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West Lafayette, IN 47907
U.SA.

ABSTRACT

In this paper we present two schemes for planning the time-optimal trajectory for
cooperative multi-manipul ator system(CMMS) carrying a common object. We assume that
the desired path is given and parameterizable by an arclength variable. Both approaches
take into account the dynamics of the manipulators and the dynamics of theobject. The
first approach employs linear programming techniques, and it allows us to obtain the time-
optimal execution of the given task utilizing the maximum torque capacities of the joint
motors. The second approach is a sub-time-optimal method whichiscomputationally very
efficient. In the second approach we try to divide the given load into a share for each
manipulator in the CMMS in a manner in which the trajectory acceleration/deceleration is
maximized, hence the trajectory execution time is minimized. This load distribution
approach uses optimization schemes which degenerate to a linear search agorithm for the
caseof two robots manipulating acommon load, and thisresultsin significant savingson
the computation time. Theload distribution scheme not only enables us to reduce the
computation time but also gives us the possibility of applying this method in real time
planning and control of CMMS. Further, we show that under certain object trajectoriesthe
load distribution scheme yieldstruly time-optimal tragjectories.



I. INTRODUCTION

A cooperative multi-manipulator system(CMMS) is defined as the system of multiple
robots handling a common object, forming closed kinematic chains, as shown in Figure 1.
In many robotic applications, CMMS s needed for handling an object due to the inherent
natureof the task itsdlf or the desire to enhance theflexibility. For example,in aflexible
assembly system one may use multiplerobots to assemble two or more partsinto afina
product. [If an object is so big that it can not be handled by a single robot, the use of
multi-robots may berequired. For instance, in the space station, multiple robots will be
used to handleobjects o largeinertiaand size.

Research on time-optima trgjectory planning for CMMS has to consider many issues
which may not be importantin the singlerobot trgectory planning. Theseissuesinclude
the incorporation of the object dynamic equation in CMMS|[13], thedigtribution of theload
among the multiple robots[9,15,16,17], the kinematic congtraints represented by theclosed
chains[14], and the internal force control[11]. Moon and Ahmad[1, 2] applied the
trajectory time scaling concept developed for single robot by Hollerbach[3] to trgectory
scaling for multi-robot. It was shown that linear programming could be used to find the
trajectory speed-up factor in order to minimize the traversal time for a given velocity
profile. Sinceit was assumed that the velocity profileisfixed, the scaling agorithm could
not obtain the true time-optima trgjectory for CMMS, but themerit of thisscaing dgorithm
isthat it can be readily used to improve the existing control structurein asmplefashion.
Time-optimal trajectoriesfor CMMS when the desired path is known in advance has been
studied independently both by Moon and Ahmad[4] and Bobrow €t. al.[5], and linear
programming approach was used to determine the trgectories.  Both Moon and Ahmad[4]
and Bobrow et. al.[5] employed the parameterizationof the path concept used for single
robots by Shin and McKay[6] and Bobrow et. al.[7]. Chen[18] aso developed asmilar
agorithm based on the parameterizationand linear programming, but he did not address the
internal forceissue.

In this paper we first summarize the genera time-optima trgjectory planning method
for cooperative multi-manipul ator system as presented before[4]. In thisapproach, linear
programming techniques are used to find the extreme value of the acceleration we can
obtain from the given dynamic equations and force torque constraints. This approach
reguires cons derable computation time and thisfact prohibits the possibility of employing
thisagorithmin red timeapplications.



The second approach developed in this paper employs search schemesin order tofind
the optimal load di stribution factors which generate the sub-minimum-time trgjectory for the
CMMS. In thedua manipulator case, we need to find a single distribution factor which
dividesthe required load between two manipulators.  If we have more than two robots, the
search space naturally increases, that is, if weemploy nrobots handling an object, we need
to develop a search dgorithm over an (n-1) space to find the optimal distribution factors.
In the case of two robots, as presented in this paper, a systematic line search dgorithmis
developed, which iscomputationaly efficient.  The method described in this paper may be
used in red time planning and control of CMMS since the dgorithm only takesafraction of
the computation time in comparison to the first approach which yields the time optimal
trgectory. The sub-optimal agorithm can be improved by employing the systematic
search schemesto find the switching pointsin the phase plane[12].

Thispaper isdivided into six sections.  Multi-robot system modd isgiven in Section
2. Section 3 describesthe generd trgectory planning problem and describesan gpproach
which achieves the time-optimal trgjectory by usng the linear programming method. In
Section 4, we present the sub-time-optimal trgjectory planning algorithm employing the
optimal load distribution scheme. Simulation results are given in Section 5. The
discussionsand conclusionsobtained from our results are givenin the final section.

II. DYNAMIC MODELS FOR COOPERATIVE MULTI-MANIPULATOR
SYSTEM
2.1. Dynamic Equations and Constraints on the Input Torques.

The dynamic equationsfor thei-th robot in the cooperative multi-manipul ator system
asshown in Figure 1 can be expressed asfollows.

() = D g () +q;()Ciq(D+G;+JF; fori=1,.,n (D

Here we assume that the i-th manipulator has the n; jointsand ¢; € R"Ni is the vector of

joint torques, ¢,;(r) € R™i isthe vector of joint position, D; € R"*"i is the manipulator

inertiamatrix, C; € R isthe tensor of Coriolisand centrifuga terms, G; « R"iis

the vector of gravitational terms, J; € RS s the manipulator Jacobian matrix, and F; €

R? is the end-effector forces exerted by the i-th manipulator onto the common object. Itis

expressed in the base coordinate of each robot.
Thedynamic equationsof motion of the common object hdd by themultiple robots are
given as



P=BF. )

T

Here :[ mp) +mE | g1, B, -B,],andF=[F{F} .. FIT

Ia(t) + () xIaXt)
and me R* isthemassof object,g € R? is the gravity vector, and | € R3¥ istheinertia
matrix of theobject. Linear acceleration,p=1[p; , p, , b, 17 and angular acceleration, @ =

[ &, , &, , &, of theobject are expressed in theworld coordinateframe, and B; € R
is defined as follows.
I; 035

Here I; € R3¥ is theidentity matrix whichimpliesthe orientation of the i-th manipulator
referenceframeisidentical to the orientation of the world referenceframe, and 033 isthe
3x3 matrix of zeroes, and the matrix S; € R3* isdefined for different typesof contact.

