A Review of Theories for Sound Transmission through Infinite Double Panels and Identification of Asymptotic Behavior

Zhuang Mo
Purdue University, mo26@purdue.edu

J Stuart Bolton
Purdue University, bolton@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/herrick

https://docs.lib.purdue.edu/herrick/210

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
A REVIEW OF THEORIES FOR SOUND TRANSMISSION THROUGH INFINITE DOUBLE PANELS AND IDENTIFICATION OF ASYMPTOTIC BEHAVIOR

Zhuang Mo, J. Stuart Bolton
Ray W. Herrick Laboratories, 177 S. Russell Street, Purdue University, West Lafayette, IN 47907-2099

This presentation will be posted at Herrick E-Pubs: http://docs.lib.purdue.edu/herrick/
Contents

- **Review of Existing Theories**
 Classic models by Beranek and Work, London, Mulholland et al., Heckl, Fahy, and Hamada and Tachibana

- **Asymptotic Behavior**
 Asymptotic behavior of double-panel systems with stiff panels

- **Porous Lining and Average Transmission Loss**
 Effect of limp porous lining and the average transmission loss over a range of incidence angles

- **Conclusion**

Sound transmission through an infinite double-panel systems
Existing Theories

<table>
<thead>
<tr>
<th>Boundary Value Problem</th>
<th>Alternative approaches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beranek and Work(^1)</td>
<td>Mulholland, Parbrook, and Cummings(^4)</td>
</tr>
<tr>
<td>London(^2)</td>
<td>Hamada and Tachibana(^7)</td>
</tr>
<tr>
<td>Mulholland, Price, and Parbrook(^3)</td>
<td>Multiple-reflection</td>
</tr>
<tr>
<td>Heck(^5)</td>
<td>Transfer matrix</td>
</tr>
<tr>
<td>Fahy(^6)</td>
<td>Can be extended to many applications</td>
</tr>
</tbody>
</table>

Different panel impedance leads to,

- Limp panel
- Limp panel + Constant resistance
- Stiff panel + Constant resistance
- Stiff panel + Hysteric resistance
Existing Theories

- Beranek and Work’s equation for a double-limp-panel system without resistance \((Z = j\omega m)^1\),

\[
p_0/p_5 = \left(\cos kd - \frac{\omega m_1}{\rho c} \sin kd \right) + j \left[\sin kd + \frac{\omega (m_1 + m_2)}{\rho c} \cos kd - \frac{\omega^2 m_1 m_2}{\rho^2 c^2} \sin kd \right]
\]

- Normal incidence
- Different panels
- The total sound pressure ratio can be transferred to transmission coefficient\(^3\).
- This limp panel impedance can be substituted into other models, i.e. London’s model.
Existing Theories

- London’s expression of transmission coefficient for identical panels

\[
T = \frac{p_t}{p_i} = 1\left[1 + \frac{Z_w \cos \theta}{\rho c} + \frac{Z_w^2 \cos^2 \theta}{4 \rho^2 c^2} \left(1 - e^{-j2kd \cos \theta} \right) \right]
\]

- A generalized version of London’s model

\[
|T|^2 = \left| 1 + \frac{Z_1 + Z_2}{2 \rho c} \cos \theta + \frac{Z_1 Z_2 \cos^2 \theta}{4 \rho^2 c^2} \left(1 - e^{-2jkd \cos \theta} \right) \right|^2
\]

- Oblique incidence
- Different panels
Existing Theories

- Mulholland et al. derived multiple-reflection theory\(^4\),

\[|T|^2 = \left| \frac{x^2}{1 - (1 - x)^2 e^{-j2kd \cos \theta}} \right|^2 \]

- A generalized version derived from\(^9\),

\[|T|^2 = \left| \frac{x_1 x_2}{1 - (1 - x_1)(1 - x_2)e^{-j2kd \cos \theta}} \right|^2 \]

