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Observation of Self-Patterned Defect Formation in Atomic Superfluids–from
Ring Dark Solitons to Vortex Dipole Necklaces
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1Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
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Unveiling nonequilibrium dynamics of solitonic and topological defect structures in a multidimensional
nonlinear medium is a current frontier across diverse fields. One of the quintessential objects is a ring dark
soliton (RDS), whose dynamics are expected to display remarkable interplay between symmetry and self-
patterned topological defect formation from a transverse (snake) instability, but it has thus far evaded full
experimental observations. Here, we report an experimental realization of RDS generation in a two-
dimensional atomic superfluid trapped in a circular box. By quenching the confining box potential, we
observe an RDS emitted from the edge and its peculiar signature in the radial motion. As an RDS evolves,
we observe transverse modulations at discrete azimuthal angles, which clearly result in a patterned
formation of a circular vortex dipole array. Through collisions of the vortex dipoles with the box trap, we
observe vortex unbinding, vortex pinning to the edge, and emission of rarefaction pulses. Our box-quench
protocol opens a new way to study multidimensional dark solitons, structured formation of topological
defects, and potentially the dynamics of ordered quantum vortex matter.

DOI: 10.1103/PhysRevX.13.031029 Subject Areas: Atomic and Molecular Physics,
Condensed Matter Physics,
Nonlinear Dynamics

Vortices and dark solitons are fundamental defect struc-
tures that appear in nonlinear physics at all scales, from
superfluids and nonlinear optics to cosmic fluids. They play
critical roles in understanding the dynamics and micro-
scopic characteristics of the hosting medium. A quantized
vortex emerges as a result of a topologically protected
singularity with a 2π phase winding. In quantum gases,
beginning with seminal experiments with dynamical opti-
cal imprinting techniques [1], vortices are also produced by
injecting angular momentum through stirring [2–7].
Several other techniques have been discovered [8].
While most experiments have excited disordered vortices
with equal or both circulations or a vortex lattice of the
same charges [2,3], few-vortex structures with engineered
flow patterns were realized only recently [9,10]. A dark
soliton, on the other hand, features a phase jump across a

nontopological defect in the wave function and is discov-
ered primarily through phase [11–13], density [14,15], or
state [16,17] engineering techniques or by matter-wave
interference [18–20]. By driving a quantum gas through a
continuous phase transition, both vortices and solitonic
defects are found to form spontaneously via the Kibble-
Zurek mechanism [21–25], indicating their complementary
roles in a universal defect formation process.
Remarkably, in two or three dimensions, dark solitons

are fundamentally connected to highly ordered vortex
states of complex phase patterns through an intrinsic
instability [26], where a self-amplifying transverse modu-
lation can fragment a stripe (or plane) of phase defect into
an ordered array of vortex and antivortex (line or ring)
pairs. This fascinating process, called transverse insta-
bility (TI), has been under heavy investigation in diverse
fields for decades [27], including quantum gas experi-
ments [13,14,16,19,28,29]. In previous experimental stud-
ies, however, vortices were often observed as disordered
decay products of dark solitons. Self-patterned, ordered
vortex dipole arrays have never been clearly visualized.
Controlling soliton generations and its instability could

open a doorway towards forming complex vortex structures
that are arduous to reach artificially. In a two-dimensional
(2D) quantum fluid, an interesting example emerges from a
ring dark soliton (RDS) [30] that manifests as a circular
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dark stripe formed under rotational symmetry. An RDS
does not disperse due to the balance between self-
defocusing and wave dispersion [31,32], similarly to
straight counterparts, and it naturally exhibits radial
oscillations while varying its profile. Breaking the rota-
tional symmetry of an RDS feeds TI [27,33]. This results
in elusive formation of a vortex dipole “necklace,” which
consists of a circular array of vortex-antivortex pairs [34].
Remarkably, such ordered vortices with alternating
charges may exhibit a variety of many-body dynamics,
including persistent revivals of structures [19,33,35] and
clusterization [35–38], which do not occur in disordered
vortex matter [6,7]. Moreover, structured vortex matter
can melt under significant perturbation and may even-
tually lead to chaos or turbulence [38–40].
While RDS-like dark waves were previously engineered

via phase imprinting in nonlinear optics [41,42] or have
emerged from shock-wave emissions in atomic or polari-
tonic condensates [43,44] and optics [45], one central
question concerning this study is whether self-patterned
solitonic and topological defect formation via an RDS can
be controlled and clearly observed. Here, we show that a
box-confined superfluid serves as a perfect arena [46]. RDS
formation can be realized in a box trap with a sharp wall,
whose width is comparable to or smaller than the superfluid
healing length. The edge profile of a superfluid can be
viewed as a density defect [Fig. 1(a), top panel]. A quench-
down of the potential height or an interaction quench-up
would effectively cause shrinkage of the defect because the
edge of the superfluid expands outwards (bottom panel).
This dynamics forces the edge to emit dark solitons to
conserve atom number, an effect that has recently been
discussed in a case of an interaction quench-up with a
perfect wall [47]. The mechanism is similar to an inter-
action quench that splits a full dark soliton as described in
Refs. [48,49]. An alternative interpretation of this edge
effect is self-interference [50], where an expanding super-
fluid bounces off the wall, and the interference between the
bulk and the reflected flow induces phase slips, thus
forming dark solitons. This effect should occur in quenched
nonlinear systems with sharp boundaries—a (D − 1)-
dimensional shell wave could form from a D-dimensional
system, which is difficult to achieve with existing engineer-
ing techniques [11–20].
In this article, we report the first observation of self-