0 -ri; r,-y
3 ry 0 -ry for a soft point contact
Si - -r,-y Yix 0
033 for arigid contact

where r; = [ 1y, iy, 1, 17 is a vector from the center of mass of object to the point of
contact with thei-th manipulator. Thedefinitionsdf thedifferent contact typesusad in this
paper are given below. Notice that in equation (2), dl quantitiesare expressed in world
coordinate frame.

Definition 2.1: (Soft Point Contact)
We define a soft point contact as the contact in which no positional change of
contact point isalowed, while the relative rotationa maotion between the object and the
end-effector can occur.

Definition 2.2: (Rigid Contact)
We definearigid contact as the contact in which neither positiona changed contact
point nor the relative rotational motion between the object and the end-effector can
occur.

When the object is gragoed by the gripper with arigid contact, thelinear forces gpplied
onto theobject by the end-effector do not impart angular momentsonto the object, whilein
a soft point contact the linear forces generateangular momentsonto theobject.  Thisisthe
reason why we have definedthe two different matricesfor S; in equation (3).




We assume that the joint torques generated by motors are constrained by constants
aong the path, i.e., t; < (< ¢* ,i=1.,n foralt. Then,
T-<HHs T 4
where t=[7 .. 71T, ¢ = [(5)] . (&))" 1, and o= [ (D)7 .. (5, .

2.2. Parameterized Dynamic Equations

Assume that the joint paths are parameterizableby the arclength function s, i.e., ¢;(t) =
G:(s(),i=1,.,n forallt, where ¢; and §; aredifferent functions defined on different
ranges. Sinceg(t) = §;” (S)5(r) and g(1) = §;"(s) § (1) * §;(5)5(9), the equation of
moation of the i-th manipulator parameterized by the arclength function is given by

%) =D;§;" 5§ +{D;§,"+ §;"C;§;") $+ G; +JF; ®)

wherea prime next to avariablerepresentsd/ds and adot over the variablerepresentsd/dt.

Assume the path of the object isalso parameterizable by the arclength function s, then
we have p() = p(s(8), and @(t) = $(s(¢)), where p and p are different functions defined
on different ranges and ¢ and @ are also different functions defined on different ranges.
Since p = f' (S)S, p =p"(5)s2 + 5'(5)3, ¢ = @(s)s, and @ = ®(s)$2+D(s) §, the
parameterized object dynamicsis asfollows.

P=BF=Hji+c ©
where H = ["’i’ ’(s)] and ¢ =[ mp(s) ] 2 +{%¥]
Taxs) I&' (s) T &(s)xId(s)

III. TIME-OPTIMAL TRAJECTORY PLANNING USING LINEAR
PROGRAMMING TECHNIQUE

3.1. Determining The Time-Optimal Trajectory On The Phase Plane
The objective of the time-optimal trajectory planning scheme is to minimize the
traversal timerequired to move the object from the initia point to thefinal point.  If we

assume that the desired path of the object isknown and parameterizable by an arclength
function s, then the traversal time #; may be expressed as,

tr Sf S¢
= =| d-g=| 1
I j dt fs s ds J 3 ds (7

[
where ¢;(t,) = Gi(s,) and q,(tp) =G(sp. Noticethat we assumed that ¢, = 0 without loss

of generaity. From this equation we observe the fact that in order to minimize the



traversd time ¢, weare required tosdect the parameterized velocity profile, s, as high as
possibleover the duration of the movement[6, 7].

If we can obtain the maximum and minimum possible acceerationsa any point in the
parameterized phase planeof (s, § ), then we can generate the time-optimal trgjectory dong
the path, usng the schemes developed previoudy for singlerobots[6, 7]. Once § is
known, we can generate the phase plane trgectory by solving the differentia equations[6,
7]. Thequedtion is how to find the maximum or minimum admissible accelerationsin
order to accelerate or to decderate the robot with the bounded joint motor torques.  In the
sngle robot case, the process of finding the extreme vaues o the acceleration is quite
draightforward aswe do not have to consder thedistributiond the load, theinternd force
condtraints, or the redundant actuation asin CMMS  Unlike the single robot case, we
nesd to employ linear programming methods in order to obtain the maximum or minimum
admissbleaccderalionin CMMS

3.2. Constraints On The Internal Forces
The end-effector forces, F; € Réfori =1, .., n, goplied onto the carried object can be

divided into the mation forces Fy; € R® and the internd forces Fj; € RS, thus F; = Fy;
+ F;. Thed€finitionsare given bdow.
Definition 3.1. (Interna Forces)
The internal forces, Fy;, are defined as the st of end-effector generdized forces
which do nat contributeto themotion o theobject.
Definition 3.2: (Motion Forces)
The motion forces, Fy,;, are defined as the sat of end-effector generalized forces

which contributeto the mation o the object.

Proposition 3.1: Linear forces exerted by the end-effectors o CMMS onto the object
may be resolved into three orthonorma directions of tangentia, normal, and binormd
directions, denoted by the vectors, e, e,, e, respectively. The tangentid direction is the
direction aong the path and the norma and binormd directions are obtained from the
relaionshipsof € *e,=0 ande, =€ xe,. Then, avy linear forcesresolved dong the
normd direction or the binormd direction act astheinterna forces.
Proof:

Sincelinear forces exerted by the end-effectorsgenerate the necessary resultant linear
force to move the object, they mugt satisfy the object dynamic equationsdenoted by the



upper 3 componentsaf the equation (2). On resolving both sides o equation (2) into
orthonormal directionsof e, e,, and e, we conclude that the sum of linear forces aong
the tangentia direction istheresultant force, and the sum of linear forces dong the norma
direction is zero, as the required resultant force along the normal direction is zero.
Likewise, the sum of linear forces dong the binormal direction is zero. From the above
definition of the internal forces, we have now proved that any linear forces aong the
norma and binormd directions act as theinternal forces. Q.E.D.

