
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1978

A User's Introduction to the Dual-Mace Operating System A User's Introduction to the Dual-Mace Operating System

V. Y. Shen

Stephen Tolopka

Report Number:
78-295

Shen, V. Y. and Tolopka, Stephen, "A User's Introduction to the Dual-Mace Operating System" (1978).
Department of Computer Science Technical Reports. Paper 225.
https://docs.lib.purdue.edu/cstech/225

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A USER'S INTRODUCTION TO THE DUAL-MACE OPERATING SYSTEM

V. Y. Shen

Stephen Tolopka

TR-295
September, 1978

I. Introduction

A modern computer system normally has a large collection of
devices- which are built for different functions and can often be
operated independently of one another. The heart of the system is. of
course, the central processing unit (CPU), which is responsible for
performing all the arithmetic and logical operations on the jobs
stored in its memory. Attached to the CPU are the peripheral devices.
whose functions are information storage (magnetic disks. tapes) or
input/output (card readers, printers, terminals. etc.) Many of these
devices (including the CPU) may be duplicated for additional power and
reliability. The computer operating system is a set of computer
programs that manage these devices and provide a reasonable
environment for the users and their programs. This document describes
the basic concepts and facilities of the Dual-Mace operating system at
Purdue. It is structured in such a way that each section introduces
an additional feature that the operating system supports. The user is
assumed to be familiar with at least one higher-level language such a~

FORTRAN. It is our hope that through the reading of this document the
user wil 1 be able to compose control statement sequences to accomplish
what is needed in most applications.

II. The Basic Computer

Many early computers were designed with just one input device and
one output device attached to the CPU (Figure 2.1). The computer took
data from prepunched cards or a section of tape. and listed the
results on a typewriter-like printer. A modern computer can still be
considered as shown in Figure 2.1. The input contains both program
and data punched on cards. and the output is print~d on a high-speed
line printer. A FORTRAN job for the Dual-Mace system may be set up as
fo I lows:

0751.
76543, UID.
PASS=UPASS.
MNF.
near

FORTRAN source program

near

Data

#eoi

2

(Sequence card)
(Job card)
(Password card)
(Contro I card)
(End-or-record card)

(End-or-record card)

(End-or-information card)

It should be recognized that there are many users at a large
computing center. The job card and the password card are used to tell
the computer that the user is authorized to use the" account. The main
purpose of the sequence card is for the orderly filing of the final
output. so that it may be retrieved by the user on a self-service
basis. (The output will be identified on the listing as UID0751 in
large. composed letters.) Since different users may program in
different languages, the control card MNF tells the computer that this
program is written in a version of FORTRAN (MiNnesota Fortran). The
input actually consists of three types of information; control cards,
FORTRAN source, and data. They are presented to the computer in three
sequences, called "records", separated by special end-of-record cards
that have 7.8.9 multi-punched in column 1. The three records make up
a "file", whose end is identified by the special end-of-information
card that has 6,7,8.9 multi-punched in column 1.

One o~ the purposes of the end-of-information card is to signal
the computer to stop when the program tries to read more data than it
is supplied. Note that the sequence card supplied by the computing
center also has 6.7,8,9 punched in column 1 .. This protects the us-er
in the event that the previous user "forgets" to include the end-of
information card and then tries to read too much data.

III. Spooling

The CPU's in the earliest computer systems were built using
electronic relays and vacuum tubes. They were bulky, slow, and
required a lot of power. Advances in electronic technology have
significantly improved the performance of CPU's. A large computer
such as the CDC 6500 can perform about a million 14-digit arithmetic
operations per second. A modern computer using microelectronics could
be a hundred times faster than that. Peripheral devices, on the other
hand. are mostly mechanical. Their improvement in speed has not been
as dramatic as that of the CPU. A modern impact-type line printer,

3

for example. can operate at 1200 lines per minute. Assuming ten
arithmetic results are packed in one output line. such a printer can
print at the rate of only 200 results per second. This is hardly
adequate to keep up with the CPU if the computer system is organized
as shown in Figure 2.1.