patterned defect formation in a box-confined 2D superfluid.
We demonstrate spontaneous RDS formation and unveil its
radial dynamics with a symmetry-breaking TI at discrete
azimuthal angles. We visualize structured fragmentation of
an RDS into a necklace of vortex dipoles. The observed
vortex dipole structures include not only weakly bound
vortex-antivortex pairs but also coalesced vortex cores and
rarefaction pulses. They are subject to collisions, inter-
actions with the boundary, and annihilation, potentially
showing rich nonequilibrium dynamics of quantized 2D
vortex matter.

Our experimental scheme is illustrated in Fig. 1(a). A 2D
circular box is enclosed by a ring-shaped repulsive wall that
has an approximate Gaussian radial profile (1=e2 width,
about 5 μm). The box confines a homogeneous 2D super-
fluid, with negligible thermal components, formed by
cesium atoms with an initial bulk density n ≈ 50 μm−2
and prepared at a fixed coupling constant g ≈ 0.017, which
leads to a long healing length ξ ¼ 1=

ffiffiffiffiffi
ng

p ≈ 1.2 μm con-
venient for in situ defect measurements (Appendix A). The
chemical potential is μ ≈ ℏ2=ðmξ2Þ ≈ kB × 3 nK, where
ℏ ¼ h=2π is the reduced Planck constant, m is the atomic
mass, and kB is the Boltzmann constant. At time t ¼ 0, the
height of the wall potential is quenched from kB × 35 nK to
9 nK. Because of the much-reduced repulsion from the
Gaussian wall, the superfluid would expand outwards,
forcing the boundary to emit a ring-shaped dark wave.
One signature of an RDS is its radial collapse dynamics,

described by a wave function that is essentially identical
to a 1D dark soliton in the radial coordinate [30],

ψðr;tÞ¼ ffiffiffi
n

p �
i

ffiffiffiffiffiffiffiffiffi
1−d

p þ ffiffiffi
d

p
tanhðr−rc=wÞ

�
e−iμt=ℏ, where

rcðtÞ is a time-dependent radius. The depth d controls
the radial velocity ṙc ¼ �vs

ffiffiffiffiffiffiffiffiffiffiffi
1 − d

p
and the characteristic

width w ¼ ξ=
ffiffiffi
d

p
, where vs ¼ ℏ=mξ is the sound speed.

Unlike linear dark solitons, the depth of an RDS does not
remain constant but acquires an adiabatic radial depend-
ence to conserve its energy (Appendix B),

d ≈ dðtiÞ
�
rcðtiÞ
rc

�
2=3

; ð1Þ

where dðtiÞ and rcðtiÞ are the initial conditions. Both
radial speed and width also pick up their radial depend-
ences accordingly. For a shrinking RDS, the maximum
depth (d¼1) can be reached at a minimum radius rmin ¼
rcðtiÞdðtiÞ3=2 ≳ ξ. At this point, the radial motion would
come to a complete stop, followed by expansion [30]. For a
shallower or smaller RDS with rcðtiÞdðtiÞ3=2 ≲ ξ, it could
collapse into a single defect.
Numerical evaluation of a GPE (Appendix C) supports

RDS emission from this quench protocol. As shown in
Figs. 1(b) and 1(c), initially two distinct RDSs can be seen
to emerge from the edge of the wave function. A slower-
moving, darker ring shrinks until it reaches the maximum
depth and a minimum radius. The ring then rebounds and
expands radially. Another shallower, faster-moving ring
appears to collapse at the center but would emerge again as
an expanding ring. Both RDSs are later reflected off the
box wall as discussed in the case of 1D solitons [51],
exhibiting bouncing dynamics periodically. These box-
trapped RDSs cross each other multiple times with pre-
served shapes and appear to be long-lived if rotational
symmetry is not explicitly broken. However, they radiate
additional shallow RDSs after collapsing at the box center,
when the radial motion becomes nonadiabatic.
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We experimentally confirm RDS emission from in situ
images of box-quenched superfluids. Figure 1(d) shows
qualitative correspondences between single-shot experi-
ment density profiles and GPE results. A prominent dark
ring is clearly visible within t≲ 50 ms until a minimum
radius is reached. The line-cut density [Fig. 2(a)] averaged
over different experimental shots clearly shows the dark
ring’s radial bouncing dynamics. A less visible, shallower
dark wave is found to cross near the box center at
t ≈ 30 ms, similar to the GPE result [Fig. 1(b)].
Initial radial velocities of the darker (v1) rings are shown