Excessive internal forces may cause the carried object to be squeezed or stretched
aong thosedirectionsin which the interna forces are exerted. In order to prevent these
undesirableeffects, we need to identify the internal forcesand congrain them. Note that
any linear forces aong the negativetangential diction also act asinterna forces. Thisis
seen from the fact that the sum of linear tangential forces must be equal to the required
resultant forces. Likewise, any negativedirectional angular moments along the coordinate
frame axes also act as the internal forces.  We may constrain these internal forces as
follows.

Fi®s AFOSF# @ i=1.,n. (8)
P, 03 el
Here A; = 0,; I ]e R5%, whereP, is aprojection matrix definedasP, = | e,”
T
€y

and the limitsF ;7 (t) and F;*(r) are prespecified. Thefirst three componentsof equation
(8) represent the constraintson the linear internal forces aong the tangential, normal, and
binormal directions, and thelast three components represents the constraintson the angular
internal forces(moments). The linear internal force on the tangential direction and the
angular internal moments about the world coordinate frame axes can be limited by
constraining the lower boundsin the respective componentsin equation (8).  The vector
notation for theinterna forcecongtrainsisasfollows.

Fr(®) <AF<F;/ (1) &)
A0 ... 0
0 A,... 0
where A = 2 € ROM6n,
0 ...0 A,

33 Linear Programming Problem(LPP)
We areready to state an dgorithm tofind the extreme valuesof the acceleration a the
given point in the parameterized phase plane. First, let x =[ 7, FT, s |T e RI2n+1,



Then we can formulate a linear programming problem to find the extreme value of the
accderation, s, asfollows.
Find x which minimizes(or maximizes)

s=1[00,..,0,1]Tx (10)
subject to
Ix=b (11)
b, < x<b, (12)
x<x<x* (13)
where,
JIT 0 ' O D~ ’
q;
1 -J -E 0 1,7 .. 0 !
FI=[0 B -H}’J= 2 : ,E(s) = ~ ,
o o .. JT7 D.g,’

b, (D,;3,+4,°€C,3,15°+ G,

—{Dn an”"' an’cn En’]s' 2+ Gn
L=[0 A 0], b,=F*, b,= Fy,

x=[ (), F)V, -], x*=[(@,FH, ],

At any point on the phase plang(s, ), we can find from the L PP the minimum and
maximum possibleacce eration, §,,,;, ad §,,.x, 8 loNg as there exists a feasible solution
space which satisfies the given condtraints, since dl the coefficientsare functionsof sand
s.  Traectory execution is impossiblein the inadmissible or infeasible regions of the
phase plane, asin those regions constraints given in equation (11), (12), and (13) are not
satisfied. At the boundary of the inadmissible regions the maximum acceleration and
minimum accelerationarethesame. Once we obtain minimum and maximum accel eration,
Smin AN $a Which satisfy the LPP, it is guaranteed that any value of S€ [ S50 » Smax )
satisfies the congtraints given by equation (11), (12), and (13). Similar proof of thisfact
isshownin Appendix of our earlier work[1].

Once the maximum and minimum acceleration are obtained, we can apply either
Shin's algorithm[6] or Bobrow’s algorithm[7] to generate the timeoptimal trgectory plan
for the CMMS. One comment is appropriate a thispoint. As the agebraic form of
extreme accelerations is not available from the LPP, we are not able to develop a
systematic search scheme to find the switching points as such scheme requires an
adgebraicexpressondf the extremeaccelerations[12].



IV. SUB-TIME-OPTIMAL TRAJECTORY PLANNING USING OPTIMAL
LOAD DISTRIBUTION(OLD) SCHEMES

In this section we develop aload distribution strategy which enables us to find sub-
time-optimal trgjectoriesfor CMMS. This method requires considerably less computation
time as it utilizes simple algorithmic search methods instead of the LPP method. It
generatesthe true time-optimal trgjectory plansunder certain limited conditions. Thiswill
be shown in Lemma4.1.

41. Changing the Reference Frame of End-Effector Forces
In order to simplify the development of our algorithm we specify the end-effector
forcesin the object coordinate frame which is located at the center of mass of the carried
object. Previously, the end-effector forces were specified in the base coordinate frame of
each manipulator. Notice that the object coordinate frame is the world coordinate frame
translated to the center of massof the object. Assuggested by Uchiyamaand Dauchez[8]
and Walker et al.[9], we can transform theend-effector force F; expressed in thei-th base
coordinateframe tothe resultantforce F; in the object coordinate system.(See Figure 2))
F;=B;F, (14)
where B; was defined in equation (3). Therefore, equation (6) can be simplified as

follows.
2! - n ._ . - -
P=BF= iIB,’F,- = SB;B{!F; =3 B;Fi=BF (15)
i= i= i=

whee B=[ 11 ... ] « R and F = [#7 7 ... BT ]Te RO Notice

that B; isanidentity matrix and B isdifferent from B in equation (2).

42 Load Distribution Scheme Based on The Generalized Inverse
We can obtain the solutions of the equation (15) by using the generalized inverse of
matrix B.

F=B*P+(I,,- B'B)¢ (16)
where B* isthe generdizedinverseof B matrix, Ig, isthe6n X6n identity matrix, and € =
g7 .. &7 1T e R% with g ¢ R ¢ isan arbitrary vector. The choice of the generalized
inverse matrix is open, and one possible criterion for selecting B* is the one which yields



the weighted minimumnormof F, IIFil = (FT A1 F)!2, where A is a positive definite
matrix. Then, B* = ABT (B A BT )", asshownin [10].