The problem of mismatched speed is handled by the introduction _of
a secondary storage device serving as a buffer between the CPU and the
printer and reader (Figure 3.1). The secondary storage device is a
magnetic disk which can store data for an indefinite period. Its
speed for data transfer (about one million characters per second) is a
lot faster than either the card reader or printer. In the computer
system as shown in Figure 3.1. a job on punched cards is first copied
to the disk. It is made into a file of card images (called the INPUT
file) which. practically speaking, behaves like a card reader, but can
be read by the CPU at the higher speed of the disk. The dotted arrow
in the figure shows that while the copying is taking place. the CPU is
actually free to process some other job. Similarly, the line images
generated by the CPU are recorded on the disk first. and made into the
OUTPUT file. This file is transmitted later. without CPU action, to
the line printer when the job completes. Such a process is used in
many "batch-processing" systems. and is called SPOOLing (Simultaneous
Peripheral Operations On-Line).

To further compensate the speed differences between I/O devices
and the disk. additional readers and printers may be attached to the
system. The Dual-Mace system supports many of these devices at eight
different locations. It maintains a directory of all job files
waiting to be processed (called the input queue). and of all OUTPUT
files waiting to be printed (called the output queue). It also uses
several disks to increase the storage capacity.

IV. Job Card Parameters

A large computing center processes thousands of jobs a day.
These jobs have a variety of characteristics ranging from short,
instructional types taking a few seconds, to long, research types
taking several hours to process. The amount of printed output
generated also varies significantly. A first-in. first-out processing
schedule is undesirable since it would cause an une~pectedly long
delay to short jobs which are submitted just after a long job. The
,spooling system USed in Dual-Mace permits jobs to be executed in a
d1fferent order from that in which they were submitted. This is
accomplished by a program called the scheduler which ranks the jobs in
the input queue according to the parameters indicated on the job car"d.

The sample program in Section II has only two fields on the job
card: the account code. and the user identifier (10). The account
code used indicates that this is an instructional-type job. These
jobs generally are assigned a lower priority than some research-type
jobs. There is also a set of parameters associated with the account.
which will be used as Qdefault" values if they are not explicitly

included on the
required during
usage, processing

4

job card. These parameters represent resources
the processing of the job. such as central memory
time. printed lines, etc. For example, the job card

76S43,UID,T16.LSOO.CM1S000.

indicales that the job needs a maximum of 16 CPU seconds. prints a
maximum of 500 lines, and needs 15000 (octal) words of memory
initially. All other parameters are set by default. (A complete lisL
of default values for an account may be generated by a PFILES(LIST)
control card.) The scheduler ranks the jobs according to a "queue
priority", which is computed as a function of these parameter values.
It is generally true that the fewer resources a job needs, the higher
its queue priority. The scheduler normally selects the highest
priority job from the input queue for processing by the CPU. Thus it
is strongly.recommended that the parameters be set as close to the
job's actual needs as possible.

Queue priorities are also uaged U as time passes; i.e .. the queue
priority of a job is increased periodically by some small amount.
This ensures that jobs with identical parameters will be processed on
a first-in. first-out basis. Aging also ensures that every job will
eventually be run, no matter how low its original queue priority is.

V. Local Files

It is often necessary to store information on a temporary basis
during the processing of a job. For example. the FORTRAN job of
Section II is processed by the computer in two phases--a compilation
phase. in which the FORTRAN source statements are translated into
machine code, and an execution phase, in which the user's data are
processed. The computer often does not have enough central memory to
completely store the machine code during the compilation phase. The
magnetic disk described in Section III can be used to store the
generated machine code as a file. Thus the computer uses three files
during FORTRAN compilation: it reads the source statements from the
INPUT file, produces a listing on the OUTPUT file, and saves the
machine code generated on a temporary file called LGO. At the end of
the compilation phase. the information saved on LGO is brought back
into the computer and execution begins. The files INPUT, OUTPUT, and
LGO are called ulocal" files since they are closely identified with
the job. They will not be confused with the identically named files
belonging to another job in the system. The disk spac. occupied by
local files is normally released at the end of the job.