in Fig. 2(b). Wave speeds from samples with a larger
chemical potential, but with the same quench protocol, are
plotted for comparison. All measured velocities are sig-
nificantly lower than the sound speed. We note that there is
an anisotropy in the observed wave velocities across the
box center. This originated from an azimuthal variation in
the wall width, which is due to aberration in our optical
potential, and this gives a slight anisotropy in the soliton
depth and radial velocity as well. As a result, the dark
ring center appears to be drifting slightly in the box,
with ðx0; y0Þ ≈ ð2.6;−2.2Þ μm at t ≈ 50 ms. For all quoted

positions in the following analyses, the shift has been
corrected.
The observed radial dynamics can be compared with

predictions based on Eq. (1) and the measured initial
conditions. From the initial wave velocity (v1 ¼ ˙̄rc≈
0.3 μm=ms) and ring radius r̄c ≈ 11 μm measured at
ti ≈ 13 ms, the dark ring is expected to reach a minimum
radius rmin ≈ 3 μm, agreeing well with our observation of
approximately 3.2 μm. To compare the entire density
evolution with expectations, we fit the detected ring
density dips [Fig. 2(c)] with nðxÞ ¼ jψðx; tÞj2 and extract
the width w as well as depth d versus position of the defect
center xc in panel (d). We compare the relationship ξ ≈
w

ffiffiffi
d

p
in panel (e). The results are consistent with pre-

dictions assuming a perfectly unperturbed RDS, except
that the measured depth stops increasing with decreasing
ring size at a radius of less than or around 5 μm. We
attribute this reduced contrast to an instability developing
in the dark ring, as we now discuss.
An RDS becomes unstable when the rotational sym-

metry is broken [33], which, in experiment, occurs in the

n (μm-2)10 μm

(a)

(c)

(d)

(b)

0 50

FIG. 1. Spontaneous formation of ring dark solitons. (a) Super-
fluid confined in a 2D circular box with a Gaussian wall (top)
subject to a potential quench-down at t ¼ 0, which emits RDSs
from the edge (bottom). (b) Time evolution of the density line cut
across the box center and (c) 2D density images (top row),
evaluated using a Gross-Pitaevskii equation (GPE). Images on the
bottom row are obtained at the same indicated time but with
initial density fluctuations simulated in the GPE calculation
(Appendix C). Single-shot in situ images in panel (d) demonstrate
the formation of RDSs (green boxes), the onset of TI (red box),
and the formation of vortex dipoles (blue box), respectively.
Image resolution is approximately 0.8 μm.

(a)

(c) (d) (e)

(b)

v1

FIG. 2. Characterization of ring dark solitons. (a) Left panel:
Time evolution of mean density line cuts n̄ðx; y0Þ. Right panel:
Center of the dark waves and linear fits (color lines) highlighted
in a filtered image. (b) Propagation speeds of the darker waves
determined at x < 0 (filled symbols) and x > 0 (open symbols),
respectively. Results obtained at a higher chemical potential are
plotted for comparison. The solid curve is the calculated sound
speed vs. (c) Single-shot density line cuts at t ¼ 17.5 (circles),
23.5 (triangles), and 39.5 (diamonds) ms, respectively. Solid lines
are fits. (d) Fitted depths d and widths w versus radial position
from single shots (crosses) and their means (circles). Solid lines
are the case of a nonperturbed RDS, expected from Eq. (1).
(e) Healing length ξ ¼ w

ffiffiffi
d

p
determined from single-shot fit

results (insets). Solid lines are expectations ξ ¼ ℏ=
ffiffiffiffiffiffiffi
mμ

p
. Error

bars are standard deviations.
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presence of thermal and quantum fluctuations or with an
azimuthal variation in the generating box potential. An
RDS would suffer transverse modulations from self-
amplifying noise. This is clearly visible in our experi-
ments especially when the dark ring reaches the minimum
radius, as seen in Fig. 1(d). By seeding initial fluctuations
in an otherwise smooth GPE wave function (Appendix C),
qualitatively similar density perturbations are observed in
Fig. 1(c).
Interestingly, TI is intrinsically coupled to an RDS’s

radial motion. For a dark soliton stripe with finite length
L, it is known that TI manifests as sinusoidal “snaking”
density modulations along the stripe, with discrete wave
numbers kl ¼ 2πl=L≲ 1=w (l∈N) limited by the trans-
verse width w [52]. In an RDS, this sets a radius-
dependent limit,