- Equivalent to Beranek and Work’s and London’s model\(^4\)
Existing Theories

- Mulholland et al. extended Beranek and Work’s method3,

\[
T = \left[\frac{2 \rho_2 c_2 \cos \theta_1}{(Z_f \cos \theta_1 + \rho_1 c_1) \cos \theta_2} \right] \left[\frac{\cosh \Phi}{\sinh(\jmath k_2 d \cos \theta_2 + \Phi)} \right] \left[\frac{\rho_1 c_1}{\rho_1 c_1 + j \omega \rho_1 \rho_2 c_2 \cos \theta_2} \right]
\]

- Oblique incidence
- Different media and panels

\[
\Phi = \text{arccoth}\left[\frac{(j \omega \rho_2 \rho_1 \rho_1 c_1 \cos \theta_2)}{\rho_2 c_2} \right] \frac{\cos \theta_1}{\cos \theta_1}
\]

\[
Z_f = \frac{\rho_2 c_2 \coth(j k_2 d \cos \theta_2 + \Phi) + j \omega m_1 \cos \theta_2}{\cos \theta_2}
\]
Existing Theories

\[m_1 = 7 \text{ kg/m}^2 \quad m_2 = 7 \text{ kg/m}^2 \quad d = 0.23 \text{ m} \]

• Governed by mass law – 40 dB/dec
• Minima of transmission loss go to zero
• Resonances shift to higher frequencies at oblique incidence
Existing Theories

- double-limp-panel
 \[m_1 = 28 \text{ kg/m}^2 \quad m_2 = 7 \text{ kg/m}^2 \quad d = 0.23 \text{ m} \]

- double-limp-panel at \(\theta_i = \pi/4 \)
 \[m_1 = 28 \text{ kg/m}^2 \quad m_2 = 7 \text{ kg/m}^2 \quad d = 0.23 \text{ m} \]

- Governed by mass law – 40 dB/dec
- Minima of transmission loss do not go to zero
- Resonances shift to higher frequencies at oblique incidence
Existing Theories

With hydrogen between panels and air outside
\[\rho_2 = 0.08988 \text{ kg/m}^3 \quad c_2 = 1270 \text{ m/s} \]

- double-limp-panel
 \[m_1 = 15 \text{ kg/m}^2 \quad m_2 = 15 \text{ kg/m}^2 \quad d = 0.23 \text{ m} \]

\[\text{at } \theta_i = \pi/24 \]

\[m_1 = 15 \text{ kg/m}^2 \quad m_2 = 15 \text{ kg/m}^2 \quad d = 0.23 \text{ m} \]

- Higher sound speed shifts resonances to higher frequencies
Existing Theories

- **Fahy’s expression of transmission coefficient**\(^6\),

\[
T = -\frac{2j\rho^2c^2\sec^2\theta \sin(kd \cos \theta)}{z'_1 z'_2 \sin^2(kd \cos \theta) + \rho^2c^2\sec^2\theta}
\]

\[
z' = j\omega m + r + \rho c \sec \theta [1 - j \cot(kd \cos \theta)]
\]

 - panel impedance
 - limp panel + constant resistance

- **London’s panel impedance**\(^2\)

\[
Z_w = \frac{2r}{\cos \theta} + j\omega m \left(1 - \frac{f^2}{f_{c}^2} \sin^4 \theta\right)
\]

 - critical frequency
 - stiff panel + constant resistance
Existing Theories

With Fahy’s model and panel impedance:

\[
\begin{align*}
\text{double-limp-panel} & \\
 m &= 15 \text{ kg/m}^2 & r &= 1000 \text{ kg/m}^2\text{s} & d &= 0.23 \text{ m} \\
\end{align*}
\]

\[
\begin{align*}
\text{double-limp-panel at } \theta_i &= \pi/4 \\
 m &= 15 \text{ kg/m}^2 & r &= 1000 \text{ kg/m}^2\text{s} & d &= 0.23 \text{ m} \\
\end{align*}
\]

- Resistance in formulations means that minima do not go to zero
Existing Theories

