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ABSTRACT 

In this paper we present two schemes for planning the time-optimal trajectory for 

cooperative multi-manipulator system(CMMS) carrying a common object. We assume that 

the desired path is given and parameterizable by an arclength variable. Both approaches 

take into account the dynamics of the manipulators and the dynamics of the object. The 

first approach employs linear programming techniques, and it allows us to obtain the time- 

optimal execution of the given task utilizing the maximum torque capacities of the joint 

motors. The second approach is a sub-time-optimal method which is computationally very 

efficient. In the second approach we try to divide the given load into a share for each 

manipulator in the CMMS in a manner in which the trajectory acceleration/deceleration is 

maximized, hence the trajectory execution time is minimized. This load distribution 

approach uses optimization schemes which degenerate to a linear search algorithm for the 

case of two robots manipulating a common load, and this results in significant savings on 

the computation time. The load distribution scheme not only enables us to reduce the 

computation time but also gives us the possibility of applying this method in real time 

planning and control of CMMS. Further, we show that under certain object trajectories the 

load distribution scheme yields truly time-optimal trajectories. 



A cooperative multi-manipulator system(CMMS) is defined as the system of multiple 

robots handling a common object, forming closed kinematic chains, as shown in Figure 1. 

In many robotic applications, CMMS is needed for handling an object due to the inherent 

nature of the task itself or the desire to enhance the flexibility. For example, in a flexible 

assembly system one may use multiple robots to assemble two or more parts into a final 

product. If an object is so big that it can not be handled by a single robot, the use of 

multi-robots may be required. For instance, in the space station, multiple robots will be 

used to handle objects of large inertia and size. 

Research on time-optimal trajectory planning for CMMS has to consider many issues 

which may not be important in the single robot trajectory planning. These issues include 

the incorporation of the object dynamic equation in CMMS[13], the distribution of the load 

among the multiple robots[9,15,16,17], the kinematic constraints represented by the closed 

chains[l4], and the internal force control[ll]. Moon and Ahmad[l, 21 applied the 

trajectory time scaling concept developed for single robot by Hollerbach[3] to trajectory 

scaling for multi-robot. It was shown that linear programming could be used to find the 

trajectory speed-up factor in order to minimize the traversal time for a given velocity 

profile. Since it was assumed that the velocity profile is fured, the scaling algorithm could 

not obtain the true time-optimal trajectory for CMMS, but the merit of this scaling algorithm 

is that it can be readily used to improve the existing control structure in a simple fashion. 

Time-optimal trajectories for CMMS when the desired path is known in advance has been 

studied independently both by Moon and Ahmad[4] and Bobrow et. a1.[5], and linear 

programming approach was used to determine the trajectories. Both Moon and Ahmad[4] 

and Bobrow et. al.[5] employed the parameterization of the path concept used for single 

robots by Shin and McKay[6] and Bobrow et. a1.[7]. Chen[l8] also developed a similar 

algorithm based on the parameterization and linear programming, but he did not address the 

internal force issue. 

In this paper we first summarize the general time-optimal trajectory planning method 

for cooperative multi-manipulator system as presented before[4]. In this approach, linear 

programming techniques are used to find the extreme value of the acceleration we can 

obtain from the given dynamic equations and force torque constraints. This approach 

requires considerable computation time and this fact prohibits the possibility of employing 

this algorithm in real time applications. 



The second approach developed in this paper employs search schemes in order to find 

the optimal load distribution factors which generate the sub-rninimum-time trajectory for the 

CMMS. In the dual manipulator case, we need to find a single distribution factor which 

divides the required load between two manipulators. If we have more than two robots, the 

search space naturally increases, that is, if we employ n robots handling an object, we need 

to develop a search algorithm over an (n- 1) space to find the optimal distribution factors. 

In the case of two robots, as presented in this paper, a systematic line search algorithm is 

developed, which is computationally efficient. The method described in this paper may be 

used in real time planning and control of CMMS since the algorithm only takes a fraction of 

the computation time in comparison to the first approach which yields the time optimal 

trajectory. The sub-optimal algorithm can be improved by employing the systematic 

search schemes to find the switching points in the phase plane[l2]. 

This paper is divided into six sections. Multi-robot system model is given in Section 

2. Section 3 describes the general trajectory planning problem and describes an approach 

which achieves the time-optimal trajectory by using the linear programming method. In 

Section 4, we present the sub-time-optimal trajectory planning algorithm employing the 

optimal load distribution scheme. Simulation results are given in Section 5. The 

discussions and conclusions obtained from our results are given in the final section. 

11. DYNAMIC MODELS FOR COOPERATIVE MULTI-MANIPULATOR 

SYSTEM 

2.1. Dynamic Equations and Constraints on the Input Torques. 
The dynamic equations for the i-th robot in the cooperative multi-manipulator system 

as shown in Figure 1 can be expressed as follows. 

zi(t) = ~ ~ i j ~ ( t ) + ~ ~ ( t ) c ~ ~ ~ ( t ) + ~ ~ + ~ p ~  for i =  I ,  .., n .  (1) 

Here we assume that the i-th manipulator has the ni joints and q E Rni is the vector of 

joint torques, qi(t) E Rni is the vector of joint position, Di E Rnixni is the manipulator 

inertia matrix, Ci E Rnimimi is the tensor of Coriolis and centrifugal terms, Gi E Rni is 

the vector of gravitational terms, Ji E ~~~i is the manipulator Jacobian matrix, and Fi E 

is the end-effector forces exerted by the i-th manipulator onto the common object. It is 

expressed in the base coordinate of each robot. 