l≲ rc
w
∼

ffiffiffiffiffiffiffiffiffiffiffiffi
rminr2c

3
p

ξ
for l ¼ 1; 2; 3;…: ð2Þ

Therefore, high-frequency modulations stop growing as
an RDS shrinks. Around the minimum radius, only the
most unstable mode(s) with l ¼ lmax ≲ rmin=ξ could con-
tinue to be amplified, until the RDS fragments into around
lmax pieces with angular separation Δϕ ≈ 2π=lmax.
To visualize this dynamics, in Fig. 3(a) we plot the

angular density-density correlation function in the dark
ring, CΔϕ ¼hCðϕ;ΔϕÞiϕ ¼hhnϕnϕþΔϕi− hnϕihnϕþΔϕiiϕ,
where nϕ ¼ nðrc;ϕÞ is the atomic density near the mea-
sured ring position r ¼ rc, and h·i (h·iϕ) denotes ensemble
(azimuthal) averaging. After a long enough time while the
dark ring approaches its minimum radius, we observe very
strong angular correlations at Δϕ ≈ 120° and 240° angles,
corresponding to l ¼ 3. This mode appears to create radial
distortions of a triangular shape, as exemplified by the
single-shot images in the second column of Fig. 4(a).
Interestingly, as the dark ring continues to evolve
(t≳ 50 ms), a new correlation pattern develops at around
a 180° angle, that is, for l ≤ 2; see the images in the third
column of Fig. 4(a).
To observe this mode competition more clearly, we

measure the Fourier spectrum by evaluating Al ¼D���PΔϕ Cðϕ;ΔϕÞeilΔϕ
���E

ϕ
. As shown in Fig. 3(b), insta-

bility develops mostly within l ≤ 6, whose amplitudes are
exponentially amplified as shown in panel (c). Figure 3(d)
plots the initial growth rate for each mode, quantitatively
reproduced by the GPE simulations detailed in Appendix F.
In the experiments, the l ¼ 3 mode is the most unstable
with the largest growth rate. At t≳ 40 ms, however, the
growth of high-frequency modes becomes arrested by the
shrinking radius. The onset of growth suppression roughly
follows the estimation given by Eq. (2), until the minimum
ring radius is reached; see panel (b). Beyond t≳ 50 ms,
l ¼ 1 and 2 modes continue to increase until t≳ 70 ms,

when Al¼1;2 becomes large enough to break the expanding
dark ring. In real space, this corresponds to fragmentation
of lmax ¼ 2 pieces with 180° angular separation as evi-
denced in our observations.
We identify these self-structured fragments as vortex

dipoles [34] in which the vortex-antivortex distance Δ is
linked to the speed vd ∼ ℏ=mΔ and the incompressible
kinetic energy of the flow E ∼ logðΔ=ξÞ. Remarkably, we
observe a variety of vortex dipole structures in experiment
and in GPE simulations as well [Fig. 4(b)]; many of these
structures were classified in Refs. [53,54]. One type of
defect is referred to as a weakly bound vortex dipole,
appearing when the flow has a larger energy. It features two
well-separated cores and phase singularities as shown in (i).
A second type of defect is the rarefaction pulse shown in
(ii), which shows a phase step without vorticities and
propagates at a velocity closer to the sound speed. It
emerges as a local density minimum weakly connected to
other defects in the bulk or at the boundary. A third type,
which we observe most frequently, is somewhat in between
the first two. Its energy is large enough to preserve two

(a) (b)

(c) (d)
l = 2

l = 3

l = 5

l = 6

FIG. 3. Pattern-forming instability. (a) Evolution of the azimu-
thal density-density correlation function CΔϕ showing pattern
formation. (b) Fourier spectra Al showing mode competition. The
peak position of each mode (l ≤ 6) is marked by a gray square.
The dashed line marks the calculated thresholds, Eq. (2), below
which modes are expected to be unstable. (c) Fourier amplitude
Al of indicated modes plotted in the logarithmic scale. Solid lines
are exponential fits to determine the initial growth rates γl shown
in panel (d). The red shaded band represents the GPE simulated
rate, scaled by an overall constant of around 0.17 to match the
data. The gray shaded band includes systematic effects in
imaging, showing agreement with experiment without any
adjustable parameters. Details can be found in Appendix F. Error
bars in the data and vertical bands in the simulated rate represent
fitting uncertainty.
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phase vorticities but too small to separate their cores. It can
be seen as an isolated density defect with an elongated
width (≳2w) and is identified as a bounded dipole as in (iii).
Oftentimes, the second and the third types of defects are
referred to as coalesced vortices [55] or Jones-Roberts
solitons [56].
In Fig. 4(a), due to shot-to-shot fluctuations in atomic

density (see also Appendix E), observed density defects
exhibit various shapes as discussed above. Three rarefac-
tion pulses (green ovals) that are weakly linked in a
triangular shape are often found at t ∼ 50 ms. Pairs of
bounded vortex dipoles (blue ovals) are most frequently
identified immediately after an RDS fragments. Weakly
bound dipoles (brown ovals) sometimes appear, potentially
due to stronger snaking modulations and a larger flow
energy to separate the cores. At longer times, many isolated
vortices (red circles) are found near the edge of the box,
presumably exhibiting similar orbital dynamics as seen in
Ref. [57]. Detailed identification algorithms of density
defects can be found in Appendixes D and E.
A clear distinction of vortex dipoles can be visualized