A user may use additional local files whenever there
for them. Continuing with the FORTRAN example. a program
input/output statements of the form

READ(i.j) list of variables

is a
may

need
have

or WRITE(k,m) list of variables

6

The integers i and k in the above statements are called "unit"
numbers, and j and m are format numbers. The convention is that units
5. 6. and 7 refer to the standard input. output. and punch files.
respectively. A user may use any other integer (less than 100) to
refer to a local file and perform the desired input/output operations
on it. However, the Dual-Mace operating system requires that it be
informed of all the local files to be used before the program begins
execution. This is done using the special PROGRAM statement at the
beginning of the FORTRAN program. A typical FORTRAN program uses the
following PROGRAM statement:

PROGRAM
$

MAIN(INPUT,OUTPUT,PUNCH,TAPE6=INPUT,TAPE6=OUTPUT,
TAPE7=PUNCH)

This statement. just as other FORTRAN statements. begins at column 7.
The PROGRAM statement need not be included with the source deck if the
user does not plan to access any units other than 5. 6. and 7. The
system would supply the above PROGRAM statement by default. 1 The local
file corresponding to unit i is called TAPEi by the Dual-Mace system.
These names are aliases of the standard system input, output, and
punch files. (It is of interest to note that files in earlier
computer systems were stored on magnetic tapes and the use of TAPEi is
a relic of those days.) If a certain user does not plan to punch any
cards, but wishes to save something on unit 91, the following PROGRAM
statement may be used:

PROGRAM MAIN(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE91)

Data may be placed on TAPE91 using the following statement:

WRITE(91.format no.) list of variables

Since the local files are destroyed at the end of a job, special
steps must be taken if the information saved is valuable. For
example. assume the FORTRAN program is written to process a sequence
of numbers which is the record of an experiment over a time period.
Some of the numbers are qUite different from the rest due to
malfunctioning instruments. They are to be rejected using a certain
criterion. The rejected numbers are saved on TAPE91 to be printed at
the end of the regular program output. The following control card
sequence would accomplish these functions:

IThese remarks pertain to the RUN and FUN
system. The MNF and RUM compi lers supply onl,y the
OUTPUT (TAPE5 and TAPE6) by default.

compilers on
files INPUT

this
and

6

MNF.
REWIND(TAPE91)
COPYBF(TAPE91.0UTPUT)
#eor

PROGRAM MAIN(INPUT,OUTPUT.TAPE5~INPUT.TAPE6~OUTPUT.TAPE91)

Fortran Program

#eor

Data

#eoi

The control card MNF compiles the FORTRAN program. It also instructs
the computer to "load n the file LGO for processing the data cards
which follow. When the program writes on TAPE91, data is saved in a
sequential fashion similar to the way it would be saved on an actual
reel of tape. The control card REWIND effectively rewinds the file
TAPE91. and the card COPYBF copies the entire contents of TAPE91,
appending it to the OUTPUT file. As described previously in Section
III. the desired results are printed after the job terminates.

VI. Permanent Files

The user may sometimes wish to save files on a more permanenG
basis. For example. the data recorded by the sample program of
Section V on TAPE91 may be processed by several other programs later.
It would be convenient to store a copy of it somewhere in the system
for easy access. The Dual-Mace system has a special disk attached to
the CPU as shown in Figure 6.1. The following control cards will
create the file TAPE91 and place the data on the permanent file disk
(called the PFILES disk):

MNF.
REWIND(TAPE91)
PFILES(PUT,TAPE91)
#eor

The PFILES control card is a command to the computer to transfer the
contents of TAPE91 to the PFILES disk. A new file is established with
the same name (TAPE91) under the user-identifier UTO. This file is
now in a different format to conserve disk space. This is
accomplished by replacing repetitive characters in the file (e.g"
trailing blanks) by a repeat count. The process is called "file
compression". Files so stored are only semi-permanent in that they
wil I be deleted from the system if not accessed within 15 days.

After the data
following control card

is properly
sequence may

saved
be used

on
to

the PFILES
reference it:

7

disk, the

PFILES(GET,TAPE91)
MNF(N)
LGO(TAPE91)
#eor

Fortran program without PROGRAM statement or with a PROGRAM
statement with INPUT as the first file

#eoi

The first control card locates the file TAPE91 on the PFILES disk and
makes a local file copy which is also named TAPE91. The second
control card tells the computer not to execute after compiling the
FORTRAN program. The third ~ntrol card causes the LGO file
(containing the machine code) to be loaded with one wparameter
substitution". That is, the parameter TAPESl is used to replace the
first parameter in the PROGRAM statement, which is INPUT. Thus all
references by the program to the INPUT file are effectively replaced
by references to the file TAPE91, and the program processes the
previously stored data.

