the networks and the
weights of al the networks are updated, simultaneously based on the accumulated
weight changes from al the networks. It isimportant to keep in mind that the degree
of parallelism achieved depends on the number of processors assigned to each
network and the number of training patterns in the training set. For example the 10-
class Colorado problem has 1188 patterns in its training set and the number of PE’s
required for each network is 100. Therefore the maximum number of networks

running simultaneously is 16384 _ 163. For smplicity, we chose to have only 156

networksrunning simultaneously**.

94 networks were given 8 patterns and the remaining 62 were given 7 patterns
(7x62+ 8x94 = 1188), which gives a degree of virtudization of 8. Hence, we are
computing the weight changesfor 156 patterns each clock cycle. Figure 6 shows the
layout of the 156 networksin the MasPar PE array.

In any parallel machine, the degree of parallelism is limited to the physica parallée
resources of the machine. For example, in the MP-1 with 16K PEs, the maximum degree
of parallelism achievable is 16384 since a maximum of 16384 operations can be run in
paralel at any given time. The red degree of paralelism for a given agorithm is
normally a lot less than the maximum degree possible. For example, in the Colorado
problem, every network required 100 PEs, thus, allowing 156 parallel networks. In order
to have one network per training pattern, we ideally would have required

>
Onc could assign a PE to cvery ncuron in the network. However, this daes not bring a higher degree of paraliclism than the case when there is anly w many PEs assigned o

the notwark w the number of neurons m the largest layer. This is due 10 the serial nature of the stages with respect to each other and the ication overhead required for

communication between two layers.

** If we had chosen 163 networks rurmnung simultancously, loading the nput patierns wnto the PEs comectly would become mom difficult and the communication patiemn among
the PEs would have become irregular which would have caused the PE-10-PE commurucation to be achieved m several serial sicps rather than one parallel siep

214 -

100x1188 = 118800 PEs. Since this many PEs were not available, we implemented a
concept referred to as virtualization. Theideais similar to that of virtual memory, where
one assumes that there is a much larger memory space than what the machine's physical
resources offer. We assumed that 118800 PEs were arranged in a three dimensional PE
grid array. The three-dimensional array is made of 8 layers (slices) of 128x128 PEs
(Figure 8). Since there is actually one physical layer of PEs available, the PE array of
MP-1 has to be programmed to emulate the layers of the 3-D grid serialy. Thus we end
up running 156 networks at a time and at any given time, the PE array is emulating a
different layer of the virtualized PE grid.

The data distribution among the PEs has to take thisinto account. Each PE receives the
data for al the virtual PEs which it is going to emulate on al the virtual layers. Care
must be taken in loading the data into the PEs, so that each PE receives only the data
which the virtual PEs it is assigned to would have received. Also the programmer must
be careful about the fact that in the last slice there might not be enough data to require
the services of the entire PE array. In this case, those PEs which have run out of data,
must be inactive for the computations of the last slice.

Figure 5 shows the block diagram of the serial backpropagation and the SIMD version of
backpropagation. The MP-1 program is designed to arrange the PE array to achieve the
minimum degree of virtualization and thereby achieving the maximum degree of
parallelism. It is written in a way that it detects and adjusts to the size of any given
problem automatically. For this purpose, the program considers two parameters. 1.The
size of the hidden layer of the network. 2.The number of training patterns. For example,
for a classification problem with 500 training patterns and a network with the hidden
layer of 20 neurons, the program requires no virtualization (virtualization degree of zero).
Figure 9 shows the PE array arrangement for this problem. The remaining part of the
MP-1 takes the degree of virtualization and a parameter called offset into account. The
offset isthe number of PEs in the last slice which still have data and should be kept active
for the calculations of that slice. The program then performs the operations of each slice
separately. It first deactivates the PEs not required for that slice and then has the ACU
decode the instructions and send them to the PEs, which in turn perform the operation if
their enable flag is high. The MP-1 program. thereby, is written in a way that it detects
and adjusts to the size of any given problem automatically.

Figure 6 shows how the networks are organized in the MP-1 implementation in the
Colorado problem. The first 128 networks were chosen in a vertical layout fashion and
the remaining 28 in the horizontal layout fashion. This produces the simplest
communication pattern. An inverse layout pattern (first 128 horizontal and the rest
vertical), would result in additional communication overhead to distribute the input
patterns to all the PEs in each network. Further speed-up can be achieved by assigning
10 x 10 square of PEs to each network instead of a 1 x 100 array of PEs. At the cost of a
more complicated communication pattern, this could result in a slight speed-up.