With London’s model and panel impedance

\[\text{double-stiff-panel} \]
\[m = 5 \text{ kg/m}^2 \quad r = 500 \text{ kg/m}^2\text{s} \quad d = 0.6 \text{ m} \]
\[f_c = 1062 \text{ Hz} \]

\[\text{double-stiff-panel at } \theta_i = \pi/6 \]
\[m = 5 \text{ kg/m}^2 \quad r = 500 \text{ kg/m}^2\text{s} \quad d = 0.6 \text{ m} \]
\[f_c = 1062 \text{ Hz} \]

- Minimum at coincidence frequency at oblique incidence
- Mass law no longer applies at frequencies higher than coincidence frequency
Existing Theories

- Heckl’s model with locally-reacting material between panels\(^5\),

\[
|T|^2 = \left| \frac{1}{1 - \omega^2 \frac{m'_1 + m'_2}{2s}} + j\omega \frac{m'_1 + m'_2}{2Z} \left(1 - \omega^2 \frac{m'_1 m'_2}{s(m'_1 + m'_2)} + \frac{Z^2}{s(m'_1 + m'_2)} \right) \right|^2
\]

\(Z = \rho c / \cos \theta\)

- Stiffness per unit area in between

\(m' = m[1 - (k^4 D / \omega^2 m) \sin^4 \theta]\)

\(D = D'(1 + j\eta)\)

- Stiff panel + hysteretic resistance

- Loss factor

\(\text{Noise-} \text{Con 2019, San Diego, CA}\)
Existing Theories

With Heckl’s model

\[m_1 = 8 \text{ kg/m}^2 \quad D_1 = 20000 \text{ kg} \cdot \text{m}^2/\text{s}^2 \quad \eta_1 = 0.0015 \]
\[m_2 = 16 \text{ kg/m}^2 \quad D_2 = 10000 \text{ kg} \cdot \text{m}^2/\text{s}^2 \quad \eta_2 = 0.001 \]
\[d = 0.6 \text{ m} \quad s = 1 \times 10^7 \text{ kg/s}^2\text{m}^2 \]

• No wave propagation between panels, so inter-panel resonances are absent

\[m_1 = 8 \text{ kg/m}^2 \quad D_1 = 20000 \text{ kg} \cdot \text{m}^2/\text{s}^2 \quad \eta_1 = 0.0015 \]
\[m_2 = 16 \text{ kg/m}^2 \quad D_2 = 10000 \text{ kg} \cdot \text{m}^2/\text{s}^2 \quad \eta_2 = 0.001 \]
\[d = 0.6 \text{ m} \quad s = 1 \times 10^7 \text{ kg/s}^2\text{m}^2 \]
Existing Theories

- Hamada and Tachibana’s transfer matrix method7,

\[
\mathbf{F}_\theta = \begin{bmatrix}
A_\theta & B_\theta \\
C_\theta & D_\theta
\end{bmatrix} = \mathbf{F}_{1\theta} \mathbf{F}_{A\theta} \mathbf{F}_{2\theta}
\]

The matrices for panels,

\[
\mathbf{F}_{i\theta} = \begin{bmatrix}
1 & Z_{i\theta}
\end{bmatrix} \text{ panel impedance}
\]

The matrix for the air gap,

\[
\mathbf{F}_{A\theta} = \begin{bmatrix}
\cos(kd \cos \theta) & \frac{j \rho c}{\cos \theta} \sin(kd \cos \theta) \\
\frac{j \cos \theta}{\rho c} \sin(kd \cos \theta) & \cos(kd \cos \theta)
\end{bmatrix}
\]
Asymptotic Behavior

- The stiffness + hysteretic damping impedance introduced by Cremer10,

\[Z_w = \frac{\eta D}{\omega} k^4 \sin^4 \theta + j(m\omega - \frac{D}{\omega} k^4 \sin^4 \theta) \]