In order to simplify the problem we will assume that matrix A is composed of n-
diagonal block matrices. Thei-th block of matrix A isa; I, where a; is a postive
number, then we have,

0116 0 ... 0
0 ads... 0
A = e an
0 ... 0 al;
Then,
; |9Ts .
B*==| : |,wherea= Ya;. (18)
a i=1
ads
After letting o; = gai , weidentify theinternal force, F;, as
- -
n
E-0 3 €
k=1
F, =(I,,- B'B) €= : : (19)
n
£,-0,) E
B n nk§«1 kJ

Notice the sum of internal forcesare zero. Since the vector € is arbitrary, we may
assume that i &, = 0 without lossof generdlity. Then, equation (16) becomes
k=

a IP €
F = : + L (20)
o, P €,

We will use equation (20) to represent the object dynamicsin the optimal load
distribution(OLD) scheme. Thedesired graspingforcescan be specified in OLD scheme
by specifying theinternal forcesin the gppropriatedirections. We expect the OLD scheme
to generate slower trgjectory compared to the LPP approach, since the OLD scheme
imposes more constraintson force distribution compared with the underspecified object
dynamic equation (6) used in L PP approach and it does not exploit the freedom to choose
the internal forces. The OLD approach requires substantially less computation time to
generate the trgjectory plans because it employsa smple algorithmic search asopposed to
linear programming techniques. However, we will show in Lemma4.1, OLD agorithm
does generate the true time-optimal trgjectory if the interna forcesare specified and the
motionof theobject is purdly trandational or rotationa about an axis throughout the path.



We can rewrite the dynamic equation of the manipulator using the equations (5), (14),
and (20), then we obtain the dynamic equations of manipulators as

T, =D;q;+o;JT B IH); +(D; 3"+ §;" C; §;") $2+ G+ JTB (a;c+E;) (21)
where >’i € =0.
k=1

We can rewriteequation (21) in vector format as

T=(E+AK) i +AY+d 22)
where
-~ . a116 0 ... 0 1 Tn -l
E(s) = ann' rAa': 0 a216 0.00 K = JnTB'n'IH
i ) S » T. ¥ ’
D,y 0 .. 0 Js) LInBSH
J/'B; ¢ (D;§,;"+3,°C,3,Ys*°+ G, +J,"B; ! g
Y= , and d =
TR - e e e s .
Jn'Ba'c (D,G,"+ §p" C,nG,)5%+ G, +J1,TB, ¢,

Assuming that n; = 6 for each robots, we have 6n equationsof following form.
T,=E;+qK)s+oY;+d;, I=1 +int(%) fori=1,., 6n. (23)

Here 7; is the i-th element of vector ¢ and E;, K;, Y;, and d; are the i-th elements of
respective vectors, E, K, Y, and d. Thein#(-) function truncates real number to an integer.
Since 7; is bounded as in equation (4), we may conclude that the acceleration along the path
s isbounded by

gy s§5 < flop fori=1,., 6n (24)
where * *%

_ T -a,Y‘--di _ T -a,Y,--d,-
flap = E;*a;K; and g;(ap = E;* aK;

=t ifo. > 0 - ifp. >0
and'i,"={fl_ o ,r‘-**z{rl ' P

, andp‘-= (E,~+a1K,~).

T~ ifp;, <0 v ifp; <0
Thefeasible region which satisfiesall 6n constraintsin equation (24) is given by
g(e@) 1 s < fla) (25)

where f(@) = min {(fo)li=1,2,..,6n) and g(@) = max {gapli=1, 2,.,6n), and
a=[o; o, ..o, 7. Thentheoptimal distribution factor &* may beobtained asthe one
which generates the maximum or minimum accel eration.

The below Lemma 4.1 shows that OLD approach i sequivalent to the true time-optimal
trajectory(LPP) approach given in the Section 3 under the certain conditions.
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Lemma 4.1 : In CMMS with the rigid contact of the object, if the internal forces are
specified and the motion of the object is purely trandational or rotational about an axis
throughout the path, the maximum and minimum accel erations obtained from the OLD
algorithmar e exactly the same as the ones obtained from the L PP approach.

Proof :

Since both approaches are designed to optimize the acceleration on the phase plane
subject to the same constrai ntsexcept the interna force constraint and the object dynamic
equations, we need to show that these constraints are equivalent under the given
conditions. If we assumetheinterna forcesar e specified, then theinterna force constraint
isthe samefor both approaches.  In order to show that the dynamic equationsof motion
for the object used in the both approachesare equivalent, first notice that F; = F; for rigid
contactsfrom (3) and (14). Rewritingthedynamic equation of the object in L PP goproach
from equation (6), we have

BF = il F, =P. (26)
i=

The object dynamicsfor OLD gpproach isfrom equation (20) asfollows.
F;=oP* F; forali. 27)

Since the sum of the internal forcesis zero, it is obvious that equation (27) implies the
equation (26). Now, we need to show that equation(26) implies the equation (27) under
the given conditions. Noticethat

SF = SFu+ SF;= 3 Fy (28)

i=1 i=1 i=1 i=1
where F);; is the motion force generated by the i-th manipulator. In the purely
trandational object motions, the linear motion forcesdo not have any normd or binormal
directional forcesas shown in the Proposition 3.1.  Thus the linear motion forcesmust be
aong the positivetangentia direction which is the direction of the required force, that is,
Fy; = o; P where ¢; is apositiveconstant.  Thus equation (26) impliesequation (27) in
thiscase. In purely rotational motion about an axis, the angular motion forces(moments)
must be only about the axisof rotation. Otherwise, angular interna forces(moments) are
generated, which would add to the internal moments and contradict the condition of the
specified internal forces. Therefore, equation (26) impliesequation (27) in this case, too.
Hence, we showed the equivalencedf dynamic equationsgiven by (26) and (27), under the
given conditions. Q.E.D.
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4.3. Finding A Load Distribution Factor For Two Manipulators Case