The way the networks are organized issuch that the first PE in the all networkscan easily
be enabled. The input patterns are loaded into the first PEs of the networks using the

-15-

parallel read command [1]:

cc = p_read(d, buf, nbytes)
- plural int cc;

intd;

plura char *buf;

int nbytes;

This command was used in the following format:

if ((iyproc==0) |} ((iyproc>=hn)&&(ixproc==0)))
Fstatus=p_read(fd, &x[slice][0], invecht);

The if statement enables the first PE of each network (Figure 6). ixproc and iyproc are the x and
the y coordinates of each PE, respectively, in the 128x128 PE array. hnisthesize of the hidden
layer (in this case 100). invecbt isthe size of the input vector in bytes, and slice is the degree of
virtualization. Notice that the entire input vector is read into the first PE in one shot.

After the loading of input data, The first PEs proceed to communicate the data to the rest of the
PEs in their networks. This communication uses the xnetc command [1]. The xnetc command
was used as follows:

if (iyproc==0)
xnetcS[hn-1].x[slice][i] = x[shice][i];

if ((ixproc==0) && (iyproc >= hn))
xnetcE[hn-1].x[slice][1] = x[slice][1];
The if statements enable the first PEs of the networks. The letters "S" and "E" specify the
direction in which data should be sent (South and East). hn-7 is the step size, which means send

100 -1=99 PEs to the south or east. Notice that since xnetc is used, a copy of the
communicated datais left in each relaying PE memory & the right location.

The forward calculation of data also requires some communication which uses xnetp and xnetc.

To calculate the total AW (the change in the weight matrix), we used two library routines from
MP-1’s mathematics library MPML [1]. These two routines are:

void fp_matsumtovex (hy, nx, B, nxB, yoffB, xoffB, VX))

int ny, nx, nxB, yoffB, xoffB;
plural float *B, *VX;

and

.16 -

void fp_matsumtovey (ny. nx, B, nxB, yoffB, xoffB, VY)

int ny, nx, nxB, yoffB, xoffB;

- plural float *B, *VY;

The first routine adds the columns of the matrix B from the row yoffB and the column xoffB for ny
rows and nx columns and puts the results in the x-oriented vector VX. The second routine adds
the rows of thissubmatrix and puts in the y-oriented VY vector.

For example, one could use the fp_matsumtovey library routine to add the processor numbers
(iproc*) assigned to each processor row by row from the 4" yow to the 100 row, from the 6%
PE in each row through the 120" PE in that row and put the sum valuesin a Y -oriented vector in
the 0 column of the PE array. The stepsto perform this operation are as follows:

1 plural floatB. VY;
2 B =(plural float) iproc;
3 fp_matsumtovey(96,114.@B,1,3,5,@QVY),

In statement 1, the variables B and VY are declared across al processors. In statement 2, the
iproc value of each PE is assigned to the variable B of that PE. In statement 3, the
fp_matsumtovey function is used to add the values of the B variables in each row from the 4 to
the 100°* row, and each row from the 6* element to the 120" element and put the result of each
row inthe VY variable of the first PE of that row** (see Figure 10).

The backward propagation of error and updating the weights uses the same routines in the reverse
direction of the network.

In the PE array of MP-1 each PE can be ideruified in two ways. First way isto identify the row number ixproc and the column number iyproc of the PE in the two dimensional
PE grid amay. The second way is 1o identify the processor number iproc of the PE (see Figure 10). Where zproc=1xproc*nxproc+1yproc+ 1
md HXPYOC it the number of PEs in arow(in 1§} machire, 128). Thercfore the expressions proci3]{4] B and proc[389].B are equivalent and both point 10 the value
of the variable B of the PE in the row and the column.

%% The cumber of PEs in the ¥ direction 1Y =100—4=96
thenumber of PE’s in the X direction x=120—6=114
Thestarting row YoffB=4—1=3; hefirs PEin eachrovishe 0 pE
The starting PE number in every rov X0ffB=6—1=5; hefirs: PEin each ravishe 0™ pe

-17-
4. TIME COMPLEXITY ANALYSIS

In this section, we analyze the time complexity of the serial backpropagation (BP) and the
SIMD-BP agorithms. Since most of the required time for any network is used to train the
network, we only concentrate on the time complexity of the respective training procedures.