from their interaction with the wall potential, where the
density gradient induces an inward force on both the vortex
and the antivortex, and this triggers the Magnus effect. A
vortex dipole would decelerate and unbind upon hitting the
wall, as shown in (i) and (iii) of Fig. 4(b). The unbound
vortices appear pinned to the superfluid boundary and
move along the rim with opposite circulation. If, instead, a
rarefaction pulse is incident upon the wall, it forms an
arclike defect structure, as shown in (ii), eventually break-
ing into a reflecting rarefaction pulse, and occasionally also
two vortices pinned to the boundary with opposite circu-
lations. These rarefaction arcs are evidenced by defects
marked with large green circles in Fig. 4(a). Long after all
vortex dipoles have interacted with the wall, we identify a
high probability for observing vortexlike density defects
(azimuthal size ∼ξ) near the boundary r≳ 9 μm, as shown
in Fig. 4(c). Other defects at r≲ 9 μm have a wide spread
of azimuthal widths (≳2ξ). They are likely rarefaction
pulses, rebounded dipoles, or colliding defects in the bulk.
We have demonstrated in situ images of self-structured

density defects. This enables directly probing self-pattern-
ing dynamics in a superfluid for the first time. To further
enhance visualization of vortex dipole necklaces, we can
extinguish the horizontal trap confinement and image after
a long time-of-flight (TOF) expansion in 2D; see Fig. 5. We
note that these structures continue to evolve during the
expansion. Here, we use a smaller box to increase the initial
density, chemical potential, and thus the TOF expansion
rate. Vortex cores in l ¼ 2 vortex dipole necklaces dra-
matically expand during TOF due to much-reduced healing
length, clearly visible in panel (a). As dipoles propagate
towards the boundary, their core size further increases due
to reduced background density. We have also observed
l ¼ 2 or 3 bounded dipoles (b) and rarefaction pulses (c),

identified based on their widths and connections with
adjacent defects. Faster moving RDSs can also be seen
near the boundary of expanded superfluids.
In summary, we observed very rich nonequilibrium

dynamics and self-patterning with RDSs that emerged
purely from a box quench. Both 180° (lmax ¼ 2) and
120° ordered (lmax ¼ 3) vortex dipole necklaces have been
observed in Figs. 4 and 5, respectively. Even higher-order

(a)

(b)

(c)

10 μm n (μm-2)

50

0

1208040 160

ii iiiiiiii

FIG. 4. Structured formation of vortex dipole necklace and
vortex unbinding. (a) Single-shot in situ images collected within
the indicated time interval. The first three columns show samples
right before, during, and right after patterned fragmentation,
respectively. The last three columns present samples with density
defects likely before, during, and after they reach the superfluid
boundary. Identified density defects are circled and categorized as
one of the following: weakly bound vortex dipoles (brown),
rarefaction pulses (green), bounded dipoles (blue), and pinned
vortices (red). (b) Dynamics of a weakly bound dipole (i), a
rarefaction pulse (ii), and a bounded dipole (iii) in GPE
simulations. Images in each box, from left to right, respectively,
show the density (top) and phase (bottom) profiles before and
after a defect hits the wall. The propagation direction of each
defect is marked by an arrow. (c) Left: occurrence of azimuthal
width versus radial position of detected defects, obtained from
images taken after t ¼ 60 ms. Right: probability distribution for
detected widths at r ≥ 9 μm showing a peak near the healing
length (dashed line).
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lmax ≥ 3 can be created with either a larger bulk chemical
potential (most unstable modes are in shorter scales) or
larger initial short-scale density perturbations (AppendixC).
Our quench experiment demonstrates a new tool to generate
dark solitons in versatile forms as well as ordered quantum
vortex matter in a uniform box trap [46]. By incorporating
box quenches together with interaction tuning using a
Feshbach resonance, multiple RDSs [58,59] and vortex
dipole necklaces may be generated in one sample, thus
creating complex vortex matter. It may be possible to trap a
stationary RDS [34] and further control its stability by
applying a radial potential when rc ¼ rmin [52,60]. By
incorporating nondestructive imaging [61], our work can
be extended to study invertedTI [33], persistent revivals, and
clusterization [35–38] of ordered vortex dipoles, and may
open newways to explore spontaneous clustering [62–64] in
2D vortex matter.

We thank Eli Halperin, Qi Zhou, Samuel Alperin, Chih-
Chun Chien, and Sergei Khlebnikov for discussions. This
work is supported in part by the W. M. Keck Foundation,
the National Science Foundation (Grant No. PHY-
1848316), and the Department of Energy QuantISED
program through the Fermilab Quantum Consortium.
This work is published with support from the Purdue
University Libraries Open Access Publishing Fund.