Substitute into generalized London’s model,

\[
\left| \frac{1}{T} \right|^2 = (1 + \alpha (\Re Z_1 + \Re Z_2) + \alpha^2 [(1 - \cos 2\beta)(\Re Z_1 \Re Z_2 - \Im Z_1 \Im Z_2) - \sin 2\beta (\Re Z_1 \Im Z_2 + \Re Z_2 \Im Z_1)])^2 + \{\alpha (\Im Z_1 + \Im Z_2) + \alpha^2 [(1 - \cos 2\beta)(\Re Z_1 \Im Z_2 + \Re Z_2 \Im Z_1) + \sin 2\beta (\Re Z_1 \Re Z_2 - \Im Z_1 \Im Z_2)]\}^2
\]

with \(\alpha = \cos \theta / 2 \rho c, \beta = kd \cos \theta \)
Asymptotic Behavior

- when $\cos 2\beta = -1$ (maxima of transmission loss)

$$\left| \frac{p_i}{p_t} \right|^2 \approx 4\alpha^4 \left[\left(\frac{\eta_1 D_1 k_x^4}{\omega} \right)^2 + \left(\omega m_1 - \frac{D_1 k_x^4}{\omega} \right)^2 \right] \left[\left(\frac{\eta_2 D_2 k_x^4}{\omega} \right)^2 + \left(\omega m_2 - \frac{D_2 k_x^4}{\omega} \right)^2 \right] = O(\omega^{12})$$

$k_x = k \sin \theta$

corresponding to $d/\lambda = 1/4, 3/4, 5/4, \text{etc. at normal incidence}$

- when $\cos 2\beta = 1$ (minima of transmission loss)

$$\left| \frac{p_i}{p_t} \right|^2 = \left[1 + \frac{\alpha k_x^4}{\omega} \left(\eta_1 D_1 + \eta_2 D_2 \right) \right]^2 + \alpha^2 \left[\omega (m_1 + m_2) - \frac{k_x^4}{\omega} (D_1 + D_2) \right]^2 = O(\omega^6)$$

60 dB/dec

corresponding to $d/\lambda = 1/2, 1, 3/2, \text{etc. at normal incidence}$
Asymptotic Behavior

\[m_1 = 20 \text{ kg/m}^2 \quad D_1 = 10000 \text{ kg} \cdot \text{m}^2/\text{s}^2 \quad \eta_1 = 0.002 \]
\[m_2 = 20 \text{ kg/m}^2 \quad D_2 = 10000 \text{ kg} \cdot \text{m}^2/\text{s}^2 \quad \eta_2 = 0.002 \]
\[d = 0.01 \text{ m} \quad f_{c1} = f_{c2} = 823 \text{ Hz} \]

\[m_1 = 15 \text{ kg/m}^2 \quad D_1 = 9000 \text{ kg} \cdot \text{m}^2/\text{s}^2 \quad \eta_1 = 0.003 \]
\[m_2 = 30 \text{ kg/m}^2 \quad D_2 = 12000 \text{ kg} \cdot \text{m}^2/\text{s}^2 \quad \eta_2 = 0.001 \]
\[d = 0.01 \text{ m} \quad f_{c1} = 751 \text{ Hz} \quad f_{c2} = 920 \text{ Hz} \]
Asymptotic Behavior

\[\text{at } \theta_i = \pi/6 \]

\[m_1 = 20 \text{ kg/m}^2 \quad D_1 = 20000 \text{ kg} \cdot \text{m}^2/\text{s}^2 \quad \eta_1 = 0.1 \]

\[m_2 = 20 \text{ kg/m}^2 \quad D_2 = 20000 \text{ kg} \cdot \text{m}^2/\text{s}^2 \quad \eta_2 = 0.1 \]

\[d = 0.01 \text{ m} \]
Asymptotic Behavior

\[\theta_i = \pi / 6 \]

\[m_1 = 20 \text{ kg/m}^2 \quad D_1 = 20000 \text{ kg} \cdot \text{m}^2/\text{s}^2 \quad \eta_1 = 0.01 \]
\[m_2 = 20 \text{ kg/m}^2 \quad D_2 = 20000 \text{ kg} \cdot \text{m}^2/\text{s}^2 \quad \eta_2 = 0.01 \]
\[d = 0.01 \text{ m} \]
Asymptotic Behavior