The dynamic equations of motion of the common object held by the multiple robots are 

given as 



P = B F .  (2) 
mii(t) + mg I T T  

Here P = , B  = [BI B2 ...B,] , a n d F =  [FI F2 .. F:IT, 
I N t )  + cu(t)xIru(t) 

and m E R+ is the mass of object, g E R3 is the gravity vector, and I E R3* is the inertia 

matrix of the object. Linear acceleration, p = [px , py , pz lT and angular acceleration, h= 

[ j: , iu, , iuz lT, of the object are expressed in the world coordinate frame, and Bi E R b ~  

Here I3 E is the identity matrix which implies the orientation of the i-th manipulator 

reference frame is identical to the orientation of the world reference frame, and is the 

3x3 matrix of zeroes, and the matrix Si E R3* is defined for different types of contact. 

for a soft point contact 
Si = 

1 033 for  a rigid contact  

where ri = [ ri, riy, riz lT is a vector from the center of mass of object to the point of 

contact with the i-th manipulator. The definitions of the different contact types used in this 

paper are given below. Notice that in equation (2), all quantities are expressed in world 

coordinate frame. 

Definition 2.1: (Soft Point Contact) 

We define a soft point contact as the contact in which no positional change of 

contact point is allowed, while the relative rotational motion between the object and the 

end-effector can occur. 

Definition 2.2: (Rigid Contact) 

We define a rigid contact as the contact in which neither positional change of contact 

point nor the relative rotational motion between the object and the end-effector can 

occur. 

When the object is grasped by the gripper with a rigid contact, the linear forces applied 

onto the object by the end-effector do not impart angular moments onto the object, while in 

a soft point contact the linear forces generate angular moments onto the object. This is the 

reason why we have defined the two different matrices for Si in equation (3). 



We assume that the joint torques generated by motors are constrained by constants 
along the path, i.e., z; I zi(t) I zi+ , i = 1 ,.., n for all t . Then, 

z -  I t(t) s r+ (4) 
+ T  T where z = [zlT . . znT lT,  z - = [(zl -)T .. (zilT lT, and r+= [ (zl+)T . . (zn ) ] . 

2.2. Parameterized Dynamic Equations 
Assume that the joint paths are parameterizable by the arclength function s, i.e., qi(t) = 

Gi(s(t)), i = I,.., n for all t, where qi and ii are different functions defined on different 

ranges. Since qi(t) = Fi ' (s) S(t) and &(t) = Gi "(s) S 2(t)  + ii '(s)s(t), the equation of 

motion of the i-th manipulator parameterized by the arclength function is given by 

q(t) = ~ ~ i j ~ ~ i + { ~ ~ " q ~ + " q ~ ~ ~ i ~ ~ ) 3 +  G~ + J ~ ~ F ~  (5 )  

where a prime next to a variable represents dl& and a dot over the variable represents dldr. 
Assume the path of the object is also parameterizable by the arclength function s, then 

we have p(t) = j ( s ( t ) ) ,  and #(t) = $(s(t)) ,  where p and jj are different functions defined 

on different ranges and # and 3 are also different functions defined on different ranges. 

Since p = B ' (s)  i ,  p = Bx(s) i2 + 8 &(s) i, 6 = &(s) i ,  and 4 = &IO(s) i2+ &I(s) 5 ,  the 
parameterized object dynamics is as follows. 

P = B F = H S + c  

where H =  pO(')] andc=[  m j  '7s) 
I W s )  Id) ' ( s )  + b)(s)xZ&(s) 

] i2 + [;g] . 

3.1. Determining The Time-Optimal Trajectory On The Phase Plane 
The objective of the time-optimal trajectory planning scheme is to minimize the 

traversal time required to move the object from the initial point to the final point. If we 

assume that the desired path of the object is known and parameterizable by an arclength 
function s, then the traversal time rf may be expressed as, 

where qi(to) = qi(so) and qi(tf)  = 'Qi(sf). Notice that we assumed that to = 0 without loss 

of generality. From this equation we observe the fact that in order to minimize the 



traversal time t f  we are required to select the parameterized velocity prof~le, $, as high as 

possible over the duration of the movement[6,7]. 

If we can obtain the maximum and minimum possible accelerations at any point in the 

parameterized phase plane of (s, i ), then we can generate the time-optimal trajectory along 

the path, using the schemes developed previously for single robots[6, 71. Once s is 

known, we can generate the phase plane trajectory by solving the differential equations[6, 

71. The question is how to find the maximum or minimum admissible accelerations in 
order to accelerate or to decelerate the robot with the bounded joint motor torques. In the 

single robot case, the process of finding the extreme values of the acceleration is quite 

straightforward as we do not have to consider the distribution of the load, the internal force 

constraints, or the redundant actuation as in CMMS. Unlike the single robot case, we 

need to employ linear programming methds in order to obtain the maximum or minimum 

admissible acceleration in CMMS. 

3.2. Constraints On The Internal Forces 
The end-effector forces, Fi E R6 for i = 1, .., n , applied onto the carried object can be 

divided into the motion forces FMi E R6 and the internal forces FIi E R6, thus Fi = FMi 

+ FIi . The definitions are given below. 
Definition 3.1: (Internal Forces) 

The internal forces, FIi, are defined as the set of end-effector generalized forces 

which do not contribute to the motion of the object. 

Definition 3.2: (Motion Forces) 
The motion forces, FMi, are defined as the set of end-effector generalized forces 

which contribute to the motion of the object. 

Proposition 3.1: Linear forces exerted by the end-effectors of CMMS onto the object 

may be resolved into three orthonormal directions of tangential, normal, and binormal 
directions, denoted by the vectors, e,, en, eb, respectively. The tangential direction is the 

direction along the path and the normal and binormal directions are obtained from the 
relationships of e, en = 0 and eb = e, x en . Then, any linear forces resolved along the 

normal direction or the binormal direction act as the internal forces. 

Proof: 

Since linear forces exerted by the end-effectors generate the necessary resultant linear 

force to move the object, they must satisfy the object dynamic equations denoted by the 



upper 3 components of the equation (2). On resolving both sides of equation (2) into 
orthonormal directions of e,, en, and eb, we conclude that the sum of linear forces along 

the tangential direction is the resultant force, and the sum of linear forces along the normal 

direction is zero, as the required resultant force along the normal direction is zero. 