APPENDIX A: PREPARATION
OF A 2D SUPERFLUID

The detailed experimental apparatus is given in Ref. [65]
with an updated objective lens (numerical aperture of

approximately 0.6). We begin the preparation of a Bose-
Einstein condensate (BEC) of cesium atoms confined in an
optical dipole trap with a horizontal (vertical) trap fre-
quency of about 12 Hz (about 70 Hz) through an evapo-
rative cooling procedure. The s-wave scattering length is
then gradually decreased to a small value a ≈ 12a0 via a
Feshbach resonance [66], where a0 is the Bohr radius. The
BEC is then loaded into a 2D box potential. The vertical
confinement of the box is provided by a single node of a
repulsive standing-wave potential with 3 μm periodicity.
The measured vertical trap frequency in the node is ωz ≈
2π × 1.8 kHz (≫ kBT=ℏ; μ=ℏ), deep in the 2D regime,
where kB is the Boltzmann constant, T < 10 nK is the
temperature, μ is the chemical potential, and ℏ the reduced
Plank constant. The atoms populate the vibrational ground
state in the vertical trap with a harmonic oscillator length
lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmωzÞ

p
≈ 207 nm, where m is the atomic mass.

The horizontal confinement is arbitrarily configured via a
blue-detuned light (780 nm) patterned with a digital
mirror device and projected through the objective lens.
In this work, we use a circular box with an inner radius of
approximately 15 μm and a width of approximately 5 μm.
We obtain in situ density distributions of 2D gases by
performing absorption imaging through the same objective
lens and recording the image on a CCD camera. The image
resolution is about 0.8 μm. The atomic surface density n is
calibrated using a similar scheme as discussed in Ref. [67].
The typical initial density is n ≈ 50 μm−2 at a fixed 2D
interaction strength g ¼ ffiffiffiffiffiffi

8π
p

a=lz ≈ 0.017. Shortly after
the box potential height is quenched to the final strength
(≈kB × 9 nK), the bulk density reduces ton ≈ 42 μm−2 and
remains roughly constant throughout the subsequent evo-
lution, presumably due to the initial finite atom spilling
over the box wall. The resulting healing length is
ξ ¼ 1=

ffiffiffiffiffi
ng

p ≈ 1.2 μm, larger than our image resolution.
This allows us to resolve individual vortices with spacing
comparable to or smaller than the healing length. Note that
in situ imaging of vortices has been demonstrated using a
dark-field imaging technique [68] and, most recently, using
high-resolution absorption imaging [9,69].

APPENDIX B: WAVE FUNCTION AND RADIAL
DYNAMICS OF A RING DARK SOLITON

An RDS is a quasistationary solution of the time-
dependent 2D Gross-Pitaevskii equation (GPE),

iℏ
∂ψ

∂t
¼

�
−
ℏ2

2m

�
∂
2

∂r2
þ 1

r
∂

∂r
þ 1

r2
∂
2

∂ϕ2

	
þ ℏ2g

m
jψ j2

�
ψ :

ðB1Þ

Assuming rotational symmetry, the wave function of a
perfect RDS only has radial dependence. To a good
approximation, it can be written as

(a)

(b)

(c)

n (μm-2)

FIG. 5. Self-patterned defect structures imaged after 40 ms of
TOF. Single-shot images in each column are collected with the
indicated hold time, showing a necklace of weakly bound vortex
dipoles (a), bounded dipoles (b), and rarefaction pulses (c). The
inset shows a sample in situ image at t ¼ 34 ms, held in a circular
box with a radius of approximately 11 μm.
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ψðr; tÞ ¼ ffiffiffi
n

p h
i

ffiffiffiffiffiffiffiffiffiffiffi
1 − d

p
þ

ffiffiffi
d

p
tanhðr − rcÞ=w

i
e−iμt=ℏ;

ðB2Þ

where rcðtÞ is the radial position of the density defect, d ¼
1 − ðv=vsÞ2 ≤ 1 its depth, v ¼ ṙc its radial velocity, and
w ¼ ξ=

ffiffiffi
d

p
its characteristic width. Here, the background

density n, the healing length ξ ¼ 1=
ffiffiffiffiffi
ng

p
, the sound speed

vs ¼ ℏ=ξm, and the chemical potential μ ¼ mv2s are the
bulk properties of the superfluid. The radial motion v,
width w, and depth d are all related to each other; fixing one
parameter completely determines the other two. A faster-
(slower-)moving soliton would have a shallower (deeper)
depth and a broader (narrower) density profile.
This radial wave function is essentially the dark soliton

solution in 1D, except that it is perturbed by the r−1∂=∂r
Laplace term in the 2D GPE. A consequence of this
perturbation is that ðd; w; vÞ slowly evolves as the radius
of an RDS changes [30]. The dynamics of an RDS differs
from that of a 1D dark soliton. In particular, the soliton
depth follows the relation