Since the time taken to perform floating point addition and multiplication is a good indication of
the time required by the training procedure, we estimate the number of such operations performed
in each type of training procedure.

The Serial BPalgorithm

Let us denote the number of input neurons to the network with p, the number of hidden neurons
with n;, (assuming one hidden layer in the network), the number of output neurons with »,,, and
the number of training patterns in the training set with k. Since, in the first stage, a
backpropagation network has to perform one multiplication for every connection, we get p x n,
floating point multiplications for the first stage. To add the incoming signals to each neuron and
subtract the result from athreshold, we need n;, X p floating point additions for the firg stage. In
the same way, we can find n, X n, floating point multiplications, anT n, X ny, floating point

additions for the second stage. Therefore we get a total of n, X (p + ”"J floating point
multiplications, and ny, x [p + n, | floating point additions.

Let us denote the time required for a floating point addition by a and the time needed for a
floating point multiplication by . Since the error backpropagation through the net and weight
changes require the same order of floating point additions and floating point multiplications as
forward propagation, and since this procedure is repeated k times, once for each pattern, the time
complexity of the backpropagation network becomes

T3p=9{kxnh>< [p+no]x [a+p]] (16)

The SIMD-BP algorithm

To calculate the time complexity of the SIMD-backpropagation, in addition to the time
required for floating point additions and multiplication, we have to consider the
communication overhead. Let us first consider the additions and the multiplications.
Since in SIMD-BP all the neurons of each stage operate in parallel, we only need p
multiplications and p additions for the first stage and n, multiplications and »; additions
for the second stage. Thus, the computation time for the process is on the order of

[p + nh] x [at p|. Sincethe communication overhead ison the order of the length of a

side of the PE array which is 128, the communication overhead is on the order of
nyprocxC, where C is the time it takes to communicate afloat value from one PE to its
immediate neighbor, and nyproc is the length of the PE array in the y direction
(nyproc=128).

-18 -
Thus, we get
= Tsmp-gp =96 [[p + ”h]x [a+ u] + nyprocxC| xslice a7

wheredlice is the degree of virtualization.

Tgp

The order of estimated speed-up is to be measured by L — Equations (16) and
Tsimp -pP
(17) give

k X ny % [p+no] X [a+p]
Tpp

— =6 (18)
Tsimp-pp

[p + nh]x [a + u] + nyprocxC | xslice

For example, in the 10-class remote sensing problem, we have: p =7, & =1188,
ny = 100, n, = 10, dice =8. Thus,

k x ny X [p+no] X [a+u] 1188x100x [7+10]x[a+u]

“P + nh]x [a+ p.} + nyprocxc} xglice [[7 + 100]x [a+ u] + 128xc}x8

2019600x [a + u]

856x [a+ ;.L] +1024xC

Since MasPar PE’s are 4 bit processors, we can assume that a 32 bit floating point
addition takes 4 clock cycles. Furthermore, let us assume that a floating point
multiplication takes twice as long as afloating point addition, namely 8 clock cycles, and
that each communication cycle to a neighboring PE using XNet requires 4 clock cycles.
With the above assumptions, the ratio given by Eq. (18) becomes

2019600x [4 + 8] _ 24235200

11300

= =21447
856x [4 + 8] + 1024x4

In our experiments with backpropagation on a Sun 3/60 station, each sweep of training

for the 10-class problem takes an average of approximately 7 minutes and 30 seconds.
On MasPar, on the other hand, every 100 sweeps takes an average of approximately 14
seconds. Thisresultsin aspeed-up factor in this particular case equal to

[7x60 + 30]x100

=3214
14

Figure 11 shows the error curves of different SIMD-BP networks run for the two-stage
network. As shown in this figure the error decay is a smoothly exponentialy decaying
function which is the characteristic of the exact algorithm. The error function of the
serial network is only piecewise exponentially decaying. Figure 12 shows the run times
for different size hidden layers of the SIMD-BP.

220 -

5. THE SIMD DELTA RULE ALGORITHM

In a number of applications, it is sometimes preferred to remove the hidden layers).
Then, there are just the input and the output layers. The derivations of the Equations (1)
through (7) still apply. The error function is defined asin (1) and the gradient descent
algorithm results in the weight change of

P
Aw;; = - = 3 xhof (1 - of)(d¥ - of). (19)
p=1

w|o

as before. Since there are no hidden layers, this weight change equation applies to all the
weights in the network. The backpropagation algorithm for two-layer networks is also
called the Delta rule algorithm [4].