A file on the PFILES disk may have a name different from that of
.the local file. For example, the following control card may be used
to save a prepunched data deck:

PFILES(PUT,DATA,X~INPUT)

#eor

Data Cards

#eoi

Notice that the first file name is the name of the
disk, while the file name given by the X= parameter
name. The same rules apply when GETting a file.
card

PFILES(GET,MYDATA,X~MODEL)

file on the PFILES
is the local file
Hence, the control

will fetch a file named MY DATA from the PFILES disk,make a local
of it, and name the local copy MODEL.

copy

VI I. Control Card Processing

8

The examples in t~e previous sections show that the computer
understands commands such as MNF. REWIND, PFILES. etc. There are
about two hundred different commands defined in the Dual-Mace system.
A command like MNF is quite difficult to perform, as it involves the
complicated compilation process. There are also commands that are
much simpler. such as the one that tells the computer to stop (EXIT).
A set of programs was written by the system programmers to handle
these commands. They are stored on a special systems disk using the
same names as the corresponding commands. For example, when the
computer recognizes' the control card MNF. a copy of the MNF program
(the compiler) is retrieved from the disk and executed by the CPU.
The next control card is treated the same way when MNF terminates, and
this process continues until there are no more control cards in the
first record of the job file. Thus the sample program of Section V
requires the execution of three systems programs (MNF. REWIND, and
PFILES). Note that parameters may be passed to these programs easily.

Consider the second sample program in Section VI, which is
repeated here:

PFILES(GET,TAPE91)
MNF(N)
LGO (TAPE9!)
#eor

Fortran program
#eoi

The parameters passed to the PFILES program cause it to retrieve from
the PFILES disk a file named TAPE91. A copy is placed in the local
file disk. The N parameter to the MNF program stops the automatic
loading of the translated machine code, which is kept on a local file
LGO. But there is no system program whose name is LGO; the third
control card simply loads and executes the translated machine code
with one parameter substituted. Thus we can conclude that the first
string of characters on a control card is actually th~ name of a file
on the local file disk. It simply instructs the computer to load that
file and execute it with the proper parameters. The "keyword ft LGO is
actually a default file name; the following control card sequence will
produce identical results.

PFILES(GET,TAPE91)
MNF(N,B~ANALYZE)

ANALYZE(TAPE91)
#eor

Fortran Program
#eoi

In the above program, the B= parameter tells the program
the machine code (Binary) on the file ANALYZE instead of
LGO.

MNF
the

to place
default

Suppose
disk under
following)
one run.

there is
the name

enable the

another
TAPE92.

FORTRAN

9

file of test data saved on the PFILES
Additional control cards (shown

program to process both data files in

PFILES(GET,TAPE91)
PFILES(GET,TAPE92)
MNF(N)
LGO (TAPE9l)
LGO(TAPE92)
#eor

Fortran program
#eoi

The cont.rol cards are interpreted exactly as before. The
-following sets of control cards are some variations that produce
results identical with those of the preceding job. However, a job
will usually be completed in the smallest amount of time if steps
using the same amount of central memory (e.g .• all of the PFILES
operations) are grouped together. Hence. the original control card
sequence is preferred.

MNF(N)
PFILES(GET,TAPE91)
LGO(TAPE91)
PFILES(GET,TAPE92)
LGO(TAPE92)
lIeor

PFILES(GET,TAPE91)
MNF(N)
LGO(TAPE91)
PFILES(GET,TAPE92)
LGO(TAPE92)
#eor

The first record on a job file is always the control card record.
The rest of the records on the INPUT file are used in order by the
programs initiated by the control cards. The following example
processes two data sets: one is stored in the PFILES disk and the
other comes as punched cards with the job.

PFILES(GET,TAPE91)
MNF(N)
LGO(TAPE91)
LGO.
#eor

Fortran program
#eor

Second data set
#eoi

VIII. Library Programs

The computer has been used to solve scientific, engineering, and
business problems for about 30 years. Experience has shown that many
of the tasks performed by the computer are routine. The most
frequently performed tasks have been standardized. coded into library
programs by professional programmers and made available for general

use. These
maintained.
if he knows

10

programs have been extensively tested and are continuously
A user may save a lot of effort in a programming project

how to use the library programs properly.