Likewise, the sum of linear forces along the binormal direction is zero. From the above 

definition of the internal forces, we have now proved that any linear forces along the 

normal and binormal directions act as the internal forces. Q.E.D. 

Excessive internal forces may cause the carried object to be squeezed or stretched 

along those directions in which the internal forces are exerted. In order to prevent these 

undesirable effects, we need to identify the internal forces and constrain them. Note that 

any linear forces along the negative tangential diction also act as internal forces. This is 

seen from the fact that the sum of linear tangential forces must be equal to the required 

resultant forces. Likewise, any negative directional angular moments along the coordinate 

frame axes also act as the internal forces. We may constrain these internal forces as 

follows. 
FI{(t) 5 Ai Fi(t) 5 FIi+(t) i = 1, .., n . (8) 

T 
pr HneAi=[  033  03' ]E R 6 ~ ,  where pr is a projection matrix defined as Pr = [ 4 ] 

I3 
eb 

and the limits FIi(t) and Fli+(t) are prespecified. The first three components of equation 

(8) represent the constraints on the linear internal forces along the tangential, normal, and 

binormal directions, and the last three components represents the constraints on the angular 

internal forces(moments). The linear internal force on the tangential direction and the 

angular internal moments about the world coordinate frame axes can be limited by 

constraining the lower bounds in the respective components in equation (8). The vector 

notation for the internal force constrains is as follows. 

3.3. Linear Programming Problem(LPP) 

We are ready to state an algorithm to find the extreme values of the acceleration at the 

given point in the parameterized phase plane. First, let x = [ 8, FT, s lT E Rl2"+l . 



Then we can formulate a linear programming problem to find the extreme value of the 

acceleration, s , as follows. 

Find x which minimizes (or maximizes) 

s = [O, 0, ..., 0, I l T X  (10) 
subject to 

rl x = bl (1 1) 
b sr2 x s  b; (12) 

where, 
llT 0 .. 0 

z -J -E 

. . J, 
r 1 

x - = [  ( z - ) ~ ,  ( F - ) ~ , - - ] ~ ,  x + = [ ( ? + ) ~ , ( F + ) ~ , - I ~ .  

At any point on the phase plane (s, i), we can find from the LPP the minimum and 
maximum possible acceleration, smh and s,,, as long as there exists a feasible solution 

space which satisfies the given constraints, since all the coefficients are functions of s and 

6. Trajectory execution is impossible in the inadmissible or infeasible regions of the 

phase plane, as in those regions constraints given in equation (1 I), (12), and (13) are not 

satisfied. At the boundary of the inadmissible regions the maximum acceleration and 

minimum acceleration are the same. Once we obtain minimum and maximum acceleration, 
s- and i,,, which satisfy the LPP, it is guaranteed that any value of s E [ smi, , smax ] 

satisfies the constraints given by equation (1 l), (12), and (13). Similar proof of this fact 

is shown in Appendix of our earlier work[l]. 

Once the maximum and minimum acceleration are obtained, we can apply either 

Shin's algorithrn[6] or Bobrow's algorithm[7] to generate the time optimal trajectory plan 

for the CMMS. One comment is appropriate at this point. As the algebraic form of 

extreme accelerations is not available from the LPP, we are not able to develop a 

systematic search scheme to find the switching points as such scheme requires an 

algebraic expression of the extreme accelerations[l2]. 



IV. SUB-TIME-OPTIMAL TRAJECTORY PLANNING USING OPTIMAL 

LOAD DISTRIBUTION(OLD) SCHEMES 

In this section we develop a load distribution strategy which enables us to find sub- 

time-optimal trajectories for CMMS. This method requires considerably less computation 

time as it utilizes simple algorithmic search methods instead of the LPP method. It 

generates the true time-optimal trajectory plans under certain limited conditions. This will 

be shown in Lemma 4.1. 

4.1. Changing the Reference Frame of End-Effector Forces 

In order to simplify the development of our algorithm we specify the end-effector 

forces in the object coordinate frame which is located at the center of mass of the carried 

object. Previously, the end-effector forces were specified in the base coordinate frame of 

each manipulator. Notice that the object coordinate frame is the world coordinate frame 

translated to the center of mass of the object. As suggested by Uchiyama and Dauchez[8] 
and Walker et al.[9], we can transform the end-effector force Fi expressed in the i-th base 

coordinate frame to the resultant force Fi in the object coordinate system.(See Figure 2.) 

Fi = B~ F~ (14) 

where Bi was defined in equation (3). Therefore, equation (6) can be simplified as 

follows. 
n n 

p = B F =  ~ B ~ F ~  = Z B i ~ i l P i  = Z d i P i = i r 1  
i=l  i=l i=l 

(15) 

where B = [ I  I . . .  I, ] E and 1 = [ PIT p2T . , . pnT ] TE R ,". Notice 

that Bi is an identity matrix and B is different from B in equation (2). 

4.2. Load Distribution Scheme Based on The Generalized Inverse 

We can obtain the solutions of the equation (15) by using the generalized inverse of 

matrix B. 

P =  B+P+(I,,- B + B ) E  (16) 

where B+ is the generalized inverse of B matrix, I,,, is the 6 n  x6n identity matrix, and e = 

[ q T  .. enT ]* E R 6n with ei E R is an arbitrary vector. The choice of the generalized 

inverse matrix is open, and one possible criterion for selecting B+ is the one which yields 



the weighted minimum norm of F, IIFII = ( P A -l F )IQ, where A is a positive definite 

matrix. Then, B+ = A B ~  (B A BT )-I, as shown in [lo]. 
In order to simplify the problem we will assume that matrix A is composed of n- 

diagonal block matrices. The i-th block of matrix A  is ai 16, where ai is a positive 

number, then we have, 

A  = 

Then, 

ai After letting ai = ;; , we identify the internal force, FI ,  as 
r 1 

Notice the sum of internal forces are zero. Since the vector E is arbitrary, we may 
n 

assume that C ek = 0 without loss of generality. Then, equation (16) becomes 
k = l  

We will use equation (20) to represent the object dynamics in the optimal load 

distribution(0LD) scheme. The desired grasping forces can be specified in OLD scheme 

by specifying the internal forces in the appropriate directions. We expect the OLD scheme 

to generate slower trajectory compared to the LPP approach, since the OLD scheme 

imposes more constraints on force distribution compared with the underspecified object 

dynamic equation (6) used in LPP approach and it does not exploit the freedom to choose 

the internal forces. The OLD approach requires substantially less computation time to 

generate the trajectory plans because it employs a simple algorithmic search as opposed to 
linear programming techniques. However, we will show in Lemma 4.1, OLD algorithm 

does generate the true time-optimal trajectory if the internal forces are specified and the 

motion of the object is purely translational or rotational about an axis throughout the path. 