Since there is no hidden layer in the two-layer network, the number of PE’s assigned to
each network on the MP-1 PE grid depends on the number of neuronsin the output layer
of the network. Thisisdetermined by the coding scheme used for output.

The time complexity of such a network is as follows.

Theserial deltarulealgorithm

As before we denote p to be the number of input neurons, n, the number of output
neurons, and k the number of training patterns in the training set. Since there are two
layers of neurons, there is only one stage of connections between the layers. In this
stage, the Delta rule performs one multiplication for every connection, hence p X n,
floating point multiplications, and p x n, floating point additions to add the incoming
signals to the output neurons and subtract them from a threshold.

If, as before, we denote the time required to perform a floating point addition and a
floating point multiplication by a and B, respectively, the time complexity of the serial
backpropagation network can be estimated as

Tszﬁ{kprnox[a-rB” (20)

The SIMD deltarule algorithm

Similar to the case of networks with hidden layers, in addition to the time required for

floating point addition and multiplication, the communication overhead also has to be
taken into account in the paralel agorithm. For this purpose, as before, the value C is
introduced as the time required for a floating point value to be sent from a PE to its
immediate neighbor.

Since the operations in the stage are performed in parallel, there are only p floating point
multiplications and p floating point additions. Thus the total time required for al the

additions and the multiplications is p X [a+B]. Since the PE array is

nxproc X nyproc, which is 128 x 128 in the 16K machine, the communication overhead
is a most on the order of C x nyproc. Therefore, the time complexity can be estimated
as

Tsimp-pp =6

‘ @n

dlice X [p X [a+BJ+anyproc

where slice, is as, before the degree of virtualization. Hence, the theoretical speed-up
factor can be estimated as

kxp Xnox[a+[3]
Tpp

=90

. (22)
Ts;mp-sp slice x [p X [a+ B] + C X nyproc }

-22.

6. CONCLUSIONS

Implementiné neural network algorithms in massively paralledl machines is very
promising to reduce the implementation time from hours to minutes. This kind of
speed-up isimpossible to achieve with a serially fast neural network algorithm.

The backpropagation algorithm has architectural parallelism and data parallelism in the
way it is paralelized in this article. While architectural parallelismislimited by the size
of the layers of the network, the data parallelism is only limited by the number of PEs
available and the number of training patterns, which is often far more than the number of
neuronsin alayer.

Massively paralel implementations of neural networks alow larger problems to be
investigated in a short amount of time. Since the properties of neural networks often
arise by the collective behavior of al the neurons, such implementations aso have the
potential of helping in the understanding of artificial and biological mechanisms of
intelligence.

.23.

REFERENCES

[1] MasPar MP-1 Reference Manuals, MasPar Computer Corporation, Sunnyvale, CA

[2] Kenneth E. Batcher,"Design of a Massively Pardlel Processor”, IEEE Transaction
on Computers, Vol. C-29, pp. 836-840, Sept. 1980.

[3] Peter Christy,"Software To Support Massively Parallel Computing on the MasPar
MP-1"; Proceedings of the /EEE Compcon Soring 1990, Feb. 1990.

[4] D.E Rumelhart, J.L. McClelland, Parallel Distributed Processing, The MIT press,
Cambridge M assachusets, 1986.

[5] P.J. Werbos, "Backpropagation: Past and Future”, Proceedings of ICNN 88, Sen
Diego, Cdl., pp.343-353, June 1988.

[6] PJB. Hancock, "Daa representation in neural nets an empirical study",
Proceedings of the 1988 Connectionist Models Summer School, Morgan Kaufmann
Publishersinc., pp. 11-20, 1988.

-2 .

7l
! ¢t /.,
. . ’/. . ,

.“’.'I'..‘ o
. LI

A

Figure 1. Block diagram of MasPar MP-1.

225

—L
[
| | I
PEC [— PEC PEC PEC R\
= s3
| | l | 57
PEC PEC PEC PEC |—
] TN]
. . S2
|] | [
PEC |—{ PEC PEC |—| PEC |—
I
| TN
PEC —{ PEC PEC PEC | — =

Figure 2. Block diagram of array processor of MasPar.