d ¼ dðtiÞ
�
rcðtiÞ
rc

�
2=3

; ðB3Þ

where dðtiÞ and rcðtiÞ are the initial depth and radius of the
RDS, determined at time ti. This additional equation further
relates ðd; w; vÞ with rc. The depth increases (decreases) as
the RDS shrinks (expands), and the width and radial
velocity change accordingly.
An explanation for this radius-dependent dynamics is

from energy conservation. As discussed in Ref. [70], the
energy of a 1D dark soliton is ϵ ¼ ð4=3Þℏvsnd3=2. For a
dark soliton stripe in 2D, ϵ is the linear energy density. In a
uniform medium, the total energy of an RDS is 2πrcϵ. For
an adiabatic evolution with conserved RDS total energy,
one must have rcðtiÞdðtiÞ3=2 ¼ rcd3=2, thus leading to the
same result obtained from the perturbation theory [30].

APPENDIX C: TIME-DEPENDENT
GPE SIMULATION

We perform 2D GPE simulations [71,72] to obtain
numerical evidence of RDS emission in our quench
protocol. The initial ground-state wave function is confined
in a repulsive wall potential of the form

UðrÞ ¼


U0e−2ðr−RÞ

2=σ2 r ≤ R

U0 r > R;
ðC1Þ

where U0 is the trap strength, R the box radius, and σ the
experimentally calibrated 1=e2 width of the wall. In the
time-dependent GPE, the trap strength is quenched from
U0 ¼ kB × 60 nK to the final value Uf ¼ kB × 9 nK, and
we evaluate the subsequent dynamics of the wave function.

We note that, in the experiment, the wall has a radial
Gaussian profile of finite width instead of the semi-infinite
form taken in the GPE simulation. The former is respon-
sible for finite atom spilling after the potential is quenched
down. The results shown in Fig. 1 are calculated using atom
number N ¼ 2.2 × 104 matching that of the initial exper-
imental condition. While we have obtained qualitative one-
to-one agreement of RDS emission and its subsequent
evolution, the exact timing cannot be fully matched. The
emitted RDS tends to move faster in the GPE simulation,
and we have increased U0 by about 70% to increase the
quench contrast, which slows down the RDS velocity. The
slower RDS dynamics observed in the experiment may be
due to finite atom spilling right after the quench, which
leads to a lower sound speed and thus a lower RDS velocity.
To take into account density fluctuations in a super-

fluid, we imprint phase noise in the initial GPE wave
function to simulate phonon excitations. Given an initial
temperature (T ≈ 3–7 nK), we calculate the phonon pop-
ulations according to the Bose-Einstein distribution plus
zero-point fluctuations,

npðkÞ ¼
1

eEðkÞ=kBT − 1
þ 1

2
¼ 1

2
coth

EðkÞ
2kBT

; ðC2Þ

where EðkÞ is the Bogoliubov phonon dispersion relation.
We populate random Bogoliubov phonon excitations in
the ground-state wave function, with statistical amplitude
variance in each mode matching npðkÞ. We then evolve
the wave function in the time-dependent GPE. We have
also taken into account total atom number fluctuations in
the experiment and performed a series of GPE calcu-
lations with N ¼ ð2.2� 0.4Þ × 104. Given the range of
temperature and atom number fluctuations, we numeri-
cally observe RDS fragmentation into necklaces of
weakly bound vortex dipoles, tightly bound dipoles, or
rarefaction pulses. Representative results are plotted
in Fig. 4(b). Most of the necklaces consist of a chain
of l ¼ 2 vortex dipoles or rarefaction pulses. Increasing
the atom number or interaction strength g, l ≥ 3 necklaces
can be observed.

APPENDIX D: SOLITON DETECTION
ALGORITHM

To obtain the position and size of an RDS, we measure
mean density line cuts n̄ðx; y0Þ typically averaged over
realizations equal to or greater than 5. By convolving the
line cuts with a Gaussian kernel of a width around the
healing length ξ, we obtain a scale-space representation that
suppresses features smaller than ξ. A Laplacian of this
convolution generates positive features for intensity min-
ima, which correspond to the mean locations of dark
stripes. These procedures are applied to the density line
cuts obtained at different times t to visualize the evolution
of dark stripe locations, as shown in the right panel of
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Fig. 2(a). We then extract the stripe speed and location.
We perform the same analysis to averaged density line
cuts along the y axis, n̄ðx0; yÞ. With this information
obtained from the mean line cuts along the two axes, we
predict the time-dependent center r0 and radius rc of
RDSs in single-shot images; see red areas in Fig. 6. For
the analysis of instability in RDSs (see Fig. 3) we use
single-shot density profiles averaged in the radial interval
jr − rcj≲ 0.9 μm.