Most high-level programming languages have a library·of "built
inn functions. They often represent the most basic arithmetic and
trigonometric functions (such as absolute value. sine, cosine. etc.)
and can be referenced by the user in a program. These functions are
automatically included during the ~load· phase when the translated
machine code (called "object" code) is placed in the central memory.
When the user wishes to include some more sophisticated library
program (such as a sorting procedure), additional steps must be taken.

The Dual-Mace system maintains several distinct libraries in
object code form. They are kept as files on the local file disk and
are identified as SYSLIB, RUNLIB. PASCLIB, etc. The appropriate
name(s) must be given to the loader program before the desired library
program can be included. For example, there is a FORTRAN subroutine
SORT(A,N) in RUNLIB that sorts an array A of N elements. The
following control card sequence may be used to access the library
program:

MNF(N)
LOAD(LGO,MNFLIB,RUNLIB)
EXECUTE.
#eor

Fortran program with statements like
CALL SORT(ARRAY,NUMBER)

#eor
Data

#eoi

Note that LOAD is the name of the loader program. The parameters
instruct the loader to first enter the translated machine code of the
source program into central memory. Since the program is written for
the MNF compiler. it may require the loading of some built-in
functions from the library for the compiler, MNFLIB. Thus any needed
programs are taken out of MNFLIB first. The loader then tries to find
SORT on MNFLIB; since it is not there. the loader next looks for SORT
on RUNLIB. finds it. and completes the loading process. The control
card EXECUTE starts execution of the user program. Since it is so
simple. the LOAD-EXECUTE control card sequence may be replaced by

LOADX(LGO,MNFLIB,RUNLIB)

The computing center keeps the information on library programs
and other documents in room 84 of the Math Building. An excellent set
of FORTRAN callable mathematical and statistical routines are
maintained in RUNLIB. It is frequently worthwhile to spend some time
looking at the library programs before one starts programming.

11

IX. Multiprogramming

The main computing facility at the Purdue computing center has
four CPU's, more than 200,000 words of central memory, eleven disk
systems, ten tape drives. four line printers, two card readers. one
card punch, and various other peripheral devices connected to the
three front-end minicomputers. It is very unlikely that anyone job
needs to use all this equipment at the same time. To improve the
utilization of these expensive resourceS, the computer is operated in
the ~multiprogramming~ mode. That is. several jobs can be placed in
central memory and processed at the same time. It is the
responsibility of the scheduler in the Dual-Mace operating system to
select the jobs that can best share the resources while also meeting
other performance goals. However, certain performance goals may be in
conflict with the ideal of best sharing the system's resources. For
example, one of the goals of the computing center is for greater user
satisfaction through shorter average turn-around time. It is known
·that shorter average turn-around time would result if the scheduler
always attempted to process the jobs requiring the shortest overall
processing time first. However, these jobs normally just need a CPU
and a smal I amount of memory, and do not use other devices such as the
tape drives. Running them together would leave the resources other
than the CPU and memory idle. thus decreasing the total system
utilization. Therefore the scheduler should try to make the best
selection of jobs while considering all the individual demands.

The scheduler in the Dual-Mace system proceeds by first dividing
the jobs that are ready to run into several categories according to
.their resource requirements. A queue priority is computed for the
jobs in each category based on their actual resource requirements and
the time they are submitted. A limit is established for each category
a~ the maximum number of jobs in that category that can be processed
by the computer at the same time. Thus there is some control over te
mixture of jobs that are actually placed in memory. The terminal
command or control card CHECKQ displays the current definitions of
these categories and the number of jobs queued in each category.

The resource requirements of a job may change during the course
of its execution. For example, a job may begin with some PFILES
operations taking 15000 words of memory. It may then ask for 50000
words for compilation. It only needs 35000 words for the last step of
execution. After the PFILES operations are completed, there may not
be enough free memory aVailable to perform the compilation step. The
processing of the job is temporarily suspended and it is placed in the
queue for its category again. The job is then considered ~rolled-out"

of memory because it returns the 15000 words of memory it has been
using to the system. To avoid unnecessary roll-outs. it is advisable
Eo group job steps chat require the same amount of central memory
together if at all possible. There is normally no roll-out during a
·central memory reduction (e.g., between the compilation and execution
steps). The eM parameter on the job card should accurately reflect
the initial memory requirement; i.e .. the memory required by the first
job step.