If two manipulators are used to manipulate an object, only one independent
distribution parameter a=¢; isrequired to describe the load distributionas e, = (1 - @).
Thuswe areonly required to find the scalar optimal distribution factor & Now the object
dynamicsof equation (20) becomes

. aP €
P o] %) @)
Then the accelerationis bounded by
g(ax) <s < fla) (30)
where fla) = min {f,-(a)l*i =1,2,.,12 } and g(a) = max {g{e)li=1,2,..,12}, and
T -aY;- d; ¥ ay,; - d;
fla) = — —— ad gi@)= — —— (31
E,-+aK,- E,-+aK,-* "%

Heea=afori=1.,6ada=(l-a)fori=7.,12, ad7, 7, , 7, ,E; K;,Y;,
and 4; are defined smilarly asin equation (23) and (24). We will call f{a) theminimum
acceleration curve and g(a) the maximum acceleration curve. Then, the optimal
distributionfactor & may be obtained asfollows.

arg max f(a) in the acceleration region
<= 0<asl . . . (32)
arg mn, g(@) in the deceleration region.

In order to attain the trgjectory with minimum traversal time, we need to drive the
manipulator at the maximum possible accelerationand brakeit a the maximum possible
deceleration. From equation (32), we conclude that the maximum possibleacceleration or
deceleration can be determined by selecting the optimal distribution factor aconstrained by
01 al 1l Inthefollowing, wedescribe line search algorithmswhich can be usad tofind
optimal load distribution factors, exploiting the propertiesaof the functionsin equation (31)
for the two manipulatorscase. First we consder the below lemma

Lemma 4.2 : For the functionsof the form f(e) = ¢; + a_kiE , Wherec;, k; and B; are
+

known congtants, () thereexist a most two intersections between two distinct functions of
the form f(a), and (b) the function f;() is a monotonic function for dl as (-, -B).
Thisisalsotruefor al as (-8; «).

Proof :

(@) Assume that there exist intersections between two functions f;(«) and f>(@). Then

equating f;(a) =fx(e) givesus,



(; -3) 2 + (¢1Ba+ €1 By +ky- oy - 2By -ky Yot (c By +k;)B, - (2B, +ky )By = 0,
If ¢; # ¢4, then we obtain aasfollows.
- BENPB2- A(cj-cp) (1B +k1)B; - (c2B; +k3 ) B)

@ = 2( C; -C ) (33)
where B=c¢; B, + ¢;B; +k;- c2B; - c28; -k;
If ¢;= c;=cand k; Tk, , then we have,
o=tebrtibs (34)

T kyk;

If ¢;=c,=cand k; =k, 0, then it implies that intersection occurs under following
condition.

k;(B-B1)=0 . (35)
Thisimpliesthat 8, = B, , which contradicts the assumption that functionsf, andf, are
diginct. If ¢; = ¢, =cand k; = k, = 0, thisimpliesf; = f, = ¢ which also contradicts the
assumption that functionsf, and f, aredistinct. Thus, we showed that thereexist at most
two intersections between f; and f; , if they exist and thefunctions aredistinctly different.
(b) Sincef(e) is continuousover a & (-, -B,), it is enough to show that f; (@) 2 0in
order to prove that f;(e) is an increasingfunction over as (-e5, -B). Similarly, f;(@) I

0 for adecreasing function. Since f; (&) = itisobvious thet f; is an increasing

(a+ ﬁ,)2 ’
functionfor k; 1 0 or adecreasingfunction for k; =2 0 over &< (-e, -B). The proof of
the second statement followsfrom the proof of thefirst statement. Q.E.D.

The above lemma suggests that we may employ line search agorithms to find the
optimal distributi on factor a* , since the functions of f;(ex) and g, (@) in equation (31) have

theformof ¢; + -
eform of c; +H

and g(a) of theformec; + H- As shown in Figure 3, two functionsare increasing
+

As an example, consider the four different functions of fi( @)

and the other two are decreasing over a< (0, 1). The minimum acceleration curve fla)
among the four functions, and the maximum acceleration curve g(e) among the four
functions are shown in thefigure. From equation (32), we can conclude that the optimal
distribution factor o* = arg Jrax, @) = 0.22in the acceleration region.  Similarly, a* =

arg 022121 g(a) = 0.27 in thedecderation region of the path.

If at least one of thefunctionsis not continuousover ac [0, 11,i.e.,if a< [0, 1]is a
point of discontinuity, we need to divide the given line search into two admissibleregions



of [0, @] and [@, 1].  After obtaining the optimal distribution factors a*; € [0, a] and
a*; e [a,1], one can determine the optimal distribution factor as &*= arg mar {f{er*}) ,
fa*y)} in the acceleration region and @* =arg min {g(a*)), g(a*;)} in the deceleration
region from (32). The Algorithm 4.1 constructs the piecewise minimum acceleration curve
fa) defined in equation (30) over anumber of intervals.

Algorithm 4.1 (Minimum acceleration curve)

Step1; Assuming that al the functionsof f; in (31) arecontinuousover (a,, o), let
f1= (i1 fe,) = m,jﬂfk(ao), k=1, .., 12).

Step2; Fori=1,2,.., 12 doStep3, 4, and 5.

Step3; Find al intersection points between f; and all remaining functionsf; = £;, j =
1,...,12. For the pointsas [a; ;, oyl Where intersection occur, let the point &
which resultsin the minimum function value of f;(a) be ¢;. Also let the
crossing functiona a; with f; be f;,;. If there exist more than one crossing
function at a;, then let the one with least dope be £, ;.

Step4; If thereisno ae [a; 5, & where an intersectionoccurs, let o; = o and stop.