\[\text{at } \theta_i = \pi/6 \]

\[m_1 = 20 \text{ kg/m}^2 \quad D_1 = 20000 \text{ kg} \cdot \text{m}^2/\text{s}^2 \quad \eta_1 = 0.001 \]

\[m_2 = 20 \text{ kg/m}^2 \quad D_2 = 20000 \text{ kg} \cdot \text{m}^2/\text{s}^2 \quad \eta_2 = 0.001 \]

\[d = 0.01 \text{ m} \]
Asymptotic Behavior

\[| \text{at } \theta_i = \pi/6 \]

\[m_1 = 20 \text{ kg/m}^2 \quad D_1 = 20000 \text{ kg} \cdot \text{m}^2/\text{s}^2 \quad \eta_1 = 1 \times 10^{-4} \]
\[m_2 = 20 \text{ kg/m}^2 \quad D_2 = 20000 \text{ kg} \cdot \text{m}^2/\text{s}^2 \quad \eta_2 = 1 \times 10^{-4} \]
\[d = 0.01 \text{ m} \]

The 60 dB/dec line shifts toward high frequencies as loss factor decreases.
Porous Lining

- The resistance in system will suppress the dips in transmission loss.

\[| | \text{at } \theta_i = \pi/6 \]

\[m = 20 \text{ kg/m}^2 \quad D = 10000 \text{ kg} \cdot \text{m}^2/\text{s}^2 \quad \eta_1 = 0 \]

\[d = 0.01 \text{ m} \]

Resistance brought by imaginary part of wavenumber.

So we are primarily interested in the maximum transmission loss behavior.
Porous Lining

- A layer of porous material described with,

<table>
<thead>
<tr>
<th>Flow Resistivity</th>
<th>Porosity</th>
<th>Tortuosity</th>
<th>VCL</th>
<th>TCL</th>
<th>Solid Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5×10^5 rayls/m</td>
<td>0.97</td>
<td>1.5</td>
<td>20 μm</td>
<td>40 μm</td>
<td>2000 kg/m³</td>
</tr>
</tbody>
</table>

- Effective density and wavenumber calculated with JCA-Limp model11,12

\[
\sqrt{120 \text{ dB/dec}}
\]

\[
m = 20 \text{ kg/m}^2 \quad D = 10000 \text{ kg} \cdot \text{m}^2/\text{s}^2 \quad \eta_1 = 0
\]

\[
d = 0.01 \text{ m}
\]

- The increase rate is now greater than 120 dB/dec
Kang et al. proposed an approach of calculating average transmission loss\(^{12}\)

\[
\tau(\omega) = \frac{\int_0^{\pi/2} G(\theta) |T(\omega, \theta)|^2 \sin \theta \cos \theta \, d\theta}{\int_0^{\pi/2} G(\theta) \sin \theta \cos \theta \, d\theta}
\]

A distribution function for incident energy versus incidence angle is applied

\[
G(\theta) = e^{-\zeta \theta^2}
\]

The average transmission loss

\[
TL(\omega) = 10 \log_{10} \left[\frac{1}{\tau(\omega)} \right]
\]
Average Transmission

- With $\zeta = 1.5$, the average transmission loss of the double panel system with porous material inside in the previous case was calculated,

- A drop of transmission loss occurs at critical frequency $f_c = 823$ Hz
Conclusions

- Classic models were reviewed

- Asymptotic behavior of double-stiff-panel systems at oblique incidence were studied
 - The peaks of the transmission loss increases at 120 dB/dec
 - The minima of the transmission loss increases at 60 dB/dec
 - The minima shift to higher frequencies as hysteretic damping decreases

- Porous lining between panels will suppress the resonance pattern of double panels and change the transmission loss increase rate

- Average transmission loss was obtained with Gaussian distribution applied
Reference