12

X. Terminals

The Dual-Mace system supports nearly two hundred typewriter-l i-ke
terminals on campus. These are input/output devices which operate at
slower speeds than card readers and line printers (typically 30-960
characters per second), but give the user the advantage of being able
to interact directly with the computer. Since the terminals are
relatively slow. they are connected to the CDC 6500 system through one
of several MODCOMP minicomputers, sometimes called "front end" or
"buffer" machines. The MODCOMPs collect characters typed at the
terminals (Figure 10.1), feeding them to the main computer whenever a
complete command has been typed. and also accept return messages from
the main computer which are sent to the terminals at an appropriate
speed. In effect. the MODCOMPs take over the time-consuming chores of
accepting input and dispensing output. leaving the main computer free
to concentrate on the more important arithmetic processing work.,
(Compare this idea with that of spooling in Section III.)

A user at a terminal may create, edit. and delete files. submit
jobs to the system. and retrieve results of submitted jobs. These
things are all done by means of various terminal system" commands. The
commands will be illustrated by tracing the progress of two typical
terminal sessions. Everything typed by the user will be underlined.
Each user-entered line is ended by hitting the 'return' key. although
that will not be explicitly shown.

A terminal can operate in either of two modes. In local mode. it
acts just like a typewriter. In on-line mode. everything typed at the
terminal is sent to the computer. For our purposes, the terminal
should have its mode switch set to on-line. The next thing a user
does at a terminal is to" log on" to the system. This is done by
typing a Control-B (holding down the Control button and typing a 'B').
The computer will ask for an account number. user 10. and password,
which should be supplied by the user. These are checked against a
master list for validity; if they are authenticated. the computer may
print one or more items of current interest concerning the computing
center, and then ask the user which system he prefers to wo~k with.
Most users choose PIRATE. which accepts the commands discussed in this
section. The computer will then respond with a sequence of three
plusses. This is the PIRATE prompt sequence; whenever it appears, it
means that the computer is waiting for the user to enter a command.

WILL CLOSE AT 22:00 TONIGHT

(Ctrl-B)
TCB L201 11.35.12
ACCOUNT? 76543,ABC
PASSWORD? MYPASS
THE COMPUTING CENTER
SYSTEM? PIRATE
+++

11/07/78. FULL DUPLEX

Log-On Sequence

13 .

At this point, a beginning user will normally want to create a
file containing a program. data, or other information. Files
manipulated at a terminal are called terminal files. In the same way
that a local file is associated with a particular job. a terminal file
is associated with a logged-on terminal. It exists for the duration
or the termi na 1 sess ion, and then disappears _ Termina I fi I es a 1so
behave like local files in that it is possible to GET a PFILES file
and make it a terminal file, or PUT a terminal file into PFILES.
However, local files and terminal files are distinct; normally, a
running job cannot directly access a terminal file and a terminal user
cannot access a file local to an executing job. Terminal files also
contain imbedded line numbers and pointers to aid in the editing
process, and so have a different format than either local files or
PFILES. One possible point of confusion is that terminal fi les. are
sometimes referred to as hlocal files h . As this is something of a
misnomer, this document will always use the term "terminal files".

To create a terminal file, the user types the word CREATE
followed by the name he wishes the file to have. The computer will
respond with a line number followed by an equal sign. At this point
the user should type in the contents of the file. (The computer will
prompt with the next line number after each line.) When the entir-e
contents of the file have been entered, type #5 to return to PIRATE.

+++CREATE LIGHT
1.000 76543,ABC.
2.000 MNF.
3.000~"EOR

4.000~ WRITE(6,100)
5.000---·10000~~iF~OiRf.M7A~T~(~1~X,'SAMPLE PROGRAM')
6.000 STOP
7.000-=_----=E"'N!o<O
8.000-#S

+++

Creating a File

Notice that since there is no way to multipunch on a terminal •
. the end-or-record mark in line 3 is typed as #EOR. There is no
special sequence of symbols for end-of-information; an EOI mark is
automatically appended to any file created at a terminal. Note
further that the created file contains both a FORTRAN program and the
control cards to compile and run it, just as if it were typed at a
card punch. It is important to understand the distinction between
PIRATE commands and Dual-Mace control cards: the former are typed
f·o II owing a '+++' prompt. and wi II produce a response of some sort a:t
the term ina 1; the 1atter are typed in on I y as parts of f i 1es, and hav'e
no immediate effect. Any file which is intended to be used as a job
-file must contain Dual-Mace control cards as its first record. just as
it would if it were a card deck.