Step5; Seti=it+ 1

The above algorithm generates the minimum accel eration curve of f{a) defined in (30) as
follows.

fi(a) forace [a,, a; |
floy= (36)

fm(@) forae [a,, a, |
where a,,, = oy and f; = { f;| f(0) = minfa), k = 1,., 12for as [@; 1, a,])

In the below, we will state some lemmas on the minimum accel eration curve which
will be used in the proof of the optimal load distribution algorithms detailed later.  Also,
we define the candidatepoint as the intersection point between an increasing functionand a
decreasing function of (31) in the remainder of this paper. Figure 3 shows four such
candidate pointsdenoted as ¢; fori =1, .., 4.
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Lemma43. There exists one or no candidate point on the minimum acceleration curve
o), generated by Algorithm 4.1.

Proof : (By Contradiction)

Suppose that there exist two candidate points on the minimum acceleration curve,
namely, at a; and e, . Without lossof generality, assumethat @ < @, . Letf and f;”
be the increasing and decreasingfunctions which intersect at o; such that () =f; (a).
Consider thefollowing two cases.

() Iffi(ap < fr (exy): Sincef;” isadecreasing function and ¢; < a, , we havef;”
() < f; (a;). Thisimpliesthat f; () < f; (). It meansthat the candidate point
f> (&) isnot on the minimum acceleration curve.

) If f;7(ap) 2 f,7(y): Since f,7 is an increasing function and @; < a; , we have
(@) > (). Thisimpliesthat f, () > (@) sincefy* () = fr (ay). It
meansthat the candidate point f; (e;) is not on the minimum acceleration curve.

Q.E.D.

The previouslemmatells us that the minimum accdleration curve is made of either just
decreasingfunctions, or just increasing functions, or at most there can be oneintersection
of an increasingfunction and adecreasingfunction. Thisleads usto the bdow lemma

Lemma4.4: Assumethat there exist n, candidate points, which are the intersection points
between an increasing function f;* and adecreasing functionf;” at o; ¢ [a, o fori =1,
2 ,n,. Leta, = arg min {f; (e, fori=1,2,.,n, }. Assumethat the pointf,” (e,
is not on the minimum acceleration curve ). Then thereis no candidate point on the
minimum accelerationcurve.
Proof : (By Contradiction)

Supposethat thereexists acandidate point on minimum accelerationcurve o) a o,
wherep =qgandp € (1, 2,.., n,}. Without lossof generality, we assumethat o, > ¢, .
Since fq‘is a decreasing function at a, ,we have fq'(ap) < fq_ (aq) . Alsofrom the
definition of a, , we havefq'(aq) =min {f (a), fori=1,2,.,n, }, and it means that
f (@) < f (). Thus, we have fo (@) < f, (o). It impliesthat the candidate point
f, (a,) isnot on the minimum acoeleration curve. Q.E.D.

Therefore, from the above lemma we conclude that if the candidate point with the
minimum acceleration is not on the minimum acceleration curve, thereis no candidate point
on the minimum acceleration curve.  Now, consider the next lemma



Lemma4.5: Assume thet thereexistsacandidatepoint a o on the minimum acceleration
curvef(a), generated by Algorithm41  Then o = arg max {f(a) for a< [a, o]).
Proof - (By Contradiction)

Suppose that ﬂaj) =max { fla) forx e [a, af]}, where g < [a,, af] isany
point other than o, . Since we know that there exists a most one candidate point on the
minimum acceleration curve from the Lemma4.3, f(aj) isnot acandidate point.  Without
lossof generality, weassumethat o Ca; . Let fi andf,” betheincreasing and the
decreasing functionsat a;.  Then, we have fi (@) C f (o).  Also we know that
o) < fi (o) from the fact that f(a) is the minimum acceleration curve. Thus we
conclude that fle;) Cfy (o) =f (ad. Thisshowsthat 8 #arg max {fle) for a« [a,
asl}). Q.E.D.

Based on the previous lemmas, we have devised two search schemes to find the
optimal load distribution factor in the acceleration region(OLDA). The Algorithm 4.2
utilizes the minimum accel eration curve concept, while the Algorithm 4.3 employs the
candidate pointsto determine the optimal load distribution factors. Later, we will compare
the computationd efficienciesdf the two algorithms.

Algorithm 4.2 (OLDA using Minimum Acceleration Curve)

Step1; Construct the minimum acceleration curveasin Algorithm4.1 until it encounters
adecreasing function f; a ;. ;. Let a;; betheoptimal load distribution factor
a* and stop.

Step 2; If the minimum accel erationcurve does not encounter adecreasing function for a
¢ [a, o ], let theoptimal distribution factor &= a; and stop.

Theorem 4.1 : Theoptimal load distribution factor obtained from the Algorithm 4.2 is
optima inthesensethat &= arg max fla) yieldsthe maximum acceleration a a point
o <asey

in the phase plane, where f{a) isthe minimum acceleration curve.
Proof :

First consider when Algorithm 4.2 encountersadecreasing function at i = 1, then the
minimum acceleration curveisonly composed of decreasing functions. Thisresultsin &*
= g, . If thedecreasing function isencountered when i > 1, then ¢;; isthe candidate
point on the minimum acceleration curve, and ¢, is the optimal distributionfactor from
Lemma 45. If the minimum acceleration curve does not encounter any decreasing



functionsfor a < [a, a ], then the minimum acceleration curve is composed of only
increasing functions.  Thus, "= ay. Q.E.D.

Algorithm 4.3 (OLDA using Candidate Points)

Stepl; Assuming that the functions f;,j =1, 2, .., 12,in (31) are continuousover (a,
, &), find all candidate points (e; , 0;) where @; € [a, o ] and o;=f;" (o), i
=1 2. n,. Notethat f* and f;” are the increasing and decreasing functions
which intersect at @; , thus o; = f;' (&) =f; ().

Step 2; Let the candidatepoint with the lowest acceleration occur at oy, thet is, oy = arg
min { 6;,i=1,2,.,n,}. If oy =min {fi(ap), i =1, 2, .., 12}, go to Step 3.
Otherwise, go to Step 4.