We can rewrite the dynamic equation of the manipulator using the equations (5), (14), 

and (20), then we obtain the dynamic equations of manipulators as 

q = ( ~ ~ i ~ ' + a ~  J: BI'H )S +(Dii iW+ ti' Ci  ii') i Gi+ J 9 ; I ( a i c + e i )  (21) 
n 

where ek = 0 .  
k= 1 

We can rewrite equation (21) in vector format as 
z = ( E  + A & ) s + A , Y + d  

where 

E(s) = [":I0] DMin ' , A a  = [ a r { 6  . . . 0 ad6 : ] , K = [ ~ ' T B 1 - l H ] ,  J ,~B~- 'H  

r 7 

Assuming that ni = 6 for each robots, we have 6n equations of following form. 
i- 1 

q = ( E i + a I K i ) s + a I Y i + d i ,  I l + i n t ( )  for i=I , . . ,6n .  (23) 

Here ?i is the i-th element of vector z and Ei , Ki , Yi , and di are the i-th elements of 

respective vectors, E, K, Y, and d. The in?(.) function truncates real number to an integer. 
Since is bounded as in equation (4), we may conclude that the acceleration along the path 

'S is bounded by 

gi(al)  I 5 I f i (a~)  for i = I,.., 6n (24) 

where * * * zi - aI Yi - di zi - a1Yi* 
fi(al) = E i  + a, K i  a n d g i ( a ~ ) =  E~ + a I ~ i  

?i+ i f p i  > 0 t i -  i f  pi > 0 
and q*= , Ti**= , andp i=  (Ei+ aIKi) .  

t i  i f  p i  < 0 ti+ if p i  < 0 

The feasible region which satisfies all 6n constraints in equation (24) is given by 
g ( a )  I s s f(a)  (25) 

where f (a)  = min Cfi(aI)l i = 1, 2,.., 6n ) and g (a )  = max {gi(aI)l i = 1, 2,.., 6n ), and 

a = [al  a2 . . an lT. Then the optimal distribution factor a' may be obtained as the one 

which generates the maximum or minimum acceleration. 

The below Lemma 4.1 shows that OLD approach is equivalent to the true time-optimal 

trajectory(LPP) approach given in the Section 3 under the certain conditions. 



Lemma 4.1 : In CMMS with the rigid contact of the object, if the internal forces are 

specified and the motion of the object is purely translational or rotational about an axis 

throughout the path, the maximum and minimum accelerations obtained from the OLD 

algorithm are exactly the same as the ones obtained from the LPP approach. 

Proof : 

Since both approaches are designed to optimize the acceleration on the phase plane 

subject to the same constraints except the internal force constraint and the object dynamic 

equations, we need to show that these constraints are equivalent under the given 

conditions. If we assume the internal forces are specified, then the internal force constraint 

is the same for both approaches. In order to show that the dynamic equations of motion 

for the object used in the both approaches are equivalent, first notice that F~ = Fi for rigid 

contacts from (3) and (14). Rewriting the dynamic equation of the object in LPP approach 

from equation (6), we have 
n 

B F =  Z Fi  = P .  
i = I  

(26) 

The object dynamics for OLD approach is from equation (20) as follows. 

Fi = ai P + Fli for all i .  (27) 

Since the sum of the internal forces is zero, it is obvious that equation (27) implies the 

equation (26). Now, we need to show that equation(26) implies the equation (27) under 

the given conditions. Notice that 

where FMi  is the motion force generated by the i-th manipulator. In the purely 

translational object motions, the linear motion forces do not have any normal or binormal 

directional forces as shown in the Proposition 3.1. Thus the linear motion forces must be 

along the positive tangential direction which is the direction of the required force, that is, 
FMi = ai P where ai is a positive constant. Thus equation (26) implies equation (27) in 

this case. In purely rotational motion about an axis, the angular motion forces(moments) 

must be only about the axis of rotation. Otherwise, angular internal forces(moments) are 

generated, which would add to the internal moments and contradict the condition of the 

specified internal forces. Therefore, equation (26) implies equation (2,7) in this case, too. 

Hence, we showed the equivalence of dynamic equations given by (26) and (27), under the 

given condi tions. Q.E.D. 



4.3. Finding A Load Distribution Factor For Two Manipulators Case 
If two manipulators are used to manipulate an object, only one independent 

distribution parameter a = ai is required to describe the load distribution as a2 = (I - a). 

Thus we are only required to find the scalar optimal distribution factor a. Now the object 

dynamics of equation (20) becomes 

= [('%PI + [:A. 
Then the acceleration is bounded by 

g (a )  S s Sfla) (30) 

wherefla) = min Cf,(a)l i = 1,2 ,.., 12 ] andg(a) = max {gi(a)l i = 1,2 ,.., 12 1, and 
* - zi - a Y i -  d i  zif*- Z y i  - di  

fi(@ = and gi(a) = 
E~ + E K ~  E~ + E K ~  

* ** Here E =  a for i = 1 ,.., 6 and Z =  (I-a) for i = 7 ,.., 12, and %i, zi , zi , Ei , K i ,  Y i ,  
and di are defined similarly as in equation (23) and (24). We will callfla) the minimum 

acceleration curve and g(a)  the maximum acceleration curve. Then, the optimal 

distribution factor a* may be obtained as follows. 

arg m'zx f (a)  in the acceleration region 
a* = { o-<asi 

a rg  min g (a )  in the deceleration region. 
O l a s l  

In order to attain the trajectory with minimum traversal time, we need to drive the 

manipulator at the maximum possible acceleration and brake it at the maximum possible 

deceleration. From equation (32), we conclude that the maximum possible acceleration or 

deceleration can be determined by selecting the optimal distribution factor a constrained by 

0 I a I 1. In the following, we describe line search algorithms which can be used to find 

optimal load distribution factors, exploiting the properties of the functions in equation (31) 

for the two manipulators case. First we consider the below lemma. 