14

The file created in the sequence above is an example of a job
file. It contains a set of control cards and a FORTRAN program (and
could contain data if it were needed) exactly like any of the card
decks shown earlier in this document. (The only difference is that a
terminal job file need not contain a password card since the computer
already knows that you are an authorized user because you are logged
on. However. the account number and ID in the job file must match
those under which you are logged-on.) In order to submit a job fil~

to the system for execution. the user issues an XMIT command. The
parameters it takes are the name the user wishes to assign to the j<,b
(anyone to four letter combination) and the name 0f the job file.

+++XMIT RED LIGHT
JOB "RED" SENT

+++

Submitting a Job

~hen a user XMITs a job. a copy of the job file is placed in the
queue of jobs waiting to be executed by the system. This is the same
queue that jobs which were read in via the card reader join. (See
Figure 10.2). At this point, the job submitted by a terminal user
behaves like a job submitted by a batch user. with one important
difference. For terminal-submitted jobs. any output produced is
stored on a disk instead of being sent directly to a line printer.
Thus the terminal user may examine the output from his job at the
terminal b~fore deciding wheth~r or not to print it. If a printed
copy is desired, the user may issue commands to place the output from
the job into the line printer queue. Notice from Figure 10.2 that it
is also possible for the user to change his mind a~d remove job output
from the printer queue.

There are several ways for a terminal user to watch his job's
progress through the system. One is by means of the SEARCH command.
When a SEARCH command is issued. the computer reports on the current
status of all the user's jobs in the system.

+++SEARCH
NAME QP TYPE M~SSAGE

ABCRED 3755 RO 1 MNF.
+++SEARCH

NAME QP TYPE MEGSAGE
ABCRED 3777 PR

+++

11/08 11:41

11/08 11:42

Performing a Search

The QP number is the queue priority discussed in Section IX. The
job type will be one of the following: IN (the job is waiting to enter
the system), EX (the job is executing), RO (the job is rolled-out of
memory). or PR (the job has completed execution and is ready to be

15

inspected or printed). A number ~ollowing the type indicates the
job's size category (again, see Section IX). The message normally
consists of the control card that the job is currently trying to
execute. Hence, in the first SEARCH above. the job RED had begun
execution and was waiting to execute the MNF control card as a size 1
job. while in the second SEARCH the job had completed execution.

A second way to trace a job's progress is with the PREVIEW
command. This command is used to trace the progress of a particular
job (e.g .• PREVIEW RED) by printing information about the job (similar
to that given by SEARCH) periodically until the job completes. At
this point. however. PREVIEW retrieves the job output from the disk
rile and displays it at the terminal. First the job's dayfile
(control card information) is displayed. followed by all of the job's
output. Certain options can be appended to the PREVIEW command to
request that only certain portions of the job be displayed: D (display
dayfile only), S (summarize dayfile), a (output only), or Ri (i~th
output record only; RO is the first record).

+++PREVIEW RED
"RED" DAYFILE'

dayfile listed here

"RED" OUTPUT'

program listed here

#EOR

program output listed here

#EOR
+++PREVIEW RED Rl

"RED" Rl:

program output listed here

#lEaR
+++

Previewing a Job

We
command
command
nnn is
printed

mentioned earlier that it is necessary to issue a specific
to produce printed output from a terminal-submitted job. That
is 'ROUTE name AS nnn AT site', where name is the job name,
the output bin number, and site tells where the job should be

(the default site is the Math-Science building).

+++ROUTE
ABCRED

+++

RED AS 409
ABC0409 AT MATH

16

Routing a Job

If a terminal-submitted job is not routed within a short time
(typically thirty minutes), th~ system removes the job output from the
disk so that the disk does not become overcrowded. The user can
expedite this process by removing unwanted output files from the disk
using the PURGE command.

+++PURGE RED
PURGED RED/PR

+++

Purging an Output File

It was earlier mentioned that terminals may interact with PFILES.
If the user now wished to save the current copy of his job file, he
could do so by issuing a PUT command.