Step3; Then theoptimal load distribution factor be ey and stop.

Sep4d; Letfyy = {f;1f(a,) :mkinfk(ao), k=1, ., 12). If fy isdecreasingover (a,
), then the optimal distribution factor &= @ and stop.  If £y isincreasing
over (a, ay), then the optimal distribution factor ar= a; and stop.

Theorem 4.2 : Theoptimal load distribution factor obtained from the Algorithm 4.3 is
optimd inthesensethat &® = arg max R a) yiddsthe maximum acceleration a a point
a,<o<af

in the phase plane, where f{) is the minimum acceleration curve.
Proof :

There are two cases to consider.  If oy =min {fi(ay), 1 =1, 2, .., 12}, then we
know that oy is the point on the minimum acceleration curve. Since (ay , Oy ) isa
candidate point, it impliesthat oy = arg max {f(c) for ae [ a, af]} fromLemma4s.
If oy #=min {fi(ay),i =1, 2, .., 12}, oy is not on the minimum acceleration curve,
which implies that thereis no candidate pointson the minimum acceleration curve from
Lemmad4.4. Therefore, the optimal load distribution factor iseither &, or & depending
on the minimum acceleration curve fla). If ) isdecreasing, &= g and if @) is
increasing, &= o. Q.E.D.

We can comparetherdativeefficiency of thetwo agorithms4.2 and 4.3 by estimating
the number of caculationsrequired to find the intersection pointsat one particular point in
thepath. Since the computation time required to seect the minimum value issgnificantly
less compared to time required to perform algebraic calculations, we will ignore the
compuitation time required to find the minimum vaues in both agorithms. For smplicity,



we will assume that there exists only one intersection point between two different
functions. Thisisavalid assumption since theintersectionscan occur at most in apair as
in (33), and both of them can be cal culated smultaneoudy without significant increasein
the computation time. Let the number of functionsconsideredin Algorithm 4.2 and 4.3 be
N. In Algorithm 4.2, the maximum number of calculation will consist of finding dl the

: : . : : . (N N2-N
intersection points between two different functions, thet is, \ ', ) = —— each pah

point under consideration. The average number of calculationsis( BI ) ) ( NI2

2 =
3N2- 2N . . . . )
— g if we assume that the the first decreasing function in the minimum acceleration

curve occursin the middleof thesearch in Algorithm 4.2.  Assuming that the number of
the increasing functionsis N; and the remaining functionsare decreasing, the number of

calculations required to find the candidate point in Algorithm 4.3 isN; (N-N;). The
maximum of number of calculations occurs a N; = g thus the maximum number of

2
intersection caculationin Algorithm 4.3 is TN . E _ NT at each trgjectory sampling point.
5 =

(Notethat if N isan odd number the bound till remains the same, as the maximum number

- 2 2
is (N21 ( > 1_ N 14s NT.) When N = 12, which is typical for two robots case,

the maximum number of calculationsrequired to find the intersection pointsisonly 36in
the Algorithm 4.3, compared to the maximum of 66 calculationsand the average of 51
calculationsrequired in Algorithm 4.2.  Thisclearly showsthat the Algorithm 4.3 is more
efficient than the Algorithm4.2 in generd.

In the below, we state OLDD(Optimal Load Distribution in Deceleration region) usng
the candidate points as in Algorithm 4.3 without proof. One can easily prove the optimality
smilarly from the proof of Theorem 4.2. Naturdly, the proof of optimality for the
Algorithm 4.4 requires the construction of the maximum acceleration curve and lemmeas
similar to those presented for the minimum acceleration curve.

Algorithm 44 (OLDD using Candidate Points)

Stepl; Assuming that thefunctions g;,j = 1,2, ., 12,in (31) arecontinuousover (&,
, o), find al candidate points (o;; , ;) where o; = [a,, o ] and 0; = g;"(e), i
=1,2,.,n,. Notetha g;" andg;” aretheincreasing and decreasing functions
which intersect & o , thus o; = g;" () = g, ().



Step2; Let the candidate point with the maximum acceleration occur at oy, that is, oy =
arg max { 6;,i=1,2,.,n). If oy =max {goy), i =1, 2, .., 12}, go to
Step 3. Otherwise, go to Step 4.

Step3; Then theoptimal load distributionfactor be ay and stop.

Step4; Letgy= {gjlmlax gi(a,), j =1, 2,.,12). If gy isdecreasing over (a, o),
then the optimal distribution factor &= o and stop.  If gy isincreasing over
(a, ap, then theoptimal distribution factor & = & and stop.

V. SIMULATION RESULTS

Consider two planar robots of three degree-of-freedom manipulating a bar in the
vertical planeas shown in Figure 4. We assume that the end-effectorsgrasp the object
rigidly, so thereis no relative movement between the end-effectorsand theobject.  Let /;
and my; be the length and mass, respectively, of thej-th link of the i-zh robot. We are
given lj1=li2=01=l,=1m,l;3=1,3=0.1m and m;; =5kg, m, = 4kg,m;3 =
0.5 kg, my; = 5kg, my; =4 kg, and m3= 0.5kg. Themassof theobjectis2kg. We
also assume that each link of the robot is a cylinder with radius r;;= 0.1 mfor dl i, j.
Then theinertiaseen at joint j of thei-th robot isthen given by

Iij=11_2mij(3 ri¢ *12). (37)
The world coordinatereference frameis attached to the base of manipulator 1 at O;. Thus
0, has coordinates(0, 0) and O, isfixed at (0.7, 0) in the world coordinateframe. The

trgjectory of the object center of massisastraight linefrom the initial position (0.35, 1.0)
tothefina pogtion (0.65, 1.4). No rotations are specified aong the trgectory.