Lemma 4.2 : For the functions of the formfi(a) = ci + k i , where ci , ki and Pi are 
a + Pi 

known constants, (a) there exist at most two intersections between two distinct functions of 
the formfi(a), and (b) the functionfi(a) is a monotonic function for all a E (-=, -Pi). 
This is also true for all a E (-Pi, =) . 
Proof : 
(a) Assume that there exist intersections between two functions fi(a) andfi(a). Then 

equating fi(a) = f2(a) gives us, 



(c1 -c2 >d + (cI& + ~1Pl +kl- ~ 2 P l -  4 2  -k2 )a+ (CIPI +kl )B, - (c2& +k2 )PI = 0 . 
If c, # c2, then we obtain a as follows. 

where j3 = cIP2 + c1P1 +kl- c2P1 - ~ 2 P 2  -k2 

If cl = c2 = c and kl + k2, then we have, 

If cl = c2 = c and kl = k2 + 0 ,  then it implies that intersection occurs under following 

condition. 

kl (P2 - Pl I= 0 (35) 
This implies that P2 = PI, which contradicts the assumption that functionsf, and f2 are 

distinct. If cl = c2 = c and kl = k2 = 0 ,  this implies fl = f2 = c which also contradicts the 

assumption that functionsf, and f2 are distinct. Thus, we showed that there exist at most 

two intersections between fl and f2 , if they exist and the functions are distinctly different. 

(b) Since fi(a) is continuous over a E (--, -Pi), it is enough to show that fiO(a) 2 0 in 

order to prove thatf,(a) is an increasing function over a E (--, -Pi). Similarly, fi'(a) I 
- ki 

0 for a decreasing function. Sincefi'(a) = it is obvious that ,f;: is an increasing 
(a+Pi12 ' 

function for ki I 0 or a decreasing function for ki 2 0 over a E (--, -Pi). The proof of 

the second statement follows from the proof of the first statement. Q.E.D. 

The above lemma suggests that we may employ line search algorithms to find the 
optimal distribution factor a*, since the functions offi(a) and gi(a) in equation (31) have 

the form of ci + k i . As an example, consider the four different functions of fi(a) 
a + Pi 

and gi(a) of the form ci + k i . As shown in Figure 3, two functions are increasing 
a + Pi 

and the other two are decreasing over a E (0, 1). The minimum acceleration curvefla) 

among the four functions, and the maximum acceleration curve g(a) among the four 

functions are shown in the figure. From equation (32), we can conclude that the optimal 
distribution factor d = arg max fla) = 0.22 in the acceleration region. Similarly, a* = 

Olall 
arg min g(a) = 0.27 in the deceleration region of the path. 

0-GSl 

If at least one of the functions is not continuous over a E [0, 11, i.e., if a E [0, 11 is a 

point of discontinuity, we need to divide the given line search into two admissible regions 



of [0, a] and [a,  11. After obtaining the optimal distribution factors a*l E [O, a ]  and 

a*2 E [a, 11, one can determine the optimal distribution factor as a* = arg mar ma*]) , 

f(a*2)) in the acceleration region and a*= arg min (g(a*]), g(a*2)) in the deceleration 

region from (32). The Algorithm 4.1 constructs the piecewise minimum acceleration curve 

f(a) defined in equation (30) over a number of intervals. 

Algorithm 4.1 (Minimum acceleration curve) 
Step 1 ; Assuming that all the functions of fi in (31) are continuous over (a,, af), let 

fl = ( 4  If,(a,) = min fk(ao), k = 1, .., 12). 

Step2; For i = 1 , 2  ,.., 12, do Step 3,4, and 5. 

Step 3 ; Find all intersection points between fi and all remaining functions f ,  # f i ,  j = 

1, ..., 12. For the points a E [ai-], af] where intersection occur, let the point a 

which results in the minimum function value of ?,(a) be ai. Also let the 

crossing function at ai with f i  be Ti+] . If there exist more than one crossing 

function at ai, then let the one with least slope be fi+l. 

Step 4 ; If there is no a s [ai-l, af] where an intersection occurs, let a, = af and stop. 

Step5 ; Seti = i + 1. 

The above algorithm generates the minimum acceleration curve of f(a) defined in (30) as 

follows. 
f 

f l ( a )  for a E [a, ,  a1 I 
f(a)= 

f m ( a )  for a E [a,-l, am I 
wheream= afand Ti= (f,lf,(a) = nfnfk(a), k =  1, .., 12 for a s  a , ] )  

In the below, we will state some lemmas on the minimum acceleration curve which 

will be used in the proof of the optimal load distribution algorithms detailed later. Also, 

we define the candidate point as the intersection point between an increasing function and a 

decreasing function of (31) in the remainder of this paper. Figure 3 shows four such 

candidate points denoted as ai for i = 1, .., 4. 



Lemma 4.3: There exists one or no candidate point on the minimum acceleration curve 

fla), generated by Algorithm 4.1. 

Proof : (By Contradiction) 

Suppose that there exist two candidate points on the minimum acceleration curve, 
namely, at al and a2 . Without loss of generality, assume that al < a2 . ~etfi '  andfi- 

be the increasing and decreasing functions which intersect at q such that fi+(ai) =fi-(ai). 

Consider the following two cases. 