+++PUT LIGHT
LIGHT

+++

Saving a File

16 WORDS

Note that the user must not issue a PFILES,PUT command to save a file.
PUT will remove all the imbedded pointers and line numbers in the file
before storing it away. while PFILES,PUT does not.

This initial terminal session may be brought to an end by issuing
a LOG command. This signals the system to terminate the session and
delete any terminal files associated with the user.

+++LOG
TCB L201 11.59.26. 11/07/78.
ESTIMATED SESSION COST $.16
PLEASE TURN OFF TERMINAL. TNX.

Terminating a Session

Now suppose the same user begins a new terminal session. After
completing the log-on sequence, he decides to retrieve from PFILES the
job file he was working on last time in order to make some changes in
it. He first GETs the file, and then issues an EDIT command. The
system editor returns a '#' as a prompt character. The editor is a
powerful and versatile tool for locating, printing, inserting,
deleting. moving, and changing lines within a file. The many editor

17

commands will not be described here; the interested reader is referred
to the documents listed in the references.

+++GET LIGHT
LIGHT 16 WORDS

+++EDIT LIGHT
#

editing commands

#S
+++

Retrieving and Editing a File

Notice that the last editing command used is the'S' (stop) command,
and that this is the same way that the CREATE command was exited. In
fact, the CREATE command also gives the user access to the editor.
The only difference between CREATE and EDIT is that the former builds
a new file, while the latter is used to work on an already existing
C.i 1e.

Having the use of an editor makes it possible to inspect output
from completed jobs in yet another way. The QAC (access) command
retrieves a copy of a job's output and makes it available as a
terminal file under the job name. If the SA (save) parameter is used.
a copy is still available for later routing from the output disk.
Once the output has been retrieved as a terminal file, the user can
EDIT the file and use the editor to display selected portions of the
output. Note that the file being EDITed is the output file from a
job, not the job file itself. The user will normally discover his
errors by inspecting this output file, but must then EDIT the actual
Job fi Ie (in our case. LIGHT) in order to make corrections. Using QAC
and EDIT is generally preferable to using PREVIEW unless the amount of
output generated is very small or only the dayfile is being examined.

+++XMIT FIAT LIGHT
JOB "FIAT" SENT

+++QAC FIAT SA
+++EDIT FIAT
#

editing commands to display output

Examining Job Output

Occasionally, the user may wish to examine the contents of a
terminal file without entering the editor. The DISPLAY command may be
used to list any terminal file. (The SUP parameter suppresses the
listing of line numbers.)

· . • 18

+++DISPLAY LIGHT SUP
76543.ABC.
MNF.

END
+++

Displaying a File

The commands described in this section constitute only a small
part of those available on the system, and many additional parameters
are available for the more sophisticated user. It should be
emphasized that the commands listed here are meant solely as an
introduction to the power of PIRATE; the interested user should
consult the documents listed in the references for further details.

References

The discussions in this document sometimes ov~rsimplify the true
structure of the Dual-Mace system. The serious reader is referred to
the following Computing Center documents for additional information.

Sections I - III

ZO-MANUAL

Section IV

ZO-PUCCPG
ZO-SCHEDUL

Section V

LO-CDCMACE

Section VI

QO-PFILES

Section VII

LO-CONTROL

Section VIII

VO-RUNLIB

Section IX

ZO-PUCCEQP

Section X

LO-QED
LO-PIRATE
LO-PROCSY

-,

Card Readerl ?'~I

Front
endCY > compute

Terminals

CPU

Local and
Terminal
Files

Printer

PFILES

Figure 10.1 Organization with the Terminal System.

Terminal
Jobs

:>
CompleteInput i I ~ erminal

¢ Queue ,
Job FileCPU

I Printer
Card Reader , Queue

(Ba tch)
Jobs

Figure 10.2 Disposition of Output

[_In_put_I ;, Computer 1=~~{5:J

pigure 2.1. The Basic Computer.

,
Card Reader - " CPU -,,

Printer, , ,, ,... ,
./

I ~

,
--'

INPUT/OUTPUT Files

~

Figure 3.1. Organization for Spooling.

Card Reader CPU Printer

i

~....,
Local PFILES
files

Figure 6.1. The PFILES Disk.

· . .

	A User's Introduction to the Dual-Mace Operating System
	Report Number:
	

	tmp.1307986960.pdf.INisJ