5.1. Zero Internal Forces

In this example, we assume the two manipulators have the same torque capabilities.
Theinput torque limitsare 7;;* = 100Nm, 7,7 =80Nm, 7,3t =50Nm, 7;;* = 100
Nm, ;% =80Nm, 7,;* =50Nm, and 7;” = - r,-j+ . We will assume the desired
internal forcesare zero in thisexample. From the L PP approach, we obtain the optimal
phase plane curve which has one switching point at s = 0.6, asshown in Figure 5(a), and
theresulting optima traversa timeis 339 msec. The computation time required to generate
the trgjectorieson a Gould NP1 machineis 5.78 sec for LPP method.  Since we used
108 phase plane stepsto obtain the trgectory plan, each step takes the average computation

time of 53 msec.



A traversal timeof 339 msecis aso obtained from the OLD agorithm as the interna
forces were set to zero and no rotation of the object occursduring the motion.  Thisresult
agrees with the conclusonof Lemma4.1. The computation time required to generate the
trajectory is, however, 0.8 sec in the OLD agorithm, much faster than 5.78 sec required in
theLPP method. Here 79 phase plane steps were required, and each step took an average
computationtimeof 10 msec. Thisisonly 19 % of the computation time required by the
LPP approach. The graph showing the optimal load distribution factor throughout the
entire movement of the object isgiven in Figure5(b). Theinput torque profilesare shown
in Figure 5(c). In Figure5(b), we notice that the object load isamost fully taken by the
second robot in thedecelerationregion.  We believe that this happens because the optimal
load distribution dependson the configurationsof the each manipulator.  Aswe show in
section 5.3, the load distribution al so dependson the capacity of the manipulators.

5.2. Internal Force Constraints

In thisexample, we consider the same two robots used in the previousexample. In
order to show the sub-optimality of the OLD agorithm, we imposed some internal force
congraintsin the LPPagorithm. Theinterna force constraintswe imposed on the object
were-10 N <£;,, 1 10 N and -10 Nm <f;, <10 Nm, where f;, is the normal directional
forcesexerted by thei-th end-effector and f;, is the angular moment along the z direction
exerted by the i-th end-effector. The final traversal time we obtained from the LPP
approach is 316 msec which is dightly faster than the traversal time 339 msec obtained
from the example of Section 5.1. The phase plane curvefor this trgectory is given in
Figure 6(a). It shows that the switching occurs at s = 0.63. The end-effector forces
along the tangential and normal direction and angular moment along the z direction are
shown in Figure 6(b). Thejoint torque profilesare shown in Figure 6(c). Aswe can see
in Figure 6(c), the utilization of the input torquesis increased in the deceleration region,
compared with Figure 5(c), which helped reduction of the traversal time compared to zero
internal forcecase of Section 5.1.  The computation timerequired to obtain thistrgectory
was 6.46 sec.

5.3. OLD Approach with Two Different Robots

In thisexample, we consider two robotswith different joint torque capabilities. The
input joint torque limitsare 7;;* = 100Nm, 7;,* =80Nm, 7,37 =50Nm, 7,;* =70
Nm, 7,,* =50Nm, 7,;% =30 Nm, and 7;” = - 7;* . The second robot now has a
lower torque capacity, while the first robot has the same capacity as the one used in



previoussmulations. We assumed that zero internal forcesare specified in thisexample.
As seen in Figure 7(b), the load distribution factor remained between 0.4 and 1.0 during
the entire trgectory execution. Compared to the case in Section 5.1, the optimal load
distribution has been shifted more to the robot with the larger capacity. Thefind traversa
time we obtained is 393 msec which is dower than 339 msec of Section 51.  The
computation time required by the OLD agorithm is0.64 sec. The phase planecurvedf the
optimal trgjectory is shown in Figure7(a), and theinput torque profilesare given in Figure
7(c). It showsthat the switching occursat s=0.65.

V1. DISCUSSIONS AND CONCLUSIONS

In this paper we presented two schemes to generate the time-optimal trgjectory
planning and sub-time-optimal trajectory planning for cooperative multi-manipulator
system. The first approach used the linear programming problem(LPP) technique to
obtain the maximum/minimum acceleration in the phase plane, and allowed us obtain the
time-optimal trgectories. However, the computation time required by the mathematical
programming method prohibits any possibility of using this algorithmin the real time
applications. The second approach(OLD) which employsthe a gebraic search agorithms
to determine the maximum/minimum acceleration in the phase plane generates dightly
dower trgectory than the first gpproach doesin most cases. However, it requiresonly a
fraction of computation time compared to the L PP approach, which does provide the
possibility of utilizing thismethod in thered timecontrol problem.

In cases where the interna forces are specified and the motion of theobject is purdy
trandationd or rotationa throughout the path, the OLD gpproach producesexactly the same
trajectoriesas the LPP gpproach does but only in afraction of time compared to the LPP
approach. Thiswas provenin Lemma4.1 and validated by the examplein Section 5.1.
Thisresult is quite significant consdering that the computation time has been reduced by
one-fifth and the smulation in Section 5.2 showsthat the constraining theinterna forcesin
the certain range does not lead to much reduction of the traversal time. In many
applicationsof CMMS, we will have to constrain the internal forcesin acertain range, if
not zero, in order to prevent the breakage or dipping the object during the motion.
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Figure 1. Schematic diagram for cooper ative multi-manipulator system.
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Figure 2. Reultant forcesexpressedin the different coordinateframes
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FIGURE CAPTIONS

Schematic diagram for cooperative multi-mani pul ator sysem.
Resultant forces expressedin the different coordinate frames.
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The phase planecurvesfor interna forcesconstraintscase.

Theforce profilesfor interna forcesconstraintscase.

Thetoque profilesfor interna forcesconstraintscase.

The phase plane curves for optimal load distribution approach with two
differentrobots.

Theoptimal |oad distribution factor for optimal load distribution approach
with two different robots.

The toque profilesfor optimal load distribution gpproach with two different
robots.
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