(i) If fl-(al) < f2-(a2): Since fl- is a decreasing function and al < a2 , we have fl- 

(g) < fi7a1). This implies that f17a2) < f2-(%). It means that the candidate point 

f2-(a2) is not on the minimum acceleration curve. 

(ii) If fl-(al) 2. f2-(a2): since f2+ is an increasing function and al < a2 , we have 

f2+(a2) > f2+(al). This implies that fl-(al) > f2+(al) since f2+(a2) = f2-(a2). It 

means that the candidate point fl-(al) is not on the minimum acceleration curve. 

Q.E.D. 
The previous lemma tells us that the minimum acceleration curve is made of either just 

decreasing functions, or just increasing functions, or at most there can be one intersection 

of an increasing function and a decreasing function. This leads us to the below lemma. 

Lemma 4.4: Assume that there exist n, candidate points, which are the intersection points 

between an increasing function f: and a decreasing function fi- at ai E [a,, for i = 1, 

2 ,  n . Let aq = arg min V,-(ai), for i = 1,2 ,.., n, 1. Assume that the point fq-(aq) 

is not on the minimum acceleration curvefla). Then there is no candidate point on the 

minimum acceleration curve. 

Proof : (By Contradiction) 

Suppose that there exists a candidate point on minimum acceleration curvefla) at ap, 

where p # q and p E (1,2,.., n , ) .  Without loss of generality, we assume that ap > aq . 
Since fq-is a decreasing function at aq , we have fq-(ap) < fq- (ay) . Also from the 

definition of a, , we have fq-(a,) = min V,'(ai), for i = 1,2,.., n, 1, and it means that 

f a q  5 f P ( a )  . Thus, we have fq- (ap) < &-(ap) . It implies that the candidate point 

fp-(5) is not on the minimum acceleration curve. Q.E.D. 

Therefore, from the above lemma we conclude that if the candidate point with the 

minimum acceleration is not on the minimum acceleration curve, there is no candidate point 

on the minimum acceleration curve. Now, consider the next lemma. 



Lemma 4.5: Assume that there exists a candidate point at a k  on the minimum acceleration 

curve ffa), generated by Algorithm 4.1. Then ak = arg max (f(a) for a E [a,, QI] ) . 
Proof : (By Contradiction) 

Suppose that flaj) = m a  (f la)  for a s  [a,, af I ) ,  where a, E [a,, af ] is any 

point other than ak . Since we know that there exists at most one candidate point on the 

minimum acceleration curve from the Lemma 4.3, f(a,) is not a candidate point. Without 

loss of generality, we assume that ak c a, . Let f; and f j  be the increasing and the 

decreasing functions at ak. Then, we have fk-(a,) c fk-(ak). Also we know that 

f(a,) S fk-(a,) from the fact that f(a) is the minimum acceleration curve. Thus we 

conclude that fla, ) c fk7aJ = f (ad. This shows that a, # arg max m a )  for a E [a,, 

af 1).  Q.E.D. 

Based on the previous lemmas, we have devised two search schemes to find the 

optimal load distribution factor in the acceleration region(0LDA). 'The Algorithm 4.2 

utilizes the minimum acceleration curve concept, while the Algorithm 4.3 employs the 

candidate points to determine the optimal load distribution factors. Later, we will compare 

the computational efficiencies of the two algorithms. 

Algorithm 4.2 (OLDA using Minimum Acceleration Curve) 
Step 1 ; Construct the minimum acceleration curve as in Algorithm 4.1. until it encounters 

a decreasing function fi at ai-l . Let ai-~ be the optimal load distribution factor 

a* and stop. 

Step 2 ; If the minimum acceleration curve does not encounter a decreasing function for a 
E [a,, QI 1, let the optimal distribution factor a* = af and stop. 

Theorem 4.1 : The optimal load distribution factor obtained from the Algorithm 4.2 is 
optimal in the sense that a* = arg ma. fla) yields the maximum acceleration at a point 

aF<a_<af 

in the phase plane, wherefla) is the minimum acceleration curve. 

Proof : 
First consider when Algorithm 4.2 encounters a decreasing function at i = 1, then the 

minimum acceleration curve is only composed of decreasing functions. This results in a* 
= a, . If the decreasing function is encountered when i > 1, then a,-l is the candidate 

point on the minimum acceleration curve, and ai-~ is the optimal distribution factor from 

Lemma 4.5. If the minimum acceleration curve does not encounter any decreasing 



functions for a E [a,, O C ~  1, then the minimum acceleration curve is composed of only 

increasing functions. Thus, a* = 9. Q.E.D. 

Algorithm 4.3 (OLDA using Candidate Points) 
Step 1 ; Assuming that the functions fi , j = 1,2, .., 12, in (31) are continuous over (a, 

, af), find all candidate points (ai , oi ) where ai E [a,, af 1 and q =fit(ai), i 

= 1 2, . n . Note that fit andfi- are the increasing and decreasing functions 

which intersect at ai , thus oi =fit(ai) =fi-(ai). 

Step 2 ; Let the candidate point with the lowest acceleration occur at aN, that is, aN = arg 

min { o i ,  i =1, 2, .., nz). If aN = min Cfi(aN), i =1, 2, .., 121, go to Step 3. 

Otherwise, go to Step 4. 
Step 3 ; Then the optimal load distribution factor be a~ and stop. 
Step 4 ; Let fM = { f ;  If;(ao) = mfn fk(ao), k = 1, .., 12). If fM is decreasing over (a,, 

af ), then the optimal distribution factor a* = a, and stop. If fM is increasing 

over (a,, q ) ,  then the optimal distribution factor a* = af and stop. 

Theorem 4.2 : The optimal load distribution factor obtained from the Algorithm 4.3 is 
optimal in the sense that cr' = arg max fla) yields the maximum acceleration at a point 

a,<acy 

in the phase plane, wherefla) is the minimum acceleration curve. 

Proof : 
There are two cases to consider. If aN = min Cfi(aN), i =1, 12, .., 121, then we 

know that oN is the point on the minimum acceleration curve. Since (aN , ON ) is a 

candidate point, it implies that aN = arg mar Cf(a) for a [ a ,  91) from Lemma 4.5 . 
If ON # min Cfi(aN), i =1, 2, .., 121, ON is not on the minimum acceleration curve, 

which implies that there is no candidate points on the minimum acceleration curve from 

Lemma 4.4. Therefore, the optimal load distribution factor is either a, or 9, depending 

on the minimum acceleration curve f(a). Iffla) is decreasing, a* = a, and if f(a) is 

increasing, a* = af. Q.E.D. 

We can compare the relative efficiency of the two algorithms 4.2 and 4.3 by estimating 

the number of calculations required to find the intersection points at one particular point in 

the path. Since the computation time required to select the minimum value is significantly 

less compared to time required to perform algebraic calculations, we will ignore the 

computation time required to find the minimum values in both algorithms. For simplicity, 



we will assume that there exists only one intersection point between two different 

functions. This is a valid assumption since the intersections can occur at most in a pair as 

in (33), and both of them can be calculated simultaneously without significant increase in 

the computation time. Let the number of functions considered in Algorithm 4.2 and 4.3 be 

N. In Algorithm 4.2, the maximum number of calculation will consist of finding all the 
iV2- N 

intersection points between two different functions, that is, ( ) = -7 at each path 

N Nl2 
point under consideration. The average number of calculations is ( ) - ( ) = 
3 ~ ~ -  2N 

8 , if we assume that the the first decreasing function in the minimum acceleration 

curve occurs in the middle of the search in Algorithm 4.2. Assuming that the number of 
the increasing functions is Ni and the remaining functions are decreasing, the number of 

calculations required to find the candidate point in Algorithm 4.3 is Ni (N-Ni ). The 
N maximum of number of calculations occurs at Ni = T,  thus the maximum number of 

N N N~ 
intersection calculation in Algorithm 4.3 is z = at each trajectory sampling point. 

(Note that if N is an odd number the bound still remains the same, as the maximum number 
(N- 1 ( 1  N -  1 N~ 

is 2 - 4  S ) When N = 12, which is typical for two robots case, 

the maximum number of calculations required to find the intersection points is only 36 in 

the Algorithm 4.3, compared to the maximum of 66 calculations and the average of 51 

calculations required in Algorithm 4.2. This clearly shows that the Algorithm 4.3 is more 

efficient than the Algorithm 4.2 in general. 

In the below, we state OLDD(0ptimal Load Distribution in Deceleration region) using 

the candidate points as in Algorithm 4.3 without proof. One can easily prove the optimality 

similarly from the proof of Theorem 4.2. Naturally, the proof of optimality for the 

Algorithm 4.4 requires the construction of the maximum acceleration curve and lemmas 

similar to those presented for the minimum acceleration curve. 

Algorithm 4.4 (OLDD using Candidate Points) 

Step 1 ; Assuming that the functions g, , j = 1,2, .., 12, in (31) are continuous over (a, 

, af), find all candidate points ( a i ,  oi ) where ai E [a,, 9 1 and q = g:(ai), i 
- 

= 1,2, .., n, . Note that g: and gi are the increasing and decreasing functions 

which intersect at ai , thus oi = gT(ai) = gi-(ai). 



Step 2 ; Let the candidate point with the maximum acceleration occur at a ~ ,  that is, a~ = 

arg max { a i , i  =1, 2, .., n,) .  If ON = m a  {gi(aN), i =:I, 2, .., 121, go to 

Step 3. Otherwise, go to Step 4. 
Step 3 ; Then the optimal load distribution factor be a~ and stop. 
Step 4 ; Let gu = {gj l g,(a,), j =1, 2, .., 12). If g, is decreasing over (a,, af ), 

then the optimal distribution factor a* = af and stop. If gw is increasing over 
(a,, af), then the optimal distribution factor d = a, and stop. 

Consider two planar robots of three degree-of-freedom manipulating a bar in the 

vertical plane as shown in Figure 4. We assume that the end-effectors grasp the object 
rigidly, so there is no relative movement between the end-effectors and the object. Let lij 
and mij be the length and mass, respectively, of the j-th link of the i.-th robot. We are 

given 111 = 112 = 121 = 122 = 1 m , zl3 = 123 = O.lm and mll = 5 kg, m12 = 4 kg, mi3 = 

0.5 kg, rn2, = 5 kg, m22 = 4 kg, and mi3 = 0.5 kg. The mass of the object is 2 kg. We 

also assume that each link of the robot is a cylinder with radius rij - 0.1 m for all i, j. 

Then the inertia seen at joint j of the i-th robot is then given by 
1 I..=-m..(3r..2 + 1.2).  

'I 12 '1 '1 rl (37) 
The world coordinate reference frame is attached to the base of manipulator 1 at O1. Thus 

O1 has coordinates (0,O) and O2 is fixed at (0.7,O) in the world coordinate frame. The 

trajectory of the object center of mass is a straight line from the initial position (0.35, 1 .O) 

to the final position (0.65, 1.4). No rotations are specified along the trajectory. 

5.1. Zero Internal Forces 
In this example, we assume the two manipulators have the same torque capabilities. 

The input torque limits are rll+ = 100 Nm, r12+ = 80 Nm, r13+ = 50 Nm, r21+ = 100 

Nm, q2+ = 80 Nm, q3+ = 50 Nm, and rij- = - rij+ . We will assume the desired 

internal forces are zero in this example. From the LPP approach, we obtain the optimal 

phase plane curve which has one switching point at s = 0.6, as shown in Figure 5(a), and 
the resulting optimal traversal time is 339 msec. The computation time required to generate 
the trajectories on a Gould NP1 machine is 5.78 sec for LPP method. Since we used 

108 phase plane steps to obtain the trajectory plan, each step takes the average computation 

time of 53 msec. 



A traversal time of 339 msec is also obtained from the OLD algorithm as the internal 

forces were set to zero and no rotation of the object occurs during the motion. This result 

agrees with the conclusion of Lemma 4.1. The computation time required to generate the 

trajectory is, however, 0.8 sec in the OLD algorithm, much faster than 5.78 sec required in 

the LPP method. Here 79 phase plane steps were required, and each step took an average 

computation time of 10 msec. This is only 19 % of the computation time required by the 

LPP approach. The graph showing the optimal load distribution factor throughout the 

entire movement of the object is given in Figure 5(b). The input torque profiles are shown 

in Figure 5(c). In Figure 5(b), we notice that the object load is almost fully taken by the 

second robot in the deceleration region. We believe that this happens because the optimal 

load distribution depends on the configurations of the each manipulator. As we show in 

section 5.3, the load distribution also depends on the capacity of the manipulators. 

5.2. Internal Force Constraints 
In this example, we consider the same two robots used in the previous example. In 

order to show the sub-optimality of the OLD algorithm, we imposed some internal force 

constraints in the LPP algorithm. The internal force constraints we imposed on the object 
were -10 N I f i ,  I 1 0  N and -10 Nm -<A, -< 10 Nm, where fin is the normal directional 

forces exerted by the i-th end-effector and& is the angular moment along the z direction 

exerted by the i-th end-effector. The final traversal time we obtained from the LPP 

approach is 316 msec which is slightly faster than the traversal time :339 msec obtained 

from the example of Section 5.1. The phase plane curve for this trajectory is given in 

Figure 6(a). It shows that the switching occurs at s = 0.63. The end-effector forces 

along the tangential and normal direction and angular moment along the z direction are 

shown in Figure 6(b). The joint torque profiles are shown in Figure 6(c). As we can see 

in Figure 6(c), the utilization of the input torques is increased in the deceleration region, 

compared with Figure 5(c), which helped reduction of the traversal time compared to zero 

internal force case of Section 5.1. The computation time required to obtain this trajectory 

was 6.46 sec. 

5.3. OLD Approach with Two Different Robots 
In this example, we consider two robots with different joint torque capabilities. The 

input joint torque limits are rll+ = 100 Nm, r12+ = 80 Nm, r13+ = 50 Nm, rzl+ = 70 

Nm, r22+ = 50 Nm, 723' = 30 Nm, and rii- = - rii+ . The second robot now has a 

lower torque capacity, while the first robot has the same capacity as the one used in 



previous simulations. We assumed that zero internal forces are specified in this example. 

As seen in Figure 7(b), the load distribution factor remained between 0.4 and 1 .O during 

the entire trajectory execution. Compared to the case in Section 5.1, the optimal load 

distribution has been shifted more to the robot with the larger capacity. The final traversal 

time we obtained is 393 msec which is slower than 339 msec of Section 5.1. The 

computation time required by the OLD algorithm is 0.64 see. The phase plane curve of the 

optimal trajectory is shown in Figure 7(a), and the input torque profiles are given in Figure 

7(c). It shows that the switching occurs at s = 0.65. 

VI. DISCUSSIONS AND CONCLUSIONS 

In this paper we presented two schemes to generate the time-optimal trajectory 

planning and sub-time-optimal trajectory planning for cooperative multi-manipulator 

system. The first approach used the linear programming problem(LPP) technique to 

obtain the maximudminimum acceleration in the phase plane, and allowed us obtain the 

time-optimal trajectories. However, the computation time required by the mathematical 
programming method prohibits any possibility of using this algorithm in the real time 

applications. The second approach(0LD) which employs the algebraic search algorithms 

to determine the maximudminimum acceleration in the phase plane generates slightly 

slower trajectory than the first approach does in most cases. However, it requires only a 

fraction of computation time compared to the LPP approach, which does provide the 
possibility of utilizing this method in the real time control problem. 

In cases where the internal forces are specified and the motion of the object is purely 

translational or rotational throughout the path, the OLD approach produces exactly the same 

trajectories as the LPP approach does but only in a fraction of time compared to the LPP 

approach. This was proven in Lemma 4.1 and validated by the example in Section 5.1. 

This result is quite significant considering that the computation time has been reduced by 

one-fifth and the simulation in Section 5.2 shows that the constraining the internal forces in 

the certain range does not lead to much reduction of the traversal time. In many 

applications of CMMS, we will have to constrain the internal forces in a certain range, if 

not zero, in order to prevent the breakage or slipping the object during the motion. 
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Figure 1. Schematic diagram for cooperative multi-manipulator system. 

manipulaw A 
manipulator 1 
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Figure 2. Resultant forces expressed in the different coordinate frames. 
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ki Figure 3. Four different functions offi(a) and gi(a) of the form ci + -- . 
a + Pi 

Figure 4. Two three degree-of-freedom manipulators of CMMS. 
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Figure 5.(a) The phase plane curves for zero internal forces case. 

Figure 5.(b) The optimal load distribution factor for zero internal farces case. 



Figure 5.(c) The torque profiles for zero internal forces case. 

Figure 6.(a) The phase plane curves for internal forces constraints case. 



Figure 6.(b) The force profiles for internal forces constraints case. 

Figure 6.(c) The torque profiles for internal forces constraints case. 



Figure 7.(a) The phase plane curves for optimal load distribution approach with two 
different robots. 

Figure 7. (b) The optimal load distribution factor for optimal load distribution approach 
with two different robots. 



Figure 7.(c) The torque profiles for optimal load dismbution approach with two different 
robots. 
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Schematic diagram for cooperative multi-manipulator system. 

Resultant forces expressed in the different coordinate frames. 
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Two three degree-of-freedom manipulators of CMMS. 

The phase plane curves for zero internal forces case. 

The optimal load distribution factor for zero internal forces case. 

The toque profiles for zero internal forces case. 

The phase plane curves for internal forces constraints case. 

The force profiles for internal forces constraints case. 

The toque profiles for internal forces constraints case. 

The phase plane curves for optimal load distribution approach with two 

different robots. 

The optimal load distribution factor for optimal load distribution approach 

with two different robots. 

The toque profiles for optimal load distribution approach with two different 

robots. 
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