-26

ROUTER — — ROUTER
XNET PEO PEl [— — PEIS XNET
BROADCAST sl e —
— —— # REDUCTION
INSTRUCTION ’ PREG PREG PREG
PMEM PMEM PMEM

Figure 3. Block diagram of a PE cluster of MasPar

-27-

XNET IN 3 COMM
INPUT
ROUTERS3 . -
- S—

Y

COMM
OUTPUT

3 XNET OUT

~—> RGQUTER §1

y P

-t

EXPONENT MANTISSA
AL
UNIT ‘ UNIT v FLAGS E8EI&
NIBBLE BUS , I I+ .i * T
—— - -
’) J) J A | J A
BIT BUS # A
PMEM PMEM
PREG
ADDRESS DATA/ECC
T UNIT ‘ REGISTERS
CONTROL BROADCAST
REDUCTION
PMEM
EXTERNAL MEMORY INSTRUCTION

Figure 4. Interna architectureof a PE.

For the 10-classproblem
#input=1188

i++

begin
Swecp

i=1

Get input
pattern (i)

.

.28 -

begin
sweep

dice=8

get input
pattern (i)

L]

forward propagation
(calculate output)

parallel forward
propagation

v

:

calculate
error

backpropagate

€rror

parald eror
calculation

!

parald eror
| backpropagation

L

update
weights

i < #inputs ?

end of
sweep

Y

1 < slice

paralld addition of all
weight changes over dl dlices

v

paralld addition of all
weight changes acrossall networks

A

end of
sweep

(b)

Figure 5. Flow chart of (a) serial BP and (b) SIMD-BP.

For the 10-class problen

100

28

L

-29.

100

Figure 6. PE array of MasPar partitioned for the Colorado data set.

- 128 >
. b0
— NN N
4 &7 1% — |
HEHE e o ¥
HHE °
o|zle b 3
sl=l s Q
bS]
nefwork %9
network 130
®
®
]
network 156
-

128

4
a level curves of
X the function

e

_ minimum of
the function

-—
The path

of the theoretical
model with weight
updating after each
sweep

The path of the

method practiced
with weights updated

after each pattern

initial state
of the system

Figure 7. The descent path toward the minimum of a
paraboloid function for updating the weights after each pattern and
after each sweep.

-31-

Virtual PEs which are emulated
by the PE in the x,y coordinate
(127,0) of the PE array of MP-1

Figure 8. The3-Duvirtual array for the 10-class Colorado data set.

8 slices

20x4=80 PEs

128-80=48 PEs

- 128 networks

)

"k 348

5 ;E ° s o ":" : o
b 9
HE HR A
& I
-E L) L] L] !
f ‘
2

;] > L]

‘ :

! ° > 'E

1 :

\J c

A

|

inactive PEs

|

\/

Y

500-3x128=116 PEs

Figure 9. The PE arrangement for hidden layer size of 20 and training set size of 500.

-33.

- PE with The 4th
ixproc = 3 row
\ iyproc = 4 b
mae }
- t
PE with SRS &
iproc=3x 128 + 4 + 1 ;’ |
= 389] PEs whose B values are summed up '
! ; in a row by row fashion by the function
ol L w
|1 fo_matsumtovey(96,114,@8,1.35@VY] | &
i
The 100th «—Afi—
row / R
| |
/ I |
[H L v
Where the results of « : >
fp_matsumtovey will Y 128 PEs \
be stored The 6th The 120th
column column

Figure 10. An exampleof the operation of the fp_matsumtovey routine.

sweep error

L34

4000

3500

2500 - .. o -

2000 F

L R
Ll
L e e E .. e R, .. A .. e - ————
.~ v . -

R Y L L T

R
e et e miai At

I PR

T S TP Sy

500 =
0

100 200 300 400 500 600 700 300

sweeps

Figure 11. Errorcurves of SIMD-BP: top to bottom. 90. 110,
100, 120 hidden neurons.

900 1000

e e e

time in sec per 1000 sweeps

-35-

170

165

160

155

150

T

145

SIMD-PPSHNN run tine incl udi ng I/O

140
50

60

70 80 90
number of hidden neurons

Figure 12. SI MD BPrun times.

100

110

120

	Purdue University
	Purdue e-Pubs
	3-1-1993

	A PARALLEL IMPLEMENTATION OF BACKPROPAGATION NEURAL NETWORK ON MASPAR MP-1
	Faramarz Valafar
	Okan K. Ersoy