APPENDIX E: VORTEX DETECTION
ALGORITHM

At later times (t≳ 60 ms) after the box quench, an RDS
breaks into vortices. They are detected using a scheme
similar to a vortex image processing algorithm [73]. For
each single-shot in situ image [Fig. 7(b)], we calculate
the residual [Fig. 7(c)] from the mean density profile
[Fig. 7(a)] averaged over many experimental shots. We
then apply a Laplacian of Gaussian filter to enhance those
defect structures having characteristic length scales of
about ξ. Then, we obtain defect positions marked by
circles in Fig. 6(b). We note that the analysis is restricted
to defects having nearly zero local density (≲4 μm−2) to
avoid spurious detections. Detected defects have a large
variation in the azimuthal width, while the radial spread is
comparable with around ξ. The azimuthal width and

position of each detected defect are analyzed as shown
in Fig. 4(c).

APPENDIX F: PATTERN FORMATION
DYNAMICS IN GPE SIMULATION

A series of GPE simulations with initially seeded
random fluctuations are analyzed according to the pre-
sented data in Fig. 3 for further understanding the pattern
formation by snaking instability in RDSs. We first
determine the mean radius r̄c of generated RDSs and
its motion ˙̄rc from a radial density profile [Fig. 8(a)],
averaged over multiple runs. We then analyze the angular
density-density correlation function CΔϕ ¼hCðϕ;ΔϕÞiϕ ¼
hhnϕnϕþΔϕi− hnϕihnϕþΔϕiiϕ, where h·i (h·iϕ) represents
the sample (azimuthal) average and nϕ is the azimuthal
density at r ¼ r̄c. As shown in Fig. 8(b), the simulated
CΔϕ is consistent with the observation [Fig. 3(a) in the
main text]. The RDSs have no significant modulation in
their azimuthal density at early times, less than or around
20 ms. However, at a later time when r̄c approaches its
minimal value, CΔϕ exhibits strong angular correlation at
Δϕ ≈ 120° and 240°, corresponding to l ¼ 3 necklace
formation. At even later times, the angular correlation at
Δϕ ≈ 180° (l ¼ 2 mode) becomes comparable to the ones
at Δϕ ≈ 120° and 240°, resulting in the competition
among those unstable modes.

(a)

(b)

(c)(c)

(b)

(c)

n (μm-2)

n (μm-2)

FIG. 7. In situ vortex detection in a box-trapped 2D superfluid. (a) Mean density profile n̄ averaged over more than 300 experimental
realizations at over 60 ms. (b) Examples of single-shot in situ density images n. Detected defects are marked by red circles. (c) Residual
from the mean density, δn ¼ n − n̄.

n (μm-2)

4020 60

FIG. 6. Single-shot in situ images of RDSs. The red shaded area represents the radius r̄c of produced RDSs from the averaged image.
Even though RDSs fragment into multiple pieces for a longer time, their locations are efficiently captured.
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In Fig. 8(c), we plot the dynamics of the Fourier

spectrum, defined as Al ¼
D���PΔϕ Cðϕ;ΔϕÞeilΔϕ

���E
ϕ
. It

marks the increase of the modulation amplitude only for
lower angular frequency modes due to the finite instability
band l < lmax; the l ¼ 3 mode dominates at t ∼ 40 ms,
while lmax approaches rmin=ξ ∼ 3 as the RDS shrinks. At
t ∼ 60 ms, the l ¼ 2 and l ¼ 3 modes eventually display
comparable amplitudes. This dynamics naturally appears in
shrinking RDSs, supporting our experimental observation
of mode competition dynamics in Figs. 3(b) and 3(c). The
detailed dynamics of Al is plotted in Fig. 8(d). We find that
the amplifications in the prohibited band l > lmax are
incompletely terminated at l ≥ 4. This can potentially be
attributed to the contribution from adjacent RDSs [see
panel (a)] or the evolution of phonon fluctuations that may
not be sensitively detected in the experiment. Additionally,
in the simulation, one can see a continuous reduction in Al
at the early stage t≲ 20 ms during which the wave function
expands while solitary waves develop. Note that Al starts to
grow once RDSs form.
Figures 8(e) and 8(f) compare the experimental data γl,

as shown in Fig. 3(d), with the early-time growth rate γðsimÞ
l ,

obtained from exponential fits as in Fig. 8(d). In Fig. 8(e),
the observed exponential growth within l≲ 6 is well
reproduced by the simulation, except for an overall scaling
constant α ≈ 0.17 adjusted to match the data, indicating that
the observed rate is roughly 6 times lower than that in the
simulation. We believe the slower rate observed in the
experiment is due to the systematic effect of finite reso-
lution of our imaging system and image noise, for example,
photon shot noise, which adds to each measured Fourier
amplitude Al an offset of aboutOð1Þ. We find that the offset
can effectively reduce the fitted growth rates. To see those
systematic effects, we convolute the GPE data with finite
resolution and add the measured offsets to the GPE

simulated amplitudes Al. We refit the growth rate γðsimÞ
l

and indeed find that it agrees well with experimentally
determined values, as shown in Fig. 8(f